Electronic Colloquium on Computational Complexity, Report No. 83 (2008) b ray

A logic for PTIME and a parameterized halting problem

Yijia Chen* Jorg Flumf
June 10, 2008

Abstract

In [2] a logic Ly has been introduced as a possible candidate for a logic raagtine PTIME
properties of structures (even in the absence of an ordefitigeir universe). A reformulation of this
problem in terms of a parameterized halting problerAcc for nondeterministic Turing machines has
been given in [10]. We analyze the precise relationship eetw.y andp-Acc. Moreover, we show
thatp-Acc is not fixed-parameter tractable if 2 NP holds for all time constructible functions.” This
property also implies that the natural parameterizatioB@del’s proof predicate is not fixed-parameter
tractable. Furthermore, the complexity of various vasasftp-Acc is considered.

1. Introduction.

The existence of a logic expressing precisely the PTIME @rigs remains the central problem in descrip-
tive complexity. A proof that such a logic does not exist wbyield that P# NP and hence solve the
most prominent open problem in complexity theory. It is walbwn that least fixed-point logic FO(LFP)
captures the PTIME properties orderedstructures. However the property of arbitrary finite structure

of having a universe of even cardinality is not expressiblEQ(LFP). Of course there are artificial logics
expressing precisely the PTIME properties, however thepatdulfill a natural requirement to logics in
this context, namely the condition:

(¥) Thereis an algorithm that decides whetbkis a model ofy for all structures4 and
sentences of the logic and that does this for fixedin time polynomial in the size ofl.

In [2] the authors introduce a logiEy related to FO(LFP), in which precisely the PTIME propertes
expressible, however it is not known whethiey satisfies the effectivity condition<). In [10] it has
been shown that the statemeiity” satisfies £)” can be equivalently formulated as a statement concerning
the complexity of a halting problem for nondeterministicrifig machines. This reformulation is best
expressed in the terminology of parameterized compleXity2 consider thgparameterized acceptance
problemp-Acc for nondeterministic Turing machines

p-AccC
Instance: A nondeterministic Turing machirfé andn € N in unary.
Parameter: || M]|, the size of\.
Question: DoesM accept the empty input tape in at massteps?

Then
Ly satisfies€) if and only if p-Acce XP1

In this paper we mainly deal with two questions:
(&) What doesp-Accis fixed-parameter tractable” mean for the logig?

(b) Whatis the complexity gf-Acc?

*Shanghai Jiaotong University, China. Emgil:j i a. chen@s. sj t u. edu. cn

T Albert-Ludwigs-Universitat Freiburg, Germany. Emagiber g. f | um@rat h. uni - f r ei bur g. de

1Depending on the exact formulation af)(we need the class XP of uniform or of nonuniform parameg¢ericomplexity; see
Section 2 for the precise definitions.

1 ISSN 1433-8092

While we can answer question (a), we are only able to relastdtementsp-Acc € XP” and “p-Acc €
FPT” with other open problems of complexity theory.

More precisely, the content of the different sections isftllewing. It is known that the time bound
for the evaluation of a sentengeof FO(LFP) in a structured contains a factofl.A||©(¥D; an analysis of
the model-checking algorithm shows that a factor of the fihu| ©(“idth(#)) suffices, where widtfy), the
width of o, essentially is the maximum number of free variables in dasutula of . The main result of
Section 3 shows that for the logiey a bound of the second type is equivalenptd.cc € FPT.

Let P{Tc] # NP[Tc] mean that there isio time constructible and increasing functidnsuch that
NTIME(R®M) C DTIME(h®M) (and hence, NTIMERC(V)) = DTIME(h®M)). In Section 4 we
show that the inequality[Pc] # NP[TC] implies thatp-Acc ¢ FPT and that a stronger hypothesis where
DTIME (R°M) is replaced by DTIMERC(°9 7)) implies thatp-Acc ¢ XP. In Section 2.1 we relate these
hypotheses to other statements of complexity theory. Itiquéar, we shall see thafRc] £ NP[Tc] holds
if there is a P-bi-immune problem in NP.

We consider the construction problem associated wAtkicc in Section 4.2 and show that it is not fpt
Turing reducible tg-Accin casep-Acc ¢ XP.

Variants ofp-Acc are studied in Section 5. First we deal wjthAcc_, the problem obtained from
p-Acc by asking for an accepting run @xactlyn steps. We improve a result of [1] and show that
p-Acc_ € FPT if and only if NE = E (that is, NTIME2°(™)) = DTIME(2°("™)). Furthermore, we
introduce a halting problem for deterministic Turing mams, the “deterministic version” gFAcc, and
show that it is a natural example of a problem nonuniformlgdiparameter tractable but not contained in
uniform XP.

In Section 6 we show that a further important problem is ndeRT if P[Tc] # NP[Tc| holds. The
undecidability of first-order logic tells us that there is cmmputable bound on the length of the shortest
proof of a valid FO-sentence (that is, first-order sentenBg) mathematicians’ experience various valid
FO-sentenceg only have quite long proofs, say, proofs of a lengtt2!¥!. How hard is it to recognize
such “hard” valid sentences? This is a sparse problem armzkhest NP-hard unless NP=P. So how do we
convince ourselves that it is intractable? It turns out thatpolynomial time tractability of this problem
implies the fixed-parameter tractability pfF O-PROOF, that is, of the problem asking, given a first-order
sentencey and a natural number in unary, whether has a proof of lengtk< n, where the parameter is
|©]. We show thap-FO-PROOFis not fixed-parameter tractable und¢r& # NP[TC].

We should mention that some of the results could be formdlatemore “logical terms” by using
instead of the halting problep Acc an appropriate parameterization of the (complement ofptbblem
INV introduced at the beginning of Section 3.

2. Preliminaries.

In this section we review some of the basic concepts of paenmed complexity and of logics or query
languages and their complexity.

2.1. Parameterized complexityWe identify problems with subsefg of {0, 1}*. Clearly, as done mostly,
we present concrete problems in a verbal, hence uncodified fi&e use both P and PTIME to denote the
class of problems) such thatr € @ is solvable in polynomial time. All Turing machines ha{@ 1} as
alphabet.

We view parameterized problenes pairg(Q, x) consisting of a classical problegr C {0,1}* and a
parameterization: : {0,1}* — N, which is required to be polynomial time computable.

We assume knowledge of the basic notions of parameterizegleaity and refer to [6] for notions
not defined here. We denote by FPT, XP,... the usual (stramgfprm) classes, by FRE, XPuni, . - -
their uniformversions, and by FR, XPy,, . . . their nonuniformversions. For exampléQ, <) € FPT if
there is an algorithm solving € Q in time f(x(z)) - |z|°() for acomputablef : N — N; moreover,
(Q, k) € FPTnifthere is an algorithm solving € Q intime f(x(x))-|z|°(") for anarbitrary f : N — N;
and(Q, k) € FPT,, if there is a constant, an arbitrary functiorf : N — N, and for everyk € N an
algorithm solving the problem € @ for all z with x(z) = k in time f (k) - |z|.

