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Abstract

We study the problem of how well a typical multivariate polynomial can be approximated
by lower degree polynomials over F2. We prove that, with very high probability, a random
degree d polynomial has only an exponentially small correlation with all polynomials of
degree d − 1, for all degrees d up to Θ(n). That is, a random degree d polynomial does not
admit good approximations of lesser degree.

In order to prove this, we prove far tail estimates on the distribution of the bias of a
random low degree polynomial. As part of the proof, we also prove tight lower bounds on
the dimension of truncated Reed–Muller codes.

1 Introduction

Two functions f, g : F
n
2 → F2 are said to be ε-correlated if

Pr [f(x) = g(x)] ≥
1 + ε

2
.

The correlation of f and g is the maximal value of ε for which they are ε-correlated. A function
f : F

n
2 → F2 is said to be ε-correlated with a set F ⊂ F

n
2 → F2 of functions if it is ε-correlated

with at least one function g ∈ F .
We are interested in functions that have a low correlation with the set of degree d poly-

nomials; namely, functions that cannot be approximated by any polynomial of total degree at
most d. How complex must such a function be? We use the most natural measure for complexity
in these settings, which is the degree of the function when considered as a polynomial.

A simple probabilistic argument shows that for any constant δ < 1 and for d < δn, a random
function has an exponentially small correlation with degree d polynomials. However, a random
function is complex as, with high probability, its degree is at least n−2. In this work, we study
how well a random degree d polynomial can be approximated by any lower degree polynomial.

Contrarily, finding an explicit function f that has a correlation of ε with degree d polyno-
mials, for degrees d ≥ Ω(log n), is an open problem even for constant ε < 1. Moreover, finding
such an explicit construction for degrees as small as poly log n will have major consequences in
circuit lower bounds. Such a function can give lower bounds and pseudorandom generators for
the class ACC0 of constant depth circuits with And, Or and Mod gates. Currently no such
non-trivial lower bounds are known.
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1.1 Our contribution

We show that, with very high probability, a random degree d polynomial has an exponentially
small correlation with polynomials of lower degree. We prove this for degrees ranging from a
constant up to δmaxn, where 0 < δmax < 1 is some constant. All results hold for large enough n.

We now state our main theorem.

Theorem 1. There exist a constant 0 < δmax < 1 and constants c, c′ > 0 such that the following

holds. Let f be a random n-variate polynomial of degree d ≤ δmaxn. The probability that f has

a correlation of 2−cn/d with polynomials of degree at most d − 1 is at most 2
−c′( n

≤d), where
(

n
≤d

)

=
∑d

i=0

(

n
i

)

.

The main theorem is an easy corollary of the following lemma, which is the main technical
contribution of the paper. We define the bias of a function f : F

n
2 → F2 to be

bias(f) = Ex

[

(−1)f(x)
]

= Pr [f(x) = 0] − Pr [f(x) = 1] .

Lemma 2. Let f be a random degree d polynomial for d ≤ (1 − ε)n. Then,

Pr
[

|bias(f)| > 2−c1n/d
]

≤ 2
−c2( n

≤d) ,

where 0 < c1, c2 < 1 depend only on ε.

Note that Lemma 2 holds for degrees up to (1 − ε)n, while we were only able to prove
Theorem 1 for degrees up to δmaxn.

The Reed–Muller code RM(n, d) is the linear code of all polynomials (over F2) in n variables
of total degree at most d. Interpreted in the language of Reed–Muller codes, Lemma 2 gives a
tail estimate on the weight distribution of Reed–Muller codes.

The following proposition shows that the estimate in Lemma 2 is somewhat tight for degrees
up to n/2.

Proposition 3. Let f be a random degree d polynomial for d ≤ (1/2 − ε)n. Then,

Pr
[

|bias(f)| > 2−c′
1
n/d
]

≥ 2
−c′

2(
n
≤d) ,

where 0 < c′1, c
′
2 < 1 are constants depending only on ε.

As a part of the proof of Lemma 2, we give the following tight lower bound on the dimension
of truncated Reed–Muller codes, which is of independent interest.

