
On Complexity of Quantum Branching Programs
Computing Equality-like Boolean Functions

Farid Ablayev Airat Khasianov Alexander Vasiliev

January 25, 2010

Abstract

We consider the Hidden Subgroup, and Equality-related problems in the context of quan-
tum Ordered Binary Decision Diagrams. For the decision versions of considered problems we
show polynomial upper bounds in terms of quantum OBDD width. We apply a new modi-
fication of the fingerprinting technique and present the algorithms in circuit notation. Our
algorithms require at most logarithmic number of qubits.

1 Introduction

Considering one-way quantum finite automata, Ambainis and Freivalds (see [AF98]) suggested that
first quantum-mechanical computers would consist of a comparatively simple quantum-mechanical
part connected to a classical computer. In this paper we consider another restricted model of
quantum-classical computation referred to as oblivious Ordered Read-Once Quantum Branching
Programs. It is also known as non-uniform automata.

Two models of quantum branching programs were introduced by Ablayev, Gainutdinova, Karpin-
ski [AGK01] (leveled programs), and by Nakanishi, Hamaguchi, Kashiwabara [NHK00] (non-leveled
programs). Later it was shown by Sauerhoff [SS04] that these two models are polynomially equiv-
alent.

In this paper we use the generalized fingerprinting technique introduced in [AV08]. The basic
ideas of this approach date back to 1979 [Fre79] (see also [MR95]). It was later successfully applied
in the quantum automata setting by Ambainis and Freivald in 1998 [AF98] (later improved in
[AN08]). Subsequently, the same technique was adapted for the quantum branching programs by
Ablayev, Gainutdinova and Karpinski in 2001 [AGK01], and was later generalized in [AV08].

The hidden subgroup problem [ME99], [Høy97] is an important computational problem that
has factoring and discrete logarithm as its special cases. Subsequently, an efficient algorithm for
the hidden subgroup problem implies efficient solutions for both the period finding problem, and
original Simon problem.

We show refined proof of the linear upper bound for the Hidden Subgroup Problem [KH06].
We prove linear upper bounds for Equality, Palindrome and boolean variant of Periodicity and
Semi-Simon problems. Our upper bounds hold for arbitrary ordering of the input variables and
were initially presented in [KH05], and can also be found in [AKK].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 85 (2008)

2 Preliminaries and Definitions

The definition of a linear branching program is a generalization of the definition of quantum branch-
ing program presented in [AGK01]. Deterministic and quantum oblivious branching programs are
special cases of linear branching programs. Let Vd be a d-dimensional vector space. We use |ψ〉
and 〈ψ| to denote column vectors and row vectors respectively from Vd, and 〈ψ1 | ψ2〉 denotes the
inner product.

Definition 1 (Linear branching program). A Linear Branching Program P of width d and length
l (a (d, l)− LBP) over Vd is defined as

P = 〈T, |ψ0〉 ,Accept〉

where T is a sequence of l instructions: Tj =
(
xij , Uj(0), Uj(1)

)
depends on xij tested on the step

j, and Uj(0), Uj(1) are d× d matrices.
Vectors |ψ〉 ∈ Vd are called states (state vectors) of P , |ψ0〉 ∈ Vd is the initial state of P , and

Accept ⊆ {1, . . . , d} is the accepting set.
We define a computation of P on an input σ = (σ1, . . . , σn) ∈ {0, 1}n as follows:

1. A computation of P starts from the initial state |ψ0〉;

2. The j’th instruction of P queries a variable xij , and applies the transition matrix Uj = Uj(σij)
to the current state |ψ〉 to obtain the state |ψ′〉 = Uj(σij) |ψ〉;

3. The final state is

|ψ(σ)〉 =

(
1∏
j=l

Uj(σij)

)
|ψ0〉 .

The usual complexity measures for (d, l)− LBP are its width d, length l, and size d · l.

Deterministic branching programs. A deterministic branching program is a linear branching
program over a vector space Rd. A state |ψ〉 of such a program is a Boolean vector with exactly
one 1. The matrices Uj correspond to permutations of order d, and so have exactly one 1 in each
column. For branching programs over groups this is true for the rows as well; in which case, the
Uj are permutation matrices.

Quantum branching programs. We define a quantum branching program as a linear branching
program over a Hilbert space Hd. The |ψ〉 for such a program are complex state vectors with
‖ |ψ〉 ‖2 = 1, and the Uj are complex-valued unitary matrices.

After the l-th (last) step of quantum transformation P measures its configuration |ψσ〉 where
|ψσ〉 = Ul(σil)Ul−1(σil−1

) . . . U1(σi1) |ψ0〉 . Measurement is presented by a diagonal zero-one projec-
tion matrix M where Mii = 1 if i ∈ Accept and Mii = 0 if i 6∈ Accept. The probability Praccept(σ)
of P accepting input σ is defined by

Praccept(σ) = ||M |ψσ〉 ||2.

2

Bounded error computation. A QBP P computes the Boolean function f with margin ε ∈
(0, 1/2) if for all inputs the probability of error is bounded by 1/2− ε.

A QBP P computes f with one-sided error if there exists an ε > 0 such that for all σ ∈ f−1(1)
the probability of P accepting σ is 1 and for all σ ∈ f−1(0) the probability of P accepting σ is less
than ε.

Note that this is a “measure-once” model analogous to the model of quantum finite automata
in [MC97], in which the system evolves unitarily except for a single measurement at the end. We
could also allow multiple measurements during the computation, by representing the state as a
density matrix ρ, and by making the Uj superoperators, but we do not consider it here.

Read-once branching programs.

Definition 2. We call an LBP P an OBDD or read-once LBP if each variable x ∈ {x1, . . . , xn}
occurs in the sequence T of transformations of P at most once.

The “obliviousness” is inherent for an LBP and therefore this definition is consistent with the
usual notion of an OBDD. We will use QOBDD for quantum read-once branching programs and
OBDD for deterministic ones.

The following general lower bound on the width of QOBDDs is proven in [AGK01].

Theorem 1. Let ε ∈ (0, 1/2). Let f(x1, . . . , xn) be a Boolean function (1/2 + ε)-computed (com-
puted with margin ε) by a quantum read-once branching program Q. Then

width(Q) = Ω

(
log width(P)

2 log
(
1 + 1

ε

))
where P is a deterministic OBDD of minimal width computing f(x1, . . . , xn).

Circuit representation. A QBP can be viewed as a quantum circuit aided with an ability to
read classical bits as control variables for unitary operations. That is any quantum circuit is a
QBP which does not depend essentially on it’s classical inputs.

xj1 • �������� · · ·

xj2 • �������� · · ·
...

xjl · · · • ��������
|φ1〉

U1(1) U1(0) U2(1) U2(0)

· · ·

Ul(1) Ul(0)

NM

|φ2〉 · · · NM

|ψ0〉

 ...

|φq〉 · · · NM

Here xj1 , . . . , xjl is the sequence of (not necessarily distinct) variables denoting classical control
bits.

Note that for a QBP in the circuit setting another important complexity measure explicitly
comes out – a number of qubits q physically needed to implement a corresponding quantum system
with classical control. From definition it follows that log d ≤ q ≤ d/2. The maximum of d/2 is
reached when all the qubits do not interfere and thus are isolated quantum systems.

3

Definition 3. We call a (d, l)-QBP P a q-qubit QBP if the program P can be implemented as a
classically controlled quantum system based on q qubits.

3 Quantum Fingerprinting

Fingerprinting is the technique that allows presenting objects (words over some finite alphabet) by
their fingerprints, which are significantly smaller than the originals. Moreover, they are intended
to reliably extract the important information about the input with one-sided error. In this paper
we use the fingerprinting technique developed in [AV08].

Our approach has the following properties:

• It is designed for models with classical control and thus for QBPs.

• Fingerprints are easy to create, we use only controlled rotations about the same axis of
the Bloch sphere by the similar angle and Hadamard gates (for more information see, e.g.
[NC00]).

• The lemma we prove guarantees the existence of a “good” set of parameters which allows to
obtain the ε upper bound on the error probability, where ε is a constant, and 0 < ε < 1.

Fingerprinting technique For the problem being solved we choose some cardinal m, an error
probability bound ε > 0, fix t = d(2/ε) ln 2me, and construct a mapping g : {0, 1}n → Z. Then
for arbitrary binary string σ = σ1 . . . σn we create it’s fingerprint |hσ〉 composing t single qubit
fingerprints |hiσ〉:

|hiσ〉 = cos 2πkig(σ)
m
|0〉+ sin 2πkig(σ)

m
|1〉

|hσ〉 = 1√
t

t∑
i=1

|i〉 |hiσ〉

That is, the last qubit is rotated by t different angles about the ŷ axis of the Bloch sphere.
The chosen parameters ki ∈ {1, . . . ,m− 1} for i = 1, t are “good” in the following sense.

Definition 4. A set of parameters K = {k1, . . . , kt} is called “good” for g 6= 0 mod m if

1

t2

(
t∑
i=1

cos
2πkig

m

)2

< ε.

The left side of inequality is the squared amplitude of the basis state |0〉⊗ log t |0〉 if the operator
H⊗ log t ⊗ I has been applied to the fingerprint |hσ〉. Informally, that kind of set guarantees, that
the probability of error will be bounded by a constant below 1.

The following lemma proves the existence of a “good” set and follows the proof of the corre-
sponding statement from [AN08].

