
A logic for PTIME and a parameterized halting problem

Yijia Chen∗ Jörg Flum†

June 10, 2008

Abstract

In [2] a logic LY has been introduced as a possible candidate for a logic capturing the PTIME
properties of structures (even in the absence of an orderingof their universe). A reformulation of this
problem in terms of a parameterized halting problemp-ACC for nondeterministic Turing machines has
been given in [10]. We analyze the precise relationship betweenLY andp-ACC. Moreover, we show
thatp-ACC is not fixed-parameter tractable if “P6= NP holds for all time constructible functions.” This
property also implies that the natural parameterization ofGödel’s proof predicate is not fixed-parameter
tractable. Furthermore, the complexity of various variants ofp-ACC is considered.

1. Introduction.

The existence of a logic expressing precisely the PTIME properties remains the central problem in descrip-
tive complexity. A proof that such a logic does not exist would yield that P 6= NP and hence solve the
most prominent open problem in complexity theory. It is well-known that least fixed-point logic FO(LFP)
captures the PTIME properties onorderedstructures. However the property of anarbitrary finite structure
of having a universe of even cardinality is not expressible in FO(LFP). Of course there are artificial logics
expressing precisely the PTIME properties, however they donot fulfill a natural requirement to logics in
this context, namely the condition:

(∗) There is an algorithm that decides whetherA is a model ofϕ for all structuresA and
sentencesϕ of the logic and that does this for fixedϕ in time polynomial in the size ofA.

In [2] the authors introduce a logicLY related to FO(LFP), in which precisely the PTIME propertiesare
expressible, however it is not known whetherLY satisfies the effectivity condition (∗). In [10] it has
been shown that the statement “LY satisfies (∗)” can be equivalently formulated as a statement concerning
the complexity of a halting problem for nondeterministic Turing machines. This reformulation is best
expressed in the terminology of parameterized complexity.We consider theparameterized acceptance
problemp-ACC for nondeterministic Turing machines.

p-ACC

Instance: A nondeterministic Turing machineM andn ∈ N in unary.
Parameter: ‖M‖, the size ofM.

Question: DoesM accept the empty input tape in at mostn steps?

Then
LY satisfies (∗) if and only if p-ACC ∈ XP.1

In this paper we mainly deal with two questions:

(a) What does “p-ACC is fixed-parameter tractable” mean for the logicLY ?

(b) What is the complexity ofp-ACC?

∗Shanghai Jiaotong University, China. Email:yijia.chen@cs.sjtu.edu.cn
†Albert-Ludwigs-Universität Freiburg, Germany. Email:joerg.flum@math.uni-freiburg.de
1Depending on the exact formulation of (∗), we need the class XP of uniform or of nonuniform parameterized complexity; see

Section 2 for the precise definitions.

1

Electronic Colloquium on Computational Complexity, Report No. 83 (2008)

ISSN 1433-8092

While we can answer question (a), we are only able to relate the statements “p-ACC ∈ XP” and “p-ACC ∈
FPT” with other open problems of complexity theory.

More precisely, the content of the different sections is thefollowing. It is known that the time bound
for the evaluation of a sentenceϕ of FO(LFP) in a structureA contains a factor‖A‖O(|ϕ|); an analysis of
the model-checking algorithm shows that a factor of the form‖A‖O(width(ϕ)) suffices, where width(ϕ), the
width of ϕ, essentially is the maximum number of free variables in a subformula ofϕ. The main result of
Section 3 shows that for the logicLY a bound of the second type is equivalent top-ACC ∈ FPT.

Let P[TC] 6= NP[TC] mean that there isno time constructible and increasing functionh such that
NTIME(hO(1)) ⊆ DTIME(hO(1)) (and hence, NTIME(hO(1)) = DTIME(hO(1))). In Section 4 we
show that the inequality P[TC] 6= NP[TC] implies thatp-ACC /∈ FPT and that a stronger hypothesis where
DTIME(hO(1)) is replaced by DTIME(hO(log h)) implies thatp-ACC /∈ XP. In Section 2.1 we relate these
hypotheses to other statements of complexity theory. In particular, we shall see that P[TC] 6= NP[TC] holds
if there is a P-bi-immune problem in NP.

We consider the construction problem associated withp-ACC in Section 4.2 and show that it is not fpt
Turing reducible top-ACC in casep-ACC /∈ XP.

Variants ofp-ACC are studied in Section 5. First we deal withp-ACC=, the problem obtained from
p-ACC by asking for an accepting run ofexactlyn steps. We improve a result of [1] and show that
p-ACC= ∈ FPT if and only if NE = E (that is, NTIME(2O(n)) = DTIME(2O(n))). Furthermore, we
introduce a halting problem for deterministic Turing machines, the “deterministic version” ofp-ACC, and
show that it is a natural example of a problem nonuniformly fixed-parameter tractable but not contained in
uniform XP.

In Section 6 we show that a further important problem is not inFPT if P[TC] 6= NP[TC] holds. The
undecidability of first-order logic tells us that there is nocomputable bound on the length of the shortest
proof of a valid FO-sentence (that is, first-order sentence). By mathematicians’ experience various valid
FO-sentencesϕ only have quite long proofs, say, proofs of a length≥ 2|ϕ|. How hard is it to recognize
such “hard” valid sentences? This is a sparse problem and hence not NP-hard unless NP=P. So how do we
convince ourselves that it is intractable? It turns out thatthe polynomial time tractability of this problem
implies the fixed-parameter tractability ofp-FO-PROOF, that is, of the problem asking, given a first-order
sentenceϕ and a natural numbern in unary, whetherϕ has a proof of length≤ n, where the parameter is
|ϕ|. We show thatp-FO-PROOF is not fixed-parameter tractable under P[TC] 6= NP[TC].

We should mention that some of the results could be formulated in more “logical terms” by using
instead of the halting problemp-ACC an appropriate parameterization of the (complement of) theproblem
INV introduced at the beginning of Section 3.

2. Preliminaries.

In this section we review some of the basic concepts of parameterized complexity and of logics or query
languages and their complexity.

2.1. Parameterized complexity.We identify problems with subsetsQ of {0, 1}∗. Clearly, as done mostly,
we present concrete problems in a verbal, hence uncodified form. We use both P and PTIME to denote the
class of problemsQ such thatx ∈ Q is solvable in polynomial time. All Turing machines have{0, 1} as
alphabet.

We viewparameterized problemsas pairs(Q, κ) consisting of a classical problemQ ⊆ {0, 1}∗ and a
parameterizationκ : {0, 1}∗ → N, which is required to be polynomial time computable.

We assume knowledge of the basic notions of parameterized complexity and refer to [6] for notions
not defined here. We denote by FPT, XP,. . . the usual (stronglyuniform) classes, by FPTuni,XPuni, . . .
their uniformversions, and by FPTnu,XPnu, . . . their nonuniformversions. For example,(Q, κ) ∈ FPT if
there is an algorithm solvingx ∈ Q in time f(κ(x)) · |x|O(1) for a computablef : N → N; moreover,
(Q, κ) ∈ FPTuni if there is an algorithm solvingx ∈ Q in timef(κ(x))·|x|O(1) for anarbitrary f : N→ N;
and(Q, κ) ∈ FPTnu if there is a constantc, an arbitrary functionf : N → N, and for everyk ∈ N an
algorithm solving the problemx ∈ Q for all x with κ(x) = k in timef(k) · |x|c.

We write(Q, κ) ≤fpt (Q′, κ′) and(Q, κ) ≤fpt-T (Q′, κ′) if there are an fpt reduction and an fpt Turing
reduction from(Q, κ) to (Q′, κ′), respectively (these concepts refer to the strongly uniform parameterized

2

complexity theory).

