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Abstract

We prove an n(1) / 20(K) Jower bound on the randomized k-party communication complexity
of read-once depth 4 AC® functions in the number-on-forehead (NOF) model for up to ©(logn)
players. These are the first non-trivial lower bounds for general NOF multiparty communication
complexity for any AC® function for w(loglogn) players. For non-constant & the bounds are
larger than all previous lower bounds for any AC® function even for simultaneous communication
complexity.

Our lower bounds imply the first superpolynomial lower bounds for the simulation of AC® by
general MAJ o SYMM o AND circuits, showing that the well-known quasipolynomial simulations
of AC® by such circuits are qualitatively optimal, even for read-once formulas of small constant
depth.

We also exhibit a read-once depth 5 formula in NP — BPPS for & up to ©(logn) and derive
an Q(2‘/m/ ‘/E) lower bound on the randomized k-party NOF communication complexity of
set disjointness for up to 6(10g1/ ®n) players which is significantly larger than the O(loglogn)
players allowed in the best previous lower bounds for multiparty set disjointness given by Lee
and Shraibman [18] and Chattopadhyay and Ada [9] (though the bound is not as strong as those
in [18, 9] for o(loglogn) players). In addition, we prove lower bounds and separations for read-
once AC? formulas of smaller depth: a depth 4 function in NP{¢—BPP(® for £ = O(log n/ loglogn)
and a lower bound of n*(1/%) /20(k) for depth 3 read-once AC® formulas.

We derive all these results by extending the k-party generalization in [8, 18, 9] of the pattern
matrix method of Sherstov [24, 26]. Using this technique, we derive a new sufficient criterion
for stronger communication complexity lower bounds based on functions having many diverse
subfunctions that do not have good low-degree polynomial approximations. This criterion guar-
antees that such functions have orthogonalizing distributions that are “max-smooth” as opposed
to the “min-smooth” orthogonalizing distributions used by Sherstov [27] and Razborov and
Sherstov [23] to analyze the sign-rank of symmetric and AC® functions. In order to obtain our
strongest results we also need to consider a broader class of selector functions than those used
in the pattern matrix method.
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1 Introduction

The multiparty communication complexity of AC® in the number-on-forehead (NOF) model has
been an open question since Hastad and Goldmann [15] showed that any AC® or ACC? function has
polylogarithmic randomized multiparty NOF communication complexity when its input bits are
divided arbitrarily among a polylogarithmic number of players. This result is based on the simu-
lations of ACC circuits [1] (and indeed ACCO circuits [31]) by quasipolynomial-size depth-3 circuits
that consist of two layers of MAJORITY gates whose inputs are polylogarithmic-size AND gates
of literals. By [12] these circuits can be converted to quasipolynomial-size depth-2 SYMM o AND
circuits consisting of a symmetric gate whose inputs are polylogarithmic AND gates, yielding deter-
ministic communication complexity protocols with the same complexity as the above randomized
protocols for AC® and ACCP. These protocols can also be expressed as simpler simultaneous NOF
protocols in which the players in parallel send their information to a referee who computes the
answer [2].

It is natural to ask whether these upper bounds can be improved. In the case of ACC?, Razborov
and Wigderson [22] showed that quasipolynomial size is required to simulate ACC® based on results
of Babai, Nisan, and Szegedy [4] which showed that the Generalized Inner Product function in
ACCO requires multiparty NOF communication complexity €2(n/4%) which is polynomial in n for k
up to O(log n) players.

However, for AC® functions much less has been known. For the communication complexity
of the set disjointness function with & players (which is in AC®) there are lower bounds of the
form Q(n/* =1 /(k — 1)) in the simultaneous NOF [28, 6] and n?(/%) /kO%) in the one-way NOF
model [30]. These are sub-polynomial lower bounds for all non-constant values of k and, at best,
polylogarithmic when & is Q(log n/loglogn). Until recently, there were no lower bounds for general
multiparty NOF communication complexity of any AC® function. As for circuit simulations of
ACP, Sherstov [24] recently showed that AC® cannot be simulated by polynomial-size MAJ o MAJ
circuits. However, there have been no non-trivial size lower bounds for the simulation of AC® by
MAJ o MAJ o AND or even SYMM o AND circuits with w(loglogn) bottom fan-in. As shown by
Viola [29], sufficiently strong lower bounds for AC® in the multiparty NOF communication model,
even for sub-logarithmic numbers of players, can yield quasipolynomial circuit size lower bounds.

We indeed produce such strong lower bounds. We show that there is an explicit linear-size
fixed-depth ACC function that requires randomized k-party NOF communication complexity of
nS¥1) /20(k) even for protocols that have error exponentially close to 1/2 (only exponentially small
advantage). For all non-constant numbers of players this bound is larger than all previous multi-
party NOF communication complexity lower bounds for AC? functions, even those in the weaker
simultaneous model. The bound is non-trivial for up to ©(logn) players and is sufficient to apply
Viola’s arguments to produce fixed-depth AC® functions that require MAJ o SYMM o AND circuits
of nftlloglogn) gjze thus showing that quasipolynomial size is indeed necessary for the simulation of
ACC.

The function for which we derive our strongest communication complexity lower bound is com-
putable in depth 6 AC. In the case of protocols with error 1/3, we exhibit a hard function
computable by simple read-once depth 4 formulas. We further show that the same lower bound
applies to a function having read-once depth 5 formulas that also has O(log2 n) nondeterministic
communication complexity which shows that AC® contains functions in NP — BPPE for k£ up to

O(logn). As a consequence of the lower bound for this depth 5 function, we obtain Q(2v'°8™/ \/E_k)



lower bounds on the k-party NOF communication complexity of set disjointness which is non-
trivial for up to ©(log!'/®n) players. The best previous lower bounds of Lee and Shraibman [18]
and Chattopadhyay and Ada [9] for set disjointness do not apply for w(loglogn) players.

We also show somewhat weaker lower bounds of n2() / kO®)  which is polynomial in n for up to
k = O(log / loglog n) players, for another function in depth 4 AC® that has O(log® n) nondetermin-
istic communication complexity and yet another in depth 3 AC® that has nf(1/%) / 20() randomized
k-party communication complexity for k = Q(y/logn) players.

Methods and Related Work Recently, Sherstov introduced the so-called pattern matrix method
which is a general method to convert analytic properties of Boolean functions to yield communi-
cation lower bounds for related Boolean functions [24, 26]. In [24], the analytic property used was
large threshold degree, where it was also used to derive the lower bounds for simulations of AC® by
MAJ o MAJ circuits mentioned earlier. This was extended and generalized to large approximate de-
gree in [26] to yield a strong new method for obtaining lower bounds for two-party communication
complexity even with quantum communication.

The original version of the method [24] was then generalized for k& > 2 players to pattern
tensors by Chattopadhyay [8] to yield the first lower bounds for the general multiparty number-on-
forehead communication complexity of any AC® function for & > 3 and used to prove exponential
lower bounds for computation of AC® functions by MAJ o SYMM o ANY circuits with o(loglogn)
bottom level fan-in. The general version of the pattern matrix method [26] was then extended
in [18, 9] to pattern tensors to yield the first lower bounds for the general multiparty number-on-
forehead communication complexity of set disjointness for more than 2 players, improving a long
line of research on the problem [3, 28, 6, 30, 16, 7]. The communication lower bound for k players

is Q(nk%l) / 22 which yields a non-trivial separation between randomized and nondeterministic
k-party models for k < loglogn — O(logloglogn). This separation between randomized and non-
deterministic communication complexity was extended by David and Pitassi and David, Pitassi,
and Viola to (logn) players for significantly more complex functions than disjointness based on
pseudorandom generators [11]. Their construction uses a generalization of the simple pattern tensor
method used in [9]. More details about the pattern matrix method and the relationship between
these papers may be found in [25]. David, Pitassi, and Viola asked the question of whether one
could prove a separation for Q(logn) players using an AC® function or even whether one could prove
any non-trivial lower bound for w(loglogn) players for any AC® function since their functions are
also only in AC? for k = O(loglogn), a problem which our results resolve.

The high-level idea of the k-party version of the pattern matrix method (also known as the
pattern tensor method) as described in [9] is as follows. Suppose that we want to prove k-party
lower bounds for a function F'. The general idea is to show that F’ can express some f oYLy (specified
below) which is a function that under any projection pattern chosen by the selector function y ¢
yields f. If f has large approximate degree, then Sherstov showed [26] that there exists another
function g and a distribution g on inputs such that, with respect to u, g is both highly correlated
with f and orthogonal to all low-degree polynomials. It follows that fo1);", is also highly correlated
with g o ¥, and, using the discrepancy method for communication corﬁplexity lower bounds, it
suffices to p’rove a discrepancy lower bound for the latter function. Thanks to the orthogonality of ¢
to all low degree polynomials this is possible using an iterated application of the Cauchy-Schwartz
inequality as in [4, 10]. For example, the bound for set disjointness DisJy ,(z) = Vi, /\ﬁ?:1 Tji,
which more properly should be called set intersection, corresponds to the case that f = OR which



has approximate degree Q(y/n).

In the two party case, Sherstov [27] and Razborov and Sherstov [23] extended Sherstov’s pattern
matrix method to yield sign-rank lower bounds for arbitrary symmetric functions applied to the
size of a set intersection and for the ACY function MP o ¥y, where MP(z) = N \/ 2, x4 is the
so-called Minsky-Papert function which has threshold degree (and therefore, approx1mate degree)
Q(q). The key to their arguments is to show that there are orthogonalizing distributions p for their
functions that are “min-smooth” in that they assign at least some fixed positive probability to any
input vector on which their functions evaluate to true. (For example, probability at least 87927 ~1
in the case of MP.)

We prove our results by showing that any function f for which there is a diverse collection of
partial assignments p such that each of the subfunctions f|, of f requires large approximate degree,
there is an orthogonalizing distribution p for f that is “max-smooth” in that the probability of
subsets defined by partial assignments cannot be too much larger than under the uniform distribu-
tion. The diversity of the partial assignments is determined by a parameter « so we call the degree
bound the (€, a)-approximate degree. This property is somewhat delicate but we give a general
technique that allows us to convert functions of large e-approximate degree to functions of large
(e, v)-approximate degree. (The property unfortunately does not apply to OrR but we are able to
derive our lower bounds for DisJy, ,, via reduction.)

To obtain some of our results, in addition to using the construction of max-smooth orthog-
onalizing distributions we also further generalize the pattern tensor method beyond the version
considered in [11] to consider other classes of selector functions.

The Hard Functions For any function f defined on {0,1}" and any “selector” function ¥ :
{0,1}** — {0, 1} one can define a function f o™ on {0, 1}*™ bits by

f © wm(x(h ... 7$k*1) = f(w(x()lv cee 7$(k;—1)1)7 v 7w(x0m7 cee ,.’E(k_l)m))

where each z;; € {0,1}°. In the k-party NOF communication problem for foy)™ on zg, z1,..., 251 €
{0,1}" each player i holds z; (but can only see all x; for j # i) and they need to compute
fo™(zg,...,T5—1).

The pattern tensor selector function, which we denote by 1w, ¢, that is used in [8, 9, 18] is as
follows: Let s = £¥~1. The s bits of each of its k inputs Xy, ..., X,_; are viewed as being indexed in
a (k—1)-dimensional array of side ¢ and there is the promise that for each j € {1,...,k—1}, the bits
of X; are 1 in all entries in one of the £ slices in the j-th dimension and are 0 otherwise. In particular
this implies that there is precisely one s’ € [s] such that /\k_lX s 1s 1. Given the promise, the

function vy ¢(X) can be written as \/3,_; /\k 3 X;s which is the set disjointness function DISJy ;.

Note that because of the promise we can alternatively view ¢y, ¢ as ¥} (X) = @5 _, /\k ! X which
is the Generalized Inner Product function GIP; ;. (We could equally well replace & or \/ by any
function ¢ : {0,1}° — {0,1} that maps the all 0’s input to 0 and each input with precisely one 1 to
1.)

