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Abstract

We study computational problems that arise in the context of iterated dominance in anonymous

games, and show that deciding whether a game can be solved by means of iterated weak dominance

is NP-hard for anonymous games with three actions. For the case of two actions, this problem can be

reformulated as a natural elimination problem on a matrix. While enigmatic by itself, the latter turns out

to be a special case of matching along paths in a directed graph, which we show to be computationally

hard in general but also use to identify tractable cases of matrix elimination. We further identify different

classes of anonymous games where iterated dominance is in P and NP-complete, respectively.

Keywords: Algorithmic Game Theory, Computational Complexity, Iterated Dominance, Matching

1 Introduction

We study problems related to iterated dominance in anonymous and symmetric games. An anonymous

game is characterized by the fact that players do not distinguish between other players in the game, i.e., their

payoff only depends on the numbers of other players playing the different actions, but not on their identities.

A symmetric game additionally has identical payoff functions for all players. A strategy of a player is a

probability distribution over his actions. An action of a particular player in a game is said to be weakly

dominated if there exists a strategy guaranteeing him at least the same payoff for any profile of actions of

the other players, and strictly more payoff for some such action profile. The well-known solution concept of

iterated dominance works by removing a dominated action and applying the same reasoning to the reduced

game. A game is then called solvable by iterated dominance if there is a sequence of eliminations that

leaves only one action for each player (Moulin, 1979). In general, the order in which actions are eliminated

is important.

Related Work Deciding whether a game can be solved by iterated weak dominance is NP-complete al-

ready for games with two players and two different payoffs (Gilboa et al., 1993; Conitzer and Sandholm,

2005). Apart from work by Brandt et al. (2006), we are not aware of any complexity results for restricted

classes of games. The complexity of Nash equilibria in anonymous and symmetric games, on the other hand,

has been studied extensively by several authors. Symmetric games are guaranteed to possess a symmetric

equilibrium, i.e., one where all players play the same strategy. Such an equilibrium can be found efficiently

if the number of actions is not too large compared to the number of players (Papadimitriou and Roughgar-

den, 2005). Anonymous games have recently been shown to admit the efficient computation of approximate

Nash equilibria—by a factor depending on the Lipschitz constant of the payoff function and on the square

of the number of actions—, and a PTAS for the case of two actions (Daskalakis and Papadimitriou, 2007).

Brandt et al. (2007) show that the pure equilibrium problem in anonymous games is tractable if the number
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of actions is a constant, and complete for NP or PLS, respectively, if the number of actions grows in the

number of players.

Results and Paper Structure We begin by introducing the relevant game-theoretic concepts. In Section 3

we then show that iterated dominance solvability is NP-hard for symmetric games with a growing number

of actions, and tractable for symmetric games with a constant number of actions. The only remaining case,

anonymous games with a constant number of actions, is then studied for the remainder of the paper. When

restricted to two actions, it can be reformulated as a natural elimination problem on matrices, which we do

in Section 4. While the complexity of this problem remains open, we point out connections to a matching

problem on paths of a directed graph in Section 5. The latter problem, which may be of independent interest,

is intractable in general but allows us to obtain efficient algorithms for restricted versions of matrix elimi-

nation. In Section 6 we finally use the matching formulation to show NP-hardness of iterated dominance in

anonymous games with three actions.

2 Preliminaries

An accepted way to model situations of strategic interaction is by means of a normal-form game (see, e.g.,

Luce and Raiffa, 1957).

Definition 1 (normal-form game) A game in normal-form is a tuple Γ = (N, (Ai)i∈N , (pi)i∈N) where N is

a set of players and for each player i ∈ N, Ai is a nonempty set of actions available to player i, and

pi : (
�

i∈N Ai)→ R is a function mapping each action profile of the game (i.e., combination of actions) to a

real-valued payoff for player i.

A combination of actions s ∈
�

i∈N Ai is also called a profile of pure strategies. This concept can be

generalized to mixed strategy profiles s ∈ S =
�

i∈N S i, by letting players randomize over their actions. We

have S i denote the set of probability distributions over player i’s actions, or mixed strategies available to

player i. We further write n = |N | for the number of players in a game, si for the ith element of profile s, and

s−i for the vector of all elements but si.

A central aspect of symmetries in games is the inability to distinguish between other players. Following

Daskalakis and Papadimitriou (2007), the most general class of games with this property will be called

anonymous. Four different classes of games are then obtained by considering two additional characteristics:

identical payoff functions for all players and the ability to distinguish oneself from the other players. The

games obtained by adding the former property will be called symmetric, and presence of the latter will be

indicated by the prefix “self ”.1 For the obvious reason we only talk about games where the set of actions

is the same for all players and write A = A1 = · · · = An and k = |A|, respectively, to denote this set and its

cardinality. We arrive at the following definition.

Definition 2 (symmetries) Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a normal-form game, A a set of actions such that

Ai = A for all i ∈ N. For any permutation π : N → N of the set of players, let π′ : AN → AN be the

permutation of the set of action profiles given by π′((a1, a2, . . . , an)) = (aπ(1), . . . , aπ(n)). Γ is called

• anonymous if pi(s) = pi(π
′(s)) for all s ∈ AN , i ∈ N and all π with π(i) = i,

• symmetric if pi(s) = p j(π
′(s)) for all s ∈ AN , i, j ∈ N and all π with π( j) = i,

• self-anonymous if pi(s) = pi(π
′(s)) for all s ∈ AN , i ∈ N, and

1This terminology differs from the one used in our previous work (Brandt et al., 2007).
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• self-symmetric if pi(s) = p j(π
′(s)) for all s ∈ AN , i, j ∈ N.

The class of self-symmetric games equals the intersection of symmetric and self-anonymous games, and

both of these are strictly contained in the class of anonymous games. In the above definition, π′ is an

automorphism on the set of action profiles that preserves the number of players who play a particular action.

Thus, an intuitive and convenient way to describe an anonymous game is in terms of the equivalence classes

induced by π′, corresponding to the different values of #(s) = (#(a, s))a∈A for s ∈ AN . This description

requires only space polynomial in the number of players when the number of actions is bounded.

A well-known method for simplifying strategic games is the removal of actions that are weakly dom-

inated by some strategy of the same player, i.e., playing the former is never better than playing the latter,

while in some situation it is strictly worse. The removal of one or more dominated actions from the game

may render additional actions dominated, which may then iteratively be removed.

Definition 3 (iterated dominance) Let Γ = (N, (Ai)i∈N , (pi)i∈N). An action di ∈ Ai is said to be (weakly)

dominated by strategy si ∈ S i if for all b ∈
�

i∈N Ai, pi(b−i, di) ≤
∑

ai∈Ai
si(ai)pi(b−i, ai) and for at least one

b̂ ∈
�

i∈N Ai, pi(b̂−i, di) <
∑

ai∈Ai
si(ai)pi(b̂−i, ai).

A sequence a1, a2, . . . , ak of actions a j ∈ ∪i∈N Ai is called iterated (weak) dominance if for all j ≤ k, a j

is weakly dominated in the game (N, (A
j

i
)i∈N , (pi)i∈N) where A

j

i
= Ai \ { a` : ` < j }.

In contrast to iterated strict dominance, the result of this process depends on the order in which actions are

removed, since the elimination of an action may render actions of another player undominated (see, e.g.,

Apt, 2004). If at the end of the process only a single action remains for each player, we say that the game

has been solved. In the following, we call iterated dominance solvability (IDS) the computational problem

of deciding, for a given game Γ, whether there exists a sequence of eliminations of length
∑

i∈N(|Ai| − 1).