We write (Q, k) <P (Q’, k") and(Q, k) <P'T (Q’, x') if there are an fpt reduction and an fpt Turing
reduction from(Q,) to (Q’, k'), respectively (these concepts refer to the strongly umfparameterized

complexity theory).

2.2. Logic. A vocabularyr is a finite set of relation symbols. Each relation symbol haarity. The
arity of 7 is the maximum of the arities of the symbolsrnA structureA of vocabularyr, or r-structure
(or, simply structure), consists of a nonempty detalled theuniverse and an interpretatioR* C A"

of eachr-ary relation symboR € 7. We say thatA is finite, if A is a finite set. For finited we denote
by ||.A]| the size ofA, that is, the length of a reasonable encodingdoés string in{0, 1}* (see [6] for
details). If necessary, we can assume that the universe mt@diructure igm| := {1,...,m} for some
natural numbern > 1, as all the properties of structures we consider are inatiader isomorphisms;
in particular, it suffices that from the encoding dfwe can recoverd up to isomorphism. Therefore,
the reader will easily convince himself that we can assuraettiere is a computable binary function bit
such that for every vocabularyandm € N (we just collect the properties of bit we are going to use in
Section 3):

(1) || A]] = bit(r, m) for everyr-structureA with universe of cardinalityn;
(2) bit(r,m) < bit(r',m’) for all 7, 7’ with 7 C 7" andm, m’ with m < m’;
(3) bit(r,m) = O(log |7]| - || - m) for everyr containing only unary relation symbols;
(4) bit(r U{R}, m) = O(bit(r,m) + m?) for every binary relation symbdk not inr.
We assume familiarity witffirst-order logicFO and its extensioleast fixed-point logiEO(LFP) (e.qg.,
see [5]). We denote by @ and FO(LFP)r] the set of sentences of vocabulargf FO and of FO(LFP),
respectively.

It is known that every FO(LFP)-sentence is equivalent to @(LIFP)-sentence in normal form, where
an FO(LFP)-sentencgis in normal formif it has the form

v =73x1...F2k[LFPy, o, x V(21 ... 2k, X)] 21 . . . Tk, Q)

wherey is a first-order formulaX is ank-ary relation variable, and,, . . ., x; are the (first-order) vari-
ables free inp. Thewidth width(y) of ¢ as in (1) is the width of the first-order formulg, that is, the

maximum number of free variables of a subformula/ofClearly, widtHy) < |¢|. Moreover analyzing
standard proofs that convert an FO(LFP)-sentengewherey is in normal form, into normal form show:

Lemma 1. There is a constant € N such that in polynomial time we obtain for evér(LFP)}sentence
© in normal form a normal form for the sentenee of width < ¢ - width(¢).

The following fact is well-known and implicit in [11]:

Proposition 2. The model-checking probles = gp ¢ for finite structuresd and FO(LFP)sentencesg
in normal form can be solved in time

O(|e| - |A|2-width(tp) -width(g) + || A]|) = O(|S"|2) HAHQ.width(Lp)).

2.3. Logics capturing PTIME. For our purposes, lagic consists:
— for every vocabulary, of a decidable sel[7] of strings, the set of-sentences of vocabulary

— of asatisfaction relation=y,; if a pair (A4, ¢) is in =1, then A is ar-structure andp € L[7] for
some vocabulary.

We take over the following terminology from [10].

Definition 3. Let L be a logic.L is a logic for P, if:

(1) (L capturesP) for all vocabularies and all classes C (of encodings) of finitestructures closed
under isomorphisms we have

C € P <« forsomeL|r]-sentence: C={A| AL o};

(2) (there is a computable evaluajdhere is an algorithmh decidingl=,, that is, for every finite struc-
ture A and L-sentence the algorithmA decides whethed =, ¢.

We say that. is a P-bounded logic folP if (1) holds and we can choose the algorithnn (2) in such
a way that for every fixed-sentence it runs in polynomial time (polynomial in the size gf).

Hence, if L is a P-bounded logic for P, then for evekysentencep the algorithmA witnesses that
{A| A =L ¢} lies in P. However, we do not necessarily know ahead of timéthunding polynomial.

We say that. is an effectivelyp-bounded logic foP if L is a P-bounded logic for P and if in addition to
the algorithmA there is a computable function that assigns to e¥esentence a polynomialy € N[X]
such thatA decides whethed =, ¢ in < ¢(||.A]|) steps.

3. The logic Ly for polynomial time and the parameterized halting problemp-Acc.

First we recall the definition of the syntax and semantichieflbgic Ly, introduced in a slightly different
formin [2]. For a vocabulary let 7. := 7 U {<}, where< is a binary relation symbol not in.

We define the relationNv between sentences of FO(LFP) and natural numbers. A(pain) is in
INV if ¢ € FO(LFP)7] for some vocabulary and if in structures with universe of cardinality m the
satisfaction relation fop is invariant under a change of the orderiagmore precisely:

(p,m) € INV < ¢ € FO(LFP)7.] for some vocabulary, m € N, and for allr-structures4

with |A] < m and all orderings<; and<, on A we have
(A, <1) Elrrp <= (A, <2) ELrp ¢

We mostly write NV (¢, m) for (¢, m) € INV.
ThenLy [r] := FO(LFP)7<] and for ar-structure4 and anLy [7]-sentence the satisfaction relation
Er, is defined by

AL, ¢ < INV(p,|A]) and for some ordering on A: (A, <) ELrp ¢.

Of course, in this definition we could replace “for some onagt by “for all orderings.” In the following
in effectivity considerations we will denote By, the ordering o given by the encoding afl. Hence

AErL, ¢ <= INV(p,|A]) and (A, <4) ELrp ¢-

Since
INV(p,m) <= INV(—p,m),

we get
INV(p, [A]) <= (AFLy pOrAl=L, —p).)

As FO(LFP) is a “logic for P on ordered structures,” one gagirifies thatlLy is a logic for P. The authors
of [2] ask whethelLy is a P-bounded logic for P. It is conjectured that it is not hd@nded logic for P.

In [10] this question (or conjecture) is reformulated as #ac#ivity property for a halting problem for
nondeterministic Turing machines. This reformulationéstexpressed in the terminology of parameter-
ized complexity. We consider th@arameterized acceptance problerAcc for nondeterministic Turing
machines

p-AccC
Instance: A nondeterministic Turing machirie andn € N in unary.
Parameter: || M]|.
Question: DoesM accept the empty input tape in at massteps?

The problenp-Acc lies in FPT,,. In fact, fix & € N; then there are only finitely many nondeterministic
Turing machinesM with ||M|| = k, say,My,...,M;. For eachi € [s] let ¢; be the smallest natural
number? such that there exists an accepting rudvfon empty input tape of length We set(; = oo if

M; does not accept the empty input tape. Hence the algorthrihat on any instancé, n) of p-Acc
with ||[M|| = & determines the with M = M, and then accepts if and only4f < n has running time
O(||M]| 4+ n); thus it witnesses thatAcc € FPTy,.