Lemma 1. There is a set K with |K| = t = d(2/ε) ln 2me which is “good” for all g 6= 0 mod m.

Proof. Using Azuma’s inequality (see, e.g., [MR95]) we prove that a random choice of the set K
is “good” with positive probability .

Let 1 ≤ g ≤ m − 1 and let K be the set of t parameters selected uniformly at random from
{0, . . . ,m− 1}.

4

We define random variables Xi = cos 2πkig
m

and Yk =
∑k

i=1Xi. We want to prove that Azuma’s
inequality is applicable to the sequence Y0 = 0, Y1, Y2, Y3, . . . , i.e. it is a martingale with bounded
differences. First, we need to prove that E[Yk] <∞.

From the definition of Xi it follows that

E[Xi] =
1

m

m−1∑
j=0

cos
2πjg

m

Consider the following weighted sum of m-th roots of unity

1

m

m−1∑
j=0

exp

(
2πjg

m
i

)
=

1

m
· exp(2πigm/m)− 1

exp(2πig/m)− 1
= 0,

since g is not a multiple of m.
E[Xi] is exactly the real part of the previous sum and thus is equal to 0.
Consequently, E[Yk] =

∑k
i=1E[Xi] = 0 <∞.

Second, we need to show that the conditional expected value of the next observation, given all
the past observations, is equal to the last observation.

E[Yk+1|Y1, . . . , Yk] =
1

m

m−1∑
j=0

(
Yk + cos

2πjg

m

)
= Yk +

1

m

m−1∑
j=0

cos
2πjg

m
= Yk

Since |Yk+1 − Yk| = |Xk+1| ≤ 1 for k ≥ 0 we apply Azuma’s inequality to obtain

Pr(|Yt − Y0| ≥ λ) = Pr

(
|

t∑
i=1

Xi| ≥ λ

)
≤ 2 exp

(
−λ

2

2t

)
Therefore, we induce that the probability of K being not “good” for 1 ≤ g ≤ m− 1 is at most

Pr

(
|

t∑
i=1

Xi| ≥
√
εt

)
≤ 2 exp

(
−εt

2

)
≤ 1

m

for t = d(2/ε) ln 2me.
Hence the probability that constructed set is not “good” for at least one 1 ≤ g ≤ m − 1 is at

most (m− 1)/m < 1. Therefore, there exists a set which is “good” for all 1 ≤ g ≤ m− 1. This set

will also be “good” for all g 6= 0 mod m because cos 2πk(g+jm)
m

= cos 2πkg
m

.

We use this result for our fingerprinting technique choosing the set K = {k1, . . . , kt} which is
“good” for all g = g(σ) 6= 0. That is, it allows to distinguish those inputs whose image is 0 modulo
m from the others.

That hints on how this technique may be applied:

1. We construct g(x), that maps all acceptable inputs to 0 modulo m and others to arbitrary
non-zero (modulo m) integers.

2. After the necessary manipulations with the fingerprint the H⊗ log t operator is applied to the
first log t qubits. This operation “collects” all of the cosine amplitudes at the all-zero state.
That is, we obtain the state of type

|h′σ〉 =
1

t

t∑
i=1

cos

(
2πkig(σ)

m

)
|00 . . . 0〉 |0〉+

2t∑
i=2

αi |i〉

5

3. Then this state is measured in the standard computational basis and we accept the input if
the outcome is the all-zero state. This happens with probability

Praccept(σ) =
1

t2

(
t∑
i=1

cos
2πkig(σ)

m

)2

,

which is 1 for inputs, whose image is 0 mod m, and is bounded by ε for the others.

4 The Upper Bounds for Some Boolean Functions

4.1 Equality

We shall first demonstrate our approach on Equality function.

Definition 5. EQn(x, y) ≡ [x = y], where n is even, and x = {x1, . . . , xn/2}, y = {xn/2+1, . . . , xn}.

This function is easy in deterministic case for a clever choice of the variable ordering. But for
the natural ordering, we consider here, it is exponentially hard.

Theorem 2. For arbitrary ε ∈ (0, 1) the function EQn(x, y) can be computed with one-sided error
ε by a QOBDD of width O (n), where n = |xy| is the length of the input.

Proof. For the assignment of the x part of the input we introduce the notation σx. In the similar
sense, we introduce the notation σy. We shall use these notations throughout the proof.

We present our algorithm in circuit notation.

x1 • ··· • ··· ···
...xn ··· ··· ···

y1 ··· ··· ···
...yn ··· ··· • ··· •

|φ1〉 H �������� ··· • ··· �������� ··· • H NM

|φ2〉 H �������� ··· • ··· �������� ··· • H NM

...

|1〉 |t〉 |1〉 |t〉







|φ log t〉 H �������� ··· • ··· �������� ··· