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Abstract

We prove a monotone interpolation property for split cuts which, together with
results from Pudldk (1997), implies that cutting-plane proofs which use split cuts have
exponential length in the worst case. As split cuts are equivalent to mixed-integer
rounding cuts and Gomory mixed-integer cuts, cutting-plane proofs using the above
cuts also have exponential worst-case complexity.
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1 Introduction

The complexity of different types of cutting-plane proofs has been a much studied topic
in recent years. Some well-known classes of cutting planes (linear inequalities satisfied by
integral points in polyhedra) are Gomory-Chvatal cuts [12], split cuts [8], mixed-integer
rounding (MIR) cuts [19], and lift-and-project cuts [1]. Let Az < b be a system of linear
inequalities with rational coefficients in n variables. A Gomory-Chvdtal (GC) cutting plane
(or cut) for Az < b is a linear inequality cz < |d| where ¢ is an integral vector, and
cx < d is satisfied by solutions of Ax < b. A Gomory-Chuvdtal cutting-plane proof of cx < d
from Az < b with length L is a sequence of inequalities a;z < d; (i = 1,...,L) such
that the last inequality in the sequence is cx < d, and for ¢ = 1,..., L, the inequality
a;x < d; is a Gomory-Chvatal cut derived from the previous inequalities in the sequence
and the inequalities in Az < b. Cutting-plane proofs were introduced in [4]. Any inequality
satisfied by integral solutions of Az < b has a GC cutting plane proof [12], [4].

Pudldk [20] proved, extending ideas in [3],[16], that GC cutting plane proofs of inequali-

ties satisfied by 0-1 points in polyhedra have exponential length in the worst case. A similar
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result for lift-and-project cutting plane proofs can be found in [9]. An inequality cz < d is
a lift-and-project cut for P = {z € [0,1]" | Az < b} if for some index j, cz < d is satsfied by
points in P N {z; = 0} and P N {z; = 1}. A question left open in [9] is whether cutting-
plane proofs using split cuts (or split cut proofs) have exponential worst-case complexity.
An inequality cx < d is a split cut for P = {x € R" | Az < b} if cxz < d is satisfied by points
in PN{azr < B} and PN {az > B+ 1}, where o, are integral. We say that cx < d is
derived using the disjunction ax < BV ax > 8+ 1. All integral points in P satisfy every
split cut for P.

Lift-and-project cuts and GC cuts are special cases of split cuts. Split cuts are equivalent
to MIR cuts and Gomory mixed-integer (GMI) cuts [13]; these are currently the most
important classes of cutting planes for general integer programs. Further, split cuts are
substantially stronger than GC cuts and lift-and-project cuts. For the family of instances
(from J. A. Bondy) P, = {z,y|z < ky,z + ky < k}, k = 1,2,..., the inequality z < 0 is
a split cut, but any GC cutting-plane proof has length at least k/2, which is exponential
in the encoding size of P;. The inequality > 7 ; ; > 1 is a split cut for P = {z € [0,1]" :
Yo, x; > 1/2}, but any lift-and-project proof has length at least n [7].

We prove that split-cut proofs have exponential worst-case complexity, thus generalizing
Pudlék’ result [20] and our result [9]. Pudlék showed how to map a GC cutting-plane
proof with length L of a specific inequality to a monotone real circuit (see Section 2) with
O(poly(L)) gates which tests for cliques of a certain size in an arbitrary graph. He separately
proved that such monotone circuits have exponentially many gates. We show how to map
a split cut proof of length L to a monotone circuit with O(poly(L)) gates for the clique
testing problem mentioned above (this is called monotone interpolation). This mapping is
very similar to the one in [9] for lift-and-project cuts, and is based on a property of split
cuts which we prove: if gz + hy < d is a split cut for {z,y : Az < e, By < f}, then there
exist numbers r and s with r 4+ s < d, such that gz < r is implied by split cuts for Az < e,
hy < s is implied by split cuts for By < f, and r can be computed from Az < e using
monotone operations only. Our results imply that cutting-plane proofs which use GMI cuts,
MIR cuts, two-step MIR cuts [10], or pairing inequalities [14] have exponential worst-case

complexity.