We call a parameterized problei@,) slicewise monotoniéits instances have the for(a;, n), where
xz € {0,1}* andn € Nin unary, ifs(z, n) = |z|, and finally if for allz € {0,1}* andn,n’ € N we have

(z,n) € Qandn < n/imply (z,n) € Q.
In particular,p-Acc is slicewise monotone and the preceding argument shows:
Lemma 4. If (Q,) is slicewise monotone, théf), k) € FPTy,.

Isp-Acc € FPTyy, or, at leastp-Acc € XPyy? It turns out that the conjecturéy is not a P-bounded
logic for P” mentioned above is equivalentgeAcc ¢ XPyp;:

Proposition 5 ([10]). (1) Ly is an effectivelyP-bounded logic foP if and only ifp-Acc € XP.
(2) Ly is aP-bounded logic folP if and only ifp-Acc € XPypi.

However it is not even clear whethgrAcc ¢ FPT. Do the statemenisAcc € FPT andp-Acc €
FPT,n also correspond to natural properties of the lagic? We address this problem in this section.

As every FO(LFP)-sentence is equivalent to an FO(LFP)esexatin normal form, the same holds for
Ly . Recall that we already know thas- is a logic for P; in particular there is an algorithtithat decides
whetherA =1, ». We say thafly is an(effectively) widtiP-bounded logic folP if this algorithmA can
be chosen in such a way that there is a (computable) funateamd a constant such thatd =1, ¢ can
be solved in time '

O(h(lgl) - [| |t

for structures4 and Ly -sentences in normal form. By Proposition 2, the logic FO(LFP) “is anefively
width P-bounded logic for P on ordered structures.” The mesult of this section is:

Theorem 6. (1) Ly is an effectively widtiP-bounded logic foP if and only ifp-Acc € FPT.
(2) Ly is awidthP-bounded logic foP if and only ifp-Acc € FPTyy;.

The following observations will lead to a proof of the diriect “from right to left” in the statements of
the theorem (moreover, they implicitly contain a proof af ttorresponding directions of Proposition 5).

For an Ly -sentencep in normal form and a suitable time constructible functionN — N we will
need a nondeterministic Turing machivi, (¢) that, started with empty tape, operates as follows: In a first
phase it read® and extracts its vocabulary,, the set of relation symbols that do occurdnin a second
phase it writes a word of the forii™ for somem > 1 on some tape. The third phase (the main phase)
consists of at most(m) + 1 steps (this can be ensuredtds time constructible). IM,,(¢) does not stop
during the firstt(m) steps of the main phase, then it stops in the next step antisefuring thist(m)
stepsM.,, (t) guesses (the encoding ofyra-structureA with universe/m| and two orderings<; and<,
on [m] and checks whethe(ll, <1) =rp ¢ <= (A, <2) [=Lre). If this is not the case, the¥l, (t)
accepts; otherwise it rejects.

The first phase needs3(|¢|), say,

di - ol

steps and the second onesteps. To guessa -structureA with universe{m] and two orderings:; and
<s requires
bit(r,, m) + 2m?

bits (see Subsection 2.2) and hence as many steps.
Finally, according to Proposition 2, the equivalenCd,(<1) Firp ¢ <= (A, <2) [FLrp ») Can be
checked in timeO(|¢|? - bit((7,) <, m)? W), that is, in

da - || - bit((7,) <, m) >N

steps for somés.
We define

to(m) = Dbit(r,,m) 4+ 2m? +dy - |p|? - bit((7,) <, m)?>Width(e),

’ 3)
t;,(m) = di - |p| +m+t,(m).

Therefore, as,, is increasing and as we can defifg, (¢,,) in such a way that, once: has been chosen,
the two parts of the main phase need exactlyritmn) + 2m? andds - |p|? - bit((,) <, m)>Wdh(#) steps,
respectively, we have

INV(p,m) <= My,(t,) does notaccept the empty stringdnt/,(m) steps
= (My(ty),t,(m)) ¢ p-Acc.

Now we can show one direction of Theorem 6, namely:

Lemma 7. (1) If p-Acc € FPT, thenLy is an effectively widt-bounded logic foiP.
(2) If p-Acc € FP Ty, thenLy is a widthP-bounded logic folP.

Proof: Assume(M, n) € p-Acc can be solved in time

FAMJ) - n© (4)

for some constant € N and some (computable) functigh: N — N. For every structurel and every
Ly-sentence», we have

A ':LY p = |NV((p, |A|) and(Av <A) ':LFP 12
— (My(t,), £,(1A]) ¢ p-Accand(A, <) Fiee o

By the definition (3) of the function, and the properties of the bit-function mentioned in Sec#idh we
see that there is a computable functipsuch that,(|A[) < g([¢]) - [.A|| O™, As ML, (t,,) depends
only on ¢, we see, by (4) and Proposition 2, that there is an algorithchaa(computable) functioh
such that for every structurd and everyLy-sentencep the problemA =, ¢ can be solved in time
h(lgl) - [l AR, o

We turn to the other directions in Theorem 6. IMtbe a nondeterministic Turing machine and let
mo(M) be the maximum of the number of states and the number of tAllesan assume thét] is the
set of states dfl (for somek < mg) and that 1 is its initial state. We Ié%, P, ..., P, be unary relation
symbols. We shall see that for the vocabulary= { P, ..., Py} there is an FO(LFP).]-sentencepy in
normal form with the following properties:

For everyr-structureA:

(1) If |A] < mo, then for all orderings<4 on A we have(A, <) =1rp ou.

(2) If |[A| > mo andPgt, ..., P/ are not pairwise disjoint subsets 4f then for all orderings<# on A
we have(A, <A) '=|_|:p OM-

(3) Let|A| > mo and assume thak;!, . .. ,P,;“ are pairwise disjoint subsets dfand<“ an ordering
onA. Letay,...,a 4 be the enumeration of the elements/dhccording to the ordering and
choosei, such thati, € Py for s € [|AJ].

(a) If thereis aj € [|A| — 1] such that the sequendeiy,.. ., i; is the sequence of states of a
complete run oM, started with empty input tape (in particular, # 0 for all s € [j]), then
(A, <) [=Lrp o if and only if this run ofM is a rejecting one.

(b) Ifforall j € [|A| — 1] the sequencg, iy, ..., ; is not the sequence of states of a complete run
of M, started with empty input tape, théd, <4) E=Lep o

We show that for everyn > mo (M)

(M, m) € p-AcC <= not INV(¢m, m). (5)
First assume thafM, m) € p-Acc. Then for somej € [m — 1] andiy,...,i; € [k], the sequence
1,i1,...,4; is the sequence of states of an accepting ruiviof Using (3)(a), it is easy to construct a

structureA on [m] and an ordering<# such that(A, <#) iep o and Pt = {m}. We choose an
ordering<’ on [m] such thatn is the first element o&’ and hencei; = 0 under<’. By (3)(b) we see that
(A, <") ELrp vm. Hence, nothv (p, m).

Contrary, if (M, m) ¢ p-Acc, it is easy to see, using (1)—(3), thdt=;, ¢wu for every structured
with |A] < m; hence, NV (@, m).