2.2. Logic. A vocabularyτ is a finite set of relation symbols. Each relation symbol has an arity. The
arity of τ is the maximum of the arities of the symbols inτ . A structureA of vocabularyτ , or τ -structure
(or, simply structure), consists of a nonempty setA called theuniverse, and an interpretationRA ⊆ Ar

of eachr-ary relation symbolR ∈ τ . We say thatA is finite, if A is a finite set. For finiteA we denote
by ‖A‖ the size ofA, that is, the length of a reasonable encoding ofA as string in{0, 1}∗ (see [6] for
details). If necessary, we can assume that the universe of a finite structure is[m] := {1, . . . ,m} for some
natural numberm ≥ 1, as all the properties of structures we consider are invariant under isomorphisms;
in particular, it suffices that from the encoding ofA we can recoverA up to isomorphism. Therefore,
the reader will easily convince himself that we can assume that there is a computable binary function bit
such that for every vocabularyτ andm ∈ N (we just collect the properties of bit we are going to use in
Section 3):

(1) ‖A‖ = bit(τ,m) for everyτ -structureA with universe of cardinalitym;

(2) bit(τ,m) < bit(τ ′,m′) for all τ, τ ′ with τ ⊆ τ ′ andm,m′ with m < m′;

(3) bit(τ,m) = O(log |τ | · |τ | ·m) for everyτ containing only unary relation symbols;

(4) bit(τ ∪ {R},m) = O(bit(τ,m) +m2) for every binary relation symbolR not in τ .

We assume familiarity withfirst-order logicFO and its extensionleast fixed-point logicFO(LFP) (e.g.,
see [5]). We denote by FO[τ] and FO(LFP)[τ] the set of sentences of vocabularyτ of FO and of FO(LFP),
respectively.

It is known that every FO(LFP)-sentence is equivalent to an FO(LFP)-sentence in normal form, where
an FO(LFP)-sentenceϕ is in normal formif it has the form

ϕ = ∃x1 . . . ∃xk[LFPx1...xk,Xψ(x1 . . . xk, X)]x1 . . . xk, (1)

whereψ is a first-order formula,X is ank-ary relation variable, andx1, . . . , xk are the (first-order) vari-
ables free inψ. Thewidth width(ϕ) of ϕ as in (1) is the width of the first-order formulaψ, that is, the
maximum number of free variables of a subformula ofψ. Clearly, width(ϕ) ≤ |ϕ|. Moreover analyzing
standard proofs that convert an FO(LFP)-sentence¬ϕ, whereϕ is in normal form, into normal form show:

Lemma 1. There is a constantc ∈ N such that in polynomial time we obtain for everyFO(LFP)-sentence
ϕ in normal form a normal form for the sentence¬ϕ of width≤ c ·width(ϕ).

The following fact is well-known and implicit in [11]:

Proposition 2. The model-checking problemA |=LFP ϕ for finite structuresA andFO(LFP)-sentencesϕ
in normal form can be solved in time

O(|ϕ| · |A|2·width(ϕ) · width(ϕ) + ‖A‖) = O(|ϕ|2 · ‖A‖2·width(ϕ)).

2.3. Logics capturing PTIME. For our purposes, alogic consists:

– for every vocabularyτ , of a decidable setL[τ] of strings, the set ofL-sentences of vocabularyτ ;

– of a satisfaction relation|=L; if a pair (A, ϕ) is in |=L, thenA is a τ -structure andϕ ∈ L[τ] for
some vocabularyτ .

We take over the following terminology from [10].

Definition 3. LetL be a logic.L is a logic for P, if:

(1) (L capturesP) for all vocabulariesτ and all classes C (of encodings) of finiteτ -structures closed
under isomorphisms we have

C ∈ P ⇐⇒ for someL[τ]-sentenceϕ: C =
{
A | A |=L ϕ

}
;

3

(2) (there is a computable evaluator) there is an algorithmA deciding|=L, that is, for every finite struc-
tureA andL-sentenceϕ the algorithmA decides whetherA |=L ϕ.

We say thatL is aP-bounded logic forP if (1) holds and we can choose the algorithmA in (2) in such
a way that for every fixedL-sentenceϕ it runs in polynomial time (polynomial in the size ofA).

Hence, ifL is a P-bounded logic for P, then for everyL-sentenceϕ the algorithmA witnesses that
{A | A |=L ϕ} lies in P. However, we do not necessarily know ahead of time the bounding polynomial.

We say thatL is an effectivelyP-bounded logic forP if L is a P-bounded logic for P and if in addition to
the algorithmA there is a computable function that assigns to everyL-sentenceϕ a polynomialq ∈ N[X]
such thatA decides whetherA |=L ϕ in ≤ q(‖A‖) steps.

3. The logicLY for polynomial time and the parameterized halting problemp-ACC.

First we recall the definition of the syntax and semantics of the logicLY , introduced in a slightly different
form in [2]. For a vocabularyτ let τ< := τ ∪ {<}, where< is a binary relation symbol not inτ .

We define the relation INV between sentences of FO(LFP) and natural numbers. A pair(ϕ,m) is in
INV if ϕ ∈ FO(LFP)[τ<] for some vocabularyτ and if in structures with universe of cardinality≤ m the
satisfaction relation forϕ is invariant under a change of the ordering<; more precisely:

(ϕ,m) ∈ INV ⇐⇒ ϕ ∈ FO(LFP)[τ<] for some vocabularyτ ,m ∈ N, and for allτ -structuresA

with |A| ≤ m and all orderings<1 and<2 onA we have

(A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ.

We mostly write INV(ϕ,m) for (ϕ,m) ∈ INV.
ThenLY [τ] := FO(LFP)[τ<] and for aτ -structureA and anLY [τ]-sentenceϕ the satisfaction relation

|=LY
is defined by

A |=LY
ϕ ⇐⇒ INV(ϕ, |A|) and for some ordering< onA: (A, <) |=LFP ϕ.

Of course, in this definition we could replace “for some ordering” by “for all orderings.” In the following
in effectivity considerations we will denote by<A the ordering onA given by the encoding ofA. Hence

A |=LY
ϕ ⇐⇒ INV(ϕ, |A|) and (A, <A) |=LFP ϕ.

Since
INV(ϕ,m) ⇐⇒ INV(¬ϕ,m),

we get
INV(ϕ, |A|) ⇐⇒ (A |=LY

ϕ orA |=LY
¬ϕ). (2)

As FO(LFP) is a “logic for P on ordered structures,” one easily verifies thatLY is a logic for P. The authors
of [2] ask whetherLY is a P-bounded logic for P. It is conjectured that it is not a P-bounded logic for P.
In [10] this question (or conjecture) is reformulated as an effectivity property for a halting problem for
nondeterministic Turing machines. This reformulation is best expressed in the terminology of parameter-
ized complexity. We consider theparameterized acceptance problemp-ACC for nondeterministic Turing
machines.

p-ACC

Instance: A nondeterministic Turing machineM andn ∈ N in unary.
Parameter: ‖M‖.

Question: DoesM accept the empty input tape in at mostn steps?

The problemp-ACC lies in FPTnu. In fact, fix k ∈ N; then there are only finitely many nondeterministic
Turing machinesM with ‖M‖ = k, say,M1, . . . ,Ms. For eachi ∈ [s] let `i be the smallest natural
number̀ such that there exists an accepting run ofMi on empty input tape of length̀. We set̀ i = ∞ if

4

Mi does not accept the empty input tape. Hence the algorithmAk that on any instance(M, n) of p-ACC

with ‖M‖ = k determines thei with M = Mi, and then accepts if and only if`i ≤ n has running time
O(‖M‖ + n); thus it witnesses thatp-ACC ∈ FPTnu.

We call a parameterized problem(Q, κ) slicewise monotoneif its instances have the form(x, n), where
x ∈ {0, 1}∗ andn ∈ N in unary, ifκ(x, n) = |x|, and finally if for allx ∈ {0, 1}∗ andn, n′ ∈ N we have

(x, n) ∈ Q andn < n′ imply (x, n′) ∈ Q.

In particular,p-ACC is slicewise monotone and the preceding argument shows:

Lemma 4. If (Q, κ) is slicewise monotone, then(Q, κ) ∈ FPTnu.