Iterated dominance eliminability (IDE) is given an action a ∈ Ai of some player i ∈ N and asks whether it is

possible to eliminate a.

3 Complexity of Iterated Dominance

Intuitively, a large number of actions nullifies the computational advantage obtained from symmetries by

allowing for a distinction of the players by means of the actions they play. Brandt et al. (2007) show that

this renders the search for pure Nash equilibria NP-hard. We can derive an analogous result for iterated

dominance in self-symmetric games, hardness for the other classes follows by inclusion. For games with a

polynomial number of players and efficiently computable payoff functions, the problems are NP-complete.

Detailed proofs of all results are deferred to the appendix.

Theorem 1 IDS and IDE are NP-hard for all four classes of anonymous games, even if the number of

actions grows logarithmically in the number of players, if only dominance by pure strategies is considered,

and if there are only two different payoffs.

In the case of symmetric games, iterated dominance becomes tractable when the number of actions is

bounded by a constant.

Theorem 2 For symmetric games with a constant number of actions, IDS and IDE can be decided in poly-

nomial time.

In light of these two results, only one interesting class remains, namely anonymous games with a con-

stant number of actions. To gain a better understanding of the problem, we restrict ourselves even further to

games with only two actions. It turns out that iterated dominance can reformulated as a natural elimination

problem on matrices. The latter problem will be the topic of the following section.
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a b c d

0 1 3 2 1

1 0 2 2 1

2 0 2 3 0

3 0 2 3 0

4 3 2 3 0

a b c d

1 2 1

0 2 1

0 3 0

0 3 0

a b c d

2 1

2 1

3 0

a b c d

1

0

Figure 1: A matrix and a sequence of eliminations

4 A Matrix Elimination Problem

Consider an m × n matrix X with entries from the natural numbers. We call a column c of X increasing

for an interval I over the rows of X if the entries in c are monotonically increasing in I, with a strict in-

crease somewhere in this interval. Analogously, we call c decreasing for I if its entries are monotonically

decreasing in I, with a strict decrease somewhere in this interval. We then say that c is active for I if it is

either increasing or decreasing for this interval. Now consider a process that starts with X and successively

eliminates pairs of a row and a column. Rows will only be eliminated from the top or bottom, such that the

remaining rows always form an interval over the rows of X. A column will only be eliminated if it is active

for the remaining rows. Elimination of an increasing column is accompanied by elimination of the top row.

Similarly, a decreasing column and the bottom row are eliminated at the same time. The process ends when

no active columns remain. In this paper we study two computational problems. Matrix elimination asks

whether for a given matrix there exists a sequence of such eliminations of length min(m − 1, n), i.e., one

that eliminates all columns of the matrix or all rows but one, depending on the dimensions of the original

matrix. Eliminability of a column asks whether a particular column can be eliminated at some point during

the elimination process.

More formally, the matrix elimination process can be described by a pair of sequences of equal length,

where the first sequence consists of column indices of X and the second sequence of elements of {0, 1},

corresponding to elimination of the top or bottom row, respectively. The first sequence will contain every

column index at most once. The ith element of the second sequence will be 0 or 1, respectively, if the column

corresponding to the ith element of the first sequence is increasing or decreasing in the interval described by

the number of 0s and 1s in the second sequence up to element i − 1.

Consider for example the sequence of matrices shown in Figure 1, obtained by starting with the 5 × 4

matrix on the left and successively eliminating columns b, a, c, and d. In this particular example, the process

ends when all rows and columns of the matrix have been eliminated. Of course, this does not always have

to be the case. Again consider the matrix on the left of Figure 1, with all entries in the second row from the

bottom replaced by 2. It is easy to see that in this case no column will be active after the first elimination step,

and elimination cannot continue. Since column b was the only active column in the first place, eliminating

just this one column is in fact all that can be done. A related phenomenon can be observed if we instead

replace the top entry in the leftmost column by 0, and take a closer look at the matrix obtained after one

elimination. While we could continue eliminating at this point, it is already obvious that we will not obtain

a sequence of length 4. The reason is that one of the columns not eliminated so far, namely the leftmost one,

contains the same value in every row. This column cannot become active anymore, and, as a consequence,

will never be eliminated.

Let us define the problem more formally. For a set A, v ∈ An, and a ∈ A, denote by #(a, v) = |{ ` ≤ n :

v` = a }| the commutative image of a and v, and write v...k = (c1, c2, . . . , ck) for the prefix of v of length k ≤ n.

Further denote [n] = {1, 2, . . . , n} and [n]0 = {0, 1, . . . , n}.

Definition 4 (elimination sequence) Let X ∈ Nm×n be a matrix. A column k ∈ [n] of X is called increasing
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in an interval [i, j] ⊆ [m] if the sequence xik, xi+1,k, . . . , x jk is monotonically increasing and xik < x jk, and

decreasing in [i, j] ⊆ [m] if xik, xi+1,k, . . . , x jk is monotonically decreasing and xik > x jk.

Then, an elimination sequence of length k for X is a pair (c, r) such that c ∈ [m]k, r ∈ {0, 1}k, and for

all i, j with 1 ≤ i < j ≤ k, ci , c j and

• ri = 0 and column ci is increasing in [#(0, r...i−1) + 1,m − #(1, r...i−1)], or

• ri = 1 and column ci is decreasing in [#(0, r...i−1) + 1,m − #(1, r...i−1)].

A column will be called active in an interval if it is either increasing or decreasing in this interval. What

really matters are not the actual matrix entries xi j, but rather the difference between successive entries xi j

and xi+1, j. A more intuitive way to look at the problem may thus be in terms of a different matrix with the

number of rows reduced by one, and entries describing the relative size of xi j and xi+1, j, e.g., arrows pointing

upward and downward, respectively, depending on whether xi j > xi+1, j or xi j < xi+1, j, and empty cells if

xi j = xi+1, j. According to this representation, a column can be deleted if it contains at least one arrow, and if

all arrows in this column point in the same direction. The corresponding row to be deleted is the one at the

base of the arrows.

We call matrix elimination (ME) the following computational problem: given a matrix X ∈ Nm×n, does X

have an elimination sequence of length min(m − 1, n)? The problem of eliminability of a column (CE) is

given k ∈ [n] and d ∈ {0, 1} and asks whether there exists an elimination sequence (c, r) such that for some i,

ci = k and ri = d.

Let us formally establish the relationship between IDS and ME, and between IDE and CE.

Lemma 1 IDS and IDE in anonymous games with two actions per player are polynomial time many-one

equivalent to ME and CE, respectively, restricted to instances with m = n + 1.

If we look for a way to solve a game as above with particular actions remaining for the different players, the

problem becomes equivalent to MED and thus tractable.

Without restrictions on m and n, ME and CE are equivalent. We prove this statement by showing equiv-

alence to the problem of deciding whether there exists an elimination sequence eliminating certain numbers

of rows from the top and bottom of the matrix. Several other questions, like the one of an elimination

sequence of a certain length, are equivalent as well.

Lemma 2 CE and ME are equivalent under disjunctive truth-table reductions.