The sentenceyy is obtained by standard techniques. We sketch the conistnuzf ;. Recall that
{0, 1} is the alphabet oM. The sentencey; will make use of the binary relation variabBtateand the
ternary relation variabledead Letter, Letter; with the intended meaning

Statet s iff attimet the state is
Headt:j iff attimetthe head on tapescans thegth cell
Lettet¢j iff attimet thereis & on thejth cell of tapei
Letter tij iff attimetthereis al on thejth cell of tapei.

To be able to apply the least fixed-point operator to a formuokitive in the corresponding variable(s), we
need also relation variabl€State CHead CLettef andCLetter, for thecomplementef the relations just
introduced. Then using simultaneous least fixed-pointsameexpress the intended meaningegf as

H«T[S'LFPt sState tijHead tijLettery, tij Letter t s CState tij CHead tijClettep, tij Cletter wM]«T

(even thoughMl is nondeterministic, in the formulay, we always get the state to be chosen in the next step
using the relation#” , . .., P;). By standard means this sentence can be converted in arHPpP8entence
oy in normal form. Of course, the sentengg depends on the machifyé, however, and this is important,

it can be defined in such a way that its width is independeM pthereby it is crucial that we can address
theith element in the ordering by a formula of width 3.

Assume now thaly is an (effectively) width P-bounded logic for P and choos@astantc and a
(computable) functiork : N — N such that the model-checking problednk=,, ¢ for structures4 and
Ly -sentences in normal form can be solved in time

h(l]) - A), (6)

We show that-Acc € FPTy (p-Acc € FPT). Let (M,m) be an arbitrary instance gfAcc. If

m < mo(Mp) (< ||M]]), we check whethefM, m) € p-Acc by brute force. Otherwise, we construct
from M the sentencegy and—pn (More precisely, the FO(LFP)-sentence in normal form exjaivt to
—n). Moreover we choose thestructure4 with A = [m] and empty relations). Then, by property (3)
of the bit-function (see Section 2.2), we have

Al = O(log |7] - 7| - |A]) = O(l¢em|* - m). (7)
As by (2)
INV(om,m) <= (AL, pmOrAEL, —om),

we obtain by (5)
(M, m) ¢ p-AcC = (AL, pmorAl=r, ~pum).

Therefore, by (7), (6), and Lemma 1, we see that there is agotable) functionf and a constant € M
(recall that there is a constant bounding the widtlpgf for all nondeterministic Turing machines) such
that(M, m) € p-Acc can be solved in timg(||M]|) - m*. This finishes the proof of Theorem 6. a

By refining the previous proof we obtain:

Corollary 8. For sufficiently largew € N the problem

Instance: A structureA and anLy [1]-sentence of width < w.
Problem: IsA L, ¢?

is co-NRcomplete.

Proof: Clearly the problem is in co-NP. Now |&€p be any problem in co-NP. We give a polynomial
reduction of@ to the problem in the statement. LEf be a polynomial time nondeterministic Turing
machine such that for all € {0, 1}* we have

x € Q <= norun ofM acceptse.

Choose:, d € N such that the running time & on inputz is bounded by-|z|¢. We fixz € {0,1}*. Again
we assume thgk] is the set of states @fl and that 1 is its starting state and set= { Py, ..., P} with
unary relation variable®y, . .., P;. Along the lines of the previous proof one obtains an FO(ILFER)
sentencepy , in normal form with the properties (1)—(3) (on page 6), whawer in (3)(a),(b) we consider
complete runstarted with the word: in the input tape One can obtairp ., in such a way that its width
does not depend o again, we use the fact that foe [|«|] we can address thiéh element in the ordering
< by a formula of width 3. Let4,. be anyr-structure with| A| > max{mq(M), c- |z|¢}. Then

r€Q <= A, ELy oM

hencer — (A,, om,) is the desired reduction. O

4. The parameterized complexity ofp-Acc.

A simple padding argument shows thatFNP implies that
NTIME (h°")) C DTIME (hOM).
for every time constructible and increasing functionN — N. Let
P[Tc] # NP[TC]
mean that there isotime constructible and increasing functibrsuch that
NTIME (h°M)) C DTIME (h9M).

Taking ash the identity function we see thafi®] # NP[Tc] implies P#£ NP. It is not known whether the
converse implication holds. In Section 4.1 we are going kateeHTc| # NP[TC] to further statements of
complexity theory. The main result of this section is:

Theorem 9. If P[Tc| # NP[Tc], thenp-Acc ¢ FPT.
For the proof of this result we need the following simple leenm

Lemma 10. For every computable functiofi : N — N there is a time constructible and increasing
functionh : N — N such that for allz, y € N

fl(x+y)?) < h(z) + h(y).
Proof: We definehy : N — N by
ho(n) :==max{ f(i*) | 0 < i < 2n}

and leth : N — N be a time constructible and increasing function witftx) < h(k) forall k € N. O

Proof of Theorem 9By contradiction assume thatAcc € FPT. Then there is an algorith#a that for
every nondeterministic Turing machifd and every natural number decides whethell accepts the
empty input tape in time

£y - n®

for a computable and increasing functipn N — N. We choosé: according to Lemma 10 and show that
NTIME (h°()) C DTIME (hO(M).

For this purpose lef) C {0, 1}* be in NTIME(h°(})). We choose a nondeterministic Turing machine
M, and constants, d € N such that the machirié, decides whether € Q in timec- h(|z|)? and every
run of Mg on inputz is ¢ - h(|z|)¢ time-bounded (recall thdtis time constructible).

We fixz € {0,1}* and letM, ,, be the nondeterministic Turing machine that, started witlpty input
tape, first writes: on some tape and then simulabdg, started withe.

Clearly

re€qQ <= Mg, acceptsthe empty string in at most + ¢ - h(|z|)? steps
< Mg, accepts the empty string in at mast- h(|z|)? steps
< Aaccept§Mg ., 2c- h(|z])?).

Note that the size dfl, . is O(|Mg||) + |=| - log |z|. The running time o on input(Mg ., 2¢- h(|z|)¢)
is bounded by

FO(IMql)) + |z - log |z]) - (2¢ - h(x))?™ < (h(O(HMQH)) +h(lx|)) ~h(z)°M.

As ||Mg| is a constant, this show@ € DTIME (h(z)°™M). o

We can refine the previous argument to geAcc ¢ XP; however we need a complexity-theoretic
assumption (apparently) stronger thgma@ # NP[TC].

Theorem 11. Assume that
NTIME (h°)) ¢ DTIME (hO109)

for every time constructible and increasing functieriThenp-Acc ¢ XP.

Proof: Assume thap-Acc € XP. Then there is an algoritheh that for every nondeterministic Turing
machineM and every natural numberdecides whetha¥l accepts the empty input tape in time

O(n! MDY

for a computable and increasing functign: N — N. We choosé: according to Lemma 10. We de-
fineg : N — N by g(n) := 2"™); clearly g is time constructible and increasing, too. We show that
NTIME (¢°™M) C DTIME (¢© (09 9)),

LetQ C {0,1}* be an arbitrary problem in NTIMg®™"). Let My andMg ., for z € {0,1}* be
defined as in the previous proof, however, nptakes over the role df. As there we get

reQ <+= AacceptdMg..,2c-g(|z))?).