Bonet, Pitassi and Raz [3] gave an exponential lower bound on the complexity of branch-
and-cut proofs which use GC cuts, and branching on inequalities ax < 8 and ax > [+ 1,
where o and  are integral, subject to the restriction that the GC cuts and the branching
inequalities have polynomially bounded coefficients (see also [16], [15]). The results in this
paper, combined with results in [9], imply that branch-and-cut proofs which use split cuts
but branch only on the inequalities z; < 0 and z; > 1 for 0-1 variables z;, have exponential

worst-case complexity.



In the next section, we review well-known complexity results for monotone circuits. In
Section 3, we present MIR cuts in the form given in [11], and discuss their equivalence with
split cuts. Based on this equivalence, we prove a monotone interpolation result for split
cuts in Section 4, and give our exponential lower bound result. The results in this paper

are self-contained other than for Theorem 1 [20].

2 Monotone circuit complexity

A function f : R" — R is monotone if for z,y in R", z < y implies f(z) < f(y). Monotone

operations are monotone functions with one or two inputs; some examples are
te, r+x, z+vy, |z], thr(z,0)

where ¢ is a non-negative constant, x and y are real variables, and r is a real constant;
thr(z,0) is a threshold function which returns 0, if z < 0, and 1 otherwise. The functions
A and V are monotone operations over the domain {0,1}. A monotone boolean circuit is
similar to a boolean circuit, except that it uses only A gates and V gates. A monotone real

circuit is one with arbitary monotone operations as gates.

Let CLIQUE},, (say k is a fixed function of n) be the function which takes as input
graphs on n nodes (given as incidence vectors of edges), and returns 1 if the input graph
contains a clique of size k, and 0 if the graph contains a coloring of size £k — 1 (and is
undefined for all other graphs). This function is monotone over the domain consisting
of graphs containing a k-clique or a k — 1 coloring as adding edges to a graph causes
the maximum clique size to increase. Any monotone boolean circuit solving CLIQUE}, ,,
(for appropriate k) has an exponential number of gates (see Razborov [22], and Alon and
Boppana [2]). Pudldk, and independently Cook and Haken [5], proved a similar result for

monotone real circuits.

Theorem 1 [20] Let C,, be a monotone real circuit computing CLIQUE}, ,, with k =
|n?/3]. Then |C,| > 2(n/logn)'/?),

Pudlék [20] defined a system of linear inequalities Z such that if Z has a 0-1 solution,
then there is a graph on n nodes which has both a clique of size k and a coloring of size
k — 1. He proved that given a GC cutting plane proof P of 0z < —1 (which proves that Z
has no 0-1 solution) of length L, one can construct a monotone real circuit with O(poly(L))
gates solving CLIQU Ej, ;,. Theorem 1 then implies that L is exponential in n. Pudlék used
the following properties of GC cuts in mapping short cutting-plane proofs to monotone real

circuits with few gates:



(A) If gz + hy < d is a GC cut for Az + By < ¢, then for any 0-1 vector y', gz < d — hy’
is a GC cut for Az < ¢ — By';

(B) if gz + hy < d is a GC cut for Az < e, By < f, then there are numbers 7 and s
such that gz < r is a GC cut for Az < e, and hy < s is a GC cut for By < f, and
r+ s < d;

(C) The number r (or s) can be computed from A,e (or B, f) with polynomially many

monotone operations.