Lemma 4. Let x1, . . . , xR be R = 2r distinct points in F
n
2 . Consider the linear space of degree

d polynomials restricted to these points; that is, the space

{(p(x1), . . . , p(xR)) : p ∈ RM(n, d)} .

The linear dimension of this space is at least
(

r
≤d

)

.

We have recently learned that this lemma appeared earlier in [9, Theorem 1.5]. Our proof,
on the other hand, is independent and has an algorithmic flavor.
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1.2 Related Work

Reed–Muller codes are one of most studied objects in coding theory (for a background see,
e.g., [10]). Determining the weight distribution is a long standing open problem for every d ≥ 3.
The weight distribution is completely known for d = 2 (see, for example, [2]) and some partial
results are known also for d = 3. In the general case, there are estimates (see, e.g., [7, 8])
on the number of codewords with weight between w and 2.5w, where w = 2−d is the minimal
weight of the code.

The case of multilinear polynomials was considered by Alon et al. [1], who proved a tail
estimate similar to Lemma 2 and used it to prove bounds on the size of distributions that fool
low degree polynomials.

The Gowers Norm is a measure related to the approximability of functions by low degree
polynomials. It was introduced by Gowers [3] in his seminal work on a new proof for Szemerédi’s
Theorem. Using the Gowers Norm machinery, it is easy to prove that a random polynomial of
degree d < log n has a small correlation with lower degree polynomials. However, this approach
fails for degrees exceeding log n. Note that our result holds for degrees up to δmaxn.

Green and Tao [4] study the structure of biased multivariate polynomials. They prove that
if their degree is at most the size of the field, then they must have structure — they can
be expressed as a function of a constant number of lower degree polynomials. Kaufman and
Lovett [6] strengthen this structure theorem for polynomials of every constant degree, removing
the field size restriction.

The rest of the paper is organized as follows. Our main result, Theorem 1, is proved in
Section 2. The proof of the lower bound on the bias (Proposition 3) is given in Section 3.

2 Proof of the Main Theorem

First we show that Theorem 1 follows directly from Lemma 2 by a simple counting argument.
Let f be a random degree d polynomial for d ≤ δmaxn, where δmax will be determined later.

For every polynomial g of degree at most d − 1, f − g is also a random degree d polynomial.
By the union bound on all possible choices of g,

Prf∈RM(n,d)

[

∃g ∈ RM(n, d − 1) : |bias(f − g)| ≥ 2−c1n/d
]

≤ 2( n
≤d−1)−c2( n

≤d)

Choosing δmax to be a small enough constant, we get that there is a constant c′ > 0 such that
c2

(

n
≤d

)

−
(

n
≤d−1

)

≥ c′
(

n
≤d

)

for all d ≤ δmaxn (see, for example, [5, Exercise 1.14]).
We now move on to prove Lemma 2. The section is organized as follows. Lemma 2 is proved

in Subsection 2.1, where the technical claims are postponed to Subsection 2.2. Lemma 4 is
proved in Subsection 2.3.

2.1 Proof of Lemma 2

We need to prove that a random degree d polynomial has a very small bias with very high
probability. Denote the dual code of RM(n, d) by RM(n, d)⊥. We start by correlating the
moments of the bias of a random degree d polynomial to short words in RM(n, d)⊥.

Claim 2.1. Fix t ∈ N and let p ∈ RM(n, d) and x1, . . . , xt ∈ F
n
2 be chosen independently and

equiprobably. Then,

E
[

bias(p)t
]

= Pr
[

ex1
+ · · · + ext ∈ RM(n, d)⊥

]

,

where ex for x ∈ F
n
2 is the unit vector in F

2n

2 , having 1 in position x and 0 elsewhere.
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In favor of not interrupting the proof, we postpone the proof of Claim 2.1 and other technical
claims to Subsection 2.2.

We proceed by introducing the following definitions. Fix d. For x ∈ F
n
2 let evald(x) denote

its d-evaluation; that is, a (row) vector in F
( n
≤d)

2 whose coordinates are the evaluation of all
monomials of degree up to d at the point x. Formally,

evald(x) =

(

∏

i∈I

x(i)

)

I⊂[n],|I|≤d

.