The running time o\ on input(Mg ., 2¢ - g(|=|)%) is bounded by
O(g(|z]) - ©UMI+a)y < O(g(m)d-(h<O<HMQH>>+h<|w|>)) < O(g(m)d-(h<O<HMQ||>>+|ogg(\wu))_

As |Mg|| is a constant, this show@ € DTIME (¢©(°9 9)).

4.1. Relating ATC] # NP[TC] to other statements.For the purposes of this section the following lemma
will be useful.

Lemma 12. Assume that for some time constructible and increasin®! — N we have
NTIME (h°)) C DTIME (h9M).
Then there is an infinite sétC {0, 1}* such that for every proble® C {0, 1}* in NP the problem@) N I
isinP.
Proof: Leth : N — N be time constructible and increasing such that
NTIME (h°")) C DTIME (h°M).

We show that
I:={11...11 | me N}
N—_——

h(m) times

has the desired property. In fact, tC {0, 1}* be in NP. We want to show that

QNI={11...11 \meNandll 11 € Q}

h(m) times (m) times
is in P. However we first we consider the problem
Qo:={1L...11 [meNandil...11€Q}.

m times h(m) times

Claim 1.Qq € DTIME (rCW),
Proof of the claimAs @ is in NP andh is time constructible, one easily verifies tligg € NTIME (A1),

Hence, we get our claim by the assumption NTIME(™)) € DTIME (hO(M), .
Clearly,
QNI={11...11 |meNandll...1l € Qo}. (8)
h(m) times m times

As h is time constructible, one can check for everg {0, 1}* whethers = 11...11 for somem € Nin
N—_——
h(m) times

time polynomial in|s|. Therefore and by Claim 1 we ha@n I € P. O

Let C be a classical complexity class, that is, C is a classaflpms. Recall that a proble®@ C
{0, 1}* is C-bi-immuneif both @ and the complement @ do not have ainfinite subsethat belongs to
C. It has been conjectured that

NP contains a P-bi-immune problem. (9)
Moreover, Mayordomo [9] has proven that (9) is implied by etiar conjecture, namely by:
NP does not have measure 0 in E (10)

This statement (10) is often used as a hypothesis in theytléoesource bounded measures [7]. Of course,
E is the class of problems solvable in ti@(™). For the corresponding notion of measure we refer to [9].
The conditions (9) and (10) imply[fc] # NP[Tc]:
Proposition 13. Consider the following statements:

(a) NP does not have measure Ofn

(b) NP contains aP-bi-immune problem.

(c) Thereis no infinite set C {0, 1}* such that for every) C {0,1}* in NP the problem) N I'isin P.

(d) P[tc] # NP[TC].

10

Then (a) implies (b), (b) implies (c), and (c) implies (d).

Proof: In Lemma 12 we have seen that “not (d) implies not (c).”

(b) = (c): By contradiction assume that there is a Betith the properties mentioned in (c). As
{0,1}*NI =1, thesetfisinP. LetQ C {0,1}* bein NP. The)nIisin P and hencg0,1}*\Q)NI =
I\ (@Q@NI) e P. As at least one of the sefsn I or ({0,1}* \ Q) N I is infinite, we see thaf) is not
P-bi-immune. Ag) was arbitrary this contradicts (b).

We already mentioned that “(&) (b)” was shown in Mayordomao [9]. o

Hence, from Theorem 9, we get:

Corollary 14. If NP contains aP-bi-immune problem, thep-Acc ¢ FPT.
Remark 15. Note that the assumption (b) in Proposition 13 seems to béstoenger than the assumption
(c). In fact, as shown by the proof of the previous propositimot (c)” means

there is an infinited' € P such that for alt) € NP at least one of the sef3n I and ({0,1}* \
Q) N1 is an infinite set in P,

while NP contains no P-bi-immune problem can be reformdlate

forall @ € NP thereis aninfinité € P such that at least one of the sgts7 or ({0, 1}*\Q) NI
is an infinite set in P.
Let B = DTIME(2"O(”). Then one can show along the lines of the proof of Propositi®rihe
following chain of implications, the last one being the asption used in Theorem 11:

Proposition 16. Consider the following statements:
(a) NP does not have measure OB#.
(b) NP contains ark-bi-immune problem.

(c) There is no infinite sef C {0, 1}* such that for eveny, C {0,1}* in NP the problemZL N I is in
DTIME (nC(e9 ™)),

(d) For every time constructible and increasing function
NTIME (h°() ¢ DTIME (hO(9),

Then (a) implies (b), (b) implies (c), and (c) implies (d).
The statements (a) and (b) have been considered in [7, 9].

4.2. The construction problem associated witlp-Acc. We consider the construction problem associated
with p-Acc:

p-CONSTR-ACC
Instance: A nondeterministic Turing machirfé andn € N in unary.
Parameter: || M]|.
Problem: Construct an accepting run of at massteps ofM started with
empty input tape if there is one (otherwise report that tiseer®
such run).

Similarly as we convinced ourselves thafAcc € FPT,,;, one gets that-CoONSTR-AccC is nonuniformly
fixed-parameter tractable (it should be clear what this rmean

Definition 17. An fpt,,; Turing reduction(fpt Turing reductiof from a parameterized construction prob-
lem (@, k) to a parameterized (decision) probléfy, <) is a deterministic algorithiiR with an oracle

to (@', ') solving the construction problefi®,) and with the property that there are a (computable)
functionf : N — N, a computablg : N — N and ac € N such that for every instanaeof @

11

— the run ofR with inputz has length at mosf(x(x)) - |x|¢;
— for every oracle query?’ € Q’?” of the run ofA with inputz we havex(2’) < g(k(x)).

Often the construction problem has the same complexityeasdahresponding decision problem, that is, the
construction problem is fpt Turing reducible to the deaigiwoblem; forp-CONSTR-ACC we can show:

Theorem 18. (1) There is an fpi; Turing reduction fromp-CONSTR-ACC to p-AcCC.
(2) If p-Acc ¢ XP, then there is no fpt Turing reduction frophRCONSTR-ACC to p-AcCC.

Proof: (1) On an instanc@Vl, n) the desired reductioR first asks the oracle query¥l, n) € p-Acc?”. If
the answer is no, theR rejects. Otherwis®, by brute force, constructs an accepting run of at masteps
of M. We analyze the running time &. Form € NletMy, ..., M, be the finitely many nondeterministic
Turing machines withlM; || < m and with an accepting run started with empty input tape.g.&e such
a run ofM; of minimum length. We set

f(m) =max{|pil,... |pel}-

Now itis not hard to see that the running timefobn the instancé@VI, n) can be bounded bijivi||© FIMID).
n.

(2) y contradiction, assume there is an fpt Turing reducidnom p-CONSTR-AcCcC to p-Acc. We show
howR can be turned into an algorithm witnessimghcc € XP.