If we set f to be OR,, then f o ¥y is the set disjointness function DisJy ,, and setting f to be
PARITY;, makes f o GIF/T the Generalized Inner Product (GIP) function GIP,,.

Our strongest lower bounds use a different selector function i) = INDEXge ~ which computes
the bit-wise @ of the inputs to players 1 to £k — 1 and uses the result as an 1ndex to select a bit
from player 0’s input.



Organization In Section 2 we give the relevant properties of correlation and the construction of
orthogonalizing distributions for functions of large e-approximate degree used in previous work. In
Section 3 we describe a general form of the method of [26, 9, 11] based on these orthogonalizing
distributions and briefly discuss its limitations.

In Sections 4 and 5 we define a new notion which we call the (e, a)-approximate degree of a
function and show an example of how it can be applied by considering constructions based on
the pattern tensor selector function 1) ,. In Section 6 we give our general method for produc-
ing functions of large (e, a)-approximate degree from functions of large e-approximate degree. In
particular we prove that our construction applied to the OR, function, which yields the function
TRIBES, () = VI_; /\?:1 xi j, has (e, a)-approximate degree for e = 5/6 for suitable values of p
and ¢. We use f = TRIBES,, in our lower bounds for 1/3-error protocols. We also prove that
the construction applied to a different function given by a read-once AND o OR circuits has (e, «)-
approximate degree for every € < 1. We use this function in our lower bounds for protocols having
exponentially small advantage.

In Section 7, we introduce the INDEXge  selector function and combine it with the functions
from Section 6 to produce lower bounds on k-party randomized NOF communication complexity
for AC? functions and the depth 5 separating functions between NP;¢ and BPP{¢ for k = O(logn).
We also use these results to derive communication complexity lower bounds for set disjointess. In
Section 8 we derive the size lower bounds for MAJ o SYMM o AND computing AC® functions.

In the appendix we derive lower bounds for somewhat simpler functions constructed from other
selector functions, though the bounds are not as large as those in Section 7. In Appendix A we
apply the lower bound from Section 4 for constructions using the pattern tensor selector function
Yy ¢ to produce k-party NOF communication complexity lower bounds for depth 3 functions for
k = O(y/logn). In Appendix B we analyze a selector function that is a small parity of pattern tensor
selector functions and show that from it we obtain depth 4 separating functions in NP© — BPP©
for k = O(logn/loglogn).

2 Preliminaries

2.1 Notations and Terminology

We follow the notation used in [11]. We will assume that a Boolean function on m bits is a map

f:{0,1}™ — {-1,1}.

Correlation Let f,g : {0,1} — R be two functions, and let u be a distribution on {0, 1}™.
We define the correlation between f and g under g to be Cor,(f,9) = Ezou[f(x)g(x)]. If G is
a class of functions g : {0,1}™ — R, we define the correlation between f and G under u to be

Cor,(f, G) := maxyeg Cor,(f, g).

Communication complexity We denote by D*(f), R¥(f), and N*(f) the cost of the best k-
party deterministic communication protocol for f, the cost of the best k-party randomized NOF
communication protocol for f with two-sided error at most €, and the cost of the best k-party
nondeterministic communication protocol for f, respectively. We denote by IIf the class of output
functions of all deterministic k-party communication protocols of cost at most c.

Fact 2.1 (cf. [17]). If there exists a distribution p such that Cor,(f,II}) < € then le/Q_e/Q(f) >c.



Because of the following property of multiparty communication complexity, for the remainder
of the paper we will find it convenient to designate the input to player 0 as x and the inputs to
players 1 through &k — 1 as y1,...,Yr_1-

Lemma 2.2 ([4, 10]). Let f : {0,1}™** — R and U be the uniform distribution over some set
X XY whereY =Y; X -+« X Y,_1. Then,

Cory (£, 1) <2 By yrey [[Bacx[ [ )]
uE{O,l}kfl

9k—1

where y* = (yi*,...,y."7") for u € {0,1}F1.

Approximate and threshold degree Given any 0 < ¢ < 1, the e-approximate degree of f,
degc(f), is the smallest d for which there exists a multivariate real-valued polynomial p of degree
d such that ||f — p||cc = max, |f(z) — p(z)| < e. Following [21] we have the following property of
the approximate degree of OR.

Proposition 2.3. Let OR,, : {0,1}™ — {1,—1}. For 0 <e <1, deg(ORy,) > /(1 — €)m/2.

The threshold degree of f, thr(f), is the smallest d for which there exists a multivariate real-
valued polynomial p of degree d such that f(z) = sign(p(z)). Because the domain of f is finite,
we can assume without loss of generality that p(x) # 0 for all x since we can shift p by adding
the constant 3 - MaXy. f(z)<o |f ()] to p. Thus the condition on p can be replaced by f(z)p(z) > 0
on every input z. Hence it follows that thr(f) = min.cj deg.(f). For this reason, we write

thr(f) = deg<1(f)-
Following [20] we have the following property of the threshold degree of (the dual of) the

Minsky-Papert function.
Proposition 2.4. Let MP’, , : {0,1}77 — {—=1,1} be defined by MP’ o () := AL_, \/;1-/:1 xi;. Let
m > 0 be such that m < q and 4m? < ¢'. Then thr(MP’, ) > m.

Define an inner product (,) on the set of functions f : {0,1} — R by (f,g) = E[f - g]. For
S C m], let xs:{0,1}™ — {—1,1} be the function xs = [[;c5(—~1)*". The x5 for S C [m] form
an orthonormal basis of this space.
Lemma 2.5 ([26]). If f : {0,1}™ — {—1,1} is a Boolean function with deg.(f) > d then there
exists a function g : {0,1}™ — {—1,1} and a distribution p on {0,1}"™ such that:

1. Cory,(g, f) > €; and

2. for every S C [m] with |S| < d and every function h : {0,1}/51 — R, E,.,[g(x) - h(x|S)] = 0.
Proof. Let ®4 be the space of polynomials of degree less than d. By definition, deg.(f) > d if and
only if mingea, || f—¢||cc > €. By duality of norms we have mingea, || f—¢||cc = max, gL lpl1=1 (5 P)-
Writing p(z) = |p(z)| the condition ||p||; = 1 implies that u is a probability distribution and letting
g(x) = p(x)/p(x) for p(z) # 0 and g(z) =1 if p(z) = 0. Then p(z) = pu(x)g(z). Therefore

e <(f;p) =Elf -pl = E[f - g - p) = Egro[f (2)g(x)] = Cor(f, 9)-

Moreover since p € ®F, we have 0 = (xs,p) = Ezuu[xs(2)g(z)]. Now for h : {0,1}15 — R for
|S| < d, h(x|S) can be expressed as a degree |S| polynomial and by linearity E,,[g(x) - h(z|S)] =
0. U

We will extend this lemma in Section 4 using more general LP duality.



Circuit complexity AC? is the class of functions f : {0,1}* — {0,1} computed by polynomial
size circuits (or formulas) of constant depth having — gates and unbounded fan-in A and V gates. A
formula is a X1 formula if it is a clause and a Ny formula if it is a term. For ¢ > 1, a X1 formula is
an unbounded fan-in V of IM; formulas and a ;11 formula is an unbounded fan-in A of ¥; formulas.
A circuit F is a read-once formula if and only if its circuit graph is a tree and its leaves are labelled
by distinct variables. The output gate of F' is at the top and its inputs are at the bottom of the
circuit. We let AND denote the class of all unbounded fan-in A functions, SYMM denote the class
of all symmetric functions and MAJ C SYMM denote the class of all majority functions. Given a
sequence of classes of functions Cy, Cy,...Cy, we let C;0Cyo---0Cy to be the class of all circuits of
depth d whose inputs are given by variables and their negations and whose gates at the i-th level
from the top are chosen from C;. Thus, for example, ;7 = AND o X;.

3 A General Form of the Correlation Method

We give a generalization of the method as described in [9, 11], which extend ideas of [24, 26] from
2-party to k-party communication complexity. We will concentrate on specific details at those
points where we are extending the method.

Definition We call any function 9 : {0,1}** — {0,1} with the following property a selector
function:

e There exist sets Dy 1,..., Dy x—1) € {0,1}° such that for any ¥ = (Y1,...,Yx1) € Dy =
Dy x X Dy (k1)
Pr X, Y)=0]= Pr X, Y)=1=1/2.
GPr WXY) =0 = Pr B(GY) =1 =1
Example One example of a selector function 1) is the pattern tensor function vy, mentioned in
the introduction and used in [9, 18]. In this example, s = =1 and the s bits are viewed as being
indeved in a (k —1)-dimensional array of side £. Dy, ,; consists of the £ vectors Y; € {0,1}° that
are 1 in all entries in one of the € slices along the j-th dimension of this array and are 0 in every
other entry. For X € {0,1}° and Y = (Y1,...,Y}_1) € {0,1}(¥=1% such that each Y; € Dy, ,.j we

can erpress
S

k—1
Ure(X,Y) = \/ (Xo A\ Vo).
s'=1 j=1
k‘J*

]:11 Y;s is 1 for precisely one choice of

Because of the promise on the entries of Y, we know that )\
s' so Yy has the effect of selecting precisely one bit of X.

Note that, as in the example of 1} ¢, any function that uses the vector of inputs for players 1
to k — 1 to select a single bit from player 0’s input as the output is a selector function. This is
the form considered in [11]. Although our more general definition is not necessary for most of our
results we will make use of it in section B in the appendix.

For any function f : {0,1}"™ — {1, —1} and any selector function 1) we can define a new function
f o™ on {0,1}F™s bits by
f o sz)m(x)y) = f © ¢m(xay1) e ayk—l)
= f(¢(xl) ?/*1), s 71/)(33ma y*Tﬂ))



where y.; = (Y1, - - -, Y—1)i) for i € [m]. We will write z; = ¥(z;,ys) and 2 = (z1,...,2y) for the
input to f. In the k-party NOF communication problem for fo¢ on input z,y1,...,yx—1 € {0,1}",
player 0 holds x and can see all the y; and each other player ¢ holds y; (but can only see z and all
y;j for j # i) and they need to compute f o ¢™(x,y1,...,Yk—1)-

Given a Boolean function f on m bits having large 5/6-approximate degree d we want to lower
bound R’f/g(f o ™).

From Lemma 2.5, we obtain another Boolean function g and a distribution p such that:

1. Cory(g, f) > 5/6; and
2. for every S C [m] with |S| < d and every function h : {0, 1}l — R, E,,[g(z) - h(z|S)] = 0.

Based on pu, we define a distribution A on kn = kms bits in a straightforward way as follows:
Choose y = (y1,-..,Yyx—1) uniformly from Dq(pm) = D'y X e X Dq’;(kil) and choose z uniformly
subject to the constraint that z is distributed according to u. More precisely, define

oz, Zm)
Az, y) = Dy

where z; = ¥ (z;, ys) for y € Dl(ﬂm) and 0 otherwise. (Note that |D1(ﬂm)| = |Dy|™.)
Example In particular, when ) is the pattern tensor vy ¢, |Dy ;| = € for all j, |Dy| = =1 and

) e )
)\(x,y) - on—m g(k—1)m - oan—mgm °

It is straightforward that, since each z; = (x4, y;) is a uniformly chosen random bit given a
fixed y.; € Dy and random z;, we have Cory(f o 9™, go¢™) = Cor,(f,g) > 5/6. Consequently,
by the triangle inequality,

Cory(f o™, 1I}) < Corx(g o 9™, II}) + 1/6.

