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Abstract

We prove an nΩ(1)/4k lower bound on the randomized k-party communication complexity of
depth 4 AC0 functions in the number-on-forehead (NOF) model for up to Θ(log n) players. These
are the first non-trivial lower bounds for general NOF multiparty communication complexity
for any AC0 function for ω(log log n) players. For non-constant k the bounds are larger than all
previous lower bounds for any AC0 function even for simultaneous communication complexity.

Our lower bounds imply the first superpolynomial lower bounds for the simulation of AC0

by MAJ ◦ SYMM ◦ AND circuits, showing that the well-known quasipolynomial simulations of
AC0 by such circuits due to Allender (1989) and Yao (1990) are qualitatively optimal, even for
formulas of small constant depth.

We also exhibit a depth 5 formula in NPcc
k −BPPcc

k for k up to Θ(log n) and derive Ω(2
√

log n/
√

k)
lower bound on the randomized k-party NOF communication complexity of set disjointness for
up to Θ(log1/3 n) players which is significantly larger than the O(log log n) players allowed in
the best previous lower bounds for multiparty set disjointness. We prove other strong results
for depth 3 and 4 AC0 functions.

1 Introduction

The number-on-forehead (NOF) multiparty communication complexity of AC0 has been an open
question since H̊astad and Goldmann [13] showed that any AC0 or ACC0 function has polyloga-
rithmic randomized multiparty NOF communication complexity when its input bits are divided
arbitrarily among a polylogarithmic number of players. This result is based on the simulations,
due to Allender and Yao, of AC0 circuits [1] and ACC0 circuits [31] by quasipolynomial-size depth-3
circuits that consist of two layers of MAJORITY gates whose inputs are polylogarithmic-size AND
gates of literals. These protocols may even be simultaneous NOF protocols in which the players
in parallel send their information to a referee who computes the answer [2].

It is natural to ask whether these upper bounds can be improved. In the case of ACC0, Razborov
and Wigderson [21] showed that quasipolynomial size is required to simulate ACC0 based on the
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result of Babai, Nisan, and Szegedy [4] that the Generalized Inner Product function in ACC0 requires
k-party NOF communication complexity Ω(n/4k) which is polynomial in n for k up to Θ(logn).

However, for AC0 functions much less has been known. For the communication complexity
of the set disjointness function with k players (which is in AC0) there are lower bounds of the
form Ω(n1/(k−1)/(k − 1)) in the simultaneous NOF [28, 5] and nΩ(1/k)/kO(k) in the one-way NOF
model [30]. These are sub-polynomial lower bounds for all non-constant values of k and, at best,
polylogarithmic when k is Ω(log n/ log log n).

Until recently, there were no lower bounds for general multiparty NOF communication com-
plexity of any AC0 function. That changed with recent lower bounds for set disjointness by Lee and
Shraibman [16] and Chattopadhyay and Ada [9] but no lower bounds apply for ω(log log n) players.
As for circuit simulations of AC0, Sherstov [23] recently showed that AC0 cannot be simulated by
polynomial-size MAJ ◦ MAJ circuits. However, there have been no non-trivial size lower bounds
for the simulation of AC0 by MAJ ◦ MAJ ◦ AND or even SYMM ◦ AND circuits with ω(log log n)
bottom fan-in. As shown by Viola [29], sufficiently strong lower bounds for AC0 in the multiparty
NOF communication model, even for sub-logarithmic numbers of players, can yield quasipolynomial
circuit size lower bounds.

We indeed produce such strong lower bounds. We show that there is an explicit linear-size fixed-
depth AC0 function that requires randomized k-party NOF communication complexity of nΩ(1)/4k

even for protocols with error exponentially close to 1/2. For ω(1) players this bound is larger than all
previous multiparty NOF communication complexity lower bounds for AC0 functions, even those in
the weaker simultaneous model. The bound is non-trivial for up to Θ(log n) players and is sufficient
to apply Viola’s arguments to produce fixed-depth AC0 functions that require MAJ ◦ SYMM ◦AND
circuits of nΩ(log logn) size, showing that quasipolynomial size is necessary for the simulation of AC0.

The function for which we derive our strongest communication complexity lower bound is com-
putable in depth 6 AC0. In the case of protocols with error 1/3, we exhibit a hard function
computable by simple depth 4 formulas. We further show that the same lower bound applies to a
function having depth 5 formulas that also has O(log2 n) nondeterministic communication complex-
ity which shows that AC0 contains functions in NPcc

k −BPPcc
k for k up to Θ(log n). As a consequence

of the lower bound for this depth 5 function, we obtain Ω(2
√

logn/
√
k−k) lower bounds on the k-

party NOF communication complexity of set disjointness which is non-trivial for up to Θ(log1/3 n)
players. The best previous lower bounds for set disjointness, due to Lee and Shraibman [16] and
Chattopadhyay and Ada [9], only apply for k ≤ log log n−o(log log n) players (though these bounds
are stronger than ours for o(log log n) players).

We also show somewhat weaker lower bounds of nΩ(1)/kO(k), which is polynomial in n for up to
k = Θ(log / log logn) players, for another function in depth 4 AC0 that has O(log3 n) nondetermin-
istic communication complexity and yet another in depth 3 AC0 that has nΩ(1/k)/2O(k) randomized
k-party communication complexity for k = Ω(

√
log n) players.

Methods and Related Work Recently, Sherstov introduced the pattern matrix method, a
general method to use analytic properties of Boolean functions to derive communication lower
bounds for related Boolean functions [23, 25]. In [23], this analytic property was large threshold
degree, and the resulting communication lower bounds yielded lower bounds for simulations of AC0

by MAJ ◦MAJ circuits. Sherstov [25] extended this to large approximate degree, yielding a strong
new method for lower bounds for two-party randomized and quantum communication complexity.

Chattopadhyay [8] generalized [23] to pattern tensors for k ≥ 2 players to yield the first lower
bounds for the general NOF multiparty communication complexity of any AC0 function for k ≥ 3,
implying exponential lower bounds for computation of AC0 functions by MAJ◦SYMM◦ANY circuits
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with o(log log n) input fan-in – our results extend this to fan-in Ω(log n). Lee and Schraibman [16]
and Chattopadhyay and Ada [9] applied the full method in [25] to pattern tensors to yield the
first lower bounds for the general NOF multiparty communication complexity of set disjointness
for k > 2 players, improving on a long line of research on the problem [3, 28, 5, 30, 14, 6] and
obtaining a lower bound of Ω(n

1
k+1 )/22O(k)

. This yields a separation between randomized and
nondeterministic k-party models for k = o(log log n), which David, Pitassi, and Viola [11] improved
to Ω(log n) players for other functions based on pseudorandom generators. They asked whether
there was a separation for Ω(log n) players for AC0 functions since their functions are only in AC0

for k = O(log log n), a problem which our results resolve.
The high-level idea of the k-party version of the pattern matrix method as described in [9, 24]

is as follows. To prove k-party lower bounds for a function F , we first show that F has f ◦ ψm
as a subfunction where ψ is a bit-selection function and f has large approximate degree. For such
an f there exists another function g and a distribution µ on inputs such that, with respect to
µ, g is both highly correlated with f and orthogonal to all low-degree polynomials. It follows
that f ◦ ψm is highly correlated with g ◦ ψm and, by the discrepancy method for communication
complexity, it suffices to prove a discrepancy lower bound for g ◦ ψm. Thanks to the orthogonality
of g to all low degree polynomials this is possible using the bound in [4, 10, 20] derived from the
iterated application of the Cauchy-Schwartz inequality. For example, the bound for set disjointness
Disjk,n(x) = ∨ni=1 ∧kj=1 xji, which more properly should be called set intersection, corresponds to
a particular selector ψ and f = Or which has approximate degree Ω(

√
n).

In the two party case, Sherstov [26] and Razborov and Sherstov [22] extended the pattern matrix
method to yield sign-rank lower bounds for some simple functions. A key idea for their arguments
is the existence of orthogonalizing distributions µ for their functions that are “min-smooth” in that
they assign at least some fixed positive probability to any x such that f(x) = 1.

By contrast we show that any function f for which approximating f within ε on only a subset
S of inputs requires large degree, there is an orthogonalizing distribution µ for f that is “max-
smooth” – the probability of subsets defined by partial assignments is never much larger than
under the uniform distribution. The smoothness quality and the properties of the constrained
subset S are determined by a function α so we call the degree bound the (ε, α)-approximate degree.
We show that for any function this degree bound is large if there is a diverse collection of partial
assignments ρ such that each subfunction f |ρ of f requires large approximate degree. This property
is somewhat delicate, and does not hold for Or, but we are able to exhibit simple AC0 functions
with large (ε, α)-approximate degree.

Organization In Section 2 we review the relevant properties of correlation and its connection to
multiparty communication complexity. We also describe a general form of the method of [25, 9, 11]
based on selector functions and orthogonalizing distributions for functions of large ε-approximate
degree and briefly discuss its limitations.

In Section 3 we introduce our new definition of (ε, α)-approximate degree and derive the addi-
tional “max-smoothness” property of the orthogonalizing distributions for functions of large (ε, α)-
approximate degree. Using this additional max-smoothness property we derive our main technical
theorem which gives communication complexity lower bounds based on the (ε, α)-degree lower
bound and the properties of the selector function used.

In Section 4 we give a method for producing functions of large (ε, α)-approximate degree based
on certain kinds of functions of large ε-approximate degree. In particular we prove that our con-
struction applied to the Orq function, which yields the function Tribesp,q(x) = ∨qi=1 ∧

p
j=1 xi,j , has

(ε, α)-approximate degree for ε = 5/6 for suitable values of p and q. We use f = Tribesp,q in our
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lower bounds for 1/3-error protocols. We also prove that the construction applied to a different
function given by an AND ◦OR circuit has large (ε, α)-approximate degree for every ε < 1. We use
this function in our lower bounds for protocols having exponentially small advantage.

In Section 5, we introduce the Index⊕ak−1
selector function and combine it with the functions

from Section 4 to produce lower bounds on k-party randomized NOF communication complexity
for AC0 functions and the depth 5 separating functions between NPcc

k and BPPcc
k for k = O(log n).

We also use these results to derive communication complexity lower bounds for set disjointness.
In Section 6 we derive the size lower bounds for MAJ ◦ SYMM ◦AND computing AC0 functions.
In the appendix we derive lower bounds for somewhat simpler functions constructed from other

selector functions, though the bounds are not as large as those in Section 5. In Appendix A.1 we
apply the lower bound from Section 3 for constructions using the pattern tensor selector function
ψk,` to produce k-party NOF communication complexity lower bounds for depth 3 functions for
k = O(

√
log n). As part of this we also review earlier methods in more detail and which shows

the value of moving from ε-approximate degree to (ε, α)-approximate degree. In Appendix A.2 we
analyze a selector function that is a small parity of pattern tensor selector functions and show that
from it we obtain depth 4 separating functions in NPcc

k − BPPcc
k for k = O(log n/ log log n).

2 Preliminaries and the generalized discrepancy/correlation
method

Circuit complexity Let AND denote the class of all unbounded fan-in ∧ functions (of literals),
SYMM denote the class of all symmetric functions and MAJ ⊂ SYMM denote the class of all
majority functions. AC0 is the class of functions f : {0, 1}∗ → {0, 1} computed by polynomial size
circuits (or formulas) of constant depth having ¬ gates and unbounded fan-in ∧ and ∨ gates. A
formula is a Σ1 formula if it is a clause and a Π1 formula if it is a term. For i ≥ 1, a Σi+1 formula is
an unbounded fan-in ∨ of Πi formulas and a Πi+1 formula is an unbounded fan-in ∧ of Σi formulas.
The output gate of F is at the top and its inputs are at the bottom of the circuit. Given classes of
functions C1,C2, . . .Cd, we let C1 ◦ C2 ◦ · · · ◦ Cd be the class of all circuits of depth d whose inputs
are given by variables and their negations and whose gates at the i-th level from the top are chosen
from Ci. Thus, for example, Πi+1 = AND ◦ Σi.

We will assume that Boolean functions on m bits are maps f : {0, 1}m → {−1, 1}.

Correlation Let µ be a distribution on {0, 1}m. The correlation between two real-valued func-
tions f and g under µ is defined as Corµ(f, g) := Ex∼µ[f(x)g(x)]. If G is a class of functions, the
correlation between f and G under µ is defined as Corµ(f,G) := maxg∈G Corµ(f, g).