According to the definition of fpt Turing reduction there a@mputable functiong, ¢ and ac € N
such that for every instan€®l, n) of p-CONSTR-AcC, the algorithnR will only make queries (M’ n') €
p-Acc?” with

IM)| < g(IM]l) and o’ < F(IM]) - nc. (11)

There are at mogt?(IMID . g(||M||) machinesM’ with ||M’|| < g(||M]|). For each such machind’ the
answer to queries of the form{V’, n’) € p-Acc?” with n’ < f(||M]|) - n© is determined by everyone
of the following f(||[M]|) - n¢ + 1 many statements: “the length of an accepting rufvBfof minimum
length is1”,..., “the length of an accepting run 8’ of minimum length isf(||M]|) - n<”, and “there is

no accepting run ail’ of length is< f(||M]||) - n<.” Therefore the table of theoretically possible answers

contains at most
)Qf(HMH).f(HM”)

(A - e 41
entries, that isO(n"(IM)) many for some computable. For each such possibility we simulakeby
replacing the oracle queries accordingly. For those piisisib whereR yields a purported accepting run
of M, we can check whether it is really an accepting rutviof m|

An analysis of the previous proof shows that we can even rutéhe existence of a reduction with
running timeO(|z|9(*(#))) instead ofy(x(z)) - |z|°.

Furthermore, the previous theorem is a special case of # fesslicewise monotone problems: Let
(Q, k) be a slicewise monotone parameterized problem (this conezp defined just before Lemma 4)
and assume tha&} has a representation of the form

(z,n) € Q « thereisy € {0,1}*: (|y| < f(|z]) - n¢ and(z, n, y) € QW), (12)

wheref : N — N is computable¢ € N andQyy is decidable in polynomial time. A string with the
properties on the right hand side isvitnessfor (z, n).

The construction problemCONSTR-(Q,) for every instancéx, n) of @ (with parametefz|) asks
for a witness of(x, n) if there is one (otherwise the nonexistence should be regprilong the lines of
the previous proofs one can show:

Proposition 19. Let (@, x) be a slicewise monotone parameterized problem with a reptation as
in (12).

(1) p-CoNsTR(Q,) is nonuniformly fixed-parameter tractable.

(2) There is an fpki Turing reduction fromp-CONSTR(Q,) t0 (Q, k).

(3) If (@, k) ¢ XP, then there is no fpt Turing reduction frgpaCONSTR-(Q, k) t0 (Q, k).

12

5. Some variants ofp-Acc

In Section 5.1 and Section 5.2 we analyze the complexity efprameterized problemsAcc- and
p-DTM-EXP-AcC, respectively, where

p-ACC—
Instance: A nondeterministic Turing machirie andn € N in unary.
Parameter: || M]|.
Question: DoesM accept the empty input tape @xactlyn steps?

and

p-DTM-EXP-AcCC
Instance: A deterministicTuring machinéVl andn € N in unary.
Parameter: ||M]|.
Question: DoesM accept the empty input tape in at ma@ststeps?

5.1. The complexity ofp-Acc_. Let M be a nondeterministic Turing machine. By suitably addiniylto
a state, which can be accessed and left nondeterminigtioak obtains a machifé* such that for all
n € N we have:

M accepts the empty input tapedhn steps <= M* accepts the empty input tape in exaatlgteps.

Hencep-Acc <P p-Acc_. Recall thap-Acc € FPT,,. On the other hang-Acc_ ¢ FPT,,if NE # E,
as shown by the following result; here NE NTIME (20(%).

Theorem 20. The following are equivalent:
— p-Acc. ¢ FPT.
— p-Acc_ ¢ XPy,.
- NE+#E.
In[1] itis shown thaip-Acc- € XP implies NE= E. We prove Theorem 20 by the following lemmas.

Lemma 21. If NE = E, thenp-Acc_ € FPT.

Proof: Consider the following classical problem:

Q

Instance: A nondeterministic Turing machiré andn € N in binary.
Question: DoesM accept the empty input tape in exactlynany steps?

Clearly@ € NE. Hence, by the assumption NEE, we can solvé) in time

9O([Ml|-+log n)

It follows thatp-Acc_ is decidable in time
O(n) + 20(IMI+logn) _ 9O(IMI) . ,O1)
henceitisin FPT. |
We encourage the reader to give a direct proof of the follgwasult:

Corollary 22. If NE = E, then the logicLy is an effectively widtf-bounded logic folP.

13

Proof: By the previous result, if NE= E, thenp-Acc— € FPT. Therefore-Acc € FPT asp-Acc <™
p-Acc—. Now Theorem 6 implies the claim. |

Lemma 23. If p-Acc- € XP,,, thenNE = E.

Proof: Assume thap-Acc_ € XP,,, and letQ C {0,1}* be in NE. We have to show th&t € E. Without
loss of generality we may assume that every @ starts with a‘l.” Let n(x) be the natural number with
binary representation; then

n(x) # n(y) forz,y € Q with = # y. (13)

As Q € NE there is a nondeterministic Turing machiMeand ac € N such that for every € {0,1}* the

machineM decides whether € @ in time
9¢|=|

and every run ofl on inputz has length at most®|*l. Note that forz starting with a 1”, we have
2¢ 12l = n(z)e.

We define a nondeterministic Turing machivg that started with empty input tape runs as follows:

Guess a string € {0, 1}*

if y does not start with al”, thenreject
SimulateM on inputy for n(y)¢ many steps
if M rejectsthen reject

a > 0w DN e

Make some additional dummy steps such that so far the total
running time ofM* is2 - n(y) — 1

6. Accept.

By (13) we have for every € {0, 1}* starting with a 1"
xr€Q <= M*acceptsthe empty input tape in exa@lyn(z)® many steps (14)

As p-Acc- € XP,,, for somed € N we can decide whethél* accepts the empty string in exactly
2 - n(z)¢ many steps in time

(2 n(a))".
Hencex € Q can be decided in tim2°(#D) thatis,Q € E. o
Proof of Theorem 20mmediate by Lemma 21 and Lemma 23. |

5.2. The complexity ofp-DTM-ExP-Acc. If in the problemp-Acc we replace the nondeterminis-
tic Turing machineM by a deterministic one simulating all computation pathsesfgthn of M with
empty input tape we “arrive ath-DTM-EXP-AcC; in particular,p-Acc <P' p-DTM-ExpP-Acc. As
p-DTM-EXP-Accis a slicewise monotone parameterized problem, we knovitthgt-DTm-ExP-AcCcC €
FPT, by Lemma 4. Clearly, FR, € XPn, and XP C XPyni € XPn. The problenp-DTm-ExP-Acc
lies in FPT,, \ XPyni, as we show:

Theorem 24. p-DTM-ExP-AccC ¢ XPypi.

Proof: Clearlyp-DTM-Exp-Acc =Pt p-DTM-INP-EXP-Acc, where

p-DTM-INP-EXP-ACC
Instance: A deterministic Turing machin®l, z € {0,1}*, andn € Nin
unary.
Parameter: ||M]| + |z|.
Question: DoesM acceptr in at most2™ steps?