Therefore we only need to bound Cory (g o ¥, I1).
Let z; = ¥(xi,ys) for i € [m]. By Lemma 2.2, if we let U be the uniform distribution on the

set of (z,y) € {0,1} x Dfpm) we have

k—1 k—1 k—1
Cory(g o ™, TI%)? = 2™ Cory(u(z1,. -\ 2m)9(21, o, 2m), HZ
ok—1
< 2(c+m) ? ’ Eyo7yleDfpm)H(y0’ yl)’

where

H(y'y') = ‘Ez[ || ZERIERIIE

ue{0,1}k-1

fcir 1,2“ :1(2%’ ., z2%) where 2 = 9(z;,y%) and y* = (yi%,...,y05"). (Note that y%0 = y° and
yo=y)

For fixed %, y! € Dfﬂm) and i € [m], we call i good for (3°,y") if the set of 2*~! random variables

U

2% = (x, y%) for u € {0,1}*~1 are mutually independent; otherwise we call i bad for (y°,y'). Let

Ry(y°,y') be the set of i € [m] that are bad for (y°,y') and let 74 (y°, y') = |Ry(v°, y1)|.



Example In the case that v is the pattern tensor 1y ¢, the random variables z{* for u € {0, 1}e-t
will be independent if and only if ¥, and y3; select different bits of x; for every uw # v. This will
be true for uw and v if and only if there is some j € [k — 1] such that Yji #* Yj;- However, since this
must hold for every u and v, in particular those that agree everywhere except for a single bit, it is
necessary and sufficient for independence that y?i # yjlZ for every j € [k—1]. Therefore ry, , (y°,yY)
is the number of i € [m] such that y?i = yjll for some j € [k —1].

We rely on the following three propositions to continue the proof. The special cases of Proposi-
tion 3.1 and Proposition 3.2 when ¢ is the pattern tensor 1y, were proved in [9]. Proposition 3.3
only concerns v, ¢. For completeness we give the proofs of Proposition 3.1 and Proposition 3.3 at
the end of this section. We will prove an extension of Proposition 3.2 in Section 4 so we will not
give the details here.

Proposition 3.1. If r = r,(y°, y!) < d, then H(y°,y*) = 0.

o 1 92" =1)r
Proposition 3.2. If r = r,(y°, y') then H(y’,y') < o T
- k=1
Proposition 3.3. Forr >d, Pryo,ylebe?l [, (80, yY) = 7] < (W)T.

In [9, 18], to prove the lower bound for DisJy ,,, the function f is set to OR,, (and 9 is 1y ).
By Proposition 2.3, d = degs/6(ORy,) > y/m/12. Plugging the bound in Proposition 3.3 together
with the bounds from Proposition 3.1 for » < d and from Proposition 3.2 when r > d into the
above correlation inequality it is not hard to show that

C

Corx(g o ¥y, 1) < 24/

for £ > %. Hence for suitable k& = O(loglogn) we derive a polynomial lower bound on
Ry )3 (D183g ) 2 c.

The key limitation of the above technique is the required lower bound on ¢ which follows from
the weakness of the upper bound in Proposition 3.2 and from the inefficiency of the selector function
V0

We first address the weakness of Proposition 3.2, which is implied by how little can be assumed
about the orthogonalizing distribution p given by Lemma 2.5. In particular, the arguments in [26,
9, 18] all allow that p may assign all of its probability mass to small subsets of points defined by
partial assignments. Indeed, when the function f is OR,y,, this is not far from tight. However, we
will show that for other very simple functions f one can choose the orthogonalizing distribution
so that it does not assign too much weight on such small sets of points; that is, p is “max-smooth”.
To guarantee this property of 1 we need to strengthen Lemma 2.5 by assuming more of f than just
large approximate degree which we will do in the next section.

Later in Section B we address the inefficiency of the selector function. David, Pitassi, and
Viola [11] already tackled some of this inefficiency by using 2*-wise independent distributions which
yield selector functions that are unfortunately outside of AC® for k = w(loglogn). We use our more
general notion of selector functions to design efficient selector functions that are in AC® and produce
nfM) lower bounds for k up to ©(logn/loglogn) players.

Before moving on to detail these improvements, for completeness we give the proofs of Propo-
sition 3.1 and Proposition 3.3.



Proof of Proposition 3.1. We have H(y%y!) = ‘Ez[HuE{O,l}k71 ,u(z“)g(z“)]‘. Let Z2 =

Z0-0z0.1... Zl-1 he the joint distribution induced on {#"}ucqo,1y+—1 by taking x uniformly at
random. By construction when x is taken uniformly at random, z* is uniformly distributed in
{0,1}™ for any u € {0,1}*~! so each Z" is a uniform distribution. For each choice of 20 we will
also consider the conditional distribution 2700|200 on {#"}ux0..0 which is derived from Z by
conditioning on Z%0 = 290 Then,

H'y) = (B, oozl T w90
uE{O,l}k71
- (Ezomo[H(ZO---O)g(ZO---O).E{zu}uﬂ‘“owﬁo,.,olzo.,.o I1 M(zU)g(ZU)](.

u#0...0

We now consider the conditional distribution in the inner expectation above. For any ¢ that
is good for (y°,y') the set of 281 random variables {2}, {0,131 are independent. Therefore
for any i that is good for (y°,y'), conditioning of 2700 on 200 ig equivalent to conditioning on

(ZZQMO)Z'GRw(yO,yl)’ the portions of z2°% on those i € [m] that are bad for (y°,y'). Therefore

E{Zu}u;éomoNZ;to...o‘Zo...o H ,U,(Zu)g(zu)
u7#0...0

:E{Zu}uion'ONZ;&O“A0|(ngAA0)i€Rw(yO’yl) H M(Zu)g(zu)
u#0...0

This quantity is some function @ of 299 that depends on only the r = rw(yo,yl) variables
(ZZQMO)Z'ERw(yO,yl)' Therefore

HG' oY) = [Baoo[u(z0)g(=*)Q(00))|
= 0
by the second property of u and g given in Lemma 2.5 since r < d. O

Proof of Proposition 3.5. As we have noted, 1y, , (y°,y') is the number of i € [m] such that y?i = yjlZ
for some j € [k—1]. There are £ elements in Dy, , ; for each j so the probability that yJ; = yj; is 1//.
Therefore the probability that y% = yjlu for some j € [k—1] is at most (k—1)/¢. By the independence

k—1r kE—1)r
of the choices for different i € [m] Pryo,yleDfﬁL [Py WO, y1) =1] < (T) ( - ) < (em(rg )) .

4 Beyond approximate degree: a new sufficient criterion for strong
communication complexity bounds

In this section we introduce our notion of (e, a)-approximate degree and how it implies our main
technical theorem on the general correlation method. We also give an example of how it can be
applied in conjunction with the pattern tensor selector function to produce larger lower bounds
than those based on e-approximate degree.
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A p e {0,1,+}™ is called a restriction. For any restriction p, let unset(p) C [m| be the set of
star positions in p, let [p| = m — |unset(p)|, and let C, be the set of all z € {0,1}"™ such that for
any 1 < i < m, either p; = % or p; = x;. Hence |C,| = 2™~ Pl. Given a restriction p € {0,1,*}™
and a function f on {0,1}™, we define f|, on {0,1}"/°l in the natural way. We also define
R; C {0,1,*}™ to be the set of all restrictions with |unset(p)| = 7.

The approximate degree of a function f says how hard it is to approximate f. In this paper, we
need a stronger notion which requires that many widely distributed restrictions of f also require
large approximate degree.

Definition Given 0 < e, <1 and d > 0, let IT = II;(f) C {0,1,%}™ be the set of restrictions
such that for any 7 € II, degc(f|r) > d. We say that f the (e, a)-approximate degree of f is d,
denoted as dege o(f) = d, if restrictions in (a subset of) II are spread out “evenly”.

Formally, the (¢, «a)-approximate degree of f is the minimum integer d such that there is a
distribution v on II = II; ((f) such that for any p € {0,1,*}"™ with |p| > d,

Pr [C, N Cy # 0] < 2P =lel,

The distribution v is the witness for the (e, «)-approximate degree of f. Note that deg.(f) =
dege,l (f )

Definition We define the (< €, a)-approximate degree of f to be the minimum over all ¢ < e
of the (¢, )-approximate degree of f. That is, degecn(f) = ming..dege o(f). As we write
thr(f) = deg<1(f), we will usually say “a-threshold degree” for (< 1, a)-approximate degree.

We will use this definition to prove our main technical theorem on the application of the general
correlation method. To prove the theorem, we first need the following consequence of large (e, «)-
approximate degree. We postpone its proof to Section 5.

Lemma 4.1 (extension of Lemma 2.5). Given 0 < e, < 1. If f:{0,1}™ — {—1,1} is a Boolean
function with (< €, «)-approzimate degree at least d, then there exist a function g : {0,1}™ —
{—1,1} and a distribution p on {0,1}™ such that:

1' Coru(gv f) Z €5

2. for every T C [m] with |T| < d and every function h : {0,1}IT1 — R, E,,[g(z) - h(z|T)] = 0;
and

3. for any restriction p with |p| > d, u(C,) < 2|p|a_""/e,

Note that, although the upper bound on u(C,) may seem quite weak, it will be sufficient to
obtain an exponential improvement in the dependence of communication complexity lower bounds
on k. Moreover, we note in Section 5 that for any function f computed by an AC® circuit the
assumption and the upper bound are essentially the best possible for d polynomial in m.

We now use Lemma 4.1 to prove an improvement of Proposition 3.2. This is the key to our
improved lower bounds.

Lemma 4.2. If f : {0,1}"™ — {1,—1} has (< €, a)-approzimate degree at least d, if g and p are
given by the application of Lemma 4.1 to f, and if 7 = ry(y°,y') > d, then
2(2]{:7171),’.()&

0,1
H(y,y)ém-
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Proof. Note that by definition of Ry (y° y'), conditioned on each fixed value of zp S0yl =
(%i)icr 4 (y0,y1) the random variable z* = 2%(z,y°, y!) is statistically independent of all z¥ for v # u.
For convenience of notation we assume without loss of generality that Rw(yo, yH ={1,...,r}.

Since g is 1/-1 valued,

H .y = B I w9

ue{0,1}k—1

Em‘ I #9z"

uE{O,l}k71
ue{0,1}k-1
< Egfu(z™?)]

X max ExTH,...,zm[ H M(zu)]

IN

L1,y T u#omo

= Eufu(z""7) )

x max [ oo [1(z")] @)
u#0...0

where z{ = ¢(x;,yY) for all i € [m)].

We first consider line (1). For z chosen uniformly from {0,1}™*, by assumption on v, for any
u € {0,1}*~! the random variable 2" is uniform in {0, 1}™. Therefore, in particular, E,[u(2%0)] =
E.cf0,1ym [11(2)]. Further, since p is a distribution, E,cqo1ym [p(2)] = 27™.

We now bound the remaining terms. First we have

max H Eup iy [1(2")] < H max Eg 4. [0(z")].

T1,...,T T1,...,T
" u#0...0 u70...0 !
Fixing x1, ..., x, fixes the values of 2}, ..., z}' and by our assumption on ¢, for random 41, ...,z
the values of of 2}, ...,z are uniformly random. Therefore the value in line (2) is upper bounded
by
2k—11
u —
Jmax Ba o [p(z")] = (max Bz, [0(2)]) :
u#0...0 Lo

Since r > d, by the property of u implied by Lemma 4.1,

max Z p(z) <2777 Je

Z1yeenyZr
Zr+41y--2m

and therefore line (2) is upper bounded by (27~ /(e2m=7))2" ' =1 = (27" =m /¢)2* ' =1 The lemma
follows immediately by combining the bounds for lines (1) and (2). O

Putting Proposition 3.1 and Lemma 4.2 together with the general correlation method yields our
main technical theorem.