Communication complexity Let Dk(f), Rkε (f), and Nk(f) denote the k-party deterministic,
randomized with two-sided error ε, and nondeterministic, respectively, communication complexity
of f . Let Πc

k be the class of output functions of all deterministic k-party communication protocols
of cost at most c.

Fact 2.1 (cf. [15]). If there exists a distribution µ such that Corµ(f,Πc
k) ≤ ε then Rk1/2−ε/2(f) ≥ c.

Because of the following property of multiparty communication complexity, henceforth we find
it convenient to designate the input to player 0 as x and the inputs to players 1 through k − 1 as
y1, . . . , yk−1.
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Lemma 2.2 ([4, 10, 20]). Let f : {0, 1}m×k → R and U be the uniform distribution over X × Y
where Y = Y1 × · · · × Yk−1. Then,

CorU (f,Πc
k)

2k−1 ≤ 2c·2
k−1 ·Ey0,y1∈Y

[∣∣∣Ex∈X
[ ∏
u∈{0,1}k−1

f(x, yu)
]∣∣∣]

where yu = (yu1
1 , . . . , y

uk−1

k−1 ) for u ∈ {0, 1}k−1.

Approximate and threshold degree Given 0 ≤ ε < 1, the ε-approximate degree of f , degε(f),
is the smallest d for which ||f − p||∞ = maxx |f(x) − p(x)| ≤ ε for some real-valued polynomial p
of degree d. Following [19] we have the following property of the approximate degree of OR.

Proposition 2.3. Let Orm : {0, 1}m → {1,−1}. For 0 ≤ ε < 1, degε(Orm) ≥
√

(1− ε)m/2.

The threshold degree of f , thr(f), is the smallest d for which there exists a multivariate real-
valued polynomial p of degree d such that f(x) = sign(p(x)). Because the domain of f is finite,
we can assume without loss of generality that p(x) 6= 0 for all x since we can shift p by adding
the constant 1

2 ·maxx:f(x)<0 |f(x)| to p. Thus the condition on p can be replaced by f(x)p(x) > 0
on every input x. Hence it follows that thr(f) = minε<1 degε(f). For this reason, we write
thr(f) = deg<1(f).

Define an inner product 〈, 〉 on the set of functions f : {0, 1}m → R by 〈f, g〉 = E[f · g]. For
S ⊆ [m], let χS : {0, 1}m → {−1, 1} be the function χS =

∏
i∈S(−1)xi . The χS for S ⊆ [m] form

an orthonormal basis of this space.
The following Orthogonality-Approximation Lemma is the key to lower bounds using the pattern

matrix (and pattern tensor) method. It is easily proved by duality of `1 and `∞ norms or by LP
duality.

Lemma 2.4 ([25]). If f : {0, 1}m → {−1, 1} has degε(f) ≥ d then there exists a function g :
{0, 1}m → {−1, 1} and a distribution µ on {0, 1}m such that:

1. Corµ(g, f) > ε; and

2. for every S ⊆ [m] with |S| < d and every function h : {0, 1}|S| → R, Ex∼µ[g(x) · h(x|S)] = 0.

Proof. Let Φd be the space of polynomials of degree less than d. By definition, degε(f) ≥ d
if and only if minq∈Φd ||f − q||∞ > ε. By duality of norms we have minq∈Φd ||f − q||∞ =
maxp∈Φ⊥d , ||p||1=1〈f, p〉. Writing µ(x) = |p(x)| the condition ||p||1 = 1 implies that µ is a prob-
ability distribution and letting g(x) = p(x)/µ(x) for µ(x) 6= 0 and g(x) = 1 if µ(x) = 0. Then
p(x) = µ(x)g(x). Therefore

ε < 〈f, p〉 = E[f · p] = E[f · g · µ] = Ex∼µ[f(x)g(x)] = Corµ(f, g).

Moreover since p ∈ Φ⊥d , we have 0 = 〈χS , p〉 = Ex∼µ[χS(x)g(x)]. Now for h : {0, 1}|S| → R for
|S| ≤ d, h(x|S) can be expressed as a degree |S| polynomial and by linearity Ex∼µ[g(x) · h(x|S)] =
0.

We will extend this lemma in Section 3 using more general LP duality.
The second major component of the pattern matrix/tensor method is the use of particular

selector functions to provide inputs to functions f with large ε-approximate degree.

Definition Any function ψ : {0, 1}ks → {0, 1} with the following property is a selector function:
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• There exist sets Dψ,1, . . . , Dψ,(k−1) ⊆ {0, 1}s such that for any Y = (Y1, . . . , Yk−1) ∈ Dψ :=
Dψ,1 × · · · ×Dψ,(k−1), PrX∈{0,1}s [ψ(X,Y ) = 0] = PrX∈{0,1}s [ψ(X,Y ) = 1] = 1/2.

Let D(m)
ψ := Dm

ψ,1 × · · · × Dm
ψ,(k−1). For any function f : {0, 1}m → {1,−1} and any selector

function ψ we define a new function f ◦ ψm on {0, 1}kms bits by, on any x ∈ {0, 1}ms and y =
(y1, . . . , yk−1) ∈ D(m)

ψ ,

f ◦ ψm(x, y) = f ◦ ψm(x, y1, . . . , yk−1) = f(ψ(x1, y∗1), . . . , ψ(xm, y∗m)),

where y∗i = (y1i, . . . , y(k−1)i) for i ∈ [m]. We will write zi = ψ(xi, y∗i) and z = (z1, . . . , zm) for
the input to f . In the k-party NOF communication problem for f ◦ ψm on input x, y1, . . . , yk−1 ∈
{0, 1}ms, player 0 holds x and can see all the yi and each other player i holds yi (but can only see
x and all yj for j 6= i) and they need to compute f ◦ ψm(x, y1, . . . , yk−1).

One example of a selector function ψ is the pattern tensor function ψk,` used in [9, 16] which
generalizes the pattern matrix function. In this example, s = `k−1 and the s bits are arranged in a
(k − 1)-dimensional array indexed by [`]k−1. Dψk,`,j consists of the ` vectors Yj ∈ {0, 1}s that are
1 in all entries in one of the ` slices along the j-th dimension of this array and are 0 in every other
entry. For X ∈ {0, 1}s and such a Y = (Y1, . . . , Yk−1) ∈ {0, 1}(k−1)s the array ∧k−1

i=1 Yi contains
precisely one 1 which selects the bit of X to pass to f . This function is expressible by a small
2-level ∨ of ∧s. As described in [11] the generalized discrepancy/correlation arguments work for
any selector function that uses the inputs for players 1 to k− 1 to select which bits from player 0’s
input to pass on to f , but we need our more general formulation for some examples we consider in
Appendix A.2.

We give a brief overview of the remainder of the argument in [9, 11], which extends ideas of
[23, 25] from 2-party to k-party communication complexity.

• Start with a Boolean function f on m bits having large (1− δ)-approximate degree d.

• Apply the Orthogonality/Approximation Lemma to f to obtain a g that is (1− δ)-correlated
with f and a distribution µ under which g is not correlated with any low degree polynomial.

• Observe that from µ one can define a natural λ under which g ◦ψm and f ◦ψm have the same
high correlation as g and f so to prove that f ◦ ψm is uncorrelated with low communication
protocols, by the triangle inequality it suffices to prove this for g ◦ ψm.

• The BNS-Chung bound/Gowers’ norm used in Lemma 2.2 is based on the expectation of a
function’s correlation with itself on randomly chosen hypercubes of points. Use the orthogo-
nality of g under µ to all polynomials of degree < d to show that all low degree self-correlations
of g ◦ψm under λ disappear. The remaining high-degree self-correlations are bounded by an-
alyzing overlaps in the choices of bits in different inputs among the hypercube of inputs. The
argument repeatedly bounds the probability mass that µ assigns to small sub-cubes of the
input by 1.

• The final lower bound is limited both by the upper bound on correlation in the high degree
case and by the number of input bits required for each selector function.

Our argument follows this basic outline but improves it in two different ways. We first address
the weakness of the upper bound on the high-degree self-correlations, which is implied by how little
can be assumed about the orthogonalizing distribution µ given by Lemma 2.4. In particular, the
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arguments in [25, 9, 16] all allow that µ may assign all of its probability mass to small subsets of
points defined by partial assignments. Indeed, for the function Orm, this is not far from tight.
However, we will show that for other very simple functions one can choose the orthogonalizing
distribution µ so that it does not assign too much weight on such small sets of points; that is, µ is
“max-smooth”. To guarantee this property of µ we need to strengthen Lemma 2.4 by considering a
new measure that strengthens (1−δ)-approximate degree. We also show that some simple functions
require large values for our strengthened measure (which turns out to be fairly non-trivial to prove).

We also address the inefficiency of the pattern tensor selector function by defining a new selector
function that requires many fewer bits. David, Pitassi, and Viola [11] already tackled some of
this inefficiency by using 2k-wise independent distributions which yield selector functions that are
unfortunately outside of AC0 for k = ω(log log n). We use our more general notion of selector
functions to design efficient selector functions that are in AC0 and produce nΩ(1) lower bounds for
k up to Θ(logn) players.

In the body of the paper we include our results containing both of these improvements. In
Appendix A.1 we discuss certain other results that rely on the pattern tensor selector rather than
our more efficient selector functions. This allows us to discuss more precisely how the addition
of the max-smoothness property of the orthogonalizing distribution µ on its own already yields
improved lower bounds without any change to the selector function.

3 Beyond approximate degree: a new sufficient criterion for strong
communication complexity bounds

We introduce (ε, α)-approximate degree and show how it implies our main technical theorem on
the general correlation method.

A restriction is a ρ ∈ {0, 1, ∗}m, and we let |ρ| = |{i : ρi 6= ∗}|. Two restrictions π and ρ are
compatible, π ‖ ρ, iff they agree on all non-star positions. Let Cρ = {x ∈ {0, 1}m : x ‖ ρ}.

Definition Let α : {0, . . . ,m} → R. Given a probability distribution λ on the set of restrictions
{0, 1, ∗}m, we say that x ∈ {0, 1}m is α-light for λ iff

∑
ρ‖x 2|ρ|−α(|ρ|)λ(ρ) ≤ 1. Note that when

α(r) = r, every point is α-light for every distribution λ.

Definition Let α : {0, . . . ,m} → R. The (ε, α)-approximate degree1 of f , denoted as degε,α(f),
is defined to be the minimum integer d ≥ 0 such that there is some polynomial q of degree ≤ d
and some probability distribution λ on restrictions such that for every x ∈ {0, 1}m if x is α-light
for λ then |f(x) − q(x)| ≤ ε. Note that this reduces to degε(f) if α(r) ≥ r for all r. Also define
deg<ε,α(f) = infε′<ε degε′,α(f). As we write thr(f) = deg<1(f), we will usually say “α-threshold
degree” for (< 1, α)-approximate degree.

This definition is an obvious weakening of the usual `∞ approximation of f since the non-light
points can be ignored in the approximation. We will use this definition to prove our main technical
theorem on the application of the general correlation method. To prove the theorem, we need the
following lemma which generalizes Lemma 2.4 and is the first key to our substantially improved
lower bounds.

1We use the same notation for a somewhat different and more general definition than that in earlier versions of
this paper. First, α previously was a constant analogous to logr α(r) though this was not defined for all r. Second,
the old definition was closer to that of a related quantity that we now call deg∗ε,α and define later.
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Lemma 3.1 (Max-Smooth Orthogonality-Approximation Lemma). Let 0 < ε ≤ 1 and α :
{0, . . . ,m} → R. If f : {0, 1}m → {−1, 1} has deg<ε,α(f) ≥ d, then there exists a function
g : {0, 1}m → {−1, 1} and a distribution µ on {0, 1}m such that:

1. Corµ(g, f) ≥ ε;

2. for every S ⊆ [m] with |S| < d and every function h : {0, 1}|S| → R, Ex∼µ[g(x) · h(x|S)] = 0;
and

3. for any restriction ρ, µ(Cρ) ≤ 2α(|ρ|)−|ρ|/ε.