Is p-ACC ∈ FPTuni or, at least,p-ACC ∈ XPuni? It turns out that the conjecture “LY is not a P-bounded
logic for P” mentioned above is equivalent top-ACC /∈ XPuni:

Proposition 5 ([10]). (1) LY is an effectivelyP-bounded logic forP if and only ifp-ACC ∈ XP.

(2) LY is aP-bounded logic forP if and only ifp-ACC ∈ XPuni.

However it is not even clear whetherp-ACC /∈ FPT. Do the statementsp-ACC ∈ FPT andp-ACC ∈
FPTuni also correspond to natural properties of the logicLY ? We address this problem in this section.

As every FO(LFP)-sentence is equivalent to an FO(LFP)-sentence in normal form, the same holds for
LY . Recall that we already know thatLY is a logic for P; in particular there is an algorithmA that decides
whetherA |=LY

ϕ. We say thatLY is an(effectively) widthP-bounded logic forP if this algorithmA can
be chosen in such a way that there is a (computable) functionh and a constantc such thatA |=LY

ϕ can
be solved in time

O
(
h(|ϕ|) · ‖A‖c·width(ϕ)

)

for structuresA andLY -sentencesϕ in normal form. By Proposition 2, the logic FO(LFP) “is an effectively
width P-bounded logic for P on ordered structures.” The mainresult of this section is:

Theorem 6. (1) LY is an effectively widthP-bounded logic forP if and only ifp-ACC ∈ FPT.

(2) LY is a widthP-bounded logic forP if and only ifp-ACC ∈ FPTuni.

The following observations will lead to a proof of the direction “from right to left” in the statements of
the theorem (moreover, they implicitly contain a proof of the corresponding directions of Proposition 5).

For anLY -sentenceϕ in normal form and a suitable time constructible functiont : N → N we will
need a nondeterministic Turing machineMϕ(t) that, started with empty tape, operates as follows: In a first
phase it readsϕ and extracts its vocabularyτϕ, the set of relation symbols that do occur inϕ; in a second
phase it writes a word of the form1m for somem ≥ 1 on some tape. The third phase (the main phase)
consists of at mostt(m) + 1 steps (this can be ensured ast is time constructible). IfMϕ(t) does not stop
during the firstt(m) steps of the main phase, then it stops in the next step and rejects. During thist(m)
steps,Mϕ(t) guesses (the encoding of) aτϕ-structureA with universe[m] and two orderings<1 and<2

on [m] and checks whether ((A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ). If this is not the case, thenMϕ(t)
accepts; otherwise it rejects.

The first phase needsO(|ϕ|), say,
d1 · |ϕ|

steps and the second onem steps. To guess aτϕ-structureA with universe[m] and two orderings<1 and
<2 requires

bit(τϕ,m) + 2m2

bits (see Subsection 2.2) and hence as many steps.
Finally, according to Proposition 2, the equivalence ((A, <1) |=LFP ϕ ⇐⇒ (A, <2) |=LFP ϕ) can be

checked in timeO(|ϕ|2 · bit((τϕ)<,m)2·width(ϕ)), that is, in

d2 · |ϕ|
2 · bit((τϕ)<,m)2·width(ϕ)

5

steps for somed2.
We define

tϕ(m) := bit(τϕ,m) + 2m2 + d2 · |ϕ|
2 · bit((τϕ)<,m)2·width(ϕ);

t′ϕ(m) := d1 · |ϕ|+m+ tϕ(m).
(3)

Therefore, astϕ is increasing and as we can defineMϕ(tϕ) in such a way that, oncem has been chosen,
the two parts of the main phase need exactly bit(τϕ,m) + 2m2 andd2 · |ϕ|

2 · bit((τϕ)<,m)2·width(ϕ) steps,
respectively, we have

INV(ϕ,m) ⇐⇒ Mϕ(tϕ) does not accept the empty string in≤ t′ϕ(m) steps

⇐⇒ (Mϕ(tϕ), t′ϕ(m)) /∈ p-ACC.

Now we can show one direction of Theorem 6, namely:

Lemma 7. (1) If p-ACC ∈ FPT, thenLY is an effectively widthP-bounded logic forP.

(2) If p-ACC ∈ FPTuni, thenLY is a widthP-bounded logic forP.

Proof: Assume(M, n) ∈ p-ACC can be solved in time

f(‖M‖) · ne (4)

for some constante ∈ N and some (computable) functionf : N → N. For every structureA and every
LY -sentenceϕ, we have

A |=LY
ϕ ⇐⇒ INV(ϕ, |A|) and(A, <A) |=LFP ϕ

⇐⇒ (Mϕ(tϕ), t′ϕ(|A|)) /∈ p-ACC and(A, <A) |=LFP ϕ.

By the definition (3) of the functiontϕ and the properties of the bit-function mentioned in Section2.2, we
see that there is a computable functiong such thatt′ϕ(|A|) ≤ g(|ϕ|) · ‖A‖O(width(ϕ)). As Mϕ(tϕ) depends
only onϕ, we see, by (4) and Proposition 2, that there is an algorithm and a (computable) functionh
such that for every structureA and everyLY -sentenceϕ the problemA |=LY

ϕ can be solved in time
h(|ϕ|) · ‖A‖c·width(ϕ). 2

We turn to the other directions in Theorem 6. LetM be a nondeterministic Turing machine and let
m0(M) be the maximum of the number of states and the number of tapes.We can assume that[k] is the
set of states ofM (for somek ≤ m0) and that 1 is its initial state. We letP0, P1, . . . , Pk be unary relation
symbols. We shall see that for the vocabularyτ := {P0, . . . , Pk} there is an FO(LFP)[τ<]-sentenceϕM in
normal form with the following properties:

For everyτ -structureA:

(1) If |A| < m0, then for all orderings<A onA we have(A, <A) |=LFP ϕM.

(2) If |A| ≥ m0 andPA
0 , . . . , P

A
k are not pairwise disjoint subsets ofA, then for all orderings<A onA

we have(A, <A) |=LFP ϕM.

(3) Let |A| ≥ m0 and assume thatPA
0 , . . . , P

A
k are pairwise disjoint subsets ofA and<A an ordering

onA. Let a1, . . . , a|A| be the enumeration of the elements ofA according to the ordering<A and
chooseis such thatas ∈ P

A
is

for s ∈ [|A|].

(a) If there is aj ∈ [|A| − 1] such that the sequence1, i1, . . . , ij is the sequence of states of a
complete run ofM, started with empty input tape (in particular,is 6= 0 for all s ∈ [j]), then
(A, <A) |=LFP ϕM if and only if this run ofM is a rejecting one.

(b) If for all j ∈ [|A| − 1] the sequence1, i1, . . . , ij is not the sequence of states of a complete run
of M, started with empty input tape, then(A, <A) |=LFP ϕM.

6

We show that for everym ≥ m0(M)

(M,m) ∈ p-ACC ⇐⇒ not INV(ϕM,m). (5)

First assume that(M,m) ∈ p-ACC. Then for somej ∈ [m − 1] and i1, . . . , ij ∈ [k], the sequence
1, i1, . . . , ij is the sequence of states of an accepting run ofM. Using (3)(a), it is easy to construct a
structureA on [m] and an ordering<A such that(A, <A) 6|=LFP ϕM andPA

0 = {m}. We choose an
ordering<′ on [m] such thatm is the first element of<′ and hence,i1 = 0 under<′. By (3)(b) we see that
(A, <′) |=LFP ϕM. Hence, not INV(ϕ,m).

Contrary, if(M,m) /∈ p-ACC, it is easy to see, using (1)–(3), thatA |=LY
ϕM for every structureA

with |A| ≤ m; hence, INV(ϕ,m).

The sentenceϕM is obtained by standard techniques. We sketch the construction of ϕM. Recall that
{0, 1} is the alphabet ofM. The sentenceϕM will make use of the binary relation variableStateand the
ternary relation variablesHead, Letter0, Letter1 with the intended meaning

Statet s iff at time t the state iss

Headt i j iff at time t the head on tapei scans thejth cell

Letter0 t i j iff at time t there is a0 on thejth cell of tapei

Letter1 t i j iff at time t there is a1 on thejth cell of tapei.