Property (A) is easy to prove. Consider property (B). As gz + hy < d is a GC cut for
Az < e, By < f, we can assume that g, h,d are integral and there are multiplier vectors
A, i > 0 such that g = AA, h = puB, d = |[Ae + uf]. Clearly, gz < [Ae] is a GC cut for
Az <e,andsois hy < |uf], and [Ae| + |uf] < [Ae+ uf]. Property (C) also follows from
this; the number | \e| can be computed from e via polynomially many monotone operations
(the coefficients of A are treated as non-negative constants). Properties (A) and (B) hold
for the matrix cuts of Lovdsz and Schrijver (cuts based on the N and N, operators); see
[21], [9]. Property (C) is often hard to prove, and is not known to hold for matrix cuts.
In Lemma 5, we prove (via the equivalence of split cuts and MIR cuts) that slight variants
of properties (B) and (C) hold for split cuts. We use Lemma 5 and ideas from Pudldk’s
paper to show in Theorem 8 that any split cut proof of 0z < —1 from Pudlak’s system Z

has exponential length. For completeness, we give the inequality system Z below.

Let k = [n?3]. Let z be a vector of n(n — 1)/2 0-1 variables, such that every 0-1
assignment to z corresponds to the incidence vector of a graph on n nodes (assume nodes
are numbered from 1,...,n). Let z be the 0-1 vector of variables (z; |i = 1,...,n) and let
y be the 0-1 vector of variables (y;; |i =1,...,n,5 =1,...,k—1). Consider the inequalities

in >k, (1)

z; +z; <1+ 2z, Vi,j € N, with ¢ < j, (2)
k—1
yijZI, V’iEN, (3)
Jj=1
Vis +1js <2 — 2, Vi,j € N withi < j, and Vs € {1,...,k — 1}. (4)

In any 0-1 solution of the above inequalities, the set of nodes {i|z; = 1} forms a clique of
size k or more, and for all j € {1,...,k — 1}, the set {i|y;; = 1} is a stable set. Thus, the
variables y;; define a mapping of nodes in a graph to k — 1 colors in a proper colouring.
Therefore the inequalities (1) - (4) have no 0-1 solution. Let Az + Cz < e stand for the
inequalities (1) and (2), along with the bounds 0 < z < 1. Let By + Dz < f stand for



the inequalities (3) and (4), along with the bounds 0 < y <1 and 0 < z < 1. Note that
the above inequalities have O(n?) variables and O(n?) constraints; for technical reasons we
need the fact that C < 0. Theorem 1 implies that every monotone real circuit which takes
graphs on n nodes as input (in the form of a 0-1 vector 2’) and outputs 0 or 1 such that
output 0 implies Az < e — Cz’ has no 0-1 solution and output 1 implies By < f — Dz’ has

no 0-1 solution, has exponentially many gates.

3 Mixed-integer rounding cuts

For a number v and an integer ¢, define % = v — |v]. Define
QZ{’UER, z€Z :v+z > b, 1120}.
Wolsey [24] defined the basic mized-integer inequality as
v+ bz > b[b], (5)

and showed that it is valid and facet-defining for @; also see Marchand and Wolsey [18].
In Figure 1(a), we depict the points in  (when b is not integral) by horizontal lines. In
Figure 1(b), the half-plane above the dashed line represents (5), and contains the shaded
regions which are @ N{z < |b]} and @ N{z > [b]}. Therefore (5) is a split cut for Q. The

z 4

Figure 1: The basic mixed-integer inequality

following is a well-known property of the (5) and can easily be inferred from Figure 1.
Lemma 2 conv(Q) = {v,z € R : v+2z > b, v+ bz >b[b], v> 0}.

Therefore, any linear inequality satisfied by points in ) is implied by a non-negative linear

combination of the inequalities v > 0, v + z > b and (5).

Let P = {z € R : Az < b}, and assume A has m rows. Define s = b — Az; clearly
s >0 for all z € P. Let A € R™ be a row vector such that AA is integral. Define 8 as Ab,



and AT by Af = max{);,0}. Then the equation As + (AA)z = b is valid for P and so is
the inequality
Ats+ (AA)z > b (6)

For all points in P, A*s is non-negative and (AA)z is integral. The basic mixed-integer
inequality implies that

X+ B(AA)x > B([B), (7)
or equivalently AT (b — Az) + B(AA)z > B([B]), is a valid inequality for integral points in
P (recall that 3 = 8 — |4]). This inequality is the mized-integer rounding (MIR) cut for
P. Tt follows from the discussion above that the MIR cut is a split cut for P derived using
the disjunction (AA)z < |B] V (A)z > [5]. Nemhauser and Wolsey defined [19] MIR cuts
and proved that every split cut for P is also an MIR cut for P; see [11] for different ways
of defining the MIR cut, and the equivalence of (7) with the definition in [19].