Proof. As in one of the proofs for Lemma 2.4, we write the requirements as a linear program and
study its dual. The lemma is implied by proving that the following linear program P has optimal
value ≤ 1:

Minimize η subject to

yS :
∑

x∈{0,1}m
h(x)χS(x) = 0 : |S| < d

β :
∑

x∈{0,1}m
h(x)f(x) ≥ ε

vx : µ(x)− h(x) ≥ 0 : x ∈ {0, 1}m

wx : µ(x) + h(x) ≥ 0 : x ∈ {0, 1}m

λρ : η − 2|ρ|−α(|ρ|)
∑
x∈Cρ

µ(x) ≥ 0 : ρ ∈ {0, 1, ∗}m

γ :
∑

x∈{0,1}m
µ(x) = 1

Suppose that we have optimum η ≤ 1. In this LP formulation, inequality γ ensures that the
function µ is a probability distribution, and inequalities vx and wx ensure that µ(x) ≥ |h(x)| so
||h||1 ≤ 1. If ||h||1 = 1, then we must have µ(x) = |h(x)| and we can write h(x) = µ(x)g(x) as in
the proof of Lemma 2.4 and then the inequalities yS will ensure that Corµ(g, χS) = 0 for |S| < d
and inequality β will ensure that Corµ(f, g) ≥ ε as required. Finally, each inequality λρ ensures
that µ(Cρ) ≤ 2−|ρ|+α(ρ|) which is actually a little stronger than our claim.

The only issue is that an optimal solution might have ||h||1 < 1. However in this case inequality
β ensures that ||h||1 ≥ ε. Therefore, for any solution of the above LP with function h, we can
define another function h′(x) = h(x)/||h||1 with ||h′||1 = 1 and a new probability distribution µ′

by µ′(x) = |h′(x)| ≤ µ(x)/||h||1 ≤ µ(x)/ε. This new h′ and µ′ still satisfy all the inequalities as
before except possibly inequality λρ but in this case if we increase η by a 1/||h||1 factor it will also
be satisfied. Therefore, µ′(Cρ) ≤ 2−|ρ|+α(|ρ|)/ε.

Here is the dual LP:

Maximize β · ε+ γ subject to

8



η :
∑

ρ∈{0,1,∗}m
λρ = 1

µ(x) : vx + wx + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0 : x ∈ {0, 1}m (1)

h(x) : βf(x) +
∑
|S|<d

ySχS(x) + wx − vx = 0 : x ∈ {0, 1}m (2)

β, vx, wx, λρ ≥ 0 : x ∈ {0, 1}m

Since yS are arbitrary we can replace
∑
|S|<d ySχS(x) by pd(x) where pd is an arbitrary poly-

nomial of degree < d and rewrite (2) as:

h(x) : βf(x) + pd(x) + wx − vx = 0 : x ∈ {0, 1}m (3)

Equations (1) and (3) for x ∈ {0, 1}m together are equivalent to:

2wx + βf(x) + pd(x) + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0 and

2vx − βf(x)− pd(x) + γ −
∑
ρ‖x

2|ρ|−α(|ρ|)λρ = 0.

Since these are the only constraints on vx and wx respectively other than non-negativity these can
be satisfied by any solution to

βf(x) + pd(x) + γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ and

−βf(x)− pd(x) + γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ,

which together are equivalent to

|βf(x) + pd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ.

Since pd(x) is an arbitrary polynomial function of degree less than d, we can write pd = −βqd
where qd is another arbitrary polynomial function of degree less than d and we can replace the
terms |βf(x) + pd(x)| by β|f(x)− qd(x)|.

Therefore the dual program D is equivalent to maximizing β · ε+ γ subject to

β|f(x)− qd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ

for all x ∈ {0, 1}m, where λ is a probability distribution on the set of restrictions and qd is a
real-valued function of degree < d.

Now, let B be the set of points x ∈ {0, 1}m at which |f(x) − qd(x)| ≥ ε. For any x ∈ B, the
value of the objective function of D, which is β · ε+ γ, is not more than

β|f(x)− qd(x)|+ γ ≤
∑
ρ‖x

2|ρ|−α(|ρ|)λρ. (4)

9



Let R(x) denote the right-hand side of inequality (4). It suffices to prove that R(x) ≤ 1 for
some x ∈ B. This is, in turn, equivalent to proving that

min
x∈B

R(x) ≤ 1,

for any distribution λ. Since deg<ε,α(f) is larger than the degree of qd, there must exist x ∈ {0, 1}m
that is both α-light for λ and |f(x)− qd(x)| ≥ ε. Since |f(x)− qd(x)| ≥ ε we have x ∈ B and since
x is α-light for λ we have R(x) ≤ 1 which is what we need to prove.

Although the upper bound on µ(Cρ) in Lemma 2.4 can be much larger than the 2−|ρ| probability
under the uniform distribution, we can use it to obtain an exponential improvement in the depen-
dence of communication complexity lower bounds on k if α(r) is bounded below rα0 for r ≥ d and
α0 < 1. For any AC0 function f we see that this assumption and the upper bound are essentially
the best possible for d polynomial in m as follows:

By results of Linial, Mansour, and Nisan [17], for any AC0 function f and constant 0 < η < 1,
there is a function pd of degree d < mη, such that ||f − pd||22 ≤ 2m−m

δ
for some constant δ > 0.

Let Bm be the set of x such that |f(x) − pd(x)| ≥ ε. Then |Bm|ε2 ≤
∑

x∈Bm |f(x) − pd(x)|2 ≤
||f − pd(x)||22 ≤ 2m−m

δ
so |Bm| ≤ 2m−m

δ
/ε2. If we tried to replace the upper bound on µ(Cρ) by

some c(|ρ|) where 1/c(m) is ω(|Bm|) then in the dual program D, we could choose λx = 1/|Bm| for
x ∈ Bm and λρ = 0 for all other ρ and for these values β would be unbounded.

We now see how to apply Lemma 2.4 to obtain communication complexity lower bounds.

Definition Let ψ be a selector function with Dψ = Dψ,1× · · · ×Dψ,(k−1). For fixed y0, y1 ∈ D(m)
ψ ,

i ∈ [m] and uniformly random xi, we call i good for (y0, y1) if the set of 2k−1 random variables
zui = ψ(xi, yu∗i) for u ∈ {0, 1}k−1 are mutually independent, where yu is defined as in Lemma 2.2;
otherwise we call i bad for (y0, y1). Let Rψ(y0, y1) be the set of i ∈ [m] that are bad for (y0, y1)
and let rψ(y0, y1) = |Rψ(y0, y1)|.

Now we are ready to state the main technical consequence of the Max-Smooth Orthogonality-
Approximation Lemma. A similar version with α(r) = r follows from earlier work but the ability
to have α(r) < rα0 for large r yields exponentially better lower bounds than in previous work.

Theorem 3.2. Let α : {0, . . . ,m} → R. If a function f : {0, 1}m → {1,−1} has deg<1−ε,α(f) ≥ d
and ψ is a selector function on {0, 1}ks with Dψ = Dψ,1 × · · · ×Dψ,(k−1) then

Rk1/2−ε(f ◦ ψ
m) ≥ log2(ε(1− ε))− 1

2k−1
log2

( m∑
r=d

2(2k−1−1)α(r) · Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r]
)
.

Proof. The pattern of the argument follows the outline from Section 2. We first apply Lemma 3.1
to f to produce function g and distribution µ. By construction Corµ(f, g) ≥ 1 − ε. Then we

define a distribution λ on {0, 1}mks based on µ and ψ by λ(x, y) =
µ(z1, . . . , zm)
2n−m|Dψ|m

where zi =

ψ(xi, y∗i) for y ∈ D(m)
ψ and 0 otherwise. To prove a lower bound c on Rk1/2−ε(f ◦ψ

m) we show that
Corλ(f ◦ ψm,Πc

k) ≤ 2ε.
Since ψ is a selector function, each zi = ψ(xi, y∗i) is a uniformly random bit for each fixed

y∗i ∈ Dψ and random xi. We therefore have Corλ(f ◦ ψm, g ◦ ψm) = Corµ(f, g) ≥ 1 − ε, hence
Corλ(f ◦ ψm,Πc

k) ≤ ε + Corλ(g ◦ ψm,Πc
k) by the triangle inequality. It therefore suffices to show

that Corλ(g ◦ ψm,Πc
k) ≤ ε.

10



By Lemma 2.2, if we let U be the uniform distribution on the set of (x, y) ∈ {0, 1}ms × D(m)
ψ

and zi = ψ(xi, y∗i) we have

Corλ(g ◦ ψm,Πc
k)

2k−1
= 2m2k−1

CorU (µ(z1, . . . , zm)g(z1, . . . , zm),Πc
k)

2k−1

≤ 2(c+m)·2k−1 ·E
y0,y1∈D(m)

ψ

H(y0, y1),

where H(y0, y1) is the self-correlation in the hypercube defined by y0 and y1:

H(y0, y1) :=
∣∣∣Ex

[ ∏
u∈{0,1}k−1

µ(zu1 , . . . , z
u
m)g(zu1 , . . . , z

u
m)
]∣∣∣,

where zui = ψ(xi, yu∗i). We now compute bounds on the self-correlation H(y0, y1) that depend on
the value of r = rψ(y0, y1). The first bound is from [9] and is the key to the original method.

Proposition 3.3. If r = rψ(y0, y1) < d, then H(y0, y1) = 0.

Proof. Taking x uniformly at random, let Z = Z0...0Z0...1 · · · Z1...1 be the joint distribution induced
on {zu}u∈{0,1}k−1 . By construction, zu is uniformly distributed in {0, 1}m for any u ∈ {0, 1}k−1 so
each Zu is a uniform distribution. For each choice of z0...0 we will also consider the conditional
distribution Z 6=0...0|z0...0 on {zu}u6=0...0 which is derived from Z by conditioning on Z0...0 = z0...0.
Then,

H(y0, y1) =
∣∣∣E{zu}

u∈{0,1}k−1∼Z
[ ∏
u∈{0,1}k−1

µ(zu)g(zu)
]∣∣∣

=
∣∣∣Ez0...0

[
µ(z0...0)g(z0...0) ·E{zu}u6=0...0∼Z 6=0...0|z0...0

∏
u6=0...0

µ(zu)g(zu)
]∣∣∣.

We now consider the conditional distribution in the inner expectation above. For any i that
is good for (y0, y1) the set of 2k−1 random variables {zui }u∈{0,1}k−1 are independent. Therefore
conditioning of Z 6=0...0 on z0...0 is equivalent to conditioning on (z0...0

i )i∈Rψ(y0,y1), the portions of
z0...0 on those i ∈ [m] that are bad for (y0, y1). Therefore

E{zu}u6=0...0∼Z 6=0...0|z0...0

∏
u6=0...0

µ(zu)g(zu)

= E{zu}u6=0...0∼Z 6=0...0|(z0...0
i )i∈Rψ(y0,y1)

∏
u6=0...0

µ(zu)g(zu).

This quantity is some function Q of z0...0 that depends on only the r = rψ(y0, y1) variables
(z0...0
i )i∈Rψ(y0,y1). Therefore

H(y0, y1) =
∣∣∣Ez0...0

[
µ(z0...0)g(z0...0)Q(z0...0)

]∣∣∣ = 0

by the orthogonality property of µ and g since r < d.

The following bound for r = rψ(y0, y1) ≥ d is the key to the sharper bound that yields our
exponentially better results. A weaker version in [9] applies only when α(r) = r (but does not have
the ε2

k−1−1 in the denominator).

11



Lemma 3.4. H(y0, y1) ≤ 2(2k−1−1)α(r)

22k−1mε2k−1−1
.

Proof. Note that by definition of Rψ(y0, y1), conditioned on each fixed value of xRψ(y0,y1) =
(xi)i∈Rψ(y0,y1) the random variable zu = zu(x, y0, y1) is statistically independent of all zv for v 6= u.
For convenience of notation we assume without loss of generality that Rψ(y0, y1) = {1, . . . , r}.

Since g is ±1-valued,

H(y0, y1) =
∣∣∣Ex

[ ∏
u∈{0,1}k−1

µ(zu)g(zu)
]∣∣∣

≤ Ex

∣∣∣ ∏
u∈{0,1}k−1

µ(zu)g(zu)
∣∣∣

= Ex

[ ∏
u∈{0,1}k−1

µ(zu)
]

≤ Ex[µ(z0...0)]

× max
x1,...,xr

Exr+1,...,xm

[ ∏
u6=0...0

µ(zu)
]

= Ex[µ(z0...0)] (5)

× max
x1,...,xr

∏
u6=0...0

Exr+1...xm

[
µ(zu)

]
(6)

where zui = ψ(xi, yu∗i) for all i ∈ [m].
We first consider line (5). For x chosen uniformly from {0, 1}ms, by assumption on ψ, for

any u ∈ {0, 1}k−1 the random variable zu is uniform in {0, 1}m. In particular, Ex[µ(z0...0)] =
Ez∈{0,1}m [µ(z)]. Further, since µ is a distribution, Ez∈{0,1}m [µ(z)] = 2−m.