For points x1, . . . , xt ∈ F
n
2 let Md(x1, . . . , xt) denote their d-evaluation matrix ; this is a t×

(

n
≤d

)

matrix whose ith row is the d-evaluation of xi. We denote the rank of Md(x1, . . . , xt) by
rankd(x1, . . . , xt). As this value is independent of the order of x1, . . . , xt, we may refer without
ambiguity to the d-rank of a set S ⊆ F

n
2 by rankd(S).

Claim 2.1 tells us that, in order to bound the moments of the bias of a random polynomial,
we need to study the probability that a random word of length about1 t is in RM(n, d)⊥.

Let A = Md(x1, . . . , xt). Note that ex1
+ · · · + ext ∈ RM(n, d)⊥ if and only if

p(x1) + · · · + p(xt) = 0 (1)

for any degree d polynomial p. Therefore, ex1
+ · · · + ext ∈ RM(n, d)⊥ if and only if the sum

of the rows of A is zero. It is sufficient to satisfy (1) only on the monomial basis of the degree
d polynomials; that is, verify that each column in A sums to zero.

We turn to bound the probability that the rows of A sum to the zero vector for random
x1, . . . , xt ∈ F

n
2 . For this we divide the n variables into two sets: V ′ of size n′ = dn(1 − 1/d)e

and V ′′ of size n′′ = n − n′. Let α = n′′/n ≈ 1/d. Instead of requiring that every column of A
sums to zero, we require this only for columns corresponding to monomials that contain exactly
one variable from V ′′ (and thus up to d − 1 variables from V ′).

For i = 1, . . . , t denote by x′
i (∈ F

n′

2 ) the restriction of xi ∈ F
n
2 to the variables in V ′. The

following claim bounds the probability that sum of A’s rows is zero in terms of the (d− 1)-rank
of x′

1, . . . , x
′
t.

Claim 2.2.

Pr{xi}

[

ex1
+ · · · + ext ∈ RM(n, d)⊥

]

≤ E{x′
i}

[

2−rankd−1(x
′
1
,...,x′

t)αn
]

.

To finish the proof, we provide a (general) lower bound on d-ranks of random vectors.

Claim 2.3. For any constants β < 1 and δ < 1, there exist constants c > 0 and η > 1 such that

if x1, . . . , xt ∈ F
n
2 are chosen uniformly and independently, where t ≥ η

(

n
≤d

)

and d ≤ δn, then

Pr

[

rankd(x1, . . . , xt) < β

(

n

≤ d

)]

≤ 2
−c( n

≤d+1) .

We now put it all together, in order to complete the proof of Lemma 2. According to
Claim 2.2, we have

Pr{xi}

[

ex1
+ · · · + ext ∈ RM(n, d)⊥

]

≤ E{x′
i}

[

2−rankd−1(x
′
1
,...,x′

t)αn
]

.

1We say “about t” as x1, . . . , xt might not be distinct.
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Applying Claim 2.3 for d−1 and n′ (instead of d and n in the claim statement), and assuming

t ≥ η
(

n′

≤d−1

)

, we get that

Pr

[

rankd−1(x
′
1, . . . , x

′
t) < β

(

n′

≤ d − 1

)]

< 2
−c(n′

≤d) .

Therefore,

Pr{xi}

[

ex1
+ · · · + ext ∈ RM(n, d)⊥

]

≤ 2
−β( n′

≤d−1)αn
+ 2

−c(n′

≤d) .

Recalling that n′ = dn(1 − 1/d)e and α = 1 − n′/n = 1/d + O(1/n), we get that for any
constant β (and c = c(β)) there is a constant c′ such that

Pr{xi}

[

ex1
+ · · · + ext ∈ RM(n, d)⊥

]

≤ 2
−c′( n

≤d) .

This is because
(

n′

≤d−1

)

= Θ
(

(

n
≤d

)

d/n
)

and
(

n′

≤d

)

= Θ
(

(

n
≤d

)

)

.