To be able to apply the least fixed-point operator to a formulapositive in the corresponding variable(s), we
need also relation variablesCState, CHead, CLetter0 andCLetter1 for thecomplementsof the relations just
introduced. Then using simultaneous least fixed-points we can express the intended meaning ofϕM as

∃x[S-LFPt s State, t i j Head, t i j Letter0, t i j Letter1 t s CState, t i j CHead, t i j CLetter0, t i j CLetter1ψM]x

(even thoughM is nondeterministic, in the formulaψM we always get the state to be chosen in the next step
using the relationsP1, . . . , Pk). By standard means this sentence can be converted in an FO(LFP)-sentence
ϕM in normal form. Of course, the sentenceϕM depends on the machineM, however, and this is important,
it can be defined in such a way that its width is independent ofM; thereby it is crucial that we can address
theith element in the ordering< by a formula of width 3.

Assume now thatLY is an (effectively) width P-bounded logic for P and choose a constantc and a
(computable) functionh : N → N such that the model-checking problemA |=LY

ϕ for structuresA and
LY -sentencesϕ in normal form can be solved in time

h(|ϕ|) · ‖A‖c·width(ϕ). (6)

We show thatp-ACC ∈ FPTuni (p-ACC ∈ FPT). Let (M,m) be an arbitrary instance ofp-ACC. If
m < m0(M0) (≤ ‖M‖), we check whether(M,m) ∈ p-ACC by brute force. Otherwise, we construct
from M the sentencesϕM and¬ϕM (more precisely, the FO(LFP)-sentence in normal form equivalent to
¬ϕM). Moreover we choose theτ -structureA with A = [m] and empty relations). Then, by property (3)
of the bit-function (see Section 2.2), we have

‖A‖ = O(log |τ | · |τ | · |A|) = O(|ϕM|
2 ·m). (7)

As by (2)
INV(ϕM,m) ⇐⇒ (A |=LY

ϕM orA |=LY
¬ϕM),

we obtain by (5)
(M,m) /∈ p-ACC ⇐⇒ (A |=LY

ϕM orA |=LY
¬ϕM).

Therefore, by (7), (6), and Lemma 1, we see that there is a (computable) functionf and a constante ∈ M

(recall that there is a constant bounding the width ofϕM for all nondeterministic Turing machines) such
that(M,m) ∈ p-ACC can be solved in timef(‖M‖) ·me. This finishes the proof of Theorem 6. 2

By refining the previous proof we obtain:

7

Corollary 8. For sufficiently largew ∈ N the problem

Instance: A structureA and anLY [1]-sentenceϕ of width≤ w.
Problem: IsA |=LY

ϕ?

is co-NP-complete.

Proof: Clearly the problem is in co-NP. Now letQ be any problem in co-NP. We give a polynomial
reduction ofQ to the problem in the statement. LetM be a polynomial time nondeterministic Turing
machine such that for allx ∈ {0, 1}∗ we have

x ∈ Q ⇐⇒ no run ofM acceptsx.

Choosec, d ∈ N such that the running time ofM on inputx is bounded byc·|x|d. We fixx ∈ {0, 1}∗. Again
we assume that[k] is the set of states ofM and that 1 is its starting state and setτ := {P0, . . . , Pk} with
unary relation variablesP0, . . . , Pk. Along the lines of the previous proof one obtains an FO(LFP)[τ<]-
sentenceϕM,x in normal form with the properties (1)–(3) (on page 6), wherenow in (3)(a),(b) we consider
complete runsstarted with the wordx in the input tape. One can obtainϕM,x in such a way that its width
does not depend onx; again, we use the fact that fori ∈ [|x|] we can address theith element in the ordering
< by a formula of width 3. LetAx be anyτ -structure with|A| ≥ max{m0(M), c · |x|d}. Then

x ∈ Q ⇐⇒ Ax |=LY
ϕM,x,

hencex 7→ (Ax, ϕM,x) is the desired reduction. 2

4. The parameterized complexity ofp-ACC.

A simple padding argument shows that P= NP implies that

NTIME(hO(1)) ⊆ DTIME(hO(1)).

for every time constructible and increasing functionh : N→ N. Let

P[TC] 6= NP[TC]

mean that there isno time constructible and increasing functionh such that

NTIME(hO(1)) ⊆ DTIME(hO(1)).

Taking ash the identity function we see that P[TC] 6= NP[TC] implies P6= NP. It is not known whether the
converse implication holds. In Section 4.1 we are going to relate P[TC] 6= NP[TC] to further statements of
complexity theory. The main result of this section is:

Theorem 9. If P[TC] 6= NP[TC], thenp-ACC /∈ FPT.

For the proof of this result we need the following simple lemma:

Lemma 10. For every computable functionf : N → N there is a time constructible and increasing
functionh : N→ N such that for allx, y ∈ N

f((x+ y)2) ≤ h(x) + h(y).

Proof: We defineh0 : N→ N by

h0(n) := max
{
f(i2) | 0 ≤ i ≤ 2n

}

and leth : N→ N be a time constructible and increasing function withh0(k) ≤ h(k) for all k ∈ N. 2

8

Proof of Theorem 9: By contradiction assume thatp-ACC ∈ FPT. Then there is an algorithmA that for
every nondeterministic Turing machineM and every natural numbern decides whetherM accepts the
empty input tape in time

f(‖M‖) · nO(1)

for a computable and increasing functionf : N→ N. We chooseh according to Lemma 10 and show that
NTIME(hO(1)) ⊆ DTIME(hO(1)).

For this purpose letQ ⊆ {0, 1}∗ be in NTIME(hO(1)). We choose a nondeterministic Turing machine
MQ and constantsc, d ∈ N such that the machineMQ decides whetherx ∈ Q in timec ·h(|x|)d and every
run ofMQ on inputx is c · h(|x|)d time-bounded (recall thath is time constructible).

We fix x ∈ {0, 1}∗ and letMQ,x be the nondeterministic Turing machine that, started with empty input
tape, first writesx on some tape and then simulatesMQ started withx.

Clearly

x ∈ Q ⇐⇒ MQ,x accepts the empty string in at most|x|+ c · h(|x|)d steps

⇐⇒ MQ,x accepts the empty string in at most2c · h(|x|)d steps

⇐⇒ A accepts(MQ,x, 2c · h(|x|)
d).

Note that the size ofMQ,x isO(‖MQ‖)+ |x| · log |x|. The running time ofA on input(MQ,x, 2c ·h(|x|)
d)

is bounded by

f(O(‖MQ‖) + |x| · log |x|) · (2c · h(x))O(1) ≤
(

h(O(‖MQ‖)) + h(|x|)
)

· h(x)O(1).

As ‖MQ‖ is a constant, this showsQ ∈ DTIME(h(x)O(1)). 2

We can refine the previous argument to getp-ACC /∈ XP; however we need a complexity-theoretic
assumption (apparently) stronger than P[TC] 6= NP[TC].

Theorem 11. Assume that
NTIME(hO(1)) 6⊆ DTIME(hO(log h))

for every time constructible and increasing functionh. Thenp-ACC /∈ XP.

Proof: Assume thatp-ACC ∈ XP. Then there is an algorithmA that for every nondeterministic Turing
machineM and every natural numbern decides whetherM accepts the empty input tape in time

O(nf(‖M‖))

for a computable and increasing functionf : N → N. We chooseh according to Lemma 10. We de-
fine g : N → N by g(n) := 2h(n); clearly g is time constructible and increasing, too. We show that
NTIME(gO(1)) ⊆ DTIME(gO(log g)).

Let Q ⊆ {0, 1}∗ be an arbitrary problem in NTIME(gO(1)). Let MQ andMQ,x for x ∈ {0, 1}∗ be
defined as in the previous proof, however, nowg takes over the role ofh. As there we get

x ∈ Q ⇐⇒ A accepts(MQ,x, 2c · g(|x|)
d).