We now bound the remaining terms. First we have

max
x1,...,xr

∏
u6=0...0

Exr+1...xm

[
µ(zu)

]
≤

∏
u6=0...0

max
x1,...,xr

Exr+1...xm

[
µ(zu)

]
.

Fixing x1, . . . , xr fixes the values of zu1 , . . . , z
u
r and by our assumption on ψ, for random xr+1, . . . , xm

the values of zur+1, . . . , z
u
m are uniformly random. Therefore the value in line (6) is upper bounded

by ∏
u6=0...0

max
zu1 ,...,z

u
r

Ezur+1...z
u
m

[
µ(zu)

]
=
(

max
z1,...,zr

Ezr+1...zm

[
µ(z)

])2k−1−1
.

By the property of µ implied by Lemma 3.1,

max
z1,...,zr

∑
zr+1,...,zm

µ(z) ≤ 2α(r)−r/ε

and therefore line (6) is at most (2α(r)−r/(ε2m−r))2k−1−1 = (2α(r)−m/ε)2k−1−1. (This is the one place
where we use the max-smoothness property of the distribution µ.) The lemma follows immediately
by combining the bounds for lines (5) and (6).
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Plugging in the bounds of Proposition 3.3 and Lemma 3.4 we obtain that

Corλ(g ◦ ψm,Πc
k)

2k−1 ≤ 2(c+m)2k−1
m∑
r=d

2(2k−1−1)α(r)

22k−1m(1− ε)2k−1−1
Pr

y0,y1∈D(m)
ψ

[rψ(y0, y1) = r]

<
( 2c

1− ε
)2k−1

·
m∑
r=d

2(2k−1−1)α(r) Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r].

Taking 2k−1-st roots and using Fact 2.1 we obtain that Rk1/2−ε(f ◦ ψ
m) ≥ c if

ε ≥ 2c

1− ε
·
( m∑
r=d

2(2k−1−1)α(r) Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r]
)1/2k−1

.

Rewriting and taking logarithms yields the claimed bound of Theorem 3.2.

4 AC0 functions with large (ε, α)-approximate degree

Given ε < 1 and α, it is not obvious that any function, let alone a function in AC0, has large
(ε, α)-approximate degree. This section shows that AC0 does contain functions with large (5/6, α)-
approximate degree and functions with large α-threshold degree where α(z) ≤ zα0 for α0 < 1 and
all large z.

We first reduce this new notion of approximate degree to a more tractable notion, which is only
large if many widely distributed restrictions of f also require large approximate degree. Given a
function f on {0, 1}m and a restriction ρ, we define f |ρ on {0, 1}m−|ρ| in the natural way. We also
define Rrm := {ρ ∈ {0, 1, ∗}m : |ρ| = m− r}.

Definition Given α : {0, . . . ,m} → R, we say that a probability distribution ν on {0, 1, ∗}m is
α-spread iff for every restriction ρ ∈ {0, 1, ∗}m, Prπ∼ν [π ‖ ρ] ≤ 2α(|ρ|)−|ρ|. Let deg∗ε,α(f) be the
minimum d such that for any α-spread distribution ν on {0, 1, ∗}m, there is some π with ν(π) > 0
and degε(f |π) ≤ d. Note that for α(r) = r, degε(f) = deg∗ε,α(f) since every distribution on
restrictions is α-spread. We define deg∗<ε,α(f) = minε′<ε deg∗ε′,α(f).

Given the following lemma, to show that degε,α(f) is large, it suffices to show that deg∗ε,α(f) is
large.

Lemma 4.1. Let f : {0, 1}m → {−1, 1} and α : {0, . . . ,m} → R. For 0 < ε ≤ 1, degε,α(f) ≥
deg∗ε,α(f).

Proof. Suppose, by contradiction, that for some d, (i) deg∗ε,α(f) > d, and (ii) degε,α(f) = d. Then by
definition, (i’) there exists an α-spread distribution ν on {0, 1, ∗}m such that degε(f |π) > d for every
π with ν(π) > 0, and (ii’) there exists a polynomial q of degree ≤ d and a distribution λ on {0, 1, ∗}m
such that R(x) =

∑
ρ‖x 2|ρ|−α(|ρ|)λρ > 1 whenever x ∈ B′, where B′ = {x : |f(x)− q(x)| > ε}.

Choosing π ∼ ν, we define the random variable

Iπ :=
∑
ρ‖π

2|ρ|−α(|ρ|)λρ.

Then,
Eπ∼ν(Iπ) =

∑
ρ

Pr
π∼ν

[ρ ‖ π] · 2|ρ|−α(|ρ|)λρ ≤
∑
ρ

2α(|ρ|)−|ρ| · 2|ρ|−α(|ρ|)λρ ≤ 1.
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Therefore there exists a restriction π for which Iπ ≤ 1. If there exists x ∈ B′ such that x ∈ Cπ,
then since

R(x) =
∑
ρ‖x

2|ρ|−α(|ρ|)λρ > 1,

we would have Iπ > 1. Thus Cπ ∩B′ = ∅. So for any x ∈ Cπ, we have |f(x)− q(x)| ≤ ε. But since
the degree of qd is ≤ d this contradicts the fact that degε(f |π) > d. The lemma follows.

For the rest of this section we always take α(z) ≤ zα0 for some α0 < 1 for large enough z and
α(z) = z otherwise. By definition, to show that deg∗ε,α(f) is large, we need to exhibit an α-spread
distribution ν such that for any restriction ρ with ν(ρ) > 0, degε(f |ρ) is large. An obvious choice
for such ν is the uniform distribution on Rrm where r ≈ mα0 . Indeed, it is not hard to show with
this distribution that the parity function has large (ε, α)-approximate degree. However this simple
ν cannot be used for AC0 circuits since these circuits shrink rapidly under such restrictions. Thus
in Lemma 4.2 we define a more involved α-spread family of restrictions. With this family, we give
a generic construction that takes a circuit G on q bits and produces another circuit H on m = pq
bits such that for any restriction π in the family, H|π contains the projection of G on some set S
of r bits – a new function denoted by GS and obtained from G by keeping only those nodes on
paths from the inputs in S to the output gate – as a subfunction. If each such projection of G has
ε-approximate degree rΩ(1) and if p is O(log q) and r is polynomial in q and hence in m = pq, then
we derive that H has (ε, α)-approximate degree mΩ(1).

Lemma 4.2. Let q, r, p, and w be integers with q > r > p ≥ 2 and let 1 > α0 > β > 0 be such
that qβ ≥ rp, 2p−1 − 1 ≥ q1−β, qα0 ≥ 6

ln 22pr, and wα0−β ≥ 3p/ ln 2. Fix any partition of a set of
m = pq bits into q blocks of p bits each. Define distribution ν on Rprpq as follows: choose a subset
of q − r blocks uniformly at random; then assign values to the variables in each of these blocks
uniformly at random from {0, 1}p − {0p, 1p}. Then for any ρ ∈ {0, 1, ∗}m with |ρ| ≥ w, we have
Pr
π∼ν

[ρ ‖ π] ≤ 2|ρ|
α0−|ρ|.

The proof of Lemma 4.2 is surprisingly involved and requires quite precise tail bounds. We
defer the proof to Section 7. Intuitively, we need the parameter choices given here because the
conclusion requires that, in an amortized sense, each bit assigned by ρ contributes not much more
than 1/2 to the probability of being consistent with a random π ∼ ν. Hence, in our amortized
sense the p bits in any one of the q terms should not contribute much more than a 2−p factor to the
probability of being consistent. However, ρ and π are consistent in any term that is not selected by
π which happens for any fixed term with probability r/q. It is therefore necessary in our argument
that r/q not be much larger than 2−p.

For ε = 5/6, a simple candidate for G is G = Orq. With this G and the family of restrictions
given by Lemma 4.2, the next lemma constructs H = Tribesp,q that has large (5/6, α)-approximate
degree. Recall that Tribesp,q(x) = ∨qi=1 ∧

p
j=1 xi,j .

Lemma 4.3. Given any constants 0 < ε, α0, β < 1 with β > 1− ε and α0− β ≥ 0.1. Let q > p ≥ 2
be integers such that 2dq1−βe < 2p ≤ 1

6q
α0+ε−1 ln 2. Define α(z) = zα0 for zα0−β ≥ 3p/ ln 2 and

α(z) = z otherwise. Then for large enough q, we have deg5/6,α(Tribesp,q) ≥
√
q1−ε/12.

Proof. Define the distribution ν as in the statement of Lemma 4.2, where a p-block corresponds to
a p-term in Tribesp,q, by applying this lemma with r := dq1−εe and w = (3p/ ln 2)1/(α0−β). For q
large enough,

qβ/r ≥ qβ+ε−1 > log q > p, and wα0−β ≥ 3p/ ln 2.
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For any π with ν(π) > 0, Orr is a subfunction of Tribesp,q|π so deg5/6(Tribesp,q|π) ≥ deg5/6(Orr) ≥√
r/12. Thus, deg5/6,α(Tribesp,q) ≥ deg∗5/6,α(Tribesp,q) ≥

√
r/12.

In particular, with ε = 0.4, β = 0.8, α0 = 0.9, we get:

Corollary 4.4. For sufficiently large p and q = 24p, if α : {0, . . . ,m} → R satisfies α(z) = z0.9 for
r ≥ (3p ln 2)10 and α(z) = z otherwise, then deg5/6,α(Tribesp,q) ≥ q3/10/

√
12 = 26p/5/

√
12.

Corollary 4.4 suffices for most of our communication complexity lower bounds. However our
results for threshold circuit size require a function in AC0 having large α-threshold degree. In the
rest of this section we show such a function, whose construction involves more complex G and H.

We first construct, in Lemma 4.6, a circuit G on q bits that has large threshold degree when
projected on any r bits for sufficiently large r. The lemma uses the following property of the
threshold degree of (the dual of) the Minsky-Papert function shown in [18].

Proposition 4.5. Let MP’q,q′ : {0, 1}q·q′ → {−1, 1} be defined by MP’q,q′(x) := ∧qi=1 ∨
q′

j=1 xij . Let
m > 0 be such that m ≤ q and 4m2 ≤ q′. Then thr(MP’q,q′) ≥ m.

Lemma 4.6. Let q, r, d, s and t be positive integers such that q = st, q ≥ r ≥ 2ds, and s/(4d) ≥
t ≥ 2d. Then there is an explicit read-once AND ◦ OR formula G on q bits such that for any set S
of r input bits, the function computed by GS has threshold degree at least d.

Proof. Let G be the AND ◦ OR formula with fan-in t at the top ∧ gate and fan-in of s at each of
the ∨ gates. Let S be any subset of input bits with |S| = r.

Let A be the set of ∨ gates in G that contain at least 4d2 elements of S. By Markov’s inequality,
r ≤ s|A|+ 4d2(t− |A|), and hence

|A| ≥ r − 4d2t

s− 4d2
>
r − 4d2t

s
≥ d

since r ≥ 2ds and 4d2t ≤ ds. Hence GS contains at least d ∨-gates, each having at least 4d2

inputs. This implies that GS computes MPd,4d2 as a subfunction. By Proposition 4.5, thr(GS) ≥
thr(MPd,4d2) ≥ d.

Given G, we now construct the circuit H of large α-threshold degree. We could define this for
any AC0 circuit G but we restrict ourselves to the AND ◦ OR formula given by Lemma 4.6. Let
H ′ = G ◦Andqp be the circuit obtained from G by replacing each of its input bits by an And gate
over p bits, for some p > 0. In particular for the choice of G from Lemma 4.6, H ′ is a read-once
And ◦Or ◦Andp circuit on pq bits. We then obtain another circuit H by applying the following
operation to each bottom Or gate ϕ of H ′: let t be the number of Andp gates that are inputs to
ϕ; for every i ∈ [t] denote the inputs to the i-th Andp gate that feeds into ϕ by zi,1, . . . , zi,p; for
each such i, create two new Or gates Bi = ∨pj=1zi,j and B′i = ∨pj=1(¬zi,j); then, create a new And

gate Aϕ =
∧t
i=1(Bi ∧B′i); finally, add a new edge feeding the output of Aϕ to ϕ.

The following lemma justifies the above construction.

Lemma 4.7. Let G be any AND◦OR circuit on q bits. For some integer p > 0, let H be the circuit
constructed from G by following the process described above. Then the following hold:

• H is a Π4 circuit of size at most 4 times the size of G;
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• Let π be any restriction that chooses a subset S of the blocks of inputs to H to leave unset
and assigns values from {0, 1}p−{0p, 1p} to each other block. Then H|π computes a function
that contains the function computed by GS as a subfunction.