We thus proved that there is a constant c′ such that

Ef∈RM(n,d)

[

bias(f)t
]

≤ 2
−c′( n

≤d) ,

for t = η
(

n′

≤d−1

)

= Θ
(

(

n
≤d−1

)

)

. Hence, tn/d ≤ c′′
(

n
≤d

)

for some constant c′′.

By Markov inequality, for small enough c1 > 0 such that c2 = c′ − c′′c1 > 0,

Pr
[

|bias(f)| ≥ 2−c1n/d
]

≤ 2
tc1n/d−c′( n

≤d) ≤ 2
(c′′c1−c′)( n

≤d) ≤ 2
−c2( n

≤d) .

2.2 Proofs of technical claims

Proof of Claim 2.1. Write p as

p(x) =
∑

I⊂[n],|I|≤d

αI

∏

i∈I

x(i) ,

where x(i) denotes the ith coordinate of x ∈ F
n
2 . As p was chosen uniformly, all αI are uniform

and independent over F2. Therefore,

Ep

[

(bias(p))t
]

= Ep





t
∏

j=1

bias(p)





= E{αI}





t
∏

j=1

Exj

[

(−1)
∑

I αI

∏

i∈I xj(i)
]





= E{xj}

[

∏

I

EαI

[

(−1)αI(
∑t

j=1

∏

i∈I xj(i))
]

]

= E{xj}

[

∏

I

1{
∑t

j=1

∏

i∈I xj(i)=0}

]

= Pr{xj}



∀I
t
∑

j=1

∏

i∈I

xj(i) = 0





= Pr{xj}

[

ex1
+ · · · + ext ∈ RM(n, d)⊥

]

.
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Proof of Claim 2.2. Let A′ = Md−1(x
′
1, . . . , x

′
t) be the t×

(

n′

≤d−1

)

sub-matrix of A corresponding
to monomials of degree at most d − 1 in variables from V ′. Let E be the event in which every
column of A corresponding to a monomial that contains exactly one variable from V ′′ sums
to zero. It is easy to see that this event is equivalent to the event that every column of A′ is
orthogonal to the set of vectors {(x1(i), . . . , xt(i)) : i ∈ V ′′}.

Fix the variables in V ′; this determines A′. As the variables in V ′′ are independent of those
in V ′, the probability of E (given A′) is

(

2−rank(A′)
)|V ′′|

= 2−rank(A′)αn = 2−rankd−1(x′
1
,...,x′

t)αn .

This holds for every assignment for variables of V ′, hence the result follows.

Proof of Claim 2.3. Let B = Md(x1, . . . , xt) be the t×
(

n
≤d

)

d-evaluation matrix of the random

x1, . . . , xt ∈ F
n
2 . We need to bound the probability that rank(B) < β

(

n
≤d

)

.

Fix some b ≤ β
(

n
≤d

)

, and let us consider the event that the first b rows of B span the entire
row span of B. Denote by V the linear space spanned by the first b rows of B. Since all
rows of B are d-evaluations of some points in F

n
2 , we need to study the maximum number of

d-evaluations contained in a linear subspace of dimension b.
Assume there are at least 2r distinct d-evaluations in V . By Lemma 4, dim(V ) ≥

(

r
≤d

)

.

Assume further that rank(B) < β
(

n
≤d

)

; we get that

β

(

n

≤ d

)

> rank(B) ≥ dim(V ) ≥

(

r

≤ d

)

.

By Claim 2.4, r ≤ n(1 − γ/d), where γ is a constant depending only on β. In other words, out
of the 2n d-evaluations of all points in F

n
2 , at most 2n(1−γ/d) fall in V and hence the probability

that a random d-evaluation is in V is at most 2−γn/d.
Assume the number of rows t is at least η

(

n
≤d

)

for some η > 1. The probability that all the
remaining rows of B are in V is at most

(

2−γn/d
)t−b

≤ 2
−(η−β)( n

≤d)γn/d
≤ 2

−γρ(η−β)( n
≤d+1) ,

where the last inequality follows from the fact that there exists a constant ρ > 0 such that
(n/d)

(

n
≤d

)

≥ ρ
(

n
≤d+1

)

for all n, d.
Choosing η large enough (as a function of β), we get that when we union bound over all

possible ways to choose at most β
(

n
≤d

)

rows out of t ≥ η
(

n
≤d

)

, the probability that any of them

spans the rows of B is at most 2
−c( n

≤d+1), where c depends only on β.