14

Thus, it suffices to show thatDTm-INP-EXP-AccC ¢ XP,ni. By contradiction, let us assume that there
exists an algorithm that for every instanc@M, =, n) decides whethgiM, z, n) € p-DTM-INP-ExP-AcCC
in time
nt (IMII+z])
for some (not necessarily computable) functjonN — N.

We denote by en®1I) the encoding of a Turing machifd by a string in{0, 1}*. We consider the
following deterministic Turing machinkl:

M (z)
Ilx e {0,1}*
1. if 2 is not the encoding of a deterministic Turing machithen reject
2. determine the deterministic Turing machisewith z = endM)
3. m « the number of steps performed bl so far
4. SimulateA on (M, z, m + 3) for at most2™ steps
5. if the simulation does not hathenm < m + 1 and goto 4
6. if A accept§M, z, m + 3) in at most2™ stepsthen rejectelseaccept.

We finish the proof by a diagonal argument: We sgt:= endM,) and startM, with input zo. For
sufficiently largem € N we have
(m + 3)f (IMoll+lzol) < om.

Therefore eventuallvly with input 2y reaches amn, we call it mg, such that the simulation in Line 4
halts, that is,
A halts on inpu{My, x¢, mo + 3) in at most2™° steps. (15)

At that point the number of steps (of the runhf, on inputz,) is bounded by@™°*2, Hence,

M on inputz halts in< 2 4 2mo+2 < 2mo+3 steps, (16)
Thus
M acceptseg

<= M) acceptsr, in < 2™0F3 steps (by (16))

< A acceptqMy, zg, mo + 3) (by definition ofA)

< A acceptqMy, zg, mg + 3) in at most2™ steps (by (15))

< M)y rejectszg (by Line 6 in the definition oM),
the desired contradiction. a

6. On Godel's proof predicate
The Theorem on the Undecidability of First-Order Logicdels that the following problem is undecidable

FO-THEOREM
Instance: A first-order sentence.
Question: Doesy have a proof (i.e., i valid)?

Hence, we know that there is no computable bound on the leigthortest proofs of valid FO-sentences.
By mathematicians’ experience various valid FO-sentepoasly have quite long proofs, say, proofs of a
length> 2/¢!. How hard is it to recognize such “hard” valid sentences? Ehavhat is the complexity of
the problem:

15

FO-EXP-RROOF
Instance: A first-order sentence and a natural numbet in unary with
n > olel,
Question: Doesy have a proof of lengtkl n?

Clearly, FO-EXP-ROOFis sparse. Thus, by a result of Mahaney [8], it is not NP-hardess NP=P.
So how do we convince ourselves that it is intractable? Hsrgbrpose, we consider the parameterized
problem:

p-FO-PROOF
Instance: A first-order sentence and a natural numberin unary.
Parameter: ||
Question: Doesy have a proof of lengtkl n?

It is easy to see that if FO-EXPR®OF is decidable in polynomial time, themFO-PrROOF is fixed-
parameter tractable. Hence, in this section we try to getemde thap-FO-PROOF ¢ FPT. Clearly, the
corresponding classical problem:

FO-PrOOF
Instance: A first-order sentence and a natural numberin unary.
Question: Doesy have a proof of lengtkl n?

is NP-complete. This problem has been considered by Gididha asked whether it can be solved in time
O(n?) and at the same time asked “how strongly in gentrainumber of steps in finite combinatorial

problems can be reduced with respect to simple exhaustarelse(see [3]), that is, in this context he

addressed the P-NP-problem. Furthermore, he addressedrtsieuction problem for FO-#DOF.

We turn top-FO-PROOF. Asitis a slicewise monotone problem, by Lemma 4 we ha¥#O-PROOF €
FPT,,, afact that is also implied by:
Proposition 25. p-FO-ProoF <! p-Acc.

Proof: Let M, be a deterministic Turing machine that on infut =), wherep € FO andz € {0,1}%,
checks whether is a proof ofy. We may assume that there is a polynomiak N[X]| such thafV, on
input (¢, =) halts inexactlyqo (|| + |x|) steps.

For an FO-sentencg we letM,, be the Turing machine that first writgson a tape, then guesses a
stringz € {0,1}*, and finally simulate®l, on input(y,). One easily verifies fop € FO andn € N
that

(p,n) € p-FO-PROOF <= (Mg,, lol +n + qo|e| + n)) € p-Acg;

hence(p,n) — (M, |¢| + n + qo(|¢| + n)) is the desired reduction. ad

Theorem 26. If P[Tc] # NP[Tc], thenp-FO-PROOF ¢ FPT.

Clearly, this result would follow from Theorem 9 jfAcc <™ p-FO-ProOF. However we do not
know whether this is true. The following lemma, which is negdor the proof of Theorem 26, has the
flavour of containing such a reduction; however the sentengeould have a short proof, even though
every accepting run d¥l is long.

Lemma 27. There exists a polynomial time algorithfa that assigns to every nondeterministic Turing
machineM an FO-sentencepy such that for every, € N,

M accepts the empty input tapedhn steps = ¢y has a proof of lengthc n©). a7)
Moreover,

pm has a proof =— M accepts the empty input tape. (18)

16

Sketch of proofLet M be a nondeterministic Turing machine. As in standard probfee undecidability
of first-order logic (e.g., compare [4, Section X.4]), one dafine an FO-sentengg, of the form

v — Em
such that for every structucé:

(@) A | ¥ if and only if A “contains” the whole (possibly infinite) computation tree\ started with
empty input tape.

(b) If A = v¥m, then A E &y if and only if the state of some element of the computatioa ime4 of
M started with empty input tape is accepting).

To show (18) we assuma,; has a proof and choose “the” structutg consisting of the whole computation
tree ofM started with empty input tape. Asy is valid, we have4, = ¢y and by (a) we knowd = .
HenceA, = &y, which by (b) yields thabl accepts the empty input tape.

We turn to (17) and assume thdt accepts the empty tape i n steps. Using (a) and (b) one easily
verifies thatyy, is valid. Moreover, by (a), every model gfy contains an accepting path of lengthn.
“By following this run” we can translate it into a proof gfy; — &/, that is ofey, of length< n®M), The
details of such a translation are tedious but routine. |

Proof of Theorem 26The proofis similar to that of Theorem 9. By contradictios@se thap-FO-PROOF €
FPT. Then there is an algorithfy, that for every FO-sentengeandn € N decides whethep has a proof
of length< n in time

Fllel) - n®® (19)

for some computable and increasing functipbn: N — N. Furthermore, letA be the algorithm in
Lemma 27. We choosé € N such that the running time af on every nondeterministic Turing ma-
chineM is bounded by{M]||%. In particular,

loona| < ||MIJ|%. (20)

For the function: — f (%) we choosé : N — N according to Lemma 10 and show that NTIK#E (1)) C
DTIME (M),

For this purpose lef) C {0, 1}* be in NTIME(h°(")). We choose a nondeterministic Turing machine
M, and constants, d € N such that the machirfé, decides whether € Q in timec- h(|z|)? and every
run of Mg on inputz is ¢ - h(|z|)¢ time-bounded (recall thdtis time constructible).

We fixz € {0,1}* and letM, ,, be the nondeterministic Turing machine that, started witlpty input
tape, first writesz on some tape and then simulafés, started withz. We apply the algorithna\ on
Mg, and get an FO-sentenge:= ¢y, .. Now we have the following chain of implications (as the first
statement and the last one coincide all implications arévatgnces):

r€eEQ

= My accepts: in at moste - h(|z|)? steps
= My, accepts the empty string in at mast + ¢ - h(|z|)? steps (by definition oM,)
= My, accepts the empty string in at mast: h(|z|)¢ steps
= ¢ has a proof of length at mo&c - h(|z|))°™" (by (17) in Lemma 27)
= My , accepts the empty string (by (18) in Lemma 27)
= Mg acceptse (by definition ofMg)
= z€Q.

Hence,

z€Q < Aacceptyyp, (2¢- h(|z]))°W).
As the size oM, .. is O(||[Mq]|) + |z| - log ||, by (20) we have

lell < Mgl = (O(IMgl]) + |2[*)?. (21)

17

By (19) the running time oA on input(¢, (2¢ - h(|z]))°™) is bounded by
Flel) - 2e - a(J2)) < F(OUMeI) +)?) - A1z < (R(O(IMql)) + A(lz])) - A(|) 0.

This shows tha€ € DTIME (h(|z|)°™). 0

Remark 28. As we did in Theorem 11 fop-Acc we can refine the previous proof and show:

Assume that
NTIME (h°M)) ¢ DTIME (hO(9 7))y,

for every time constructible and increasing functionThenp-FO-PROOF ¢ XP.

We turn to the construction problem associated witRO-PROOF, that is, to:

p-CONSTR-FO-PROOF
Instance: A first-order sentence and a natural numberin unary.

Parameter: ||
Problem: Construct a proof of of length< n if there exists one.

It is well-known that the classical version pfCONSTR-FO-PROOF, namely

CONSTR-FO-PROOF
Instance: An FO-sentence and a natural number.
Problem: Construct a proof o of length< n if there exists one.

is NP-complete. Hence
Theorem 29. There is a polynomial time Turing reduction frddONSTR-FO-PROOFto FO-PROOF.

Assume thap-FO-PROOF ¢ FPT. Lety be a first-order sentence with a proof of length Then
part (4) of the next theorem shows that there is no efficienpttedind such a proof even if we are given all
the theorems of a length boundeddiy) for some fixed computable Hence the polynomial time Turing
reduction of the preceding theorem, in general will ask epsef(y), m) € FO-PROOF?” for sentences
with || only bounded by some polynomial in the length of a proof op.

Theorem 30. (1) p-CoNSTR-FO-PrOOFis nonuniformly fixed-parameter tractable.
(2) There is an fpki Turing reduction fronp-CONSTR-FO-PROOFt0 p-FO-PROOF.
(3) Ifp-FO-PROOF ¢ XP, thenthere is no fpt Turing reduction frgghRCONSTR-FO-PROOFt0 p-FO-PROOF

(4) If p-FO-PROOF ¢ FPT, then there is no fpt-algorithnA with an oracle toFO-THEOREM (cf.
page 15) that solves the probleshRCONSTR-FO-PROOF in such a way that for some computable
functiong : N — N on every instancép, n) of p-CONSTR-FO-PROOF the algorithmA only makes
oracle queries ¥ € FO-THEOREM?” for v with || < g(|¢]).

Proof: As p-FO-PROOFis slicewise monotone, parts (1) to (3) are special instaon€@roposition 19.

We turn to a proof of part (4). By contradiction assume thatéhs an algorithmh with an oracle to
FO-THEOREM that solves the problemCoNSTR-FO-PROOF in such a way that for some computable
functiong : N — N we have for every instande, n) of p-CONSTRFO-PROOF

(@) the run ofA on input(p,n) has length< g(|¢|) - n¢;

(b) for every oracle query) € FO-THEOREM?” of the run ofA on input(yp, n) we havely)| < g(|¢]).

18

We show howA can be turned into an algorithm witnessindg-O-PROOF € FPT.

For an FO-sentencg we compute an enumeratiaof , v,, . . . , 1 of all FO-sentences of length
g(|¢]). By (b) every oracle query of the run @f on input(y, n) has the form ¥; € FO-THEOREM?”
for somei € [k]. For each such question there are two possibilities: ¢ FO-THEOREM' and “¢; ¢
FO-THEOREM.” Thus for all+; together we have

2k

possibilities, that isQ(2/(#1)) many for some computabje(note thatk only depends o). Now, given

in additionn € N, for each such possibility we simulateon input(,, n) by replacing the oracle queries
accordingly. For those possibilities whekeyields a purported proof, we can check whether it is really a
proof of o of length< n. By (a) the overall time needed by this procedur@{&’(1¥D . (¢(|p|)-nc+n°M)),
which is an fpt-time.]

Acknowledgements We thank Martin Grohe for drawing our attention to the protje Acc and for some
discussions on the topic. Furthermore, we thank ChristilfR€ for pointing out to us the relationship
of the property derived in Lemma 12 with bi-immune sets anfitefan Kreutzer for some discussions on
least fixed-point logic.

References

[1] Y. Aumann and Y. Dombb. Fixed structure complexity. Pnoceedings of the 3rd International
Workshop on Parameterized and Exact Computation (IWPE@GROGD Grohe and R. Niedermeier
(eds.), Lecture Notes in Computer Science 5018, 31-42,.2008

[2] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polyiabtime. Annals of Pure and Applied
Logic, 100:141-187, 1999.

[3] S. Buss. On Godel's Theorem on length of proofs Il: loweunds for recognizing symbol prov-
ability. In Feasible Mathematics |P. Clote and J. Remmel (eds.), Birkhauser, 57-90, 1995.

[4] H.-D. Ebbinghaus, J. Flum, and W. Thom&séathematical Logic2nd edition Springer, 1994.
[5] H.-D. Ebbinghaus and J. Fluniinite Model Theory2nd edition, Springer, 1999.
[6] J. Flum and M. GroheParameterized Complexity Theo&pringer, 2006.

[7] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fraggabmetry of complexity classes. In the
Complexity Theory Column, L.A. Hemaspaandra (e8Il;ACT New86, 24—38, 2005.

[8] S. R. Mahaney. Sparse complete sets of NP: solution ofnjecture of Berman and Hartmanis.
Journal of Computer and System Sciegrit®(2): 130-143, 1982.

[9] E. Mayordomo. Almost every set in exponential time isiRAbmune. Theoretical Computer Sci-
ence 136(2): 487-506, 1994.

[10] A. Nash, J. Remmel, and V. Vianu. PTIME queries revikitén Proceedings of the 10th Interna-
tional Conference on Database Theory (ICDT 2Q05)Eiter and L. Libkin (eds.), Lecture Notes in
Computer Science 3363, 274-288, 2005.

[11] M.Y. Vardi. On the complexity of bounded-variable gigs: In Proceedings of the 14th ACM
Symposium on Principles of Database Systgrages 266—276, 1995.

19 ECCC ISSN 1433-809

http://eccc.hpi-web.de/