Proof. A sub-circuit of depth 2 with 3 gates is added for each bottom level Or in G so the first
part is immediate.

For the second part, let S be the set of blocks in G that are left unset by π. First note that for
any block not in S, the associated Andp gate in H is forced to 0. Also observe that for any Or
gate ϕ′ in H corresponding to a bottom level Or gate ϕ in G,

if ϕ has an input that corresponds to a block in S then setting the values of any such block in S
to 0p or 1p will force Aϕ to output 0,

if ϕ does not have any inputs corresponding to any block of S then Aϕ outputs 1 and hence ϕ′

outputs 1.

It follows that we can use H|π to compute GS by assigning 0p in place of 0 and 1p in place of 1 for
each block in S.

Finally we show that, with suitable parameters, H has high α-threshold degree.

Lemma 4.8. For any p sufficiently large multiple of 15 and q = 24p, if α : {0, . . . ,m} → R is
defined as α(z) = z0.9 for r ≥ (3p ln 2)10 and α(z) = z otherwise, then there is an explicit depth 4
AC0 function on pq bits that has α-threshold degree at least q1/15.

Proof. Let d = q1/15, s = 2q8/15, t = q7/15/2, and r = 4q3/5. Observe that, by our choice of p and
q, all of these are integral and they satisfy the conditions of Lemma 4.6. We can apply that lemma
to derive an AND ◦ OR circuit G with the property that for every S with |S| = r, thr(GS) ≥ d.

Define the distribution ν as in the statement of Lemma 4.2 given the value of r and w =
dlog20 pqe. We can then apply Lemma 4.7 to G to derive the Π4 circuit H based on G with the
property that for every π in the support of ν, H|π computes as a subfunction the function GS for
some subset S of inputs with |S| = r and therefore thr(H|π) ≥ thr(GS) ≥ d.

Note that for α0 = 0.9 and β = 0.8, all the conditions of Lemma 4.2 are satisfied. In particular,
for p sufficiently large, qβ = q0.8 ≥ q3/5 log2 q = rp, 2p−1 − 1 = q1/4/2 − 1 ≥ q0.2 = q1−β,
qα0 = q0.9 ≥ 24

ln 2q
17/20 = 6

ln 22pr, and wα0−β ≥ log2 q ≥ 3p/ ln 2.
It follows that H has α-threshold degree at least d as required.

5 Multiparty communication complexity lower bounds for AC0

Together with the functions from the previous section, Theorem 3.2 is sufficient to improve the lower
bounds for AC0 functions based on pattern tensor selectors from O(log log n) players to Ω(

√
log n)

players. These results, which show the power of our introduction of (ε, α)-approximate degree on
its own, are described in Appendix A.1. We need one more ingredient to obtain our strongest lower
bounds, namely, a different selector function ψ, which we denote by Index⊕ak−1

where a > 0 is
an integer. This function has s = 2a and DIndex⊕a

k−1
,j = {0, 1}s for all j. For X ∈ {0, 1}s and

Y ∈ {0, 1}(k−1)s define
Index⊕ak−1

(X,Y ) = X(Y1⊕...⊕Yk−1)[a]

where the bits in X are indexed by a-bit vectors and Y[a] denotes the vector of the first a bits of
Y . This function clearly satisfies the selector function requirement that the output be unbiased for
each fixed value of Y .
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Although the definition of Index⊕ak−1
uses parity, the number of players k will be O(log n) and

hence it is computable in AC0. We can either write Index⊕ak−1
as an ∨ ◦ ∧ ◦ ∨ ◦ ∧ formula where

the fan-ins are 2a, a+ 1, 2k−2, and k− 1, respectively, or as an ∨ ◦ ∧ ◦ ∨ formula where the fan-ins
are 2a, a2k−2 + 1, and k − 1, respectively.

With ψ = Index⊕ak−1
, the variables zui = Index⊕ak−1

(xi, yu∗i) for u ∈ {0, 1}k−1 are independent
iff for every u 6= v, yu∗i and yv∗i select different bits of xi.

Lemma 5.1. If ψ = Index⊕ak−1
then

Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r] ≤
(
m

r

)
2(2k−a−3)r ≤

(em22k−a−3

r

)r
.

Proof. In this case D
(m)
ψ is simply {0, 1}(k−1)ms. For each fixed i ∈ [m] and each fixed pair of

u 6= v ∈ {0, 1}k−1, the probability that yu∗i and yv∗i select the same bit of xi is the probability that
(yu1
∗i ⊕ · · · ⊕ y

uk−1

∗i )[a] = (yv1
∗i ⊕ · · · y

vk−1

∗i )[a]. Since u 6= v, this is a homogeneous full rank system of
a equations over F2 which is satisfied with probability precisely 2−a. By a union bound over all of
the

(
2k−1

2

)
< 22k−3 pairs u, v ∈ {0, 1}k−1, it follows that the probability that i is bad for (y0, y1) is

at most 22k−32−a = 22k−a−3. The bound follows by the independence of the choices of (y0, y1) for
different values of i ∈ [m].

We are ready to prove the main theorem for functions composed using this new selector function.

Theorem 5.2. Let α : {0, . . . ,m} → R and 0 < α0 < 1. For any Boolean function f on m bits such
that deg1−ε,α(f) ≥ d and α(r) ≤ rα0 for all r ≥ d, the function f ◦ Indexm⊕ak−1

defined on nk bits,

where n = ms and s = 2a ≥ e22k−1m/d, requires that Rk1/2−ε(f ◦Indexm⊕ak−1
) ≥ d/2k+log2(ε(1−ε))

for k ≤ (1− α0) log2 d.

Proof. For ψ = Index⊕ak−1
, by Lemma 5.1,

m∑
r=d

2(2k−1−1)α(r) · Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r] ≤
m∑
r=d

2(2k−1−1)α(r) ·
(em22k−a−3

r

)r (7)

Since k ≤ (1− α0) log2 d, we have (2k−1 − 1)α(r) < d1−α0α(r) ≤ r for r ≥ d so (7) is

≤
m∑
r=d

(em22k−a−2

r

)r ≤ m∑
r=d

2−r < 2−(d−1) for 2a ≥ e22k−1m/d.

Plugging this into Theorem 3.2 we obtain that

Rk1/2−ε(f ◦ ψ
m) ≥ log2(ε(1− ε))− 1

2k−1
log2 2−(d−1) > d/2k + log2(ε(1− ε))

as required.

Let Tribes′p,q be the dual of the Tribesp,q function on m = pq bits. Obviously the (ε, α)-degree
of Tribes′p,q is the same as that of Tribesp,q for any ε and α. By applying the above theorem for
f = Tribesp,q and f = Tribes′p,q, we obtain the following result.
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Theorem 5.3. Let p be a sufficiently large integer and q = 24p, k ≤ p/10, and s = 2p+2k. Let
F = Tribesp,q ◦ Indexm

⊕(p+2k)
k−1

and F ′ = Tribes′p,q ◦ Indexm
⊕(p+2k)
k−1

. Let n = pqs = p25p+2k be the

number of input bits given to each player in computing F or F ′. Then Rk1/3(F ) and Rk1/3(F ′) are

both Ω(q0.3/2k) which is nΩ(1)/4k. Furthermore, F has polynomial-size depth 5 AC0 formulas and
F ′ has polynomial-size depth 4 AC0 formulas.

Proof. Let ε = 0.4, α0 = 0.9, and β = 0.8 and a = p + 2k. Observe that with these values and
sufficiently large p, the conditions on the relationship between p and q are met for sufficiently large
values of p as is the bound on a and the upper bound on k.

As noted above, Index⊕ak−1
has Σ3 formulas with fan-in, top to bottom, of 2a = 2p+2k, a2k−2 +

1 = (p+2k)2k−2 +1, and k−1. Since Tribesp,q is given by a Σ2 formula, Tribesp,q ◦ Indexm
⊕(p+2k)
k−1

is computable by a Σ5 formula with fan-in top to bottom of q, p, 2p+2k, (p+2k)2k−2 +1, and k−1.
The total formula size of F is n(p+ 2k + 1)(k − 1)2k−2 which is less than n2.

The proof for F ′ goes similarly, except that since the second layer of Tribes′p,q can be merged
with the top layer of Index⊕(p+2k)

k−1

, it has a polynomial-size depth 4 AC0 formulas.

Lemma 5.4. Nk(Tribesp,q ◦ Indexm⊕ak−1
) is O(log q + pa).

Proof. Using the Σ3 formula for Index⊕ak−1
we see that Tribesp,q ◦ Indexm⊕ak−1

can be expressed as

a Σ5 formula where the fan-ins from top to bottom are q, p, 2a, a2k−2 + 1, and k − 1. The players
use this formula to evaluate Tribesp,q ◦ Indexm⊕ak−1

.

Observe that the fan-ins of the ∧ gates are p, a2k−2 + 1, and k − 1 respectively, and the input
to each of the (a2k−2 + 1)-fan-in ∧ gates at the middle ∧ is one bit of x and a2k−2 ∨ gates with
fan-in k − 1. Moreover, the 0-th player (who holds x), can evaluate each of these ∨ gates since it
can see all of the input to these gates.

Player 0 guesses the top part of an accepting subtree by guessing a child of the root and, for
each of the p children of that node, guesses which of the 2a bits is selected, and broadcasts this
information. This costs log2 q+pa bits to send. Thus now there are p ∧ gates with fan-in a2k−2 +1
that need to be evaluated. For each of these p gates, player 0 broadcasts a bit which is 1 if and
only if all of the a2k−2 feeding ∨ gates that depend on the bits of y1, . . . , yk−1 evaluate to true.
Given this information, player 1 can then evaluate all p ∧ gates.

Corollary 5.5. There is a function G in depth 5 AC0 such that G is in NPcc
k −BPPcc

k for k ≤ a′ log n
for some constant a′ > 0.

Proof. Observe that, by Lemma 5.4, F = Tribesp,q ◦ Indexm
⊕(p+2k)
k−1

with the parameters from

Theorem 5.3 has Nk(F ) that is O(log2 n) and thus satisfies all the conditions except for being
read-once. To obtain the read-once property note that F is a restriction of the following function
G

q∨
u=1

p∧
v=1

2p+2k∨
w=1

(
z0,u,v,w ∧

(p+2k)2k−2∧
`=1

k−1∨
j=1

zj,u,v,w,`
)

and that the same O(log2 n) upper bound from Lemma 5.4 applies equally well to G.

Applying distributive law to the depth 5 function f = Tribesp,q ◦ Indexm
⊕(p+2k)
k−1

we derive the

following exponential improvement in the number of players for which non-trivial lower bounds can
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be shown for Disjk,n. (The same lower bound for disjointness can be derived even more simply
using the above technique for the simpler function Tribesp,q ◦ψmk,` using the pattern tensor selector
analyzed in Appendix A.1.)

Theorem 5.6. Rk1/3(Disjn,k) is Ω(2
√

log2 n/
√
k) for k ≤ 1

5 log1/3
2 n.

Proof. Recall that Disjk,n(x) = ∨ni=1 ∧
k−1
j=0 xj,i. As in Corollary 5.5 start with F = Tribesp,q ◦

Indexm
⊕(p+2k)
k−1

with the parameters from from Theorem 5.3. Unlike Corollary 5.5, however, we use

the Σ4 circuit for Index⊕(p+2k)
k−1

and reduce F to a Σ6 formula G with n = qp2a(a+1)2k−2k variables

where a = 2k + p given by

G(z) =
q∨
i=1

p∧
u=1

2a∨
v=1

a+1∧
w=1

2k−2∨
`=1

k−1∧
j=0

zj,i,u,v,w,`.

Distributing the ∧ gates through the ∨ gates, we have

G(z) =
q∨
i=1

∨
I∈[2a]p

p∧
u=1

a+1∧
w=1

2k−2∨
`=1

k−1∧
j=0

zj,i,u,I(u),w,`

by distributing over the second “∨”, where I(u) is the u-th index of I. This in turn equals

q∨
i=1

∨
I∈[2a]p

∨
J∈[2k−2]p(a+1)

p∧
u=1

a+1∧
w=1

k−1∧
j=0

zj,i,u,I(u),w,J(u,w)

by distributing over the third “∨”, where J(u,w) is the entry of J indexed by (u,w). This in turn
equals

q∨
i=1

∨
I∈[2a]p

∨
J∈[2k−2]p(a+1)

k−1∧
j=0

p∧
u=1

a+1∧
w=1

zj,i,u,I(u),w,J(u,w)

=
q∨
i=1

∨
I∈[2a]p

∨
J∈[2k−2]p(a+1)

k−1∧
j=0

yj,i,I,J

= Disjn,k(y),

where the bits of vector y ∈ {0, 1}nk for n = q2ap+(k−2)p(a+1) are indexed by j ∈ {0, . . . , k − 1},
i ∈ [q], I ∈ [2a]p and J ∈ [2k−2]p(a+1) are given by

yj,i,I,J =
p∧

u=1

a+1∧
w=1

zj,i,u,I(u),w,J(u,w).

Observe that for any two players j 6= j′, player j′ can compute any value yj,i,I,J . Thus the k
players can compute Tribesp,q ◦ Indexm

⊕(p+2k)
k−1

by executing a NOF randomized communication

protocol for Disjn,k on y of length nk, where n = q2ap+(k−2)p(a+1) = q2ap(k−1)+k−2. Plugging
in q = 24p and a = 2k + p for k ≤ p/10 we have that Rk1/3(Disjn,k) is Ω(26p/5−k). Now for

these values of k and a, we have ap ≥ k − 2 + 4p and hence we have that n ≤ 2apk ≤ 26p2k/5.
Therefore we have p ≥

√
5 log2 n/

√
6k. It follows that Rk1/3(Disjn,k) is Ω(2

√
log2 n/

√
k) provided

that k ≤ 1
10

√
5 log2 n/

√
6k which holds if k ≤ 1

5 log1/3
2 n.
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Although our bound for Disjn,k applies to exponentially more players than do the bounds
in [16, 9], the previous bounds are stronger for k ≤ log logn− o(log log n) players.

Corollary 5.7. There is a depth-2 AC0 formula in NPcc
k − BPPcc

k for k up to Θ(log1/3 n).

It is open whether one can prove stronger lower bounds for k = ω(log1/3 n) players for Disjk,n
or any other depth-2 AC0 function. The difficulty of extending our lower bound methods is our
inability to apply Lemma 3.1 to Or since the constant function 1 approximates Or on all but one
point.

To prove lower bounds for MAJ ◦SYMM ◦AND circuits we need lower bounds on protocols that
succeed with probability barely better than that of random guessing. Using the function with large
α-threshold degree given by Lemma 4.8 in place of Tribesp,q we obtain the following theorem.

Theorem 5.8. There exist explicit constants c, c′ > 0 and a depth 6 AC0 function H : {0, 1}∗ →
{0, 1} such that for 1/2 > ε > 0, Rk1/2−ε(Hn) is Ω(nc + log ε) for any k ≤ c′ log2 n.

Proof. Let f ′ be the Π4 function on m = pq bits with 0.9-threshold degree at least m1/15/ log2m
as given by Lemma 4.8. We use the dual function f to f ′ which is therefore a Σ4 function of
the same approximate degree. Since f has 0.9-threshold degree at least m1/15/ log2m, it has
(< 1− ε, 0.9)-approximate degree at least d = dm1/15/ log2me for any ε > 0. For k ≤ 0.1 log2 d, let
a = dlog2(e22k−1m/d)e, and s = 2a. By Theorem 5.2, the function Hn = f ◦ Indexm⊕ak−1

defined on
n = msk bits requires that

Rk1/2−ε(Hn) ≥ d/2k + log2(ε(1− ε)).

Since d is mΩ(1) and k ≤ 0.1 log2 d, n = msk = m2ak is dO(1) and since ε < 1/2 the lower bound
on Rk1/2−ε(Hn) is Ω(nc + log ε) for some explicit constant c > 0. Combining the Π3 circuit for
Index⊕ak−1

with that for f yields depth 6.

6 Threshold circuit lower bounds for AC0

Following the approach of Viola [29], which extends the ideas of Razborov and Wigderson [21],
we show quasipolynomial lower bounds on the simulation of AC0 functions by unrestricted MAJ ◦
SYMM ◦ AND circuits.

Theorem 6.1. There is a function G : {0, 1}∗ → {0, 1} in AC0 such that GN requires MAJ ◦
SYMM ◦ AND circuit size NΩ(logN).

In the rest of this section we prove the above theorem.2 An important ingredient in our con-
struction is the following function Fmt , first defined by Sipser [27].

Definition For t ≥ 2, the Sipser function Fmt is defined by a depth t read-once circuit. The root
of this circuit is an Or gate with fan-in 1

2(m logm)1/4. Below are alternating levels of And and

Or gates with fan-in m. The bottom level has fan-in
√

1
2 tm logm. Therefore for t constant and

large enough m, Fmt is an AC0 function on O(mt) inputs.
2This theorem is a stronger version of the one proved in earlier versions of this paper, which only gave a size lower

bound of NΩ(log logN).
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The circuit defining Fmt partitions the input into B = {Bi}ri=1, for some r, where each block Bi
consists of all variables that are fed to the same bottom gate. If R is a distribution of restrictions
of the variables in the same block, we define RB := (R)r, which is a distribution of restrictions of
all variables. H̊astad showed that there exists a distribution with the following useful property.

Proposition 6.2. [12] Let 0 ≤ q ≤ 1 be a real number, F be some function, and B = {Bi} be
any partition of the input of F to equal-size blocks. There exists a distribution Rq of restrictions
in each block Bi such that the following holds.

• If F is a CNF with clause size at most w, and s > 0, then with probability at least 1− (6qw)s

over the choice of ρ ∼ RBq , F |ρ can be written as a DNF with term size at most s, and
moreover, any input assignment satisfies at most one of these terms.

• For any odd constant t ≥ 3 and large enough m, if F = Fmt , q = ( 2t
m logm)1/2, and B is the

partition of the input to Fmt as mentioned above, then with probability at least 2/3 over the
choice of ρ ∼ RBq , F |ρ contains Fmt−1 as a subfunction.

We note that in the above proposition, in the first item, the property that any input assignment
satisfies at most one of the terms is implicit in [12]. The observation that this property holds is
made explicit by Berg and Ulfberg [7].

The proof of our theorem also relies on the following connection between multiparty communi-
cation complexity and threshold circuit complexity given by H̊astad and Goldmann.

Proposition 6.3. [13]

(a) If f is computed by a SYMM ◦ ANDk−1 circuit of size S, then Dk(f) is O(k logS).

(b) If f is computed by a MAJ◦SYMM◦ANDk−1 circuit of size S, then Rk1/2−1/(2S)(f) is O(k logS).

We are now ready to prove our theorem.

Proof of Theorem 6.1. We first give a brief overview of the proof: We use the function Hn from
Theorem 5.8 and replace each input by a ⊕ of Θ(log n) disjoint copies of Fn3 to obtain an AC0

function G on N = O(n4 log n) inputs. If G is computed by such a circuit C of size No(logN) then
using suitable random restrictions as described in Proposition 6.2, we can ensure that all bottom-
level And gates of C are reduced to fan-in at most δ log2N and at the same time that every ⊕ block
of inputs in G is still nontrivial. Applying Proposition 6.3 yields a contradiction to Theorem 5.8.

More precisely, let c, c′ be the constants and Hn be the function given by Theorem 5.8. Let
k = bc′ log2 nc, r = dlog3 2ne, and m′ < n3 be the input size of Fn3 . For any Z = Z1 · · ·Zn, where
each Zi ∈ {0, 1}r×m

′
, we define our hard function GN : {0, 1}N → {0, 1} as

GN (Z) := Hn

(
A1, . . . , An), where each Ai :=

r⊕
j=1

Fn3 (Zi,j).

Suppose by contradiction that for some sufficiently small constant δ > 0, there is a MAJ ◦
SYMM ◦ AND circuit C of size N δ logN that computes GN . Let B be the partition of the input of
GN that is the union of all the input partition of the Fn3 functions. Let q = (6 logn

n )1/2 and RBq be
the distribution as described in Proposition 6.2. Let ρ ∼ RBq . Consider the following two events:

• Event E1: C|ρ is computed by a MAJ ◦SYMM ◦AND circuit of size at most |C| · (2N)k where
the fan-in of each AND-gate is strictly less than k, and

21



• Event E2: Ai contains Fn2 as a subfunction for all 1 ≤ i ≤ n.

First, we show that Pr[¬E1] < 1/2 for sufficiently small δ > 0: Fix any AND-gate ϕ in C. By
Proposition 6.2, the probability over ρ that ϕ|ρ cannot be written as a DNF with term size less
than k is at most

(6q)k < (
216 log n

n
)k/2.

This quantity is N−Ω(logN). Thus by a union bound over all AND-gates in C and for sufficiently
small δ, with probability strictly less than 1/2, every And gate in C|ρ can be written as a DNF
with term size less than k. Any such DNF has size at most (2N)k. Also by Proposition 6.2, in any
such DNF, no two terms can be satisfied at the same time. Thus we can merge each of these terms
into the next-level symmetric gate and conclude that the function computed by C|ρ is computed
by a MAJ ◦ SYMM ◦ AND circuit of size at most |C| · (2N)k where the fan-in of each And gate is
strictly less than k.

Next, we show that Pr[¬E2] < 1/2. By Proposition 6.2, with probability at least 1− (1/3)r >
1−1/(2n), each Ai contain Fn2 as a subfunction. By union bound over all i ∈ [n], we conclude that
Pr[¬E2] < 1/2.

Hence there exists a restriction ρ such that both E1 and E2 hold. By Proposition 6.3, the fact
that E1 holds implies that for any partition of the input to k players and ε = 1/(2|C| · (2N)k),
Rk1/2−ε(C|ρ) is O(k log(|C| · (2N)k)) = O(log3N) = O(log3 n). On the other hand, the fact that E2

holds implies that C|ρ computes Hn as a subfunction. By Theorem 5.8, there is an assignment of
the input bits of Hn, and therefore of C|ρ, to k players such that Rk1/2−ε(C|ρ) ≥ R

k
1/2−ε(Hn) which

is Ω(nc + log ε). Since − log2 ε is O(log2N) = O(log2 n), Ω(nc + log ε) is Ω(nc) for sufficiently large
N (and hence n), we arrive at a contradiction.

Remark Although the proof for Theorem 6.1 uses the second part of Proposition 6.3 and the
function given by Theorem 5.8, the same proof that instead uses the first part of the proposition
and the simpler function given by Theorem 5.3 would yield a simpler AC0 function that requires
quasipolynomial size to be simulated by SYMM ◦ AND circuits.

7 Proof of Lemma 4.2

Proof. Fix any restriction ρ of size i = |ρ| ≥ w. We have

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] =
1(
q
q−r
) ∑

S⊂[q],|S|=q−r

∏
j∈S

pj ,

where pj is the probability that π and ρ agree on the variables in the j-th block. Write i = i1+. . .+iq,
where ij is the number of assignments ρ makes to variables in the j-th block. Then

pj ≤
2p−ij

2p − 2
= 2−ij (1 +

1
2p−1 − 1

).

Let iS =
∑

j∈S ij be the number of assignments ρ makes to variables in blocks in S and kS = |{j ∈
S : ij > 0}| be the number of blocks in S in which ρ assigns least one value. Hence,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] <
1(
q
q−r
) ∑

S⊂[q],|S|=q−r

2−iS (1 +
1

2p−1 − 1
)kS . (8)
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Let k = |{j : ij > 0}| be the total number of blocks in which ρ assigns at least one value. There
are 2 cases: (I) k ≥ q/2, and (II) k < q/2.

Now consider case (I). Thus i ≥ q/2. In Equation 8, we have kS ≤ q for every S. Thus,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] ≤
1(
q
q−r
) ∑

S⊂[q],|S|=q−r

2−iS (1 +
1

2p−1 − 1
)q.

It is easy to see that iS ≥ i− pr for every such S. Hence we get

1(
q
q−r
) ∑

S⊂[q],|S|=q−r

2−iS ≤ 2pr−i ≤ 2(2i)β−i,

since pr ≤ qβ ≤ (2i)β in this case. Thus,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] ≤ 2(2i)β−i(1 +
1

2p−1 − 1
)q ≤ 2(2i)β−ieq

β ≤ 22β(1+1/ ln 2)iβ−i,

since q1−β ≤ 2p−1 − 1 and i ≥ q/2. We upper bound the term 2β(1 + 1/ ln 2) iβ by iα0 as follows:
Since i ≥ w,

iα0−β ≥ wα0−β ≥ 3p/ ln 2 (9)

by our assumption in the statement of the lemma. Since p ≥ 2, we have iα0−β > 6 > 2β(1 + 1/ ln 2)
which is all that we need to derive that Prπ∼ν [Cρ ∩ Cπ 6= ∅] < 2i

α0−i in case I.
Next, we consider case (II). We must have k ≤ p1−β(2p−1 − 1) iβ, because otherwise

i ≥ k > p1−β(2p−1 − 1)iβ ≥ p1−βq1−βiβ,

which implies i1−β > (pq)1−β and hence i > pq = m which is impossible. Therefore

(1 +
1

2p−1 − 1
)kS ≤ e

kS
2p−1−1 ≤ e

k
2p−1−1 ≤ ep1−βiβ .

So,

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] < ep
1−βiβS where S =

1(
q
q−r
) ∑
S⊂[q],|S|=q−r

2−iS = ES∼U [2−iS ].

and U is the uniform distribution on subsets of [q] of size q − r.
Now we continue by upper bounding S. For the moment let us assume that i is divisible by p.

If we view the blocks as the bins, and the assigned positions by ρ as balls placed in corresponding
bins, then we observe that S can only increase if we move one ball from a bin A of x > 0 balls to
another bin B of y ≥ x balls. This is because only those iS with S containing exactly one of these
two bins are affected by this move. Then, we can write the contribution of these S’s to S before
the move as

S ′ =
∑

S⊂[q], |S|=q−r, S∩{A,B}=1

2−iS =
∑

S′⊂[q]−{A,B}, |S′|=q−r−1

2−iS′ (2−x + 2−y),

and after the move as

S ′′ =
∑

S′⊂[q]−{A,B}, |S′|=q−r−1

2−iS′ (2−x+1 + 2−y−1).
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Since y ≥ x, S ′′ > S ′.
Hence w.l.o.g. and with the assumption that p divides i, we can assume that the balls are

distributed such that every bin is either full (containing p balls) or empty. Hence k = i/p and for
any 1 ≤ j ≤ q, either ij = 0 or ij = p.

Claim 7.1. If i is divisible by p then S ≤ 2−i e2p+1rk/q.

We first see how the claim suffices to prove the lemma. If i is not divisible by p then we note
that S is a decreasing function of i and apply the claim for the first i′ = pbi/pc > i−p positions set
by ρ to obtain an upper bound of S < 2p−ie2p+1ri/(pq) that applies for all choices of i. The overall
bound we obtain in this case is then

Pr
π∼ν

[Cρ ∩ Cπ 6= ∅] < ep
1−βiβ2pe2p+1ri/(pq)2−i = 2i

βp1−β/ ln 2+p+2p+1ri/(pq ln 2)2−i.

We now consider the exponent iβp1−β/ ln 2 + p + 2p+1ri/(pq ln 2) and show that it is at most iα0 .
For the first term observe that by (9), iα0−β ≥ 3p/ ln 2 so iβp1−β/ ln 2 ≤ iα0/3. For the second term
again by (9) we have p ≤ iα0−β/3 ≤ iα0/3. For the last term, since qα0 ≥ 6

ln 22pr, we have

2p+1ri

pq ln 2
≤ qα0i

3pq
≤ i(pq)α0−1/3 ≤ iα0/3,

since i ≤ pq. Therefore in case II we have Prπ∼ν [Cρ∩Cπ 6= ∅] < 2i
α0−i as required. It only remains

to prove the claim.
Proof of Claim: Let T = {t | it = p} be the subset of k blocks assigned by ρ. Therefore
iS = |S ∩ T |p where S is a random set of size q − r and T is a fixed set of size k and both are in
[q]. We have two subcases: (IIa) when k ≤ r and (IIb) when q/2 ≥ k > r.

If k ≤ r then we analyze S based on the number j of elements of S contained in T . There are(
k
j

)
choices of elements of T to choose from and q− r− j elements to select from the q− k elements

of T . Therefore

S =

∑k
j=0

(
r
j

)(
q−k
q−r−j

)
2−jp(

q
q−r
) .

Now since (
q−k
q−r−j

)(
q
q−r
) =

(q − k)!(q − r)!r!
q!(q − r − j)!(r − (k − j))!

<
(q − r)jrk−j

(q − k)k
=
( r

q − k

)k(q − r
r

)j
,

we can upper bound S by( r

q − k

)k k∑
j=0

(
k

j

)
2−pj

(q − r
r

)j
=

( r

q − k

)k(
1 +

q − r
2pr

)k
= 2−pk

( r

q − k

)k(2pr + (q − r)
r

)k
= 2−i

(q + (2p − 1)r
q − k

)k
= 2−i

(
1 +

(2p − 1)r + k

q − k

)k
≤ 2−i

(
1 +

2pr
q − k

)k
≤ 2−i e2prk/(q−k)

≤ 2−i e2p+1rk/q.
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since k ≤ q/2.
In the case that r ≤ k ≤ q/2 we observe that by symmetry we can equivalently view the

expectation S as the result of an experiment in which the set S of size q − r is chosen first and
the set T of size k is chosen uniformly at random. We analyze this case based on the number j
of elements of S contained in T . There are

(
r
j

)
choices of elements of S to choose from and k − j

elements to select from the q − r ≥ q/2 ≥ k elements of S. Therefore

S =

∑r
j=0

(
r
j

)(
q−r
k−j
)
2−(k−j)p(

q
k

) .

Using the fact that(
q−r
k−j
)(

q
k

) =
(q − r)!(q − k)!k!

q!(k − j)!(q − r − k + j)!
<

(q − k)r−jkj

(q − r)r
=
(q − k
q − r

)r( k

q − k

)j
,

we upper bound S by

2−pk
(q − k
q − r

)r r∑
j=0

(
r

j

)( 2pk
q − k

)j
= 2−pk

(q − k
q − r

)r(
1 +

2pk
(q − k)

)r
= 2−i

(q − k
q − r

)r(q + (2p − 1)k
q − k

)r
= 2−i

(q + (2p − 1)k
q − r

)r
= 2−i

(
1 +

(2p − 1)k + r

q − r

)r
≤ 2−i

(
1 +

2pk
q − r

)r
≤ 2−ie2prk/(q−r)

≤ 2−ie2p+1rk/q

since r ≤ q/2.

8 Discussion

In this paper we have proven strong randomized communication complexity lower bounds for AC0

functions for up to Θ(log n) players. For protocols of constant error, functions computed by
polynomial-size depth-4 circuits suffice, and for protocols of error exponentially close to that of
random guessing, functions computed by polynomial-size depth-6 circuits suffice. It would be nice
to reduce the circuit depths required for these lower bounds.

A particularly interesting and useful function for further investigation is the depth-2 function
set disjointness. The best lower bounds for set disjointness are non-trivial only for O(log1/3 n)
players and are not particular large. It is still consistent with our knowledge that set-disjointness
requires polynomial communication complexity even for Ω(log n) players. Such lower bounds would
imply a depth-2 separation between NPcc

k and BPPcc
k for the same numbers of players.
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A Other communication complexity bounds for AC0 circuits

In Section 5 we exhibit a depth-4 AC0 function that has nontrivial communication lower bounds
for up to Θ(log n) players and a depth-2 and a depth-5 AC0 functions that are in NPcc

k − BPPcc
k

for k up to Θ(log1/3 n) and Θ(log n), respectively. In this section we prove a number of related
results, namely, a depth-3 AC0 function that has nontrivial communication lower bounds for up to
Θ(
√

log n) players and a depth-4 AC0 functions that is in NPcc
k −BPPcc

k for k up to Θ(log n/ log logn).

A.1 Lower bounds for depth-3 AC0 functions for O(
√

log n) players

Using the pattern selector function ψk,` the results of this section will let us obtain results for
simpler functions than with the other selector functions we consider. This also allows us to review
the details of the methods from prior work and highlight the consequences of (ε, α)-approximate
degree alone.

We first review the independence properties of the patthen tensor selection function ψk,` as
captured using the definition of rψ from Section 3.

Proposition A.1. [9, 16] If ψ = ψk,`, then

Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r] ≤
(e(k − 1)m

r`

)r
.

Proof. In the case, D(m)
ψ = D

(m)
ψk,`

is [`]m(k−1)s. zui = ψ(xi, yu∗i) for u ∈ {0, 1}k−1 will be independent
if and only if yu∗i and yv∗i select different bits of xi for every u 6= v. This will be true for u and
v if and only if there is some j ∈ [k − 1] such that yuji 6= yvji. However, since this must hold for
every u and v, in particular those that agree everywhere except for a single bit, it is necessary
and sufficient for independence that y0

ji 6= y1
ji for every j ∈ [k − 1]. Therefore rψk,`(y

0, y1) is the
number of i ∈ [m] such that y0

ji = y1
ji for some j ∈ [k − 1]. There are ` elements in Dψk,`,j

for each j so the probability that y0
ji = y1

ji is 1/`. Therefore the probability that y0
ji = y1

ji for
some j ∈ [k − 1] is at most (k − 1)/`. By the independence of the choices for different i ∈ [m]

Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r] ≤
(
m

r

)(k − 1
`

)r ≤ (em(k − 1)
r`

)r
.

Remark The lower bounds in [9, 16] use the above property of ψ = ψk,` and follow the same general
outline as in Theorem 3.2 but instead of being able to use Lemma 3.4, they use the following bound.
This is weaker because it only relies on the assumption of large approximate degree of the function
f .
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Proposition A.2. [9, 16] If r = rψ(y0, y1) then H(y0, y1) ≤ 2(2k−1−1)r

22k−1m
.

In [9, 16], to prove the lower bound for Disjk,n, the function f is set to Orm and ψ is ψk,`.
By Proposition 2.3, d = deg5/6(Orm) ≥

√
m/12. Plugging the bound in Proposition A.1 together

with the bounds from Proposition 3.3 for r < d and from Proposition A.2 when r ≥ d into the

correlation inequality it is not hard to show that Rk1/3(f ◦ψm) ≥ d/2k−O(1) for ` > 22kkem
d . Hence

for suitable k = O(log log n) they derive lower bounds on Rk1/3(Disjk,n).
The key limitation of the above technique is the required lower bound on ` which follows from

the weakness of the upper bound in Proposition A.2 and from the inefficiency of the selector function
ψk,`.

The following theorem yields the stronger results that follow from using the pattern tensor selec-
tor and a function of large (5/6, α)-approximate degree rather than simply large 5/6-approximate
degree.

Theorem A.3. For any Boolean function f on m bits with deg5/6,α(f) ≥ d for some α : {0, . . . ,m} →
R such that α(r) ≤ rα0 for r ≥ d, the function f ◦ ψmk,` defined on nk bits, where n = ms for

s ≥ d4e(k−1)m
d ek−1, requires Rk1/3(f ◦ ψmk,`) > d/2k − 3 for k ≤ (1− α0) log2 d.

Proof. By Proposition A.1, Pr
y0,y1∈D(m)

ψk,`

[rψk,`(y
0, y1) = r] ≤

( e(k−1)m
r`

)r so

m∑
r=d

2(2k−1−1)α(r) Pr
y0,y1∈D(m)

ψk,`

[rψk,`(y
0, y1) = r] ≤

m∑
r=d

2(2k−1−1)α(r) ·
(e(k − 1)m

r`

)r (10)

Since k ≤ (1− α0) log2 d, we have (2k−1 − 1)α(r) < d1−α0rα0 ≤ r for r ≥ d so (10) is

≤
m∑
r=d

(2e(k − 1)m
r`

)r
≤

m∑
r=d

2−r

< 2−(d−1) for ` ≥ 4e(k−1)m
d .

Plugging this in to Theorem 3.2 we obtain that

Rk1/3(f ◦ ψm) ≥ log2(5/36)− 1
2k−1

log2 2−(d−1) > d/2k − 3

as required.

Here we apply the (ε, α) degree bound for the Tribes function with Theorem A.3 for the pattern
tensor selector function ψk,`. Note that

Tribesp,q ◦ ψmk,`(x) = ∨i∈[q] ∧u∈[p] ∨u∈[s] ∧j∈[k] xj,u,v,i

is a depth 4 formula. Recall that Tribes′p,q is the dual of the Tribesp,q function on m = pq bits
and has the same (ε, α)-degree of Tribes′p,q is the same as that of Tribesp,q for any ε and α.
Observe also that

Tribes′p,q◦,m ψk,`(x) = ∧i∈[q] ∨u∈[p], u∈[s] ∧j∈[k]xj,u,v,i

is a depth 3 formula since the bottom layer of ∨ gates in Tribes′p,q can be combined with the top
layer of ψk,`.
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Lemma A.4. Given any constants 0 < ε, α0, β < 1 with β > 1 − ε and α0 − β ≥ 0.1. Let
q > p ≥ 2 be integers such that 2dq1−βe < 2p ≤ 1

6q
α0+ε−1 ln 2. Let s = d8

√
3e(k − 1)pq(1+ε)/2ek−1

and n = pqs. Then Rk1/3(Tribesp,q ◦ψmk,`) and Rk1/3(Tribes′p,q ◦ψmk,`) are both Ω(q(1−ε)/2/2k), which

is Ω(n1/(4k)/2k) for k2 ≤ a log2 n for some constant a > 0 depending only on α0, ε.
In particular, for any δ > 0, one can choose an ε > 0 and other parameters as above to obtain

a lower bound on Rk1/3(Tribesp,q ◦ ψmk,`) and Rk1/3(Tribes′p,q ◦ ψmk,`) of Ω(n(1−δ)/(k+1)/(2k log n)).