Claim 2.4. For any β, δ < 1, there is a constant γ = γ(β, δ) such that if 1 ≤ d ≤ δn and r ≥ d
satisfy β

(

n
≤d

)

≥
(

r
≤d

)

then r ≤ n(1 − γ/d).

Proof. We bound

1

β
≤

(

n

≤ d

)

/

(

r

≤ d

)

≤ max
0≤i≤d

(

n

i

)

/

(

r

i

)

=

(

n

d

)

/

(

r

d

)

≤

(

n − d

r − d

)d

=

(

1 +
n − r

r − d

)d

.

Taking logarithms and assuming for the sake of contradiction that r > n(1 − γ/d), we get

ln(1/β) ≤ d ln

(

1 +
n − r

r − d

)

≤
d(n − r)

r − d
<

γn

r − d
<

γ

r/n − δ
<

γ

1 − δ + γ/d
.

This can be made false by picking, e.g., γ = (1 − δ) ln(1/β).
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2.3 Proof of Lemma 4

Restating the lemma in terms of d-evaluations, we need to show that for every subset S ⊆ F
n
2

of size R = 2r, rankd(S) ≥
(

r
≤d

)

. Let S = {x1, . . . , x2r} be the set of points. We simplify S by
applying a sequence of transformations that do not increase its d-rank until we arrive to the
linear space F

r
2 × {0}n−r.

We now define our basic non-linear transformation Π, mapping the set S to a set Π(S) of
equal size and not greater d-rank. Informally, Π tries to set the first bit of each element in S
to zero, unless this results in an element already in S (and in this case Π keeps the element
unchanged).

For y = (y1, . . . , yn−1) ∈ F
n−1
2 , denote by 0y and 1y the elements (0, y1, . . . , yn−1) and

(1, y1, . . . , yn−1) in F
n
2 , respectively. Extend this notation to sets by writing 0T = {0y : y ∈ T},

1T = {1y : y ∈ T} for a set T ⊆ F
n−1
2 .

We define the following three sets in F
n−1
2 .

T∗ = {y ∈ F
n−1
2 : 0y ∈ S and 1y ∈ S} ,

T0 = {y ∈ F
n−1
2 : 0y ∈ S and 1y /∈ S} ,

T1 = {y ∈ F
n−1
2 : 0y /∈ S and 1y ∈ S} .

Writing S as
S = 0T∗ ∪ 1T∗ ∪ 0T0 ∪ 1T1 ,

we define Π(S) to be
Π(S) = 0T∗ ∪ 1T∗ ∪ 0T0 ∪ 0T1 ;

namely, we set to zero the first bit of all the elements in 1T1. It is easy to see that |Π(S)| = |S|
as Π(S) introduces no collisions.

Proposition 5. rankd(Π(S)) ≤ rankd(S).

Proof. It will be easier to prove this using an alternative definition for rankd(S).
Let (x1, . . . , x2r) be some ordering of S. For a degree d polynomial p ∈ RM(n, d), let

vp ∈ F
2r

2 be the evaluation of p on the points of S

vp = (p(x1), p(x2), . . . , p(x2r)) .

Consider the linear space of vectors vp for all p ∈ RM(n, d). The dimension of this space is
exactly rankd(S), as the monomials used in the definition of d-rank form a basis for the space
of polynomials.

But now, instead of the dimension, consider the co-dimension. We call a point xi, 1 ≤ i ≤ 2r,
dependent if there are coefficients α1, . . . , αi−1 ∈ F2 such that for all degree d polynomials

p(xi) =
i−1
∑

j=1

αjp(xj) .

We thus expressed rankd(S) as the number of independent points in S, which is the same
as the difference between |S| = 2r and the number of dependent points in S. To prove that
rankd(Π(S)) ≤ rankd(S), it suffices to show that Π maps dependent points in S to dependent
images in Π(S). Let us consider an ordering of S in which the elements of 1T1 come last. Since
all other points in S are mapped to themselves by Π, it is clear that dependent points in S
appearing before 1T1 are also dependent in Π(S). It remains to prove the claim for points
in 1T1.

7



Let t1 = |T1| and let y1, . . . , yt1 be some ordering of T1. Assume 1yi ∈ S is dependent and we
will show that 0yi ∈ Π(S) is also dependent. By definition, there exist coefficients αy, βy, γy, δy

such that, for any degree d polynomial,

p(1yi) =
∑

y∈T∗

αyp(0y) +
∑

y∈T∗

βyp(1y) +
∑

y∈T0

γyp(0y) +
∑

yj∈T1:j<i

δyj
p(1yj) .

Each polynomial p ∈ RM(n, d) can be uniquely decomposed as

p(x1, . . . , xn) = x1p
′(x2, . . . , xn) + p′′(x2, . . . , xn) ,

where p′ ∈ RM(n−1, d−1) and p′′ ∈ RM(n−1, d). Moreover, for every y ∈ F
n−1
2 , we have that

p(0y) = p′′(y) and p(1y) = p′(y) + p′′(y). Since p′ and p′′ are independent, we can decompose
the dependency of p(1yi) into its p′ and p′′ components as follows.

p′(yi) =
∑

y∈T∗

βyp
′′(y) +

∑

yj∈T1:j<i

δyj
p′(yj) , (2)

p′′(yi) =
∑

y∈T∗

(αy + βy)p
′′(y) +

∑

y∈T0

γyp
′′(y) +

∑

yj∈T1:j<i

δyj
p′′(yj) . (3)

We now move to consider Π(S). Every 1yi for yi ∈ T1 is mapped to 0yi, so we should only
consider the p′′ component for T1’s elements. Also, by the definition of T∗ and T0, for each
y ∈ T∗ ∪ T0, 0y ∈ S ∩ Π(S). By (3), for any p ∈ RM(n, d),

p(0yi) =
∑

y∈T∗

(αy + βy)p(0y) +
∑

y∈T0

γyp(0y) +
∑

yj∈T1:j<i

δyj
p(0yj) ,

that is, 0yi is also dependent in Π(S).
Therefore, we have established that rankd(Π(S)) ≤ rankd(S).

We now combine our basic Π with invertible linear transformations to define a wider class
of simplifying transformations. For any u, v ∈ F

n
2 such that their inner product 〈u, v〉 = 1, we

define the mapping Πu,v as follows. Informally, Πu,v tries to add v to elements x of S for which
〈u, x〉 = 1, unless this results in an element already in S. In other words, if both x and x + v
are in S, then Πu,v(S) maps them both to themselves. Otherwise, if just one of them is in S, it
maps it to x if 〈u, x〉 = 0, and to x + v if 〈u, x + v〉 = 0. This is well defined as 〈u, v〉 = 1. Note
that Πe1,e1

≡ Π.
Formally, let A be an n × n invertible matrix such that eT

1 A = u and A−1e1 = v. We
can construct such invertible A since 〈u, v〉 = 1 by setting the first row of A to be u and
the remaining rows of A to be a basis for the (n − 1)-dimensional space normal to v. Define
Πu,v = A−1ΠA.

Observe that invertible affine transformations do not change the d-rank of a set, as they act
as permutations on the set of degree d polynomials. Combining this with Proposition 5, we get
that Πu,v maintains the size of S without increasing the d-rank.

We now use a sequence of Πu,v applications to transform the set S into the linear space
V = F

r
2 × {0}n−r spanned by the first r unit vectors e1, . . . , er. We say that x ∈ S is good if

x ∈ V , and is bad otherwise. If all the elements of S are good then S = V since all the elements
of S are distinct. Otherwise, let x ∈ S be some bad element and let x′ ∈ V \ S. Since x /∈ V ,
there must be some index r < i ≤ n such that xi = 1; set u = ei and v = x + x′.

We show that applying Πu,v maps x to x′ and does not affect any good elements, thus
increasing the number of good elements. First see that 〈u, v〉 = vi = xi + x′

i = 1 + 0 = 1
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since x′ ∈ V so Πu,v is well defined. See also that as 〈u, x〉 = xi = 1 and x + v /∈ S, Πu,v will
add v to x, transforming it to x′ ∈ V . Also, any good element y is unchanged by Πu,v since
〈u, y〉 = yi = 0. In total, the number of good elements increased by at least one.

We repeat this until all elements are good, that is, until S is transformed to V , establishing
that rankd(S) ≥ rankd(V ). To finish the proof, observe that the restriction of polynomials in
RM(n, d) to points in a linear space of dimension r is exactly RM(r, d). Since |RM(r, d)| =
(

r
≤d

)

(see [10]), we get that for any set S of size 2r,

rankd(S) ≥

(

r

≤ d

)

,

as required.

3 Proof of Proposition 3

Let d < γn for constant γ < 1/2. We define a set of polynomials with measure of at least

2
−c′

2(
n
≤d) such that all polynomials in this set have a bias of at least 2−c′

1
n/d (for constants

c′1, c
′
2). That is, we will prove

Prf∈RM(n,d)

[

bias(f) ≥ 2−c′
1
n/d
]

≥ 2
−c′

2(
n
≤d) .

Similar to the proof of Theorem 1, we divide the n variables into two sets: V ′ of size
n′ = dn/de and V ′′ of size n′′ = n− n′. Consider the set of monomials of degree at most d that
are multilinear in V ′ (and thus have degree at most d − 1 in V ′′).

We first show that the number of such monomials is only a constant factor smaller than the
number of all monomials of degree at most d. The number of monomials we consider is

(

n′

1

)(

n′′

≤ d − 1

)

≥
n

d

(

n(1 − 1/d)

d − 1

)

.

There exists a constant cγ > 0 such that if d < γn then

(

n(1 − 1/d)

d − 1

)

≥ cγ

(

n

d − 1

)

and also

(

n

d

)

≥ cγ

(

n

≤ d

)

.

Hence the number of monomials multilinear in V ′ is at least c2
γ

(

n
≤d

)

.

Let L be the linear space of polynomials on these monomials, |L| ≥ 2
c2γ(

n
≤d). Consider a

random polynomial f ∈ L. Since each monomial of f has exactly one variable in V ′, we can
decompose f as the sum of products of a variable from V ′ and a random degree d−1 polynomial
from V ′′. That is, if V ′ = {x1, . . . , xn′} and V ′′ = {xn′+1, . . . , xn}, we can write

f(x1, . . . , xn) =
n′
∑

i=1

xigi(xn′+1, . . . , xn) .

We now show f has an expected bias of 2−n′
≥ 2−n/d. Consider a partial assignment to

the variables x1, . . . , xn′ of V ′. If all of them are zero, then f(0, . . . , 0, xn′+1, . . . , xn) ≡ 0, and
hence has bias 1. In all other cases, we are left with a random degree d − 1 polynomial in the
variables from V ′′ and as such it has bias 0 (e.g., since the constant term is random). Thus,

Ef∈L [bias(f)] = 1 · Pr
[

∀1 ≤ i ≤ n′ : xi = 0
]

+ 0 · Pr
[

∃1 ≤ i ≤ n′ : xi 6= 0
]

= 2−n′

,
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and we get that

Pr
[

bias(f) > 2−(n′+1)
∣

∣

∣
f ∈ L

]

> 2−(n′+1) .

We conclude that there is a constant c′2 such that

Pr
[

bias(f) > 2−(n/d+1)
]

≥ Pr [f ∈ L] · Pr
[

bias(f) > 2−(n/d+1)
∣

∣

∣
f ∈ L

]

≥ 2
−c′

2(
n
≤d) .
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