The running time ofA on input(MQ,x, 2c · g(|x|)
d) is bounded by

O
(
g(|x|)d·f(O(‖MQ‖)+|x|)

)
≤ O

(

g(|x|)d·
(
h(O(‖MQ‖))+h(|x|)

))

≤ O
(

g(|x|)d·
(
h(O(‖MQ‖))+log g(|x|)

))

.

As ‖MQ‖ is a constant, this showsQ ∈ DTIME(gO(log g)).

4.1. Relating P[TC] 6= NP[TC] to other statements.For the purposes of this section the following lemma
will be useful.

9

Lemma 12. Assume that for some time constructible and increasingh : N→ N we have

NTIME(hO(1)) ⊆ DTIME(hO(1)).

Then there is an infinite setI ⊆ {0, 1}∗ such that for every problemQ ⊆ {0, 1}∗ in NP the problemQ ∩ I
is in P.

Proof: Let h : N→ N be time constructible and increasing such that

NTIME(hO(1)) ⊆ DTIME(hO(1)).

We show that
I :=

{
11 . . .11
︸ ︷︷ ︸

h(m) times

∣
∣ m ∈ N

}

has the desired property. In fact, letQ ⊆ {0, 1}∗ be in NP. We want to show that

Q ∩ I =
{

11 . . . 11
︸ ︷︷ ︸

h(m) times

∣
∣ m ∈ N and11 . . . 11

︸ ︷︷ ︸

h(m) times

∈ Q
}

is in P. However we first we consider the problem

Q0 :=
{

11 . . . 11
︸ ︷︷ ︸

m times

∣
∣ m ∈ N and11 . . . 11

︸ ︷︷ ︸

h(m) times

∈ Q
}
.

Claim 1.Q0 ∈ DTIME(hO(1)).

Proof of the claim.AsQ is in NP andh is time constructible, one easily verifies thatQ0 ∈ NTIME(hO(1)).
Hence, we get our claim by the assumption NTIME(hO(1)) ⊆ DTIME(hO(1)). a

Clearly,
Q ∩ I =

{
11 . . . 11
︸ ︷︷ ︸

h(m) times

∣
∣ m ∈ N and11 . . . 11

︸ ︷︷ ︸

m times

∈ Q0

}
. (8)

As h is time constructible, one can check for everys ∈ {0, 1}∗ whethers = 11 . . . 11
︸ ︷︷ ︸

h(m) times

for somem ∈ N in

time polynomial in|s|. Therefore and by Claim 1 we haveQ ∩ I ∈ P. 2

Let C be a classical complexity class, that is, C is a class of problems. Recall that a problemQ ⊆
{0, 1}∗ is C-bi-immuneif bothQ and the complement ofQ do not have aninfinite subsetthat belongs to
C. It has been conjectured that

NP contains a P-bi-immune problem. (9)

Moreover, Mayordomo [9] has proven that (9) is implied by a further conjecture, namely by:

NP does not have measure 0 in E. (10)

This statement (10) is often used as a hypothesis in the theory of resource bounded measures [7]. Of course,
E is the class of problems solvable in time2O(n). For the corresponding notion of measure we refer to [9].
The conditions (9) and (10) imply P[TC] 6= NP[TC]:

Proposition 13. Consider the following statements:

(a) NP does not have measure 0 inE.

(b) NP contains aP-bi-immune problem.

(c) There is no infinite setI ⊆ {0, 1}∗ such that for everyQ ⊆ {0, 1}∗ in NP the problemQ ∩ I is in P.

(d) P[TC] 6= NP[TC].

10

Then (a) implies (b), (b) implies (c), and (c) implies (d).

Proof: In Lemma 12 we have seen that “not (d) implies not (c).”
(b) ⇒ (c): By contradiction assume that there is a setI with the properties mentioned in (c). As

{0, 1}∗∩I = I, the setI is in P. LetQ ⊆ {0, 1}∗ be in NP. ThenQ∩I is in P and hence({0, 1}∗\Q)∩I =
I \ (Q ∩ I) ∈ P. As at least one of the setsQ ∩ I or ({0, 1}∗ \ Q) ∩ I is infinite, we see thatQ is not
P-bi-immune. AsQ was arbitrary this contradicts (b).

We already mentioned that “(a)⇒ (b)” was shown in Mayordomo [9]. 2

Hence, from Theorem 9, we get:

Corollary 14. If NP contains aP-bi-immune problem, thenp-ACC /∈ FPT.

Remark 15. Note that the assumption (b) in Proposition 13 seems to be much stronger than the assumption
(c). In fact, as shown by the proof of the previous proposition, “not (c)” means

there is an infiniteI ∈ P such that for allQ ∈ NP at least one of the setsQ ∩ I and
(
{0, 1}∗ \

Q
)
∩ I is an infinite set in P,

while NP contains no P-bi-immune problem can be reformulated as

for allQ ∈ NP there is an infiniteI ∈ P such that at least one of the setsQ∩I or
(
{0, 1}∗\Q

)
∩I

is an infinite set in P.

Let E2 = DTIME(2nO(1)

). Then one can show along the lines of the proof of Proposition13 the
following chain of implications, the last one being the assumption used in Theorem 11:

Proposition 16. Consider the following statements:

(a) NP does not have measure 0 inE2.

(b) NP contains anE-bi-immune problem.

(c) There is no infinite setI ⊆ {0, 1}∗ such that for everyL ⊆ {0, 1}∗ in NP the problemL ∩ I is in
DTIME(nO(log n)).

(d) For every time constructible and increasing functionh

NTIME(hO(1)) 6⊆ DTIME(hO(log h)).

Then (a) implies (b), (b) implies (c), and (c) implies (d).

The statements (a) and (b) have been considered in [7, 9].

4.2. The construction problem associated withp-ACC. We consider the construction problem associated
with p-ACC:

p-CONSTR-ACC

Instance: A nondeterministic Turing machineM andn ∈ N in unary.
Parameter: ‖M‖.

Problem: Construct an accepting run of at mostn steps ofM started with
empty input tape if there is one (otherwise report that thereis no
such run).

Similarly as we convinced ourselves thatp-ACC ∈ FPTuni, one gets thatp-CONSTR-ACC is nonuniformly
fixed-parameter tractable (it should be clear what this means).

Definition 17. An fptuni Turing reduction(fpt Turing reduction) from a parameterized construction prob-
lem (Q, κ) to a parameterized (decision) problem(Q′, κ′) is a deterministic algorithmR with an oracle
to (Q′, κ′) solving the construction problem(Q, κ) and with the property that there are a (computable)
functionf : N→ N, a computableg : N→ N and ac ∈ N such that for every instancex of Q

11

– the run ofR with inputx has length at mostf(κ(x)) · |x|c;

– for every oracle query “x′ ∈ Q′?” of the run ofA with inputx we haveκ(x′) ≤ g(κ(x)).

Often the construction problem has the same complexity as the corresponding decision problem, that is, the
construction problem is fpt Turing reducible to the decision problem; forp-CONSTR-ACC we can show:

Theorem 18. (1) There is an fptuni Turing reduction fromp-CONSTR-ACC to p-ACC.

(2) If p-ACC /∈ XP, then there is no fpt Turing reduction fromp-CONSTR-ACC to p-ACC.

Proof: (1) On an instance(M, n) the desired reductionR first asks the oracle query “(M, n) ∈ p-ACC?”. If
the answer is no, thenR rejects. OtherwiseR, by brute force, constructs an accepting run of at mostn steps
of M. We analyze the running time ofR. Form ∈ N let M1, . . . ,M` be the finitely many nondeterministic
Turing machines with‖Mi‖ ≤ m and with an accepting run started with empty input tape. Letρi be such
a run ofMi of minimum length. We set

f(m) = max{|ρ1|, . . . , |ρ`|}.

Now it is not hard to see that the running time ofR on the instance(M, n) can be bounded by‖M‖O(f(‖M‖))·
n.