Proof. We state the proof for Tribesp,q ◦ ψmk,`. The same proof applies for Tribes′p,q ◦ ψmk,`.
By Corollary 4.3, for q sufficiently large Tribesp,q has (5/6, α)-approximate degree d at least

q(1−ε)/2/
√

12 where α(r) = rα0 for r ≥ d. Letting m = pq we observe that 4e(k − 1)m/d ≤
8
√

3e(k − 1)m/q(1−ε)/2 and hence s ≥ d4e(k − 1)m/dek−1. Then we can apply Theorem A.3 to
derive that Rk1/3(Tribesp,q ◦ ψmk,`) is Ω(q(1−ε)/2/2k), when k ≤ b log2 q, for some constant b > 0
depending only on α0, ε.

We now bound the value of q as a function of n, k and ε. Since ε > 0, n > qs > q(k+1)/2 so
q ≤ n2/(k+1). Therefore p < log2 q ≤ 2

k+1 log2 n. We now have n = pqs ≤ (ck)k−1pkq1+(1+ε)(k−1)/2

for some constant c > 0 and thus

n ≤ q(k+1)/2+ε(k−1)/2(c′ log2 n)k (11)

for some constant c′ > 0. Since ε < 1 it follows that qk ≥ n/(c′ log2 n)k and therefore q ≥
n1/k/(c′ log2 n) so log2 q >

1
k log2 n− log2 log2 n− c′′ for some constant c′′. Therefore there is an a

depending on c′′ and b such that for q sufficiently large (which implies that n is) the assumption
k2 ≤ a log2 n implies that k ≤ b log2 q as required.

It remains to derive an expression for the complexity lower bound as a function of n. By (11),
q(1−ε)/2 is at least

n
1−ε

k+1+ε(k−1) /(c log2 n)
k(1−ε)

k+1+ε(k−1) ,

which is Ω(n1/(3k+1)/(log n)1/3) for ε < 1/2 and thus Ω(n1/(4k)) since k2 ≤ a log2 n and n is
sufficiently large. Moreover, since 1−ε

k+1+ε(k−1) is of the form 1/(k+ 1)−2εk/(k+ 1)2 +O(ε2/(k+ 1))
we obtain the claimed asymptotic complexity bound as ε approaches 0.

Choosing ε = 0.4, α0 = 0.9, and β = 0.8 in the above lemma we obtain the following less
cluttered lower bound statement.

Corollary A.5. Let p be a sufficiently large integer, q = 24p, and m = pq. Let k ≥ 2 be an integer,
s = d8

√
3e(k − 1)pq0.7ek−1, and n = ms = pqs. Then Rk1/3(Tribesp,q ◦ ψmk,`) and Rk1/3(Tribes′p,q ◦

ψmk,`) are both Ω(q0.3/2k) for k2 ≤ b log2 n for some constant b > 0 which is Ω(n1/(4k)/2k) when k

is at most O(
√

log n).

A.2 A depth-4 AC0 functions that is in NPcc
k − BPPcc

k

for k up to Θ(log n/ log log n)

In this section we use a different selector function ψ, which we denote by ψ⊕bk,`. This function has
s = b`k−1 and is the ⊕ of b independent copies of the pattern tensor ψk,`. Therefore Dψ⊕bk,`,j

is

simply Db
ψ⊕bk,`,j

, the set of b-tuples of vectors in the domain for the pattern tensor. In particular for

X ∈ {0, 1}s and Y ∈ {0, 1}(k−1)s

ψ⊕bk,`(X,Y ) =
b⊕

b′=1

`k−1∨
s′=1

(Xb′s′ ∧
k−1∧
j=1

Yjb′s′).
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This function clearly satisfies the selector function requirement that the output be unbiased for
each fixed value of Y .

Although the definition of ψ⊕bk,` uses the parity function, in applications we will choose values of
b that will be O(log n) and hence these parity functions will be computable in AC0. We can express
the parity of b items in a DNF formula as an ∨ of 2b−1 conjunctions each of length b. In ψ⊕bk,` the b

inputs to these terms are each pattern tensors of the form ψk,b′(X,Y ) =
∨`k−1

s′=1(Xb′s′ ∧
∧k−1
j=1 Yjb′s′)

and their negations. Because of the special form of the promise for the inputs to each of these pattern
tensors, we see that the negation of a pattern tensor is ψk,b′(X,Y ) =

∨`k−1

s′=1(Xb′s′ ∧
∧k−1
j=1 Yjb′s′).

Therefore we can write ψ⊕bk,` as a Σ4 formula where the fan-ins are, from top to bottom, 2b−1,
b, s, and k. We could dually write parity using CNF form and express ψ⊕bk,` as a Π3 formula where
the fan-ins are, from top to bottom, 2b−1, bs, and k. The former will be useful for small non-
deterministic communication complexity whereas the latter will be useful for small circuit depth.

When ψ is ψ⊕bk,`, the variables ψ⊕bk,`(xi, y
u
∗i) for u ∈ {0, 1}k−1 will be independent if and only if for

every u 6= v there is some b′ ∈ [b] such that yu∗ib′ and yv∗ib′ select different bits of xib′ . (This follows
since random variables ⊕b′∈[b]wb′ and ⊕b′∈[b]w

′
b′ are independent if there is some b′ such that wb′

and w′b′ are independent.) It follows that in this case rψ⊕bk,`
(y0, y1) is the number of i ∈ [m] such

that for every b′ ∈ [b], y0
jib′ = y1

jib′ for some j ∈ [k − 1].
The key to the improvement possible with ψ⊕bk,` is that we can prove a sharper analogue of

Proposition A.1.

Lemma A.6. If ψ = ψ⊕bk,` then Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r] ≤
(
m
r

)(
k−1
`

)br ≤ ( em(k−1)b

r`b

)r
.

Proof. In this case rψ⊕bk,`
(y0, y1) is the number of i ∈ [m] such that for every b′ ∈ [b], y0

jib′ = y1
jib′

for some j ∈ [k − 1]. As in the case of Proposition A.1, for each fixed i and b′ the probability that
y0
jib′ = y1

jib′ for some j ∈ [k − 1] is bounded above by (k − 1)/`. Since the values of (y0, y1) are
independently chosen for different values of b′ ∈ [b] the probability for each fixed i that this holds
for all b′ ∈ [b] is at most

(
k−1
`

)b. The bound follows by the independence of the choices of (y0, y1)
for different values of i ∈ [m].

Now we are ready to prove the main theorem for functions composed using this selector function.

Theorem A.7. For 0 < α0 < 1 and any Boolean function f on m bits with deg5/6,α(f) ≥ d

where α(r) ≤ rα0 for r ≥ d, the function f ◦ (ψ⊕bk,`)
m defined on nk bits, where n = ms and

s = bd(k − 1)(4em/d)1/bek−1, requires that Rk1/3(f ◦ (ψ⊕bk,`)
m ≥ d/2k − 3 for k ≤ (1− α0) log2 d.

Proof. For ψ = ψ⊕bk,`, by Lemma A.6,

m∑
r=d

2(2k−1−1)α(r) Pr
y0,y1∈D(m)

ψ

[rψ(y0, y1) = r] ≤
m∑
r=d

2(2k−1−1)α(r)
(em(k − 1)b

r`b
)r (12)

Since k ≤ (1− α0) log2 d, we have (2k−1 − 1)α(r) < d1−α0α(r) ≤ r for r ≥ d so (12) is

≤
m∑
r=d

(2em(k − 1)b

r`b
)r

≤
m∑
r=d

2−r

< 2−(d−1) for ` ≥ (k − 1)[d/(4em)]1/b.
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Plugging this in to Theorem 3.2 we obtain that

Rk1/3(f ◦ ψm) ≥ log2(5/36)− 1
2k−1

log2 2−(d−1) > d/2k − 3

as required since s = b`k−1.

We first directly apply Theorem A.7 to Tribesp,q ◦ (ψ⊕bk,`)
m for suitable values of b.

Lemma A.8. Given any constants 0 < ε, α0, β < 1 with β > 1 − ε and α0 − β ≥ 0.1. Let
q > p ≥ 2 be integers such that 2dq1−βe < 2p ≤ 1

6q
α0+ε−1 ln 2. Let b ≥ dlog2(16epq(1+ε)/2)e and

s = b(2k)k−1. Then, for q sufficiently large, Rk1/3(Tribesp,q ◦(ψ⊕bk,`)
m) is Ω(q(1−ε)/2/2k) for n = pqs

and k ≤ 1
2(1− α0)(1− ε) log2 q − 2.

Proof. Let m = pq. By Corollary 4.3, for q sufficiently large, the (5/6, α)-approximate degree d of
Tribesp,q is at least q(1−ε)/2/

√
12 where α(r) = rα0 for r ≥ d. Thus 4em/d ≤ 16epq(1+ε)/2 so by

the choice of b we have (4em/d)1/b ≤ 2. Therefore s = b(2k)k−1 ≥ bd(k − 1)(4em/d)1/bek−1. Also
k ≤ 1

2(1−α0)(1− ε) log2 q− 2 implies that k ≤ (1−α0) log2 d. Applying Theorem A.7, we see that
Rk1/3(Tribesp,q ◦ (ψ⊕bk,`)

m) is Ω(q(1−ε)/2/2k).

In particular we obtain the following:

Corollary A.9. Let p be a sufficiently large integer, q = 24p, k ≤ p/40, and s = p(2k)k−1.
Let n = pqs = p224p(2k)k−1 be the number of input bits given to each player in computing F =
Tribesp,q ◦ (ψ⊕bk,`)

m. Then Rk1/3(F ) is Ω(q0.3/2k) = Ω(26p/5/2k) which is nΩ(1)/kO(k). Further, F
has polynomial-size depth 4 AC0 formulas.

Proof. We apply Corollary 4.4 instead of Corollary 4.3. As noted above, ψ⊕bk,` has Π3 formulas with
fan-in, top to bottom, of 2b−1 = 2p−1, bs = ps, and k. Since Tribesp,q is given by a Σ2 formula,
Tribesp,q ◦ (ψ⊕bk,`)

m is computable by a Σ4 formula with fan-in top to bottom of q, p2p−1, ps, and
k. The total formula size of F is np2p−1 which is less than n5/4 log2 n.

Lemma A.10. Nk(Tribesp,q ◦ (ψ⊕bk,`)
m) is O(log q + pb log s).

Proof. Using the Σ4 formula for ψ⊕bk,` we see that Tribesp,q ◦ (ψ⊕bk,`)
m can be expressed as a Σ6

formula where the fan-ins from top to bottom are q, p, 2b−1, b, s, and k. Observe that the fan-ins of
the ∧ gates are p, b, and k respectively. The players use this formula to evaluate Tribesp,q◦(ψ⊕bk,`)

m.
The 0-th player (who holds x), guesses an accepting subtree of this formula and sends both the

the description of the subtree and the values of the bits of x at the leaves of this subtree. Player 1
can then evaluate the subtree and sends 1 if and only if it evaluates to true. The total number of
bits needed to specify the subtree is log2 q + p[log2 2b−1 + b log2 s] ≤ log2 q + pb(log2 s+ 1) and the
number of bits of x at the leaves is pb.

Corollary A.11. There is a function G in depth 4 AC0 such that G is in NPcc
k − BPPcc

k for
k log k ≤ a log n for some constant a > 0.

Proof. Observe that F = Tribesp,q ◦ (ψ⊕bk,`)
m with the parameters from Corollary A.9 by

Lemma A.10 has Nk(F ) that is O(log3 n) and thus satisfies all the conditions except for being
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read-once. To obtain the read-once property note that F is a projection of the following function
G.

q∨
u=1

p2p−1∧
v=1

ps∨
w=1

k∧
j=1

zj,u,v,w

and that the same O(log3 n) upper bound from Lemma A.10 applies equally well to G.
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