If we restrict the problem to the case m > n, CE is at least as hard than ME in the sense that the latter

can be reduced to the former while there is no obvious reduction in the other direction. In general, the

case of ME where m > n appears easier than the one where m ≤ n. In the former every column has to

appear somewhere in the elimination sequence, while in the latter the set of columns effectively needs to

be partitioned into two sets of sizes m and n − m, respectively, of columns to be deleted and columns to be

discarded right away.

A natural way of obtaining restricted versions of ME is to consider special classes of matrices, like

matrices with entries in {0, 1} or with a bounded number of maximal intervals in which a particular column

is increasing or decreasing. One such restriction is to require that all columns are increasing or decreasing

in [1,m]. It is not too hard to show that this makes the problem tractable irrespective of the dimensions of

the matrix. We will formally state this result in the following section and prove it as a corollary of a more

general result. Unfortunately, tractability of this restricted case does not tell us a lot about the complexity

of ME in general. The latter obviously becomes almost trivial if the order of elimination for the columns is

known, i.e., if we ask for a specific vector c ∈ [n]k whether there exists a vector r ∈ {0, 1}k such that (c, r) is

an elimination sequence. This observation directly implies membership in NP. More interestingly, deciding
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whether for a given r ∈ {0, 1}k there exist c ∈ [n]k such that (c, r) is an elimination sequence is also tractable.

The reason is the specific “life cycle” of a column. Consider a matrix X, two intervals I, J ⊆ [m] over the

rows of X such that J ⊆ I, and a column c ∈ [n] that is active in both I and J. Then, c must also be active

for any interval K such that J ⊆ K ⊆ I, and c must either be increasing for all three intervals, or decreasing

for all three intervals. Thus, r determines for every i ∈ [k] a set of possible values for ci, and leaves us with

a matching problem in a bipartite graph with edges in [n] × [k]. A simple greedy algorithm is sufficient

to solve this problem in polynomial time. Closer inspection reveals that it can in fact be decomposed into

two independent matching problems on convex bipartite graphs, for which the best known upper bound is

NC2 (Glover, 1967). As we will see in the following section, yet another way to make the problem tractable

is to provide a set of k pairs (c j, r j) that have to appear in corresponding places in the sequences of rows and

columns, while leaving open the ordering of these pairs.

But what if nothing about c and r is known? Despite the fact that we can only eliminate the top or bottom

row of the matrix in each step, this still amounts to an exponential number of possible sequences. The

current bound for matching in convex bipartite graphs means that there is not much hope for constructing an

algorithm that determines r nondeterministically and computes a matching on the fly. We can nevertheless

use the above reasoning to recast the problem in the more general framework of matching on paths. For

this, we will identify intervals and pairs of intervals over the rows of X by vertices and edges of a directed

graph G, and will then label each edge (I, J) by the identifiers of the columns of X that take I to J. An

elimination sequence of length k for X then corresponds to a path of length k in G which starts at the vertex

corresponding to the interval [1,m], such that there exists a matching of size k between the edges on this path

and the columns of X. In particular, by fixing a particular path, we obtain the bipartite matching problem

described above. A more detailed discussion of this problem is the topic of the following section. We first

study the problem as such, and return to matrix elimination toward the end of the section.

5 Matched Paths

Let us formally define the matching problem described in the previous section. This problem generalizes

the well-studied class of matching problems between two disjoint sets, or bipartite matching problems, by

requiring that the elements of one of the two sets form a certain sub-structure of a combinatorial struc-

ture. This problem is particularly interesting from a computational perspective if identifying the underlying

combinatorial structure can be done in polynomial time, as for paths like in our case, or for spanning trees.

Definition 5 (matching, matched path) Let X be a set, Σ an alphabet, and σ : X → 2Σ a labeling function

assigning sets of labels to elements of X. Then, a matching of σ is a total function f : X → Σ such that for

all x, y ∈ X, f (x) ∈ σ(x) and f (y) , f (x) if y , x.

Let G = (V, E) be a directed graph, Σ an alphabet, and σ : E → 2Σ a labeling function for edges of G.

Then, a matched path of length k in G is a sequence e1, e2, . . . , ek such that

• for all i, 1 ≤ i < k, ei ∈ E and there exist u, v,w ∈ V such that ei = (u, v) and ei+1 = (v,w), and

• the restriction of σ to { ei : 1 ≤ i ≤ k } has a matching.

We call matched path (MP) the following computational problem: given the explicit representation of a

directed graph G with corresponding labeling function σ and an integer k, does there exist a matched path

of length k in G? Variants of this problem can be obtained by asking for a matching that contains a certain

set of labels, or a matched path between a particular pair of vertices. These variants have an interesting

interpretation in terms of sequencing with resources and multi-dimensional constraints on the utilization of

these resources: every resource can be used in certain states corresponding to vertices of a directed graph,
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and their use causes transitions between states. The goal then is to find a sequence that uses a specific set or

a certain number of resources, or one that reaches a certain state.

In the context of this paper, we are particularly interested in instances of MP corresponding to instances

of ME. We will see later on that the graphs of such instances are layered grid graphs (see, e.g., Allender

et al., 2006), and that the labeling function satisfies a certain convexity property. But let us look at the

general problem for a bit longer. Greenlaw et al. (1995) consider the related labeled graph accessibility

problem, which, given a directed graph G with a single label attached to each edge, asks whether there exists

a path such that the concatenation of the labels along the path is a member of a context free language L

given as part of the input. This problem is P-complete in general and LOGCFL-complete if G is acyclic.

A matching, however, corresponds to a partial permutation of the members of the alphabet, and Ellul et al.

(2004) have shown that the number of nonterminal symbols of any context-free grammar in Chomsky normal

form for the permutation language over Σ grows faster than any polynomial in the size of Σ. It should thus

not come as a surprise if the problem becomes harder when we ask for a matching. Indeed, MP bears some

resemblance to the NP-complete problem forbidden pairs of finding a path in a directed or undirected graph

if certain pairs of nodes or edges may not be used together (Gabow et al., 1976). Instead of trying to reduce

forbidden pairs to MP, however, we show NP-hardness of a restricted version of MP using a slightly more

complicated construction. We will then be able to build on this construction in Section 6.

In the following we restrict our attention to the case where G is a layered grid graph.

Definition 6 (layered grid graph) A directed graph G = (V, E) is an m × n grid graph if V = [m]0 × [n]0.

An edge (u, v) ∈ E is called south edge if for some i, j, u = (i, j) and v = (i + 1, j), and east edge if for some

i, j, u = (i, j) and v = (i, j + 1). A grid graph is called layered if it contains only south and east edges.

Theorem 3 MP is NP-complete. Hardness holds even if G is a layered grid graph, and if for every e ∈ E,

|σ(e)| = 1, and for every λ ∈ Σ, |{ e ∈ E : λ ∈ σ(e) }| ≤ 2.

Let us now return to matrix elimination. In light of Theorem 3, an efficient algorithm for ME would have

to exploit additional structure of MP instances induced by instances of ME. It turns out that this structure is

indeed quite restricted in that edges carrying a particular label satisfy a “directed” convexity condition: if a

particular label λ appears on two edges e = (u, v) and e′ = (u′, v′), then λ must appear on all south edges or

on all east edges that lie on a path from u to v′, but not both. In particular, if there is such a path, it cannot

be that one of e and e′ is a south edge and the other is an east edge. This fact is illustrated in Figure 2,

which shows the labeled graph for the ME instance of Figure 1, as well as a matched path corresponding to

an elimination sequence of maximum length.