12



Theorem 4.3. If f : {0,1}™ — {1,—1} has (< 1 — €, a)-approzimate degree at least d, 1 is a
selector function on {0,1}* with domain Dy = Dy 1 X --- X Dy, ,_1) then

1 U E—1_1\,.a
le/276(f o ™) > logy(e(1 —€)) — or—T 1082 (Z 27" pr - e, y') = 7”])-
r—d yo’yleDw

Proof. We recap the argument from Section 3 with a more general choice of parameters. We first
apply Lemma 4.1 to f to produce function g and distribution p. By construction Cor,(f,g) >
pl21, -5 2m)

2n—m‘Dw’m
zi = Y(xi,ys) for y € Dfpm) and 0 otherwise. To prove a lower bound ¢ on R’f /276( foy™) we show
that Cory(f o™, IIf) < 2¢. As before we have Cory(f o™, go4™) = Cor,(f,g) > 1 — ¢, hence
Cory(f o™ 1If) < €4 Cory(g o™, II,) by the triangle inequality. It therefore suffices to show
that Cory(g o ¢, II}) < e. Putting together the bounds of Section 3 with Lemma 4.2 we have

m 2(2’6—171)1,,&

< glerm2t, CPr eyl =
= ; 22k—1m(1 . 6)2k_171 y07y1€D1(bm)[ W(y y ) ]

1 —e. Then we define the distribution A based on p and ¥ by A(z,y) = where

9k—1

Corx(g o™, 1If)

<

2¢ [ gk-1 U E—1_ 1.«
)7 Y 2 P () =
€ r=d yOyleD,

Taking 25~ 1-st roots we have

C

1—e¢

m _ o k—1
. (ZQ(TQ I_1yre Pr )[W(yo’yl) _ T])l/Q )

Cory(g oo™, IIj) < .
r=d yO.yleDy

Therefore we obtain that R¥ /276( foy™) >cif

2¢ " - o 1/2+1
¢ > : (Z 2 e [yt = 7“])
1—c¢ 0 yleplm)
r=d Yyt e )
Rewriting and taking logarithms yields the claimed bound. U

We now show an example of how to apply this techical theorem to derive lower bounds for
functions based on the pattern tensor selector function. Although we will find that other selec-
tor functions allow us to produce larger lower bounds, this highlights the consequences of (e, «)-
approximate degree alone and will let us obtain results for simpler functions than with the other
selector functions. We will apply this bound to specific functions in Appendix A.

Theorem 4.4. For 0 < a < 1 and any Boolean function f on m bits with (5/6, «)-approximate
[4e(l€gl)m-‘k71

degree d, the function f o ", defined on nk bits, where n = ms for s > , requires
le/3(f oY) > d/2% —3 for k < (1 —a)logyd.
" k—

Proof. By Proposition 3.3, Pryo,yleng’:)Z [, WO,y =1] < (e( Ml)m)r SO

ok Lok e(k—1)m

—1_ @ —1_ o -
D 2ot pr o o @) =] < > 2 ()’ 3)
r=d yovyleDwk’e r=d

Since k < (1 — ) logy d, we have (2F=1 — 1)r® < d'=2r® < r for r > d so (3) is

13



r=d
m
< Z 27" < 9~ (d=1) for ¢ > 746(]{31)7”.
r=d
Plugging this in to Theorem 4.3 we obtain that
1 —(d—
le/g(f o ™) > logy(5/36) — o T logy 277D > d/2k —3
as required. O

5 Proof of Lemma 4.1

Proof. As in the proof for Lemma 2.5, we write the requirements down as a linear program and
study its dual. The lemma is implied by proving that the following linear program P has optimal
value 1:

Minimize 7 subject to

ys : > h@)xs(@) =0 S| <d (4)
ze{0,1}m
B Y. h@)f(x)>e (5)
ze{0,1}™

Vg w(x) —h(z) >0 z € {0,1}™ (6)

Wy w(x)+h(z) >0 xz € {0,1}™ (7)

ap: n— 27PN () > 0 p€{0,1,5}™, |p| > d (8)
zeC)

v > ) =1 9)
ze{0,1}™

Suppose that we have optimum 7 = 1. In this LP formulation, inequality + ensures that the
function p is a probability distribution, and inequalities v, and w, ensure that u(xz) > |h(z)| so
[|h|[x < 1. If ||h||1 = 1, then we must have p(z) = |h(x)| and we can write h(z) = p(z)g(z) as in
the proof of Lemma 2.5 and then the inequalities yg will ensure that Cor, (g, xs) = 0 for |S| < d
and inequality 3 will ensure that Cor,(f,g) > € as required. Finally, each inequality a, ensures
that p(C,) < 27lPI+1PI" = 2=IPIH1PI* which is actually a little stronger than our claim.

The only issue is that an optimal solution might have ||h|[; < 1. However in this case inequality
[ ensures that ||h|[y > e. Therefore, for any solution of the above LP with function h, we can
define another function h'(z) = h(z)/||h||x with ||#|]; = 1 and a new probability distribution p’
by p/(x) = |W'(z)| < p(z)/||h|]1 < wp(x)/e. This new h' and g’ still satisfy all the inequalities as
before except possibly inequality a, but in this case if we increase n by a 1/||h||1 factor it will also
be satisfied. Therefore, the u/(C,) < 27 lPI+1PI" /¢,

14



Here is the dual LP:

Maximize (- € + -y subject to

n: Z a, =1

pe{0,1,}™ | p|>d

U(x) . Vg + Wy + v — Z Q\P\—|P|aap =0
Cp9$7‘l)‘2d
h(z) : Bf@) + D ysxs(@) +we — vy =0
|S|<d

ﬂ)vx)wl‘)ap >0

z e {0,1}"
x e {0,1}"

x e {0,1}™

(10)
(11)
(12)

(13)

Since yg are arbitrary we can replace Z| S|<d ysxs(x) by pg(x) where py is an arbitrary poly-

nomial of degree < d to obtain the modified dual:

Maximize (- € + 7y subject to

n: Z ap =1

p€{0,1,x}™ |p[>d

p(x) : Vp + Wy + 7 — Z 2‘p‘7|p|aap =0
Cp9xv\l)\2d
h(z) : Bf(x) +pa(x) + wy — vz =0

ﬂ)vx)wl‘)ap >0

Equations (15) and (16) for x € {0,1}™ together are equivalent to:

2w, + Bf (z) + palx) +v— Y, 2/ a, =0

Cp9$7‘l)‘2d

and

20, — Bf (@) —pale) +v— > 2Wllla, =0,

Cpoz,|pl>d

x e {0,1}™

x € {0,1}"
x € {0,1}™

Since these are the only constraints on v, and w, respectively other than non-negativity these can

be satisfied by any solution to

Bf (@) +palx)+y < Y 2k,

Cp3337‘ﬁ"2d

and

—Bf (@) —palx) +y < Y 2P,

Cpoz,|pl>d

which together are equivalent to

Bf () +pa(a)| +y < Y 2k,

Cp31l7|p|2d
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Since pgy(x) is an arbitrary polynomial function of degree less than d we can write pg = —/3qq where
qq is another arbitrary polynomial function of degree less than d and we can replace the terms

8f () + pa(x)| by Blf(x) — qa(x)|.

Therefore the dual program D is equivalent to maximizing (- € + v subject to

Blf (@) —qa(@)| +v < Y 2Pl

Cp31l7|p|2d

for all x € {0,1}", a, is probability distribution on the set of all restrictions of size at least d, and
qq is a real-valued function of degree < d.

Now, let B be the set of points at which |f(x) — gq4(x)| > €. For any = € B, the value of the
objective function of D, which is (- € + -, is not more than

Blf (@) —qa(x)| +v < > 2kllelg, (18)

Cp3337‘ﬁ"2d

Let R(z) denote the right-hand side of inequality (18). It suffices to prove that R(z) < 1 for some
x € B. This is, in turn, equivalent to proving that

min R(z) <1,
z€B

for any distribution a,. Suppose, by contradiction, that there exists a distribution a, such that
R(z) > 1 for any x € B. Let II, the set of restrictions, and v, a distribution on II, be the witnesses
for the (e, a)-approximate degree of f. Picking 7 € II randomly according to v, we define the

random variable
I, := Z 9lel=lpl a,.
pilpl=d, CoNCr#D
Then,

Er(Iz) = Z Pr[C, N Cr # 0] - 2|plf\p\°‘ap < Z 9lel*=lpl .walplaap <1
ptlpl>d pilpl>d

Therefore there exists 7 € II for which I, < 1. If there exists € B such that z € C};, then since

R(z) = Z 2\0\—|p|“ap >1,
Cp3337‘ﬁ"2d

we would have I > 1. Thus Crx N B = (. So for any x € Cr, we have |f(z) — q4(z)| < €. But
since the degree of g4 is less than d this contradicts the fact that deg.(f|r) > d. (Note that we
actually only need the weaker assumption that that dege (f|;) > d for all € < e.) Thus the lemma
follows. O

We note that the bounds in Lemma 4.1 are essentially the best possible for AC? functions: By
results of Linial, Mansour, and Nisan [19], for any AC® function f and constant 0 < A < 1, there is a
function pg of degree d < m*, such that || f —pg||3 < 2m=m" for some constant § > 0. Let By, be the
set of  such that | () —pa(x)| = c. Then |[Bule® < e [/(2)—pa(@)? < |1 —pae) 3 < 27"

S0 |Bp| < 2m_m6/e2. If we tried to replace the upper bound on ;(C),) by some c(|p|) where c(m)
is w(1/|Bp,|) then we could choose a; = 1/|B,,| for € By, and a, = 0 for all other p and for these
values 8 would be unbounded.
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6 AC® functions with large (¢, a)-approximate degree

It is not obvious that any function, let alone a function in AC®, has large (e, a)-approximate degree
for a < 1. In this section we will show that for a < 1, AC® contains functions with large (5/6, a)-
approximate degree and functions with large a-threshold degree (which is (< 1, «)-approximate
degree).

Before going into the details, we describe the general framework of our constructions. Param-
eterized by three integers ¢ > r > p > 0, where r can be thought of as polynomial in ¢ and p as
logarithmic in ¢, the construction will produce an AC® circuit computing a function f on n = pq
bits that has (e, a)-approximate degree polynomial in r, which will therefore also be polynomial in
n.

First, we find an AC? circuit G on ¢ bits that is a Yoj_1 or My circuit for i > 1 (and hence
has bottom level gates that are V gates), such that for any set S of r input bits, the projection
of G on S, denoted by Gg, computes a function of high e-approximate degree (i.e. degree that is
polynomial in 7). Here the “projection” of a circuit on a subset S of input bits is defined as a new
circuit obtained from the original by keeping only those nodes on some path from an input bit in
S to the output gate. For e = 5/6 (or indeed any constant e sufficiently less than 1) finding such a
circuit is easy: G can be OR,.

Next, we obtain another circuit H := G o AND] by replacing every input bit of G by an A-gate
on p bits. Thus H has n = pq input bits in blocks of p bits, each block corresponding to the inputs
to a single A-gate. We define a family of restrictions on these bits as follows. Each restriction first
chooses r out of the ¢ blocks of inputs. It will leave the rp input bits in these blocks unset, and
for each of the remaining ¢ — r blocks, it will assign values to the p bits in this block uniformly at
random from the set {0, 1}? — {0P, 1P}. We will argue that this family of restrictions is spread out
evenly, in the sense of the definition of (e, a)-approximate degree.

Since GG has large e-approximate degree even when projected on any large enough subset of
inputs, and each restriction in this family leaves a subset of r blocks unset, one might hope that
for any restriction 7 in this family, H|, would have some projection of G on r input bits as a
subfunction. In the simple case that G is OR, this indeed enough. However, in the case that G is
more complex it is easy to see that this is not the case since the values assigned by 7w might force
the values of the bottom level V to 0 and hence its parent A-gate to 0 which would produce a much
simpler restriction of G rather than a projection of G on r inputs bits.

To produce the desired property we add some extra “checking” sub-circuits to H that will allow
us to circumvent this danger. Fortunately for our applications, these sub-circuits are very small
ACP circuits and the resulting circuit H’, which has the same input bits as H, is thus also in ACC.