(2) y contradiction, assume there is an fpt Turing reductionR from p-CONSTR-ACC to p-ACC. We show
howR can be turned into an algorithm witnessingp-ACC ∈ XP.

According to the definition of fpt Turing reduction there arecomputable functionsf, g and ac ∈ N

such that for every instance(M, n) of p-CONSTR-ACC, the algorithmR will only make queries “(M′, n′) ∈
p-ACC?” with

‖M′‖ ≤ g(‖M‖) and n′ ≤ f(‖M‖) · nc. (11)

There are at most2g(‖M‖) · g(‖M‖) machinesM′ with ‖M′‖ ≤ g(‖M‖). For each such machineM′ the
answer to queries of the form “(M′, n′) ∈ p-ACC?” with n′ ≤ f(‖M‖) · nc is determined by everyone
of the following f(‖M‖) · nc + 1 many statements: “the length of an accepting run ofM′ of minimum
length is1”,. . . , “the length of an accepting run ofM′ of minimum length isf(‖M‖) · nc”, and “there is
no accepting run ofM′ of length is≤ f(‖M‖) · nc.” Therefore the table of theoretically possible answers
contains at most

(
f(‖M‖) · nc + 1

)2f(‖M‖)·f(‖M‖)

entries, that isO(nh(‖M‖)) many for some computableh. For each such possibility we simulateR by
replacing the oracle queries accordingly. For those possibilities whereR yields a purported accepting run
of M, we can check whether it is really an accepting run ofM. 2

An analysis of the previous proof shows that we can even rule out the existence of a reduction with
running timeO(|x|g(κ(x))) instead ofg(κ(x)) · |x|c.

Furthermore, the previous theorem is a special case of a result for slicewise monotone problems: Let
(Q, κ) be a slicewise monotone parameterized problem (this concept was defined just before Lemma 4)
and assume thatQ has a representation of the form

(x, n) ∈ Q ⇐⇒ there isy ∈ {0, 1}∗:
(

|y| ≤ f(|x|) · nc and(x, n, y) ∈ QW

)

, (12)

wheref : N → N is computable,c ∈ N andQW is decidable in polynomial time. A stringy with the
properties on the right hand side is awitnessfor (x, n).

The construction problemp-CONSTR-(Q, κ) for every instance(x, n) of Q (with parameter|x|) asks
for a witness of(x, n) if there is one (otherwise the nonexistence should be reported). Along the lines of
the previous proofs one can show:

Proposition 19. Let (Q, κ) be a slicewise monotone parameterized problem with a representation as
in (12).

(1) p-CONSTR-(Q, κ) is nonuniformly fixed-parameter tractable.

(2) There is an fptuni Turing reduction fromp-CONSTR-(Q, κ) to (Q, κ).

(3) If (Q, κ) /∈ XP, then there is no fpt Turing reduction fromp-CONSTR-(Q, κ) to (Q, κ).

12

5. Some variants ofp-ACC

In Section 5.1 and Section 5.2 we analyze the complexity of the parameterized problemsp-ACC= and
p-DTM-EXP-ACC, respectively, where

p-ACC=

Instance: A nondeterministic Turing machineM andn ∈ N in unary.
Parameter: ‖M‖.

Question: DoesM accept the empty input tape inexactlyn steps?

and

p-DTM-EXP-ACC

Instance: A deterministicTuring machineM andn ∈ N in unary.
Parameter: ‖M‖.

Question: DoesM accept the empty input tape in at most2n steps?

5.1. The complexity ofp-ACC=. Let M be a nondeterministic Turing machine. By suitably adding toM

a state, which can be accessed and left nondeterministically, one obtains a machineM∗ such that for all
n ∈ N we have:

M accepts the empty input tape in≤ n steps⇐⇒ M∗ accepts the empty input tape in exactlyn steps.

Hencep-ACC≤fpt p-ACC=. Recall thatp-ACC ∈ FPTnu. On the other hand,p-ACC= /∈ FPTnu if NE 6= E,
as shown by the following result; here NE:= NTIME(2O(n)).

Theorem 20. The following are equivalent:

– p-ACC= /∈ FPT.

– p-ACC= /∈ XPnu.

– NE 6= E.

In [1] it is shown thatp-ACC= ∈ XP implies NE= E. We prove Theorem 20 by the following lemmas.

Lemma 21. If NE = E, thenp-ACC= ∈ FPT.

Proof: Consider the following classical problem:

Q
Instance: A nondeterministic Turing machineM andn ∈ N in binary.
Question: DoesM accept the empty input tape in exactlyn many steps?

ClearlyQ ∈ NE. Hence, by the assumption NE= E, we can solveQ in time

2O(‖M‖+log n).

It follows thatp-ACC= is decidable in time

O(n) + 2O(‖M‖+log n) = 2O(‖M‖) · nO(1),

hence it is in FPT. 2

We encourage the reader to give a direct proof of the following result:

Corollary 22. If NE = E, then the logicLY is an effectively widthP-bounded logic forP.

13

Proof: By the previous result, if NE= E, thenp-ACC= ∈ FPT. Thereforep-ACC ∈ FPT asp-ACC ≤fpt

p-ACC=. Now Theorem 6 implies the claim. 2

Lemma 23. If p-ACC= ∈ XPnu, thenNE = E.

Proof: Assume thatp-ACC= ∈ XPnu and letQ ⊆ {0, 1}∗ be in NE. We have to show thatQ ∈ E. Without
loss of generality we may assume that everyx ∈ Q starts with a “1.” Let n(x) be the natural number with
binary representationx; then

n(x) 6= n(y) for x, y ∈ Q with x 6= y. (13)

AsQ ∈ NE there is a nondeterministic Turing machineM and ac ∈ N such that for everyx ∈ {0, 1}∗ the
machineM decides whetherx ∈ Q in time

2c·|x|

and every run ofM on inputx has length at most2c·|x|. Note that forx starting with a “1”, we have
2c·|x| = n(x)c.

We define a nondeterministic Turing machineM∗ that started with empty input tape runs as follows:

1. Guess a stringy ∈ {0, 1}∗

2. if y does not start with a “1”, then reject

3. SimulateM on inputy for n(y)c many steps

4. if M rejects,then reject

5. Make some additional dummy steps such that so far the total
running time ofM∗ is 2 · n(y)c − 1

6. Accept.

By (13) we have for everyx ∈ {0, 1}∗ starting with a “1”:

x ∈ Q ⇐⇒ M
∗ accepts the empty input tape in exactly2 · n(x)c many steps. (14)

As p-ACC= ∈ XPnu, for somed ∈ N we can decide whetherM∗ accepts the empty string in exactly
2 · n(x)c many steps in time

(2 · n(x)c)d.

Hence,x ∈ Q can be decided in time2O(|x|), that is,Q ∈ E. 2

Proof of Theorem 20: Immediate by Lemma 21 and Lemma 23. 2

5.2. The complexity ofp-DTM -EXP-ACC. If in the problemp-ACC we replace the nondeterminis-
tic Turing machineM by a deterministic one simulating all computation paths of lengthn of M with
empty input tape we “arrive at”p-DTM-EXP-ACC; in particular,p-ACC ≤fpt p-DTM-EXP-ACC. As
p-DTM-EXP-ACC is a slicewise monotone parameterized problem, we know thatthatp-DTM-EXP-ACC ∈
FPTnu by Lemma 4. Clearly, FPTnu ⊆ XPnu and XP⊆ XPuni ⊆ XPnu. The problemp-DTM-EXP-ACC

lies in FPTnu \ XPuni, as we show:

Theorem 24. p-DTM-EXP-ACC /∈ XPuni.

Proof: Clearlyp-DTM-EXP-ACC≡fpt p-DTM-INP-EXP-ACC, where

p-DTM-INP-EXP-ACC

Instance: A deterministic Turing machineM, x ∈ {0, 1}∗, andn ∈ N in
unary.

Parameter: ‖M‖+ |x|.
Question: DoesM acceptx in at most2n steps?