Let us formally define the above property, along with a second property which requires the set of edges

carrying a particular label to form a weakly connected subgraph of G. We henceforth concentrate on com-

plete layered grid graphs, i.e., ones that contain all south and all east edges.

Definition 7 (directed convexity, connectedness) Let G = (V, E) be a complete layered grid graph. A

labeling function σ : E → 2Σ for G is called directed convex if for every label λ ∈ Σ and for every

set of three edges e1, e2, e3, ei = (ui, vi), such that u2 is reachable from u1, u3 is reachable from u2, and

λ ∈ σ(e1) ∩ σ(e3), it holds that e1 and e3 have the same direction and λ ∈ σ(e2) if and only if e2 has the

same direction as well. A labeling function σ is called connected if for every λ ∈ Σ and every pair of edges

e1, e2 ∈ E such that λ ∈ σ(e1) ∩ σ(e2) there exists (u, v) ∈ E such that λ ∈ σ(u, v) and both e1 and e2 are

reachable from u.

It is not too hard to see that instances corresponding to ME have a directed convex labeling function.

Connectedness is related to a restricted version of ME which we term matrix elimination with given direc-

tions (MED): given a matrix X, a labeling function σ, and a total function d : [n] → {0, 1}, does there exist
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(0, 0) (0, 4)

(1, 3)

(2, 2)

(3, 1)

(4, 0)

{b, d} {a, b, d} {a, b, d} {a}

{c} {c} {c} ∅

{b, d} {b, d} {b,d}

{a, c} {c} {c}

∅ ∅

{a} ∅

∅

{a}

Figure 2: Labeled graph for the matrix elimination instance of Figure 1. A matched path and its matching

are shown in bold.

an elimination sequence (c, r) with directions given by d, i.e., one such that for all i, j satisfying d(i) = j

there is some ` ∈ N for which ci = i and ri = j.

Lemma 3 ME is polynomial time many-one reducible to MP restricted to layered grid graphs and directed

convex labeling functions. MED is polynomial time many-one equivalent to MP restricted to layered grid

graphs and directed convex and connected labeling functions.

Label a in the instance of Figure 2 serves as an example that the labeling function of an instance of MP

corresponding to one of ME does not have to be connected, and it even appears on both east edges and south

edges. On the other hand, MP can be solved in polynomial time if restricted to instances that do satisfy

connectedness in addition to directed convexity. This also means that we can decide in polynomial time

whether there exists an elimination sequence with a specific direction of elimination for every column of a

matrix.

Theorem 4 Let G be a layered grid graph, σ a directed convex and connected labeling function for G. Then

MP for G, σ and k = |Σ| is in P.

Clearly, matrix elimination when all columns are active from the beginning is a special case of this

theorem. With some additional work, we can derive a better upper bound.

Corollary 1 Let X ∈ Nm×n be a matrix every column of which is active in [1,m]. Then ME for X is in L.

The complexity of ME remains open, and additional insights will be necessary to solve this question.

The proof of Theorem 4 hinges on connectedness of the labeling function, and the case m ≤ n will probably

add additional complications. On the other hand, directed convexity of the labeling function corresponding

to an ME instance means that we cannot use a construction similar to the one used in the proof of Theorem 3

to show NP-hardness of MP.

Open Problem 1 Let G be a layered grid-graph, σ a directed convex labeling function for G. Can MP

for G and σ be decided in polynomial time? Is the case k = |Σ| easier than the general case?
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6 Self-Anonymous Games With a Constant Number of Actions

It is natural to ask what happens for games with more than two actions, and whether there still exists a nice

interpretation in terms of row and column eliminations in a matrix or matrix-like structure. It turns out there

is such an interpretation, but its formulation is rather complicated. Consider a self-anonymous game with n

players and k actions for each player. As before, the payoff of a particular player i only depends on the

number of players, including himself, that play each of the different actions. For a particular player we thus

have payoff values for each tuple ( j1, j2, . . . , jk) with
∑k
`=1 j` = n. These can be represented as entries in a

discrete simplex of dimension k − 1. When writing down the payoffs of all players, one obtains a structure

X = (x
i, j1
. . . jk

)i∈N,
∑k
`=1 j`=n where x

i, j1 j2
. . . jk

∈ R denotes the payoff of player i ∈ N if for each `, j` players

play action a`. This structure has the aforementioned simplices as columns and resembles a triangular prism

for the case k = 3.

Restricting our attention to dominance by pure strategies, action a` ∈ A weakly dominates action am ∈ A

for player i ∈ N if i can never decrease his payoff by playing a` instead of am, no matter which actions

the other players play, and if the payoff strictly increases for at least one combination of actions played by

the other players. This corresponds to the values in the ith column of X being increasing from am to a`,

i.e., weakly increasing with a strict increase at some position ( j1, j2, . . . , jk). If m players have eliminated

action a`, tuples with j` > n − m are no longer reachable, corresponding to a cut along the `th 0-face

of the simplex. Eliminations of a particular action have the same effect on the payoff simplex of every

single player and thus correspond to cuts along the respective edge of the prism in the case k = 3. Given

a vector d = (di)1≤i≤k, 1 ≤ di ≤ n, we will write X(d) to denote the structure obtained by performing, for

each i, di eliminations of action ai from X, i.e., X(d) = (x
i, j1 j2
. . . jk

) ji≤n−di
.

We are now ready to give a new formulation of solvability of a self-anonymous game using iterated

dominance by pure strategies.

Fact 1 Let Γ = (N, (Ai)i∈N , (pi)i∈N) be a self-anonymous game, and let X be defined by x
i, j1 j2
. . . jk

=

pi( j1, j2, . . . , jk) for all i ∈ N and j1, j2, . . . , jk ∈ N0 such that
∑k
`=1 j` = n. Then, Γ is solvable using

iterated dominance by pure strategies if there exists a pair (c, r) of sequences c ∈ N(k−1)n and r ∈ A(k−1)n

such that

(i) |{ 1 ≤ i ≤ (k − 1)n : ci = j }| = k − 1 for all j ∈ N,

(ii) ci = c j and ri = r j implies i = j for all 1 ≤ i, j ≤ (k − 1)n, and

(iii) for each i, 1 ≤ i ≤ (k − 1)n, there exists some k∗ ∈ A such that, for all j < i, c j , ci or r j , r∗, and ci

is increasing from ri to r∗ in X(r1, r2, . . . , ri−1).

That is, a game is solvable if there exists a sequence of (k − 1)n eliminations of an action by a player such

that (i) every player deletes exactly k − 1 times, (ii) no player deletes the same action twice, and (iii) every

action is deleted using some other action that has not itself been deleted.

The left hand side of Figure 3 shows the payoffs of a particular player in a self-anonymous game with n =

3 and k = 3. Compared to matrix elimination as introduced in Definition 4 and illustrated in Figure 1, we

notice an interesting shift. Curiously, this shift has nothing to do with the added possibility of dominance

by mixed strategies in games with more than two actions. Rather, a particular action a ∈ A may now be

eliminated by either one of several other actions in A \ {a}, and the situations where a a can be eliminated

no longer form a convex set. Recalling the proof of Theorem 3, our strategy becomes clear: try to construct

a layered grid graph with labels for which the existence of a matched path is NP-hard to decide, and which
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Figure 3: Payoffs of a particular player in a self-anonymous game with n = 3 and k = 3. Initially all

actions are pairwise undominated. If one of the other players eliminates action 1, action 3 weakly dominates

action 1. Action 1 then becomes undominated if some player deletes action 3, and dominated by action 2 if

one more player deletes action 3, and some player deletes action 2.

is induced by a self-anonymous game with three actions for each player. It turns out that this is indeed

possible.

Theorem 5 IDS and IDE are NP-complete. Hardness holds even for self-anonymous games with three

actions and only two different payoffs.
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A Proof of Theorem 1

Proof: Recall that circuit satisfiability (CSAT), i.e., deciding whether a Boolean circuit has a satisfying

assignment, is NP-complete (see, e.g., Papadimitriou, 1994). We provide a reduction from CSAT to IDS

and IDE for self-symmetric games. Hardness for the other types of symmetries follows by inclusion. For

a particular circuit C with inputs M = {1, 2, . . . ,m}, we define a game Γ with n ≥ m players and actions

A = { a0
j
, a1

j
: j ∈ M } ∪ {a0, a1}. An action profile s of Γ where #(a0

j
, s) + #(a1

j
, s) = 1 for all j ∈ M, i.e.,

one where exactly one action of each pair a0
j
, a1

j
is played, directly corresponds to an assignment c of C,

the jth bit c j of this assignment being 1 if and only if a1
i

is played. Observe that in this case the auxiliary

actions a0 and a1 have to be played by exactly n − m players. We can thus also identify action profiles

of Γ that correspond to a satisfying assignment of C. Now define the (common) payoff function p by letting

p(s) = 1 if #(a0, s) + #(a1, s) = n or if s corresponds to a satisfying assignment of C and #(a1, s) = n − m,

and p(s) = 0 otherwise. Since the payoff function is the same for all players, and the payoff only depends

on the number of players playing each of the different actions, Γ is self-symmetric. Furthermore, both a0

and a1 weakly dominate a0
j

and a1
j

for all j ∈ M.

Assume that C has a satisfying assignment. In this case a1 weakly dominates a0, and the elimination of

a0 by all players, followed by the elimination of a0
j

and a1
j

for all j ∈ M, again by all players, leaves a1 as the

sole action for each player. If on the other hand there is no satisfying assignment of C, then the payoff for a

player playing a0 or a1, respectively, is identical under every action profile for the other players, so neither

of them can be eliminated via iterated dominance. Thus, a0 is eliminable for any player, and Γ is solvable via

iterated dominance with action a1 remaining for each player, if and only if C has a satisfying assignment.

The transformation from C to Γ essentially works by writing down a Boolean circuit that computes pi.

Observing that this can be done in time polynomial in the size of C if n ≤ 2|A| completes the proof. �

11



B Proof of Theorem 2

Proof: Since all players have identical payoff functions, a state of iterated dominance elimination can be

represented as a vector that counts, for each set C ⊆ A, the number of players that have eliminated exactly

the actions in C. This vector has constant dimension if the number of actions is constant. The value of

each entry is bounded by n, so the number of different vectors is polynomial in n and thus in the size of the

game. The elimination process can then be described as a graph that has the above vectors as vertices and

a directed edge between two such vectors if the second one can be obtained from the first by adding 1 to

some component, and if the action corresponding to this component can indeed be eliminated in the state

described by the first vector. For dominance by mixed strategies, this neighborhood relation can be computed

in polynomial time via linear programming. This reduces the computational problems related to iterated

dominance to reachability problems in a directed graph, which in turn can be decided in nondeterministic

logarithmic space and thus in polynomial time. For IDS, we need to find a directed path from (the vertex

corresponding to) the zero vector to some vector with sum n(k − 1) or to some vector describing a particular

state of elimination, respectively. For IDE, we need to find a path where the respective action is deleted

while traversing the final edge. �

C Proof of Lemma 1

Proof: Brandt et al. (2007) observe that an anonymous game with two actions can be transformed into a

self-anonymous game while preserving pure Nash equilibria. The same is true for (iterated) dominance

when there are only two different payoffs, so it suffices to prove the equivalences for self-anonymous games.

Consider a self-anonymous game Γ = (N, (Ai)i∈N , (pi)i∈N) such that for all i ∈ N, Ai = {0, 1}, and assume

w.l.o.g. that for all i ∈ N and all s ∈ {0, 1}N , pi(s) ∈ N. Since in games with two actions it suffices to

consider dominance by pure strategies, we can otherwise construct a game with payoffs from the natural

numbers that is equivalent w.r.t. iterated dominance. Now write down the payoffs of Γ in an (|N | + 1) × |N |

matrix X such that the jth column contains the payoffs of player j ∈ N for the different numbers of players

playing action 1, i.e., xi j = p j(s) where #(1, s) = i. Then, the jth column of X is increasing in an interval

[k0, k1] if and only if action 1 dominates action 0 for player j given that at least k0−1 and at most k1−1 other

players play action 1. Analogously, the jth column is decreasing in such an interval if action 0 dominates

action 1 under the same conditions. If player j eliminates action 0 or 1, respectively, this decreases the

number of players that can still play the respective action, corresponding to the deletion of the top or bottom

row of X, respectively. Furthermore, since every player has only two actions, the corresponding column

of the matrix can be ignored as soon as one of them has been deleted. Observing that the above does not

impose any restrictions on the resulting matrix apart from its dimensions, equivalence of the corresponding

problems follows. �

D Proof of Lemma 2

Proof: We provide reductions between both CE and ME and the problem of matrix elimination up to an

interval (IE): given a matrix X and two numbers k0 and k1, does there exist an elimination sequence (c, r)

of X such that #(0, r) = k0 and #(1, r) = k1?

To reduce ME to IE, observe that X is a “yes” instance of ME if and only if X and some interval of length

max(1,m−n) form a “yes” instance of IE. Analogously, to reduce CE to IE, X and (i, d) for some i ∈ [n] and

d ∈ {0, 1} form a “yes” instance of CE if there is an interval over the rows of X in which column i is active

in the direction corresponding to d and which together with X forms a “yes” instance of IE.
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n +
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m−(i+ j)
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⌈
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⌉

x11 · · · x1n 0 · · · 0 1 · · · 1
...

. . .
...

...
...

...
...

xi1 · · · xin 0 · · · 0 1 · · · 1

n

...
... 1 · · · 1 0 · · · 0

xi1 · · · xin ...
...

...
... n +

⌈

m−(i+ j)

2

⌉

xi+1,1 · · · xi+1,n

...
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1 · · · 1 0 · · · 0

0 · · · 0 1 · · · 1

xm− j−1,1 · · · xm− j−1,n ...
...

...
... n +

⌊

m−(i+ j)

2

⌋

n
xm− j,1 · · · xm− j,n
...

... 0 · · · 0 1 · · · 1

xm− j,1 · · · xm− j,n 1 · · · 1 0 · · · 0
...

. . .
...

...
...

...
...

xm1 · · · xmn 1 · · · 1 0 · · · 0

Figure 4: Matrix Y used in the proof of Lemma 2

For a reduction of IE to either ME or CE, let X ∈ Nm×n and consider the (m + 2n) × (3n + m − (i + j))

matrix Y shown in Figure 4. We claim that a column with index greater than n, and the entire matrix, can be

eliminated if and only if X has an elimination sequence (c, r) satisfying #(0, r) = i and #(0, r) = j.

For the direction from left to right, assume that (c, r) is an elimination sequence for X as above and

define (c′, r′) by

c′k =















ck if 1 ≤ k ≤ i + j,

n + k − (i + j) if i + j < k ≤ m + 2n, and

r′k =



























rk if 1 ≤ k ≤ i + j,

1 if i + j < k ≤ n + d
m+(i+ j)

2
e,

0 if n + d
m+(i+ j)

2
e < k ≤ m + 2n.

It is easily verified that (c′, r′) is an elimination sequence of length m + 2n for Y , i.e., one that eliminates Y

entirely.

For the direction from left to right, consider an elimination sequence (c′, r′) of length m + 2n for Y .

Define ` to be the smallest index k for which c′
k
> n, and let I = [#(0, r...`−1) + 1,m − #(1, r...`−1)]. Clearly,

` > i + m − j. Now define a sequence c that contains the first i elements c′
k

of c′ for which r′
k
= 0, and the

first j elements c′
k

for which r′
k
= 1, in the same order in which they appear in c′. Define r to be sequence

of corresponding elements of r′. Then, (c, r) is an elimination sequence for Y , because the set of active

columns is the same for I and [i,m − j], and also for all intervals in between. Furthermore, c only contains

columns with index at most n. Thus (c, r) is also an elimination sequence for X, and the number of rows

eliminated from the top and bottom is exactly as required. �

E Proof of Theorem 3

Proof: Membership in NP is immediate. We can simply guess a sequence of edges of the required length as

well as an assignment of labels to these edges, and verify in polynomial time that we have in fact obtained

a path and a matching on this path.
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Figure 5: Overall structure of the layered grid graph G used in the proof of Theorem 3

For hardness, we provide a reduction from the NP-complete problem balanced one-in-three

3SAT (B3SAT) (Parberry, 1991) to MP with the above restrictions. A B3SAT instance over a set U of

variables is given by a set C ⊆ U3 of clauses of length three such that every variable occurs in exactly three

clauses, i.e., |{ (x1, x2, x3) ∈ C : xi = x }| = 3 for all x ∈ U. An instance is said to be satisfiable if there exists

an assignment to the variables such that exactly one element of each clause is true, i.e., a set S ⊆ V such

that |{ i : xi ∈ S }| = 1 for all (x1, x2, x3) ∈ C. It is easily verified that |U | = |C| for every instance of B3SAT,

and |U | = 3|S | for every assignment S satisfying C (in particular, satisfiable instances must have |U | divisi-

ble by three). Given a particular B3SAT instance C, we construct an MP instance consisting of a complete

layered grid graph G = (V, E) and a labeling function σ : E → 2Σ such that a path between two designated

nodes s and t of G has a matching if and only if C is satisfiable. For the moment, we will put aside the

restrictions that all sets of labels are singletons and every label occurs on at most two different edges. This

allows us to prove hardness for a labeled graph with special structure, which will then also be used in the

proof of Theorem 5. At the end of the current proof, we will see that the construction can easily be modified

to meet the above requirements for σ.

Now let m = |U |, and define G as a complete 6m× 5m layered grid graph. Figure 5 illustrates the overall

structure of the labeling function σ. From s to t, G is composed of gadgets for each of the variables of C,

gadgets for the clauses, and a final path of 2m east edges. We write si and ti, 1 ≤ i ≤ 2m, for the initial and

final node of the ith of these gadgets. Before we take a closer look at both types of gadgets, let us define the

set Σ of labels available for labeling edges of G. For every variable xi of C, 1 ≤ i ≤ m, we have six labels λi j,

1 ≤ j ≤ 6, appearing on east edges only. Labels λv
i j

, j ∈ {1, 2}, and λc
i j

, j ∈ {1, 2, 3}, on the other hand, are

exclusive to south edges. The labeling function σ is such that labels on east edges appear on every east edge

in the respective rows of the grid, and labels on south edges appear on every south edge in the respective

columns. Furthermore, for each label, there are at most two sets of subsequent rows or columns where this

label appears. Intuitively, the gadget for variable xi lies at the intersection of columns carrying labels λv
i j

and

rows carrying labels λi j, while the gadget for clause ci lies at the intersection of columns carrying labels λi j

and rows carrying labels for the variables that appear in ci.

Figures 6 and 7 illustrate the gadgets for variables and clauses of C. The labeling function is defined
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Figure 6: Gadget for variable xi used in the proof of Theorem 3
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· · ·
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i−1
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Σc
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Σc
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Σc
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Σc
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Figure 7: Gadget for clause ci = (x j ∨ xk ∨ x`) used in the proof of Theorem 3. o ji denotes the number of

times variable x j occurs in clauses up to and including ci.

using the following subsets of Σ:

Σi = {λi1, λi2, λi3}

Σ−
i
= {λi4, λi5, λi6}

Σ− =
⋃

1≤i≤m Σ
−
i

Σv
0
= {λv

11
}

Σv
i
= {λv

i,1
, λv

i,2
, λv

i+1,1
} for 1 ≤ i ≤ m − 1

Σv
m = Σ

c
0
= {λv

m1
, λv

m2
, λc

11
, λc

12
}

Σc
i
= {λc

i1
, λc

i2
, λc

i3
, λc

i+1,1
, λc

i+1,2
} for 1 ≤ i ≤ m − 1

Σc
m = {λ

c
m1
, λc

m2
, λc

m3
}

Labels in Σi and Σ−
i

correspond to a positive and negative assignment of the ith variable, respectively. Sets Σv
i

and Σc
i

contain auxiliary labels for the ith variable gadget and the ith clause gadget. Note that while labels in

sets Σ−
i

are marked as “negative,” assigning them to edges in the variable gadget actually sets variable xi to

true, because the selection of labels from the corresponding set Σi will have to take place in the respective

clause gadgets. Returning to Figure 5, the final path of east edges from s2m+1 to t has length 2m, and each

of the edges carries all “negative” variable labels λi j for 1 ≤ i ≤ m and j ∈ {4, 5, 6}. It is readily appreciated
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that G and σ can be constructed from C in polynomial time.

Two properties of G and σ will be useful in the following. First, every path from s to t traverses

exactly 6m east edges and 5m south edges, which equals the overall number of labels for both directions.

Secondly, a matched path from s to t must traverse every edge (ti, si+1) for 1 ≤ 1 ≤ 2m. To see the latter,

assume for contradiction that there is an edge (v, v′) , (ti, si+1) on the path such that ti is reachable from v

but not from v′. If v is to the west from ti, i.e., (v, v′) is a south edge, then the number of south edges on the

path up to v′ exceeds the number of labels available for these. If v is to the north from ti, i.e., (v, v′) is an east

edge, then the number of labels for south edges that do not appear on any edge reachable from v′ exceeds

the number of south edges on the path to v′. In both cases, the number of edges differs from the number of

labels available for these edges, and the path cannot have a matching.

Now assume that there exists a satisfying assignment for C. We construct a path from s to t via all si

and ti, 1 ≤ 1 ≤ 2m, as well as a matching for this path of size |Σ|. For vertices si and ti, 1 ≤ i ≤ m, i.e.,

the gadget for variable xi, we select the path labeled with elements of Σi if xi = true, and the path labeled

with elements of Σ−
i

otherwise. For nodes si and ti, m < i ≤ 2m, i.e., the gadget for clause ci, we select the

(unique) path labeled with λ jk for some k such that x j = true. In both cases, we arbitrarily assign one of the

available labels to each edge. By this, “positive” labels λ ∈ Σi corresponding to variable xi are assigned to

edges in clause and variable gadgets, respectively, depending on whether or not xi = true. Every “positive”

label is used exactly once on the path from s to t2m, and none of the “negative” labels is used more than

once. Since a satisfying assignment must set exactly m/3 variables to true, and since, by construction of G,

2m of the “negative” labels are not assigned to any edge on a labeled path from from s to t2m, arbitrarily

assigning these labels to the edges on the path from t2m to t yields a matching for the path from s to t.