First of all, we verify that the above family of restriction is indeed spread out evenly and then
apply it for G = OR,. Afterwards we describe the details of the construction of H' from H when
G is more complex.

Lemma 6.1. Let q, r, p, and d be positive integers with ¢ > r > p > 2 and let 1 > a > >0
be such that ¢° > rp, 2071 —1 > ¢! 78, ¢* > %21’7“, and d*=P > 3p/In2. Fiz any partition of a
set of m = pq input bits into q blocks of p bits each. Define distribution v on Rby as follows: pick
uniformly at random a subset of g —r of the q blocks; then for each of these blocks, assign values to
the variables in the block uniformly at random from {0,1}P — {0P, 1P}. Then for any p € {0, 1, *}™
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with |p| > d, the following holds'

Pr [C, N Cy # 0] < 2P =lel,

Proof. Fix any restriction p of size i = |p| > d. We have

Pr(C,NC; #0] = -

o ( q Z Hpj’

‘1_7’) SClq],|S|=g—rj€S

where p; is the probability that 7 and p agree on the variables in the j-th block. Write i = i1+.. .+,
where 7; is the number of assignments p makes to variables in the j-th block. Then
2P—ij

2p—1 1)'

Let is = ) ;cg1; be the number of assignments p makes to variables in blocks in S and ks = [{j €
S :i; > 0}| be the number of blocks in S in which p assigns least one value. Hence,

Pr[C,NC, #0] < ! o2+

7 )s. (19)
” (o2r) sciisizer

21 _ 1

Let k = |{j : i; > 0}| be the total number of blocks in which p assigns at least one value. There
are 2 cases: (I) k > ¢/2, and (II) k < q/2.
Now consider case (I). Thus ¢ > ¢/2. In Equation 19, we have kg < ¢ for every S. Thus,

1 » 1
=1/ 5Clg)|S|=q—r

It is easy to see that ig > i — pr for every such S. Hence we get

)

1 —i pr—1i (26)8 —i
oy Y resric
q=r/ Sclal,|S|=q—r

since pr < ¢® < (24)? in this case. Thus,

) < 9(2i)7—iga® < 927(14+1/In2)if —i

)

)% —i
PriC,nCr# 0] <2871+ g

since ¢' % < 2P71 — 1 and i > ¢/2. We upper bound the term 2°(1 + 1/In2) i® by i® as follows:
Since ¢ > d,

i P >d* P >3p/In2 (20)

Note that one can interpret this condition intuitively as requiring that, in a multiplicative amortized sense, each
bit assigned by p contributes not much more than 1/2 to the probability of being consistent with a random 7. For
m ~ v, p could assign p bits arbitrarily in one of the r terms not selected by m and would be consistent with .
However, in our amortized sense these p bits should not contribute much more than a 277 factor to the probability
of being consistent with 7. On the other hand the probability that a given term is not selected by = is r/q. It is
therefore necessary in our argument that 27?7 not be much smaller than r/g; this is the main motivation for the
relationship between p and ¢ that we use.
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by our assumption in the statement of the lemma. Since p > 2, we have 1% > 6 > 25(1 +1/In2)
which is all that we need to derive that Pry.,[C, N Cyr # 0] < 2¢°~% in case 1.
Next, we consider case (IT). We must have k < p!=#(2P~1 — 1) %, because otherwise

i >k >pl PPl —1)if > pl Pyl =Pf,

which implies i' =% > (pq)lfﬁ and hence 7 > pg = m which is impossible. Therefore

k
U+ g™ < T < e <
So,
iy 1 A .
Pr(iC,NC; #0] < e’ S where S= Z 27" = Egp[27'5].

W (20 scigTsi=ger
and U is the uniform distribution on subsets of [q] of size ¢ — 7.

Now we continue by upper bounding §. For the moment let us assume that ¢ is divisible by p.
If we view the blocks as the bins, and the assigned positions by p as balls placed in corresponding
bins, then we observe that S can only increase if we move one ball from a bin A of z > 0 balls to
another bin B of y > «x balls. This is because only those ¢g with S containing exactly one of these
two bins are affected by this move. Then, we can write the contribution of these S’s to S before
the move as

S = Z Q—is — Z 2—i51(2—x + 2—y)’
SClgl, |S|=g—r, SN{A,B}=1 S'Clq]—{A,B}, |S'|=¢—r—1

and after the move as

S/l — Z 2—is/ (2—$+1 + 2—:1/—1).
S'Clg]—{A,B}, |S'|=¢—r-1

Since y >z, 8" > S'.

Hence w.l.o.g. and with the assumption that p divides ¢, we can assume that the balls are
distributed such that every bin is either full (containing p balls) or empty. Hence k = i/p and for
any 1 < j < gq, either ¢; = 0 or i; = p.

Claim 6.2. If i is divisible by p then S < 271 ¢2"7'rk/a,

We first see how the claim suffices to prove the lemma. If ¢ is not divisible by p then we note
that S is a decreasing function of i and apply the claim for the first ' = p[i/p| > i — p positions set
by p to obtain an upper bound of § < 2P—1e2"'ri/(pa) that applies for all choices of i. The overall
bound we obtain in this case is then

Pr[C,NCy # 0] < P P 9p 2P i/ (pg) 9 —i

T~V

— 21"8171_'8/ In 2-+p+2P*1ri/(pgln 2)2—i
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We now consider the exponent i’p'=?/In2 + p 4 2P*1ri/(pgIn2) and show that it is at most i®
For the first term observe that by (20), i*# > 3p/In2 so i’p! =% /In2 < 10‘/3 For the second term
again by (20) we have p < i*7P/3 < i%/3. For the last term, since ¢® > %52Pr, we have

optly;

S R L]
since i < pg. Therefore in case II we have Pry.,[C, N Cy # 0] < 21" ~% as required. It only remains
to prove the claim.
Proof of Claim: Let T' = {t | iy = p} be the subset of k blocks assigned by p. Therefore
is = |SNT|p where S is a random set of size ¢ — r and T is a fixed set of size k and both are in
[q]. We have two subcases: (ITa) when k& < r and (IIb) when ¢/2 > k > r.

If k¥ < r then we analyze S based on the number j of elements of S contained in T'. There are
(I;) choices of elements of T to choose from and g — r — j elements to select from the ¢ — k elements

of T. Therefore N . ‘
ijO (]) (qzrfj) 27

(42,)

S =

Now since

(5)  (@=R)g =) (q—r)rkd o v Nkrg—ryi
(%) - — G- (g k) _( k> ( >

we can upper bound S by
ok [k i (1 TN ro\k q—r\k
G () () = ) %)

- () ey
(q—|— 2p— 1)r )

_ (1+ 2p—1r+k>

2p
< (1 &)
< 2prk/(q k)
< 27 erHTk/q.

since k < q/2.

In the case that » < k < ¢/2 we observe that by symmetry we can equivalently view the
expectation S as the result of an experiment in which the set S of size ¢ — r is chosen first and
the set T' of size k is chosen uniformly at random. We analyze this case based on the number j
of elements of S contained in 7. There are (’j") choices of elements of S to choose from and k — j
elements to select from the ¢ — r > ¢/2 > k elements of S. Therefore

>0 (5) (F25) 2~ o
(7) '
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Using the fact that

() (g=m)g— k)W (=K 7k  q—k\r/ k
@) " dk-Dg—r—k+) ~ (g-rr _<q—r) (q—k)’

we upper bound S by

Tpk(fz_f]:)r ,ro (;>(q2ikk)J = Tpk(f]_f]:)r(w(;i’“k) "

Jj=

= 927¢

- ><q+(2i—1)k>r
_ g Z+T2P—1k§r '

—1

Il
b

1+
q
2%)

2 7

IN

(4=
(
( 2p—1k+r)r
(1

92— ze2prk/(q )
2—ie2p+1rk/q

VANVAN

since r < ¢/2. O

Recall that the function TRIBES, , on m = pq bits is defined by
TRIBES),¢(v) = Vi_; Nj_) @i 5.

Usually the function TRIBES is defined so that 2P is linear or nearly-linear in ¢. Using Lemma 6.1,
we will show that, with a different relationship in which ¢ > 2P but p is still ©(log q), the (5/6, a)-
approximate degree of TRIBES), , is large.

Corollary 6.3. Given any 1 > ¢ > 0, let q, p be positive integers with ¢ > p > 2 such that
2[q¢' 8 < 2r < %qo‘“*l In2 for some fized constants 1 > a > 3 > 1 —¢€. Then for large enough q,

TRIBES,, ; has (5/6, &)-approzimate degree at least \/q'=¢/12.

Proof. Define the distribution v as in the statement of Lemma 6.1, where a p-block corresponds to
a p-term in TRIBES, ;. Applying Lemma 6.1 with r := [¢'™¢] and d = [/r/12], it is clear that for
any 7 with v(m) > 0, OR, is a subfunction of TRIBES, 4|~ s0 degs 6 (TRIBES 4|x) > degs/6(OR;) >
\r/12.
All conditions in the statement of the lemma would then be satisfied for ¢ large enough. In
particular, for g large enough,
¢’ /r > ¢ > logq > p,

and
d* B > (r/12)@=0/2 > ((=9)(=0)/2 /12 > 310g ¢/In2 > 3p/In 2.
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Corollary 6.4. For p > 2 a sufficiently large integer and q = 2%, TRIBES,, has (5/6,0.9)-
approximate degree at least q3/10/\/12 = 26p/5/\/12.

Proof. From the last corollary with € = 0.4, a = 0.9, and 3 = 0.8 if [¢"?] < 2P < %q0'3ln2 then

we obtain a (5/6,0.9)-approximate degree lower bound of 4/¢%6/12 for ¢ sufficiently large. For p
sufficiently large the required conditions are satisfied with ¢ = 2%P. U

Next, we will construct an AC® function with large a-threshold degree. We first need a function
that has large threshold degree even when projected on any sufficiently large subset of inputs.

Lemma 6.5. Let d and s be positive integers such that s > 8d?. Let t be an integer such that
s/(4d) >t > 2d. Let g = st and r be any integer such that ¢ > r > 2ds. Then there is an explicit
read-once AND o OR formula G on q bits such that for any set S of r input bits, the function
computed by Gg has threshold degree at least d.

Proof. Let G be the AND o OR formula with fan-in ¢ at the top A gate and fan-in of s at each of
the V gates. Let S be any subset of input bits with |S| = r.
Let A be the set of \V gates in G that contain at least 4d? elements of S. By Markov’s inequality,
r < s|A| +4d?(t — |A|), and hence
r—4d*t  r—4d’t

> >
|A|_5—4d2> s 2 d

since r > 2ds and 4d*t < ds. Hence Gg contains at least d V-gates, each having at least 4d>
inputs. This implies that G's computes MP 442 as a subfunction. By Proposition 2.4, thr(Gs) >
thT(MPd74d2) Z d. O

We now describe how to produce the circuit H’ defined earlier. We could define this for any AC°
circuit GG with a bottom level of V gates and the next level having A gates but we restrict ourselves
to the AND o OR formula given by Lemma 6.5. Let H = G o AND{ be the circuit obtained from G
by replacing each of its input bits by an AND gate over p bits, for some p > 0. In particular for
the choice of G from Lemma 6.5, H is a read-once AND o OR o AND,, circuit on pg bits. We then
obtain another circuit H’ by applying the following operation to each bottom OR gate ¢ of H: let
t be the number of AND, gates that are inputs to ¢; for every i € [t] denote the inputs to the i-th
AND,, gate that feeds into ¢ by z; 1,. .., 2;p; for each such i, create two new OR gates B; = v?zlzi,j
and B} = Vi_,(—z;); then, create a new AND gate A, = Ni_,(Bi A BY); finally, add a new edge
feeding the output of A, to .

The following lemma justifies the above construction.

Lemma 6.6. Let G be any AND o OR circuit on q bits. For some integer p > 0, let H' be the
circuit constructed from G by following the process described above. Then the following hold:

o H' is a Ny circuit of size at most 4 times the size of G;

e Let m be any restriction that chooses a subset S of the blocks of inputs to H' to leave unset and
assigns values from {{0,1}? — {0P, 1P} to each other block. Then H'|; computes a function
that contains the function computed by Gg as a subfunction.
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Proof. A sub-circuit of depth 2 with 3 gates is added for each bottom level OR in G so the first
part is immediate.

For the second part, let S be the set of blocks in G that are left unset by 7. First note that for
any block not in S, the associated AND,, gate in H' is forced to 0. Also observe that for any OR
gate ¢ in H' corresponding to a bottom level OR gate ¢ in G,

if ¢ has an input that corresponds to a block in S then setting the values of any such block in S
to 0P or 17 will force A, to output 0,

if ¢ does not have any inputs corresponding to any block of S then A, outputs 1 and hence ¢’
outputs 1.

It follows that we can use H'|; to compute Gg by assigning 0P in place of 0 and 17 in place of 1
for each block in S. O

Finally we show that, with suitable parameters, H' has high a-threshold degree.

Theorem 6.7. Let p > 0 be a sufficiently large integer multiple of 15 and let ¢ = 2*. Then there
is an explicit depth 4 ACO function on pq bits that has 0.9-threshold degree at least ¢'/1°.

Proof. Let d = ¢*/1%, s = 2¢5/5 t = q7/15/2, and r = 4¢°/5. Observe that, by our choice of p and
q, all of these are integral and they satisfy the conditions of Lemma 6.5. We can apply that lemma
to derive an AND o OR circuit G with the property that for every S with |S| = r, thr(Gg) > d.
Define the distribution v as in the statement of Lemma 6.1 given the value of 7. We can then apply
Lemma 6.6 to G to derive the My circuit H' based on G with the property that for every 7 in the
support of v, H'|; computes as a subfunction the function Gg for some subset S of inputs with
|S| = r and therefore thr(H'|;) > thr(Gg) > d.

Observe that for & = 0.9 and § = 0.8 we have ¢ = ¢*% > ¢*Plogyq = rp, 201 — 1 =
g2 —1 > 02 = 18, @ = ¢ > %qw/m _ %Qpr’ and d*# = ¢*1 > 3p/In2 for p
sufficiently large. Therefore we may apply Lemma 6.1 to derive that Prr., [C,NCy # (] < olel* el
It therefore follows that H' has a-threshold degree at least d as required. O

7 Multiparty communication complexity lower bounds for AC’
functions for O(logn) players

In this section we use a different selector function ¢, which we denote by INDEXge  where a > 0
is an integer. This function has s = 2% and DINDEX@a i = {0,1}* for all j. For X € {0,1}* and
k—

Y € {0,1}(=1s define

1’

INDEX@%_I (X’ Y) = X(Y1@...@Yk,1)[a]

where the bits in X are indexed by a-bit vectors and Y[, is the vector of the first a bits of Y. This
function clearly satisfies the selector function requirement that the output be unbiased for each
fixed value of Y.

Although the definition of INDEXgq | uses the parity function, the number of players k& will be
O(logn) and hence these parity functions will be computable in AC®. We can express the parity of
k — 1 items in DNF as an V of 282 conjunctions each of length k — 1. Thus for any w € {0,1}¢,
we can check whether (Y1 @ ... @ Y;_1)[q = w by a N3 formula where the gates are, from top to
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bottom, A with fan-in a, V with fan-in 252, and A with fan-in k — 1. If we add z,, as an additional
input to the top A gate, we can make this formula output z,, if the check returns true. Therefore
we can write INDEX@Z_1 as a 24 formula where the fan-ins are, from top to bottom, 2%, a+1, Qk_Q,
and k — 1. The top V gate is to do the check for every possible value of w € {0,1}%. Alternatively,
we could dually write parity using CNF and express INDEXgga | as a 23 formula where the fan-ins
are, from top to bottom, 2%, a2¥=2 41, and k — 1, where the inputs to each of the (a2*~2 +1)-fan-in
A gates are the one bit of 2 and a2¥~2 V gates with fan-in k — 1.

When ¢ is INDEXga _, the variables INDEXge  (2;,y3;) for u € {0, 1}*~1 will be independent
if and only if for every u # v, y}; and yJ; select different bits of x;. Hence we can easily prove an
analogue of Proposition 3.3 for INDEXgg .

m> 2(2k7a73)r < (em22k_a_3 )7"

— 0,1y —
Lemma 7.1. If¢) = INDEXga  then Pry()’ylengm) [ry(y”,y') =7r] < <r .

Proof. Note that Dq(pm) in this case is simply {0,1}(*=D™s_ For each fixed i € [m] and each fixed
pair of u # v € {0,1}*~1, the probability that vy and y3; select the same bit of x; is the probability
that (y @ @yt ") = Wt @Yyt ')jg- Since u # v, this is a homogeneous full rank system
of a eqt;%‘gii)ns over Fo which is satisfied with probability precisely 27¢. By a union bound over all

of the ( 9 ) < 22673 pairs u,v € {0,1}*71, it follows that the probability that i is bad for (3°,y")
is at most 22¥=327¢ = 22k=a=3_ The bound follows by the independence of the choices of (y°,y')
for different values of i € [m]. O

Now we are ready to prove the main theorem for functions composed using this new selector
function.

Theorem 7.2. For 0 < a < 1 and any Boolean function f on m bits with (e, «)-approzimate degree
d, the function f o INDEX%LZA defined on nk bits, where n = ms and s = 2* > e2?*~\m//d, requires

that R’f/Q_e(f o INDEX%LZ_I) > d/2% +logy(e(1 — €)) for k < (1 — a)log,d.

Proof. For ¢ = INDEXgg , by Lemma 7.1,

“ k—1 o - k-1 o ,em2%—a3

D2 P [yl =r] < Y 2 T (————) (21)
r—=d yO:ylebem) r=d "

Since k < (1 — ) logy d, we have (2F=1 — 1)r® < @'~ < r for r > d so (21) is

m 6m22k—a—2
< Tty

r=d

m
< Z 27" < 2~ (d=1) for 2¢ > e2%~1m/d.
r=d

Plugging this in to Theorem 4.3 we obtain that

1 (d—
Rllg/Qfe(f o ™) > logy(e(1 —€)) — ok—1 log, 2 (@=1) > d/Qk +logy(e(1 —¢))

as required since s = 2°. O

24



Let TRIBES;W be the dual of the TRIBES, , function on m = pg bits. Obviously the (e, o)-degree
of TRIBESQLq is the same as that of TRIBES, , for any € and o. We first directly apply Theorem 7.2
to TRIBESp,q © INDEXge —and TRIBES, , INDEX{.  for suitable values of a.

Lemma 7.3. Given any 1 > € > 0, let q, p be positive integers with q > p > 2 such that 2(q1*ﬁ} <
2P < éqo‘+5_1 In2 for some fized constants 1 > a > 3 > 1 —e. Let a > logy(4epqg1+9)/2) 4+ 2k and
s = 2% Then, for q sufficiently large, Rl/g(TRIBESp,quNDEXQZ_I) and R1/3(TRIBES;9,qOINDEX$Z_1)

are both Q(qU=9/2/2%) for k < 1(1—a)(1—€)logyq—2.

Proof. Let m = pq. By Corollary 6.3, for ¢ sufficiently large, the (5/6, a)-approximate degree d of
both TRIBES, ; and TRIBESpq is at least q(1 € /2/\/_ Thus em/d < 4epqtt9/2 g0 by the choice
of a we have s = 2% > e2%~Im /d. Also k < (1 —a)(1—€)logy ¢ — 2 implies that k < (1—a)log, d.
Applying Theorem 7.2, we see that R} /B(TRIBEsp,q o INDEX@Z_I) and R} /B(TRIBES;M o INDEX@Z_I)

are both Q(q(1=9)/2 /2k). O
In particular we obtain the following:

Corollary 7.4. Let p > 2 be a sufficiently large integer. Let ¢ = 2%, k < p/10, and s = 2PT2k. Let

F' = TRIBES) g 0 INDEXT (1) and F' = TRIBES), , o INDEX"", Mo Let n = pgs = p25PF2% be the
k—1 k 1

number of input bits given to each player in computing F or F'. Then R’f/g( ) and R’f/g(F’) are
both Q(q%3 /2%) = Q(2P/5 /2K) which is n*V JO(4¥). Furthermore, F has polynomial-size depth 5
ACO formulas and F' has polynomial-size depth 4 AC® formulas.

Proof. Let ¢ = 04, a = 0.9, and § = 0.8 and a = p + 2k. Observe that with these values and
sufficiently large p, the conditions on the relationship between p and ¢ are met for sufficiently large
values of p as is the bound on a and the upper bound on k.

As noted above, INDEXgqa | has Y3 formulas with fan-in, top to bottom, of 2¢ = 2P+2k q2k=2 4

1= (p+2k)2¥~2 41, and k — 1. Since TRIBES,, is given by a ¥, formula, TRIBES, 40 INDEX"", .1)
k—1

is computable by a L5 formula with fan-in top to bottom of g, p, 2°72¢, (p+2k)2¥=24-1, and k — 1.
The total formula size of F is n(p + 2k + 1)(k — 1)2¥=2 which is less than n?.

The proof for F’ goes similarly, except that since the second layer of TRIBESp 4 can be merged
with the top layer of INDEX (P20, it has a polynomial-size depth 4 AC® formulas. U

Lemma 7.5. N*(TRIBES),q o INDEXZa ) is O(log ¢ + pa).

Proof. Using the X3 formula for INDEXge —we see that TRIBES, ;0 INDEX['. can be expressed as
Fo1 Pyq o,

a Y5 formula where the fan-ins from top to bottom are ¢, p, 2%, a2¥72 4+ 1, and k — 1. The players
use this formula to evaluate TRIBES) 4 o INDEX@ZA

Observe that the fan-ins of the A gates are p, a2*=2 + 1, and k — 1 respectively, and the input
to each of the (a2F=2 + 1)-fan-in A gates at the middle A is one bit of x and a2*~2 Vv gates with
fan-in & — 1. Moreover, the 0-th player (who holds ), can evaluate each of these V gates since it
can see all of the input to these gates.

Player 0 guesses the top part of an accepting subtree by guessing a child of the root and, for
each of the p children of that node, guesses which of the 2% bits is selected, and broadcasts this
information. This costs log, ¢+ pa bits to send. Thus now there are p A gates with fan-in a2¥=2 41
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that need to be evaluated. For each of these p gates, player 0 broadcasts a bit which is 1 if and
only if all of the a2¥=2 feeding V gates that depend on the bits of y,...,yx_; evaluate to true.
Given this information, player 1 can then evaluate all p A gates. U

Corollary 7.6. There is a function G in read-once depth 5 AC® such that G is in NPEe — BPP©
for k < a’'logn for some constant a’ > 0.

Proof. Observe that, by Lemma 7.5, F' = TRIBES, o INDExg(p+2k) with the parameters from
k—1

Corollary 7.4 has N¥(F) that is O(log?n) and thus satisfies all the conditions except for being

read-once. To obtain the read-once property note that F' is a restriction of the following function

G
(p+2k)2F =2 —1

q D op+2k
VAV Gowown AV 2o
u=1v=1 w=1 (=1 j=1

and that the same O(log? n) upper bound from Lemma 7.5 applies equally well to G. O

We now reduce the depth 5 function f = TRIBESp,quNDEng(H%) to DisJg ,, for a suitable value
k—1

of n to obtain a NOF communication complexity lower bound on DisJ; ,, for k£ up to O(log'/3 n)
players. This is an exponential improvement in the number of players for which non-trivial lower
bounds can be shown for DisJy, .