14

Thus, it suffices to show thatp-DTM-INP-EXP-ACC /∈ XPuni. By contradiction, let us assume that there
exists an algorithmA that for every instance(M, x, n) decides whether(M, x, n) ∈ p-DTM-INP-EXP-ACC

in time
nf(‖M‖+|x|)

for some (not necessarily computable) functionf : N→ N.
We denote by enc(M) the encoding of a Turing machineM by a string in{0, 1}∗. We consider the

following deterministic Turing machineM0:

M0(x)

// x ∈ {0, 1}∗

1. if x is not the encoding of a deterministic Turing machine,then reject

2. determine the deterministic Turing machineM with x = enc(M)

3. m← the number of steps performed byM0 so far

4. SimulateA on (M, x,m+ 3) for at most2m steps

5. if the simulation does not halt,thenm← m+ 1 and goto 4

6. if A accepts(M, x,m+ 3) in at most2m stepsthen rejectelseaccept.

We finish the proof by a diagonal argument: We setx0 := enc(M0) and startM0 with input x0. For
sufficiently largem ∈ N we have

(m+ 3)f(‖M0‖+|x0|) ≤ 2m.

Therefore eventuallyM0 with input x0 reaches anm, we call itm0, such that the simulation in Line 4
halts, that is,

A halts on input(M0, x0,m0 + 3) in at most2m0 steps. (15)

At that point the number of steps (of the run ofM0 on inputx0) is bounded by2m0+2. Hence,

M0 on inputx0 halts in≤ 2 + 2m0+2 ≤ 2m0+3 steps. (16)

Thus

M0 acceptsx0

⇐⇒ M0 acceptsx0 in ≤ 2m0+3 steps (by (16))
⇐⇒ A accepts(M0, x0,m0 + 3) (by definition ofA)
⇐⇒ A accepts(M0, x0,m0 + 3) in at most2m0 steps (by (15))
⇐⇒ M0 rejectsx0 (by Line 6 in the definition ofM0),

the desired contradiction. 2

6. On Gödel’s proof predicate

The Theorem on the Undecidability of First-Order Logic tells us that the following problem is undecidable

FO-THEOREM

Instance: A first-order sentenceϕ.
Question: Doesϕ have a proof (i.e., isϕ valid)?

Hence, we know that there is no computable bound on the lengthof shortest proofs of valid FO-sentences.
By mathematicians’ experience various valid FO-sentencesϕ only have quite long proofs, say, proofs of a
length≥ 2|ϕ|. How hard is it to recognize such “hard” valid sentences? That is, what is the complexity of
the problem:

15

FO-EXP-PROOF

Instance: A first-order sentenceϕ and a natural numbern in unary with
n ≥ 2|ϕ|.

Question: Doesϕ have a proof of length≤ n?

Clearly, FO-EXP-PROOF is sparse. Thus, by a result of Mahaney [8], it is not NP-hard,unless NP=P.
So how do we convince ourselves that it is intractable? For this purpose, we consider the parameterized
problem:

p-FO-PROOF

Instance: A first-order sentenceϕ and a natural numbern in unary.
Parameter: |ϕ|.

Question: Doesϕ have a proof of length≤ n?

It is easy to see that if FO-EXP-PROOF is decidable in polynomial time, thenp-FO-PROOF is fixed-
parameter tractable. Hence, in this section we try to get evidence thatp-FO-PROOF /∈ FPT. Clearly, the
corresponding classical problem:

FO-PROOF

Instance: A first-order sentenceϕ and a natural numbern in unary.
Question: Doesϕ have a proof of length≤ n?

is NP-complete. This problem has been considered by Gödel and he asked whether it can be solved in time
O(n2) and at the same time asked “how strongly in generalthe number of steps in finite combinatorial
problems can be reduced with respect to simple exhaustive search” (see [3]), that is, in this context he
addressed the P-NP-problem. Furthermore, he addressed theconstruction problem for FO-PROOF.

We turn top-FO-PROOF. As it is a slicewise monotone problem, by Lemma 4 we havep-FO-PROOF∈
FPTnu, a fact that is also implied by:

Proposition 25. p-FO-PROOF≤fpt p-ACC.

Proof: Let M0 be a deterministic Turing machine that on input(ϕ, x), whereϕ ∈ FO andx ∈ {0, 1}∗,
checks whetherx is a proof ofϕ. We may assume that there is a polynomialq0 ∈ N[X] such thatM0 on
input(ϕ, x) halts inexactlyq0(|ϕ|+ |x|) steps.

For an FO-sentenceϕ we letMϕ be the Turing machine that first writesϕ on a tape, then guesses a
stringx ∈ {0, 1}∗, and finally simulatesM0 on input(ϕ, x). One easily verifies forϕ ∈ FO andn ∈ N

that
(ϕ, n) ∈ p-FO-PROOF ⇐⇒

(

Mϕ, |ϕ|+ n+ q0(|ϕ|+ n)
)

∈ p-ACC;

hence,(ϕ, n)→ (Mϕ, |ϕ|+ n+ q0(|ϕ|+ n)) is the desired reduction. 2

Theorem 26. If P[TC] 6= NP[TC], thenp-FO-PROOF /∈ FPT.

Clearly, this result would follow from Theorem 9 ifp-ACC ≤fpt p-FO-PROOF. However we do not
know whether this is true. The following lemma, which is needed for the proof of Theorem 26, has the
flavour of containing such a reduction; however the sentenceϕM could have a short proof, even though
every accepting run ofM is long.

Lemma 27. There exists a polynomial time algorithmA that assigns to every nondeterministic Turing
machineM anFO-sentenceϕM such that for everyn ∈ N,

M accepts the empty input tape in≤ n steps =⇒ ϕM has a proof of length≤ nO(1). (17)

Moreover,

ϕM has a proof =⇒ M accepts the empty input tape. (18)

16

Sketch of proof:Let M be a nondeterministic Turing machine. As in standard proofsof the undecidability
of first-order logic (e.g., compare [4, Section X.4]), one can define an FO-sentenceϕM of the form

ψM → ξM

such that for every structureA:

(a) A |= ψM if and only ifA “contains” the whole (possibly infinite) computation tree of M started with
empty input tape.

(b) If A |= ψM, then (A |= ξM if and only if the state of some element of the computation tree in A of
M started with empty input tape is accepting).

To show (18) we assumeϕM has a proof and choose “the” structureA0 consisting of the whole computation
tree ofM started with empty input tape. AsϕM is valid, we haveA0 |= ϕM and by (a) we knowA0 |= ψM.
HenceA0 |= ξM, which by (b) yields thatM accepts the empty input tape.

We turn to (17) and assume thatM accepts the empty tape in≤ n steps. Using (a) and (b) one easily
verifies thatϕM is valid. Moreover, by (a), every model ofψM contains an accepting path of length≤ n.
“By following this run” we can translate it into a proof ofψM → ξM , that is ofϕM, of length≤ nO(1). The
details of such a translation are tedious but routine. 2

Proof of Theorem 26:The proof is similar to that of Theorem 9. By contradiction assume thatp-FO-PROOF∈
FPT. Then there is an algorithmA0 that for every FO-sentenceϕ andn ∈ N decides whetherϕ has a proof
of length≤ n in time

f(|ϕ|) · nO(1) (19)

for some computable and increasing functionf : N → N. Furthermore, letA be the algorithm in
Lemma 27. We choosed ∈ N such that the running time ofA on every nondeterministic Turing ma-
chineM is bounded by‖M‖d. In particular,

|ϕM| ≤ ‖M‖
d. (20)

For the functionx 7→ f(xd) we chooseh : N→ N according to Lemma 10 and show that NTIME(hO(1)) ⊆
DTIME(hO(1)).

For this purpose letQ ⊆ {0, 1}∗ be in NTIME(hO(1)). We choose a nondeterministic Turing machine
MQ and constantsc, d ∈ N such that the machineMQ decides whetherx ∈ Q in timec ·h(|x|)d and every
run ofMQ on inputx is c · h(|x|)d time-bounded (recall thath is time constructible).

We fix x ∈ {0, 1}∗ and letMQ,x be the nondeterministic Turing machine that, started with empty input
tape, first writesx on some tape and then simulatesMQ started withx. We apply the algorithmA on
MQ,x and get an FO-sentenceϕ := ϕMQ,x

. Now we have the following chain of implications (as the first
statement and the last one coincide all implications are equivalences):

x ∈ Q
⇒ MQ acceptsx in at mostc · h(|x|)d steps
⇒ MQ,x accepts the empty string in at most|x|+ c · h(|x|)d steps (by definition ofMQ,x)
⇒ MQ,x accepts the empty string in at most2c · h(|x|)d steps
⇒ ϕ has a proof of length at most(2c · h(|x|))O(1) (by (17) in Lemma 27)
⇒ MQ,x accepts the empty string (by (18) in Lemma 27)
⇒ MQ acceptsx (by definition ofMQ,x)
⇒ x ∈ Q.

Hence,
x ∈ Q ⇐⇒ A accepts

(
ϕ, (2c · h(|x|))O(1)

)
.

As the size ofMQ,x isO(‖MQ‖) + |x| · log |x|, by (20) we have

‖ϕ‖ ≤ ‖MQ,x‖
d = (O(‖MQ‖) + |x|2)d. (21)

17

By (19) the running time ofA on input(ϕ, (2c · h(|x|))O(1)) is bounded by

f(|ϕ|) · (2c · h(|x|))O(1) ≤ f((O(‖MQ‖) + |x|2)d) · h(|x|)O(1) ≤ (h(O(‖MQ‖)) + h(|x|)) · h(|x|)O(1).

This shows thatQ ∈ DTIME(h(|x|)O(1)). 2

Remark 28. As we did in Theorem 11 forp-ACC we can refine the previous proof and show:

Assume that
NTIME(hO(1)) 6⊆ DTIME(hO(log h)).

for every time constructible and increasing functionh. Thenp-FO-PROOF /∈ XP.

We turn to the construction problem associated withp-FO-PROOF, that is, to:

p-CONSTR-FO-PROOF

Instance: A first-order sentenceϕ and a natural numbern in unary.
Parameter: |ϕ|.

Problem: Construct a proof ofϕ of length≤ n if there exists one.

It is well-known that the classical version ofp-CONSTR-FO-PROOF, namely

CONSTR-FO-PROOF

Instance: An FO-sentenceϕ and a natural numbern.
Problem: Construct a proof ofϕ of length≤ n if there exists one.

is NP-complete. Hence

Theorem 29. There is a polynomial time Turing reduction fromCONSTR-FO-PROOF to FO-PROOF.

Assume thatp-FO-PROOF /∈ FPT. Letϕ be a first-order sentence with a proof of lengthn. Then
part (4) of the next theorem shows that there is no efficient way to find such a proof even if we are given all
the theorems of a length bounded byg(ϕ) for some fixed computableg. Hence the polynomial time Turing
reduction of the preceding theorem, in general will ask queries “(ψ,m) ∈ FO-PROOF?” for sentencesψ
with |ψ| only bounded by some polynomial inn, the length of a proof ofϕ.

Theorem 30. (1) p-CONSTR-FO-PROOF is nonuniformly fixed-parameter tractable.

(2) There is an fptuni Turing reduction fromp-CONSTR-FO-PROOF to p-FO-PROOF.

(3) If p-FO-PROOF /∈ XP, then there is no fpt Turing reduction fromp-CONSTR-FO-PROOFtop-FO-PROOF.

(4) If p-FO-PROOF /∈ FPT, then there is no fpt-algorithmA with an oracle toFO-THEOREM (cf.
page 15) that solves the problemp-CONSTR-FO-PROOF in such a way that for some computable
functiong : N → N on every instance(ϕ, n) of p-CONSTR-FO-PROOF the algorithmA only makes
oracle queries “ψ ∈ FO-THEOREM?” for ψ with |ψ| ≤ g(|ϕ|).

Proof: As p-FO-PROOF is slicewise monotone, parts (1) to (3) are special instances of Proposition 19.
We turn to a proof of part (4). By contradiction assume that there is an algorithmA with an oracle to

FO-THEOREM that solves the problemp-CONSTR-FO-PROOF in such a way that for some computable
functiong : N→ N we have for every instance(ϕ, n) of p-CONSTR-FO-PROOF

(a) the run ofA on input(ϕ, n) has length≤ g(|ϕ|) · nc;

(b) for every oracle query “ψ ∈ FO-THEOREM?” of the run ofA on input(ϕ, n) we have|ψ| ≤ g(|ϕ|).

18

We show howA can be turned into an algorithm witnessingp-FO-PROOF∈ FPT.
For an FO-sentenceϕ we compute an enumerationψ1, ψ2, . . . , ψk of all FO-sentences of length≤

g(|ϕ|). By (b) every oracle query of the run ofA on input(ϕ, n) has the form “ψi ∈ FO-THEOREM?”
for somei ∈ [k]. For each such question there are two possibilities: “ψi ∈ FO-THEOREM” and “ψi /∈
FO-THEOREM.” Thus for allψi together we have

2k

possibilities, that is,O(2f(|ϕ|)) many for some computablef (note thatk only depends onϕ). Now, given
in additionn ∈ N, for each such possibility we simulateA on input(ϕ, n) by replacing the oracle queries
accordingly. For those possibilities whereA yields a purported proof, we can check whether it is really a
proof ofϕ of length≤ n. By (a) the overall time needed by this procedure isO(2f(|ϕ|)·(g(|ϕ|)·nc+nO(1))),
which is an fpt-time. 2

Acknowledgements.We thank Martin Grohe for drawing our attention to the problemp-ACC and for some
discussions on the topic. Furthermore, we thank Christian Glaßer for pointing out to us the relationship
of the property derived in Lemma 12 with bi-immune sets and toStefan Kreutzer for some discussions on
least fixed-point logic.

References

[1] Y. Aumann and Y. Dombb. Fixed structure complexity. InProceedings of the 3rd International
Workshop on Parameterized and Exact Computation (IWPEC 2008), M. Grohe and R. Niedermeier
(eds.), Lecture Notes in Computer Science 5018, 31–42, 2008.

[2] A. Blass, Y. Gurevich, and S. Shelah. Choiceless polynomial time. Annals of Pure and Applied
Logic, 100:141–187, 1999.

[3] S. Buss. On Gödel’s Theorem on length of proofs II: lowerbounds for recognizingk symbol prov-
ability. In Feasible Mathematics II, P. Clote and J. Remmel (eds.), Birkhauser, 57–90, 1995.

[4] H.-D. Ebbinghaus, J. Flum, and W. Thomas,Mathematical Logic, 2nd edition Springer, 1994.

[5] H.-D. Ebbinghaus and J. Flum.Finite Model Theory, 2nd edition, Springer, 1999.

[6] J. Flum and M. Grohe.Parameterized Complexity Theory, Springer, 2006.

[7] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractalgeometry of complexity classes. In the
Complexity Theory Column, L.A. Hemaspaandra (ed.),SIGACT News36, 24–38, 2005.

[8] S. R. Mahaney. Sparse complete sets of NP: solution of a conjecture of Berman and Hartmanis.
Journal of Computer and System Science, 25(2): 130–143, 1982.

[9] E. Mayordomo. Almost every set in exponential time is P-bi-immune. Theoretical Computer Sci-
ence, 136(2): 487-506, 1994.

[10] A. Nash, J. Remmel, and V. Vianu. PTIME queries revisited. In Proceedings of the 10th Interna-
tional Conference on Database Theory (ICDT 2005), T. Eiter and L. Libkin (eds.), Lecture Notes in
Computer Science 3363, 274–288, 2005.

[11] M.Y. Vardi. On the complexity of bounded-variable queries. In Proceedings of the 14th ACM
Symposium on Principles of Database Systems, pages 266–276, 1995.

19

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