Conversely assume that there is a matched path from s to t. As observed above, this path must traverse si

and ti for all 1 ≤ i ≤ 2m. Furthermore, by construction of G, the “positive” labels for a particular variable xi

either all have to be assigned to edges in the gadget xi, or to edges in the gadgets of the clauses where xi

appears, but not both. It is then easily verified that setting a variable to true if and only if the corresponding

“positive” labels are assigned to edges in clause gadgets yields a satisfying assignment. Thus, some path

from s to t in G has a matching if and only if C is satisfiable.

It remains to be shown that the above construction can be simplified such that every edge can be labeled

with exactly one label and every label appears on at most two different edges. For this, we first remove all

edges that cannot be part of a path from s that has a matching, i.e., those that are not part of any gadget.

Then, for every set of labels defined above, the number of edges labeled with this set within a particular

gadget equals the cardinality of the set, and we can assign a different singleton to each of these edges. The

path from s2m+1 to t requires some additional attention. We know that, at the time we have found a path

from s to s2m+1 that does not use any of the labels more than once, exactly 2m labels in Σ− have not yet

been assigned to an edge, but we do not know which. To ensure that the remaining labels can be chosen in

an arbitrary order, we replace the path starting at s2m+1 by 2m/3 additional gadgets of the form shown in

Figure 8, which use 2m2/3 additional labels λe
ji

for 1 ≤ j ≤ m and 1 ≤ i ≤ 2m/3. It is easily verified that the

modified labeling function satisfies the desired constraints. �

F Proof of Lemma 3

Proof: First consider the reduction from ME to MP. For a matrix X ∈ Nm×n, define a layered grid graph

G = (V, E) with V = [m]0 × [n]0 and a labeling function σ : E 7→ 2[n] such that for all λ ∈ [n], λ ∈ σ(e) if for

some i, j ∈ N, e = ((i, j), (i + 1, j)) and column ` of X is increasing in [i + 1,m − j], or e = ((i, j), (i, j + 1))

and column ` of X is decreasing in [i + 1,m − j]. Now consider k ∈ N, c ∈ [n]k, and r ∈ {0, 1}k. Let

p = e1, e2, . . . , ek be a path in G such that e1 = ((0, 0), v) for some v ∈ V , and ei is a south edge if and only if

ri = 0. Further define a function f : E → [n] by letting f (ei) = ci for all i ≤ k. It is not too hard to see that
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Figure 8: Gadget for exhausting the remaining labels, used in the Proof of Theorem 3

(c, r) is an elimination sequence of X if and only if f is a matching for the restriction of σ to the edges on p.

For directed convexity of σ, consider e1, e2, e3 ∈ E, ei = (ui, vi), such that u2 is reachable from u1 and u3

is reachable from u2. For ` = 1, 2, 3, define an interval I` = [i + 1,m − j] for i, j ∈ N such that e` = ((i, j), v)

for some v ∈ V . Further consider λ ∈ σ(e1) ∩ σ(e3). By definition of σ, column λ of X must be active in

both I1 and I3. Since I3 ⊆ I1, λ must either be increasing in both of them, or decreasing in both of them.

Furthermore, since I3 ⊆ I2 and I2 ⊆ I1, column λ must also be increasing or decreasing in I2, respectively.

For MED, consider a total function d : [n] → {0, 1} and define σ′ : E 7→ 2[n] such that for all e ∈ E and

λ ∈ [n], λ ∈ σ′(e) if λ ∈ σ(e) and if either e is a south edge and f (λ) = 0 or e is an east edge and f (λ) = 1. It

is not hard to see that σ′ is directed convex and connected. On the other hand consider a layered grid graph

G = (V, E) and a directed convex and connected labeling function σ. Then, for every λ ∈ Σ, there exists a

unique pair of vertices u, v ∈ V such that λ ∈ σ(e) for exactly those south edges or exactly those east edges e

that are reachable from u but not from v. It is now possible to define a matrix X with a column for λ that

is active exactly in every interval I such that I ⊆ [i, j] and I ∩ [i′, j′] , ∅, and increasing if f (λ) = 0 and

decreasing if f (λ) = 1. By the same reasoning as above, elimination sequences of X correspond to matched

paths of G and σ with initial vertex (0, 0). �

G Proof of Theorem 4

Proof: It suffices to show how to decide whether there exists a matched path from s = (0, 0) to a particular

vertex t = (ks, ke) such that ks + ke = k. Different values for t can then be checked sequentially.

Given a path p from some vertex v1 ∈ V to t, we define two labeling functions σ
p
s : [ks] → Σ and

σ
p
e : [ke] → Σ, one for south edges and one for east edges of paths from s to t. We will argue that a pair of

matchings for σ
p
s and σ

p
e can easily be combined into a matching for p, while nonexistence of a matching

for either of the two implies that a large set of paths in G cannot be matched paths. The latter will ultimately

provide us with a succinct certificate that a particular pair of a graph G and a labeling function σ does not

have a matched path of length k.

More formally, consider a complete layered grid graph G = (V, E) and a labeling function σ : E → 2Σ.
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For a path p = e`, e`+1, . . . , ek, define σ
p
s and σ

p
e such that for every λ ∈ Σ,

λ ∈ σ
p
s (i) if there exists a path e′1, e

′
2, . . . , e

′
k with e′i = ei for all i ≥ `,

and j ∈ [k], i′ ∈ [ke] such that

e j = ((i − 1, i′), (i, i′)) and λ ∈ σ(e j), and

λ ∈ σ
p
e (i) if there exists a path e′1, e

′
2, . . . , e

′
k with e′i = ei for all i ≥ `,

and j ∈ [k], i′ ∈ [ks] such that

e j = ((i′, i − 1), (i′, i)) and λ ∈ σ(e j).

In other words, σ
p
s and σ

p
e provide an “optimistic” version of the matching problems obtained by restrict-

ing σ to a path in G that contains p as a sub-path, by allowing a certain label to be matched to the ith south

edge or east edge of these paths, respectively, if it appears on the ith edge in the respective direction of some

such path. It follows from directed convexity and connectedness of σ that for every path p, σ
p
s and σ

p
e are

convex functions and { a ∈ σ
p
s (i) : i ∈ [ks] } ∩ { a ∈ σ

p
e (i) : i ∈ [ke] } = ∅. We can further assume w.l.o.g. that

for every p, σ
p
s and σ

p
e have images of size ks and ke, respectively.

Now let p be a path from s to t. By definition, there is a one-to-one correspondence between σ
p
s and the

restriction of σ to south edges of p, and also between σ
p
e and the restriction of σ to east edges of p. Any

pair of matchings for σ
p
s and σ

p
e thus directly corresponds to a matching for the restriction of σ to p, and

existence of the former implies that p is a matched path.

On the other hand, consider a path p = e`, e`+1, . . . , ek and an edge e ∈ E such that e = (u, v) and

e` = (v,w) for some u, v,w ∈ V . Denote p′ = e, e`, e`+1, . . . , en, and assume that both σ
p
s and σ

p
e have a

matching while σ
p′

s or σ
p′

e does not.