Theorem 7.7. R¥ ., (Disy, ) is Q(2V 1082 ”/‘/_) fork<1i logl/3 n.

1/3

Proof. Recall that Disyy ,(z) = VI, /\?;6 xj;. As in Corollary 7.6 start with F' = TRIBES, 4 o

IN DExg(p +2x) With the parameters from from Corollary 7.4. Unlike Corollary 7.6, however, we use
k—1

the X4 circuit for INDEX@(H%) and reduce F to a ¥ read-once formula G with n = ¢p2%(a+1)2¢—2k
k—1

variables where a = 2k + p given by

@ g412F2k—1

G(z \:q/ /P\ \/ /\ \/ /\ Zj,iu,0,w,0

lv=1w=1 ¢=1 j=0
Distributing the A gates through the V gates, we have

p a+l2k-2fk—1

VNV AAV A S

i=1Je[2¢]p u=1w=1 £=1 j=0

by distributing over the second “V”, where I(u) is the u-th index of I. This in turn equals
p a+l k-1

VV o Vo AA Az

i=1Je[29]p jg[2k—2]p(a+tl) u= 1 w=135=0

by distributing over the third “V”, where J(u,w) is the entry of J indexed by (u,w). This in
turn equals
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k=1 p a+l

VOV OV AA A S

1= 1[6[2G]PJ€ ok— 2]p(a+1 7=0u=1w=1

V'V OV A

i=1TIe[2e]p je[2k—2]p(a+1) j=0
= DISJnvk(y),

where the bits of vector y € {0,1}" for n = ¢2@+*=2p(+1) are indexed by j € {0,...,k — 1},
i€ [q], I €[29P and J € [2F-2]P(@+1) are given by

P a+l

Yjil,J = /\ /\ Zj i, I (u),w,J (u,w)

u=1w=1

Observe that for any two players j # j', player j' can compute any value y;, 7 7. Thus the k players
can compute TRIBES), ;0 w,’gfg by executing a NOF randomized communication protocol for DisJ,, j,
on y of length nk, where n = ¢20Pt(k=2)p(a+1) — g9ap(k—1)+k=2 Plyeging in ¢ = 2 and a = 2k +p
for £ < p/10 we have that Rl/g(DISJmk) is Q(20°/5=k), Now for these values of k and a, we have

ap > k —2+4p and hence we have that n < 2% < 26P°k/5  Therefore we have p > +/blogyn/V6k.

It follows that R’f/g(DISJn,k) is Q(2V1oe "/‘/E) provided that k < 15+/5log,n/v/6k which holds if

k<110g1/3 . O

We note that the same lower bound for disjointness can be derived even more simply using the
above technique for the simpler function TRIBES,, ; 01}, that uses the pattern tensor selector. This
function is analyzed in Appendix A. Note that our bound also shows the following:

Corollary 7.8. There is a depth-2 read-once AC® formula in NP —BPP[ for k up to @(10g1/3 n).

Although we have shown non-trivial lower bounds for DisJy, ,, for £ up to @(logl/ 3

n), it is open
whether one can prove stronger lower bounds for k = w(logl/ 3n) players for DisJ kn OF any other
depth-2 AC? function. The difficulty of extending our lower bound methods is our inability to apply
Lemma 4.1 to OR since the constant function 1 approximates OR on all but one point.

For the functions we have considered so far we only have obtained lower bounds for protocols
that have some fixed constant advantage. Using Theorem 6.7, which produces a function of large a-
threshold degree, we obtain a lower bound on the randomized multiparty communication complexity
of AC? functions for protocols that succeed with probability barely better than that of random
guessing. This lower bound will be useful in proving lower bounds for MAJo SYMM o AND circuits
in the next section.

Theorem 7.9. There exist emplicit constants ¢, > 0 and a depth 6 AC® function H : {0,1}* —
{0,1} such that for 1/2 > € >0, R1/2 (Hy) is Q(n® +loge) for any k < 'logyn.

Proof. Let f' be the My function on m = pq bits with 0.9-threshold degree at least m1/15/log2m
as given by Theorem 6.7. We use the dual function f to f’ which is therefore a ¥4 function
of the same approximate degree. Since f has 0.9-threshold degree at least m!/15 /logym, it has
(< 1—¢,0.9)-approximate degree at least d = [m!/1%/log, m] for any € > 0. For k < 0.1log, d, let
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a = [logy(€22~1m/d)], and s = 2%. By Theorem 7.2, the function H, = fo INDEX%L%_1 defined on
n = msk bits requires that

R - (Ha) = d/2" + logy(e(1 — )

Since d is m?™®) and k < 0.1logy d, n = msk = m2%k is d°)) and since € < 1/2 the lower bound

on R¥ /276(Hn) is Q(n¢ + loge) for some explicit constant ¢ > 0. Combining the I3 circuit for
INDEXga_ with that for f yields depth 6. O

8 Threshold circuit lower bounds for AC°

Following the approach used by Viola [29], we show quasipolynomial lower bounds on the simulation
of AC? functions by unrestricted SYMM o AND and MAJ o SYMM o AND circuits. This relies on the
connection between multiparty communication complexity and threshold circuit complexity given
by Hastad and Goldmann.

Proposition 8.1 (Hastad and Goldmann [14]).
o If f is computed by a SYMM o ANDy_; circuit of size S, then D*(f) is O(klogS);
e If [ is computed by a MAJoSYMMOoAND\_1 circuit of size S, then le/%l/(zs)(f) is O(klog S).

We find it convenient to prove these results first for the simpler case of SYMM o AND circuits.
The proofs are almost identical to the argument in [29] with our hard AC® functions replacing the
generalized inner product.

8.1 Lower bound for simulation by SYMM o AND circuits

Theorem 8.2. There is a function G : {0,1}* — {0,1} in read-once depth-6 AC® such that Gx
requires SYMM o AND circuit size NS(oglogN)

Proof. For any k > 2 let p = 10k, ¢ = 2%, s = 2P*2k and n = kpgs = pk2°PT2F = p225-2P /10. Note

that the function F}, = TRIBES), , o INDEXg(ka) :{0,1}" — {0,1} is given by
k—1

q¢ p
FxyY)=A\\V INDEX 21 (X, Va0)
u=1v=1
for any X € iO, 1}P%° and Y € {0, 1}(k_1)pq5. Next, for N = 49p?n and Z = Z; - - - Z,,, where each
Z; € {0,1}*%"" we define our hard function G : {0,1}¥ — {0,1} as

49p? 49p?

G (2) =F (P 2y, .. P Znj).
=1 i=1

By Corollary 7.4, F, is in depth-4 AC®. Moreover, the parity on O(p?) = O(log? N) bits can be
computed by an AC® circuit of depth 3. It follows that Gy is computable by depth-6 ACP circuits.
It remains to show that G’y is not computable by “small” SYMM o AND circuits.

Suppose by contradiction that for some sufficiently small constant § > 0, there is such a circuit
C of size N18log N that computes Gy. Let p € {0,1,%}" be a random restriction such that
|unset(p)| = L%j = Tpn. We denote by C|, the circuit obtained from C' after substituting all the
values as prescribed by p. We consider the following two events:
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e Event Fj: the function computed by C|, is computed by a SYMM o AND circuit of size at
most |C| - 2¥ where the fan-in of each AND-gate is strictly less than &, and

e Event Fs: there is at least one bit that is left unassigned by p in every Z; for 1 <i < n.

First, we show that Pr[-FE;] < 1/2 for sufficiently small 6 > 0: Fix any AND-gate ¢ in the second
layer of C. By the decision tree version of Hastad’s Switching Lemma? (cf. [5]), the probability
over p that ¢|, cannot be computed by a decision tree of depth strictly less than k is at most

T|unset(p)|\ & Lip/10 o _0.1plo
(lmselplye o (Lyono  p-oipiesr,

Since p is O(log N) this quantity is N 21818 N)  Thys by a union bound over all AND-gates in C
and for sufficiently small ¢, with probability strictly less than 1/2, the function computed by C|, is
computable by a symmetric function of at most |C| decision trees of height strictly less than k. Any
decision tree of height < k can be written as a DNF of less than 2% disjointly satisfied ANDs, each
of size less than k. We can merge each of these terms into the top symmetric gate and conclude
that the function computed by C|, is computed by a SYMM o AND circuit of size at most |C] - 2k
where the fan-in of each AND-gate is strictly less than k.

Next, we also show that Pr[—FE3| < 1/2. Fix any Z; for some i € [n]. It is easy to see that the
probability that p assigns values to all of the bits in Z; is the probability that all of unset(p) is
outsize of Z; which is at most

(1 - ‘]ZVZ‘) ek (1 — %)Mm <exp(—Tp) < 1/(2n)

for sufficiently large p. By union bound over all i € [n], we conclude that Pr[-Es] < 1/2.

Thus Pr[E; A E3] > 0. Hence there exists a restriction p such that both E; and Es hold. By
Proposition 8.1, the fact that E; holds implies that there is a k-party deterministic communication
protocol computing C|, exchanging at most O(k log(|C|-2¥)) which is O(log® N) bits. On the other
hand, the fact that Ey holds implies that C|, computes F}, as a subfunction. By Corollary 7.4,
there is an assignment of the input to F,, and therefore C|,, to k players such that any k-party
deterministic communication protocol computing F,, and therefore C|,, must exchange at least

9(261)/5/2]6) — Nﬂ(l)

bits. Hence for sufficiently large N, we arrive at a contradiction. O

8.2 Lower bound for simulation by MAJ o SYMM o AND circuits

Theorem 8.3. There is a function G : {0,1}* — {0,1} in AC® such that Gy requires MAJ o
SYMM o AND circuit size N(loglogN),

Proof. We follow the approach in proving Theorem 8.2, except that we use the function H,, from
Theorem 7.9 instead of F),. Let ¢,¢’ be the constants and H,, be the function as guaranteed by

20One could also use the original form [13] with suitable additional argument about the result of applying it to a
conjunction, though the decision tree version is more convenient here.
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Theorem 7.9. Let k = |c'logyn|, 7 = |logyn], and N = 49r2n. For any Z = Z; - - - Z,,, where each
Z; € {0,134 we define our hard function Gy : {0,1}" — {0,1} as

49r2 49r2

Gn(2) = Hu(EP Zyjs -, D Znj)-
=1 i=1

As in the proof of Theorem 8.2, suppose by contradiction that for some sufficiently small con-
stant § > 0, there is a circuit C of size N?1°81°8 N that computes G’. Let p € {0,1,*}Y be a
random restriction such that |unset(p)| = L%J = Trn and consider the two events:

e Event Ej: the function computed by C|, is computed by a MAJo SYMM o AND circuit of size
at most |C| - 2% where the fan-in of each AND-gate is strictly less than k, and

e Event Fs: there is at least one bit that is left unassigned by p in every Z; for 1 <i < n.

The fact that, for 6 > 0 sufficiently small, Pr[E} A Es] > 0 is essentially identical to that in the
proof of Theorem 8.2.