Definition 3 The split closure of a polyhedron P, denoted by sc(P), is the set of points in
P satisfying all split cuts for P.

The MIR closure (denoted by PM!E) is defined similarly in terms of MIR cuts. The split
closure of a polyhedron is therefore the same as its MIR closure.

4 Complexity of split-cut proofs

We start off by proving the properties (A) and (B) given in Section 2 for split cuts. To do
so, we invoke the equivalence of split cuts and MIR cuts, and use the lemma below. For
i=1,2, let

P={vi,zi:vi+2 > b, v; >0, z € Z}, (8)

Lemma 4 Let Py, P, be defined as above. Let b3 = by + by. Then the inequality (vi +
v2) + Bg(zl +29) > bs [b3] valid for Py N Py is implied by a non-negative combination of the

inequalities defining P1 and P» and the basic mized-integer inequalities for P, and Ps.

Proof By Lemma 2, for : = 1, 2,

conv(B;) = {vj, 2 2 vi + 2z > by, v; + bz > b; [b;], v; > 0}.

Observe that all points (vi,v9,21,20) € Py N P, satisfy v + vo + 21 + 22 > by + by and
v1 + v > 0 and 21 + 29 € Z. Using (5), we see that

V1 + v + 33(Z1 + 22) > 133 |_b3-| . (9)



is valid for P; N P,. Therefore

83 |_b3-| < min{m + vy + 83(21 + 2‘2) | (01,1)2,21, 2’2) e PN PQ}
min{'ul + IA)32’1 | (’Ul, Zl) € Pl} + min{v2 + 8322 | (’1)2, 22) € PQ}.

AN

as optimal solutions (v}, 27) and (v}, z5) of the last two minimization problems with optimal
values p; and po, yield a feasible solution (v}, v}, 2},23) of the first minimization problem

with objective value p1 + po. As
vy 4 bsz; > py and vy + bzzy > o

are valid inequalities for conv(P;) and conv(P;), respectively, (9) is implied by a nonnegative
combination of inequalities defining conv(P;) and conv(P,). .

Lemma 5 Let z,y be vectors of integer variables, with no common components. Let
Q1={r:Az <e}, Q2={y:Cy<f},

Q3 ={(z,y) :z € Q1,y € Q2} = Q1 NQ2,

where A,C, e, f are matrices with appropriate dimensions. Let ax 4+ cy < d be a split cut
for Q3. Let g = max{az : x € sc(Q1)} and h = max{cy : y € sc(Q2)}. Then g+ h < d.

Proof Let ax + cy < d be a split cut for Q3 derived as described above. It is also an MIR

cut derived from the system
Ar+s=e, Cy+t=f, s,t >0.
More precisely, there are vectors A and p such that the split cut above equals
s+ ptt+ B((AA)z + (uC)y) > B4, (10)

where 8 = e + uf, AA and uC are integral. (11)

Define

v1 = ATs, z1 = Mz, by = )e,

vp=ptt, 2 =uCy, by =pf.

Clearly 8 = b1 + be. Defining P;, P» in Lemma 4 in terms of the variables vy, v9, 21, 22, and
letting bs = 3, we see that (10) can be written as

v + v + 83(,21 + 2z9) > [;3 [b3] .