First consider the case where e is an east edge, and where the function that does not have a matching

is σ
p′

e . Let i, j ∈ N such that u = (i, j). By definition, σ
p
e and σ

p′

e only differ w.r.t. labels λ such that

λ ∈ σ
p
e ( j′) if and only if j′ < j. Since σ

p′

e is a convex function that does not have a matching, and since the

image of σ
p′

e has size ke, there has to be some interval in [ke] the size of which is strictly larger, and some

interval the size of which is strictly smaller than the number of labels σ
p′

e assigns exclusively to elements

of this interval. Furthermore, every matching f of σ
p
e must satisfy f ( j) < σ(e), since a matching with

f ( j) ∈ σ(e) would also be a matching for σ
p′

e . This means that there actually must exist an interval I of

the second type such that I ⊆ [1, j − 1]. Now consider any path p′′ from a vertex u′ south of u to t, i.e., a

vertex u′ = (i′, j) such that i′ > i. Clearly, the number of labels appearing exclusively in I cannot be smaller

for σ
p′′

e than it is for σ
p′

e . This means that σ
p′′

e does not have a matching, and thus that no matched path of G

and σ can traverse u′.

Now assume that the function that does not have a matching is σ
p′

s . This again means that there has to

be an interval such that the number of different labels assigned by σ
p′

s to elements of this interval is strictly

smaller than the length of this interval. Since σ
p
s has a matching, since the restrictions of σ

p
s and σ

p′

s to

[i, ks] are identical, and by convexity of σ
p′

s , there has to exist an interval I with this property such that

I ⊆ [0, i − 1]. Now consider any path p′′ from a vertex u′ west of u to t, i.e., a vertex u′ = (i, j′) such that

j′ < j. By definition, for any λ ∈ Σ, λ ∈ σ
p′′

e only if λ ∈ σ
p′

e , such that the number of different labels

assigned by σ
p′′

s to elements of I is strictly smaller than |I|. Thus σ
p′′

s does not have a matching, and thus no

matched path of G and σ can traverse u′.

If e is a south edge, then by symmetrical arguments either no matched path of G and σ can traverse any

vertex north of u, or no such path can traverse any vertex east of u.

Now consider an algorithm which starts at t and tries to iteratively construct a path from s to t by

traversing edges of G backwards. Given a path p` of length ` from a vertex v` to t, the algorithm selects p`+1

to be a path of length ` + 1 containing p` as a sub-path such that both σs p`+1 and σs p`+1 have a matching.
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If the algorithm runs for k steps, we obtain a path pk from s to t with this property, i.e., a matched path.

Assume on the other hand that for some ` no path satisfying the above requirements exists, and denote by P

the set of paths obtainable by adding a predecessor of v` to p` (this set contains one or two paths depending

on whether v` has one or two predecessors). Then, for every p ∈ P, one of σ
p
s and σ

p
e does not have a

matching, and from the above reasoning we obtain a set of vertices such that no matched path can traverse

any of these vertices. It is easily verified that the union of these sets for the different elements of P always

forms a cut that separates s from t, implying that a matched path from s to t cannot exist. �

H Proof of Corollary 1

Proof: Consider the graph G and the labeling function σ corresponding to X. For any path p in G with final

vertex t, consider the functions σ
p
s and σ

p
e defined in the proof of Theorem 4. Since every column of X is

active in [1,m], σ
p
s and σ

p
e are convex. Moreover, for every label λ ∈ Σ, λ ∈ σ

p
s (1) or λ ∈ σ

p
e (1). It is not too

hard to see that for a path p = vk, vk+1, . . . , vn with vn = t, σ
p
s and σ

p
e have a matching if and only if there

exists a path p′ from vk+1 = (i, j) to t such that σ
p′

s and σ
p′

e have matchings fs and fe, and if the number of

labels both in σ
p
s (i− 1) \ (∪k≥i fs(k)) and in σ

p
s (i− 1) \ (∪k≥ j fe(k)) are strictly positive. We can thus construct

a path by moving backwards from t, and storing only a pointer to current source of the path and the numbers

of labels that are currently active but have not been assigned to edges between the current source and t. This

can clearly be done using only logarithmic space. �

I Proof of Theorem 5

Proof: Membership in NP is immediate. We can simply guess a sequence of eliminations and verify that all

of them are valid and that they eventually leave only a single action for each player.

For hardness of IDS, recall the construction used in the proof of Theorem 3. Given a B3SAT instance C,

we have constructed an MP instance consisting of a layered grid graph G = (V, E) and a labeling function σ :

E → 2Σ such that a path between two designated nodes s and t has a matching if and only if C is satisfiable.

We will now show that G and σ are induced by iterated dominance in a self-anonymous game Γ with k = 3

when only actions 1 and 2 of each player are considered. Observing that, given a matched path from s to t,

all players in Γ can also eliminate action 3 at some vertex on the path without affecting the restriction of the

labeling function to the remainder of the path effectively reduces B3SAT to IDS.

Given a particular grid graph G, a set Σ of labels, and a labeling function σ as defined in the proof of

Theorem 3, we construct a game Γ with players N = Σ and actions A = {1, 2, 3}. Action 1 is associated

with east edges of G, action 2 is associated with south edges. Now consider a particular label i ∈ Σ. By

construction of G, there exist two numbers k1 and k2 such that i appears exclusively on east edges (south

edges, respectively) that can be reached from s by traversing exactly k1 or k2 south edges (east edges). In

game Γ, this is modeled by a player that can eliminate action 1 (action 2) after exactly k1 or k2 players have

eliminated action 2 (action 1). Since we only use payoffs 0 and 1, it follows from Lemma 1 of Conitzer and

Sandholm (2005) that an action is dominated by a mixed strategy if and only if it is dominated by a pure

strategy. We can thus concentrate exclusively on dominance by pure strategies.

The payoff structure for players of Γ is shown in Figure 9. Clearly, Γ can be constructed from G in

polynomial time. In addition to the aforementioned properties regarding the elimination of action 1 or 2,

it is easily verified that every player can also eliminate action 3 after k2 eliminations of action 2 or 1, and

that this has no effect whatsoever on the ability of other players to eliminate their actions. In other words, Γ

actually induces a three-dimensional grid graph, where each layer in the third dimension is identical to G,

and transitions between different layers may take place at vertices where some player has arrived at k2. This

means, however, that a matched path from s to t corresponds to a sequence of eliminations of actions 1 and 2
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Figure 9: Payoff structure of a particular player of the self-anonymous game Γ used in the proof of Theo-

rem 5. There are two types of players, eliminating action 2 and 1, respectively, actions of the second type

are shown in parentheses. The player may eliminate action 2 (1, respectively) by action 3 after exactly k1

players have eliminated action 1 (2), and by action 1 (2) after exactly k2 players have eliminated action 1

(2).

in Γ, which can in turn be transformed into a sequence of eliminations that solves Γ by iterated dominance

by letting each player eliminate action 3 at a certain well-defined point. On the other hand, the possible

future transitions within a particular layer of the three-dimension grid graph do not depend on the layer, i.e.,

a player may not gain the ability to eliminate actions 1 or 2 by first eliminating action 3. Hence, if there is

no matched path from s to t, then some player of Γ will not be able to eliminate either action 1 or action 2,

meaning that Γ is not solvable by iterated dominance.

Hardness of IDE can be obtained by adding an additional player that can only eliminate once the lowest

level of the grid graph has been reached. �
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