Hence there exists a restriction p such that both E; and E5 hold. By Proposition 8.1, the
fact that F; holds implies that for any partition of the input to & players and ¢ = 1/(|C] - 2F+1),
R,y (Clp) is O(klog(IC| - 2%)) = O(log® N) = O(log®n). On the other hand, the fact that Ey
holds implies that C|, computes H,, as a subfunction. By Theorem 7.9, there is an assignment of
the input bits of H,,, and therefore of C|,, to k players such that R¥ ., (C|,) > R¥,,_ (H,) which

1/2—e 1/2—e
is Q(n° 4 loge). Since —log, € is O(k +log |C]) = O(log? N) = O(log? n), Q(n® +loge) is Q(n) for
sufficiently large N (and hence n), we arrive at a contradiction. O
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A Multiparty communication complexity bounds for AC° using the
pattern tensor method

A.1 Lower bounds and separations for depth 3 and 4 AC® functions for O(/logn)
players

We first show that TRIBES,, ; o ¥}, separates NP and BPP{® for k = O(y/Iogn) for some appro-
priately chosen values of p and gq. 7

Here we apply the (e, ) degree bound for the TRIBES function shown in the previous section
with Theorem 4.4 for the pattern tensor selector function 1y ». Note that

TRIBES g © 1e(€) = Vil Nuelp] Vuels) Njelk] Tiuw,i

is a depth 4 read-once formula. Recall that TRIBES{D’q is the dual of the TRIBES, ; function on
m = pq bits and has the same (e, a)-degree of TRIBES;W is the same as that of TRIBES,, , for any €
and a. Observe also that

TRIBES), ;0,™ ¥1,0(2) = Nielg) Vuelp], uels] NjelkTiuuv,i

is a depth 3 read-once formula since the bottom layer of V gates in TRIBESJ’D’q can be combined
with the top layer of 1 4.

Lemma A.1. Let 0 < € < 1/2. Let q, p be sufficiently large positive integers with ¢ > p > 2
such that 2[¢' 9] < 2P < %q““‘l In2 for some fized constants 1 > o > 3 > 1 —e€. Let s =
[8v/3e(k — 1)pg 921k =1 and n = pgs. Then le/g(TRIBEan oYy, and le/g(TRIBES£,7q o)
are both Q(q(1=9/2 /2F) | which is Q(n/(**) /2k) for k? < alogy n for some constant a > 0 depending
only on a,e€.

In particular, for any 6 > 0, one can choose an € > 0 and other parameters as above to obtain

a lower bound on le/3(TRIBESp7q oyy,) and le/g(TRIBESJ’D’q oY) of Q(n(=9/(k+1) /(2k Jog n)).

Proof. We state the proof for TRIBES,, 4 0 9/;',. The same proof applies for TRIBES;M] SRUH
By Corollary 6.3, for g sufficiently large TRIBES, , has (5/6, a)-approximate degree d at least
q1=9/2/\/12. Letting m = pq we observe that 4e(k — 1)m/d < 8v/3e(k — 1)m/q(*=9)/2 and hence

s > [4e(k — 1)m/d]*~!. Then we can apply Theorem 4.4 to derive that R’f/3(TRIBESp7q oYy is

Q(q(lfﬁ)/Q/Qk'), when k < blog, g, for some constant b > 0 depending only on «, €.

We now bound the value of ¢ as a function of n, k and €. Since ¢ > 0, n > gs > ¢¥T1/2 g0
q < n? -+ Therefore p < logy q < kLJrl logy . We now have n = pgs < (ck)F~IpkgltI+eak=1)/2
for some constant ¢ > 0 and thus

n S q(k+1)/2+€(l€—1)/2(cl 10g2 n)k‘ (22)

for some constant ¢ > 0. Since ¢ < 1 it follows that ¢* > n/(c'logyn)* and therefore ¢ >
n'/k /(' logyn) so logy q > +logyn — logy logy n — ¢’ for some constant ¢”’. Therefore there is an a
depending on ¢’ and b such that for ¢ sufficiently large (which implies that n is) the assumption
k? < alogyn implies that k < blog, ¢ as required.

It remains to derive an expression for the complexity lower bound as a function of n. By (22),

q1=9/2 ig at least
1—e k(l—e¢)
n kFH1+e(k—1) /(clog2 n) k+1+e(k—1) ,
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which is Q(n/ Gk /(logn)'/3) for € < 1/2 and thus Q(n'/**) since k> < alogyn and n is
sufficiently large. Moreover, since p=¢—y is of the form 1/(k+1)—2¢ek/(k+1)2+0(e%/(k+1))
we obtain the claimed asymptotic compﬁemty bound as € approaches 0. U

Choosing € = 0.4, o = 0.9, and § = 0.8 in the above lemma we obtain the following less
cluttered lower bound statement.

Corollary A.2. Let p > 2 be a sufficiently large integer, ¢ = 2*7, and m = pq. Let k > 2 be
an integer, s = [8v/3e(k — 1)pg® ¥, and n = ms = pgs. Then le/3(TRIBESp7q o wl??ﬁ) and

le/g(TRIBES;W o Yyy) are both Q(q"3/2F) for k* < blogyn for some constant b > 0 which is
Q(n'/ ) /2K) when k is at most O(y/Togn).

B Multiparty communication complexity lower bounds for AC®
functions for O(logn/loglogn) players

In this section we use a different selector function v, which we denote by ¢,?2. This function has

s = b1 and is the @ of b independent copies of the pattern tensor Yy . Therefore the domain

D L is simply leﬂ@b i the set of b-tuples of vectors in the domain for the pattern tensor. In
k0> k0

particular for X € {0,1}* and Y € {0, 1}(’?*1)8

bekl

vEx ) =V Xb///\/\ij//

b=1s'=1

This function clearly satisfies the selector function requirement that the output be unbiased for
each fixed value of Y.

Although the definition of 1/),?%2 uses the parity function, in applications we will choose values of
b that will be O(logn) and hence these parity functions will be computable in ACO. We can express
the parity of b items in a DNF formula as an V of 2~ conjunctions each of length b. In 1/),?2 the b

inputs to these terms are each pattern tensors of the form )y (X,Y) = \/E, 1(Xb/ r A\ /\k ! Yjys)
and their negations. Because of the special form of the promise for the inputs to each of these pattern
tensors, we see that the negation of a pattern tensor is Ekyb/(X, Y) = \/ff:(yb's' A /\f;l1 Yjysr)-
Therefore we can write 1/),?2 as a Y4 formula where the fan-ins are, from top to bottom, 20~1,
b, s, and k. We could dually write parity using CNF form and express w}?? as a I3 formula where
the fan-ins are, from top to bottom, 2°~1, bs, and k. The former will be useful for small non-
deterministic communication complexity whereas the latter will be useful for small circuit depth.
When 1 is Q,Z),?E, the variables ¢k g(xz, y) for u € {0,1}*~! will be independent if and only if for
every u # v there is some b’ € [b] such that yi and y?,, select different bits of x;/. (This follows
since random variables @y ¢cppwy and Syepwy, are independent if there is some b’ such that wy
and wj, are independent.) It follows that in this case r o (y°,y1) is the number of i € [m] such

that for every b’ € [b], yJ;, = yjy, for some j € [k —1].
The key to the improvement possible with w,ejz is that we can prove a sharper analogue of
Proposition 3.3.
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—_1\b k—1)°
Lemma B.1. If¢ = ¢,?2 then Pryo,yleDfp’") @0yt =] < (M) (E2)" < (M)T

Proof. In this case e (y°,y') is the number of i € [m] such that for every ¥ € [b], y%,, = yl.,
wk,e jib Jib

for some j € [k — 1]. As in the case of Proposition 3.3, for each fixed i and b’ the probability that
y?l.b, = yjl.l.b, for some j € [k — 1] is bounded above by (k — 1)/f. Since the values of (y°,y!) are
independently chosen for different values of &' € [b] the probability for each fixed 4 that this holds

for all b’ € [b] is at most (%)b. The bound follows by the independence of the choices of (y°,y!)
for different values of i € [m]. O

Now we are ready to prove the main theorem for functions composed using this selector function.

Theorem B.2. For 0 < a < 1 and any Boolean function f on m bits with (5/6, «)-approximate
degree d, the function fo(wl?’g)m defined on nk bits, where n. = ms and s = b[(k—1)(4em,/d)*/*7F=1,
requires that R1/3(f o (1#?2)"1 >d/2 -3 for k< (1 —a)log,yd.

Proof. For o) = wl?z, by Lemma B.1,

N (2k—1_q)pa o em(k—1
22(2k 1 1) . Pr [,r_w(y y 22 Qk 1 —1)re X (TEb ) ) (23)
r=d

yOyten™
Since k < (1 — a)log, d, we have (281 — 1)r < d'=%r® < for r > dso (23) is

" 2em(k — 1),
S (2emtE =1

r=d

IN

< Zg—r < 9~ (d=1) for £ > (k — 1)[d/(4em)]V/?.

Plugging this in to Theorem 4.3 we obtain that
R jy(f o ¥™) > logy(5/36) — —— logy 271 > d/2k — 3

as required since s = bf+~ 1, ]
We first directly apply Theorem B.2 to TRIBES,, , o (¢,?2)m for suitable values of b.

Lemma B.3. Given any 1 > ¢ > 0, let ¢, p be positive integers with ¢ > p > 2 such that 2[¢' 757 <
2P < %qo““_lln? for some fized constants 1 > a > > 1 —e. Let b > [logy(16epq'+9)/2)] and
s = b(2k)*~L. Then, for q sufficiently large, R¥,,(TRIBES, 0 (1#1?2)”‘) is Q(q" =972 /2%) for n = pgs
and k < 3(1 — a)(1 — €) logy g — 2.

1/3

Proof. Let m = pq. By Corollary 6.3, for ¢ sufficiently large, the (5/6, «)-approximate degree d
of TRIBES,, 4 is at least q1=9/2/\/12. Thus 4em/d < 16epq('*9)/2 so by the choice of b we have
(4em/d)'/* < 2. Therefore s = b(2k)*~1 > b[(k—1)(4em/d)/P1F1. Also k < T(1—a)(1—e€)logy g—
2 implies that £ < (1 — «) log, d. Applying Theorem B.2, we see that le/g(TRIBESpg o (@Z)]?lg)m) is
Q(q(lfe)/Q/Qk)_ O

In particular we obtain the following:
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Corollary B.4. Let p > 2 be a sufficiently large integer. Let ¢ = 2%, k < p/40, and s = p(2k)*1.
Let n = pgs = 192241’(216)]“*1 be the number of input bits given to each player in computing F =
TRIBES, 4 © (1/),632)”‘ Then le/g(F) is Q(q"3/2%) = Q(20/5 /2F) which is n*V JKOF) . FPurther, F
has polynomial-size depth 4 AC® formulas.

Proof. We apply Corollary 6.4 instead of Corollary 6.3. As noted above, wgz has M3 formulas with
fan-in, top to bottom, of 26=1 = 2P~1 bs = ps, and k. Since TRIBES), 4 is given by a Y5 formula,
TRIBES,, 4 © (wlf?’é)m is computable by a ¥4 formula with fan-in top to bottom of ¢, p2P~!, ps, and
k. The total formula size of F is np2P~" which is less than n°/4logy n. O

Lemma B.5. N¥(TRIBES, o (¢{?5)™) is O(log g + pblog s).

Proof. Using the ¥4 formula for ¢,?2 we see that TRIBES, , o (1/),?2)”‘ can be expressed as a Xg

formula where the fan-ins from top to bottom are ¢, p, 2=, b, s, and k. Observe that the fan-ins of
the A gates are p, b, and k respectively. The players use this formula to evaluate TRIBES,, ;0 (@b,?lg)m.

The 0-th player (who holds z), guesses an accepting subtree of this formula and sends both the
the description of the subtree and the values of the bits of x at the leaves of this subtree. Player 1
can then evaluate the subtree and sends 1 if and only if it evaluates to true. The total number of
bits needed to specify the subtree is logy ¢ + p[logy 2°~1 + blog, 5] < log, ¢ + pb(logy s + 1) and the
number of bits of x at the leaves is pb. O

Corollary B.6. There is a function G in read-once depth 4 AC® such that G is in NP — BPPC
for klogk < alogn for some constant a > 0.

Proof. Observe that F' = TRIBESp,qO(Ib?Z)m with the parameters from Corollary B.4 by Lemma B.5

has N*(F) that is O(log®n) and thus satisfies all the conditions except for being read-once. To
obtain the read-once property note that F'is a projection of the following function G.

p2r—1

q ps  k
VAV Azuew
u=1 v=1 w=1j=1

and that the same O(log3 n) upper bound from Lemma B.5 applies equally well to G. U
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