By the proof of Lemma, 4, there are numbers g, and po such that py + pg > bs [b3] and for
1=1,2, v; + Bgzi > u; is a non-negative combination of the inequalities defining P; and the
basic mixed-integer inequality for P;. Consider the case i = 1. Substituting out the slacks
s and t, we see that v1 > 0 and vy + 21 > b; are both implied by non-negative combinations
of the inequalities defining @1, and vy + bizy > by [b1] defines an MIR cut for Q1. Finally,

v + Bgzl > 11 becomes ax < ¢’ for some ¢'.
Therefore, substituting out the slacks s,¢, we conclude that there are numbers ¢’ and
h' such that
(i) ¢ + 1" <d,

(ii) az < ¢’ is a non-negative linear combination of the inequalities defining Q1 and some
MIR cut for @1,

(iii) cz < A’ is a non-negative linear combination of the inequalities defining Q2 and some
MIR. cut for Q).

If we define
g =max{az : r € QM) h=max{cy:yec QYE},
then g < g', h<h'and g+ h <d.
But recall that sc(Q1) = QM and sc(Q2) = Q}'E. The lemma follows. .

It may be possible to obtain a direct proof of the previous result without using the

equivalence of split cuts and MIR cuts, but we believe it is not trivial.

Definition 6 A split cut proof of an inequality is a simplified split cut proof if every in-
equality is either a mon-negative linear combination of previous inequalities or a split cut

derived from two previous inequalities.

Lemma 7 Given a split cut proof of length L of some inequality, there is a simplified split
cut proof of the same inequality with length 3L.

Proof Let cx < d be a split cut for P. Then cz < d is valid for P, = PN {az < f} and
P, = Pn{axz > f+ 1}, for some integral row vector « and integer 5. There are multipliers
A1, A2 € R™ and p1, uo € R with Ay, Ao, 1, o > 0 such that

c=MAz + 1o, c¢= XAz — wa,
d>Mb+mpB, d>Xob— ps(B+1).



Clearly cz < d is a split cut for {z|\1Az < A1, A\ Az < A\b}. A simplified split cut
proof can be obtained by replacing each split cut in the proof with three inequalities: the
inequalities A1 Az < A1b and Mg Az < A9b, followed by split cut itself. .

If cx < d is a split cut for P as in the proof above, we say it is derived using the
multipliers A1, Ao and p1, po.

We now have all the tools required to show that any split cut proof of the 0-1 infeasibility
of the system Z described in Section 2 has exponential length. The next theorem is a
straightforward application of Pudlak’s proof technique for GC cutting plane proofs.

Theorem 8 Let R be a simplified split cut proof of 07z + 0Ty + 0Tz < —1 from T =
{z,y,z| Az + Cz < e,By+ Dz < f} of length L. Then there exists a monotone real circuit
of size O(Ln?) solving CLIQUE}, .

Proof Let a;z+b;y+c;z < d; be the ith inequality in R and call this R;. Let Rq,..., R, be
just the inequalities in Az + Cz < e and By+ Dz < f. Then R, equals 0z+ 0y + 0z < —1.
Let I; stand for {1,...,i — 1}. By definition, for ¢ > m R; is either a non-negative linear
combination of the inequalities Ry,...,R;—1 with the multipliers X;; > 0(j € I;), or a split
cut derived from R, and R; for some k,I <7 — 1.

Let 2’ stand for a 0-1 assignment to z. The inequality sequence R', where
RLis a;x + by < d; — ¢;2,

is a simplified split cut proof of 0z + Oy < —1 from Az < e — C%' and By < f — Dz
with the same length as R: R can be derived with the same multipliers as R;. Define
d; = di — ¢;z'. We construct a sequence of inequalities S involving only z, and another

sequence T, involving only ¥, such that
Si=aix <gi, Ti=ciy<hi, and g; +h; < dj
S;, T; are valid for integral solutions of Az < e— C%', By < f — DZ'. (12)
Thus S; + 7; has the same left hand side as R}, but an equal or smaller right-hand side.

For i = 1,...,m, if R} involves only z, then set S; to R} and 7; to Oy < 0, otherwise
set S; to 0z < 0 and 7; to R;. Define subsequent terms of S and 7 as follows. For
i=m+1,...,k, if R, is a non-negative linear combination of inequalities R; (j € I;) with
the multipliers A;; > 0(j € I;), then let S; and 7; be non-negative linear combinations of
Sj(j € I;) and T; (j € I;), respectively, with the same multipliers \;;(j € I;). If R} is a split
cut derived from R} and R; for some k,! < i — 1, then define

Q1 ={z:apz < gr,ax < g1}, Q2 ={y: cxy < hy, qy < by}



It follows from Lemma 5 that R} is implied by the inequalities defining @; and Q2 and

some split cuts for these sets. More precisely, if we define
gi = max{a;z : z € sc(Q1)}, h; = max{c;y : y € sc(Q2)}, then g; + h; < d. (13)
We then define S; to be a;x < g;, and 7; to be ¢;y < h;.

Observe that the inequality g; + h; < dj in (12) is by definition true for i = 1,...,m;
either g; = d} and h; = 0, or h; = d; and g; = 0. Let ¢ > m, and assume by induction
that (12) is true for smaller values of 7. If R; is a non-negative combination of inequalities,
then (12) is clearly true. If R; is a split cut derived from two previous inequalities, then
(12) holds as(13) holds (by Lemma 5). Therefore the last inequalities in S and 7T are,
respectively, 0z < gr, and Oy < hr. As d} = dr, = —1, one of g and hy is less than 0, and
we have a proof of integer infeasibility of either Az < e — C2' or By < f — DZ'.

Define a monotone circuit C as follows. It first computes e—Cz’ by monotone operations
(recall C' < 0) from the input vector z’. It then computes g¢1,¢2,...,9r, by monotone
operations as follows. First, g1,...,gn are trivially obtained from d},...,d], as discussed
above. For i > m, if R; = Y5 ;.;. AijRj, then g; = 3. Aijgj. We can assume that O(n?)
multipliers are non-zero, by Caratheddory’s theorem. Therefore we can assume C computes
gi using at most O(n?) monotone operations from (2) (the \;;s are fixed as R is fixed; they
are also non-negative). If R; is a split cut derived from two previous inequalities, then C
computes g; as in (13). Note that only gx and g; are variable in this computation, and thus
the computation of g; is a monotone operation. Finally, the circuit returns thr(gr,0), which
is a monotone operation. Therefore, if the circuit returns 0, then g5 < 0 and Az <e— CZ’
has no integral solutions. If the output is 1, then hz, must be negative (if it were computed)

and By < f — Dz’ has no integral solutions. .
Corollary 9 Ewvery split cut proof of 0x + 0y + 0z < —1 from Z has exponential length.

A natural question is: why do we prove the above result for split cuts, and not directly for
MIR cuts, given that we use MIR cuts to prove Lemma 57 One can avoid introducing split
cuts, and work entirely with MIR cuts, but one has to carefully deal with the additional
slack variables in the definition of the MIR cut (7) to ensure that only monotone operations

are used to generate S.

Dash [9, Lemma 5.7] proved that a branch-and-cut proof of (integer) infeasibility R
using lift-and-project cuts and GC cuts and branching on 0-1 variables can be transformed
into a cutting plane proof of infeasibility S with length s + ¢, where s and t are the number
of cuts and branching decisions in R, respectively. In this proof, every branching decision
is replaced by a lift-and-project cut. One can easily obtain the following result using the

proof technique for the result above.

10



Theorem 10 If there exists a branch-and-cut proof of the fact that a polyhedron P has
no integral solutions using s split cuts, and branching on 0-1 variables with t branching
decisions, there exists a split-cut proof of the same fact with length s +t. Therefore, any

branch-and-cut proof of integer infeasibility of T has exponentially many cuts plus nodes.

Many cutting planes discussed in the literature — besides GC cuts and lift-and-project
cuts — are either special cases of split cuts (see [18]) or can be derived via a short (polynomial
in the number of variables) split cut proof. For example, the pairing inequalities [14] form a
subclass of split cuts. The two-step MIR inequalities in [10] can be obtained by a split cut
proof of length 2. Any cutting plane proof of the integer infeasibility of Z using the above

cuts has exponential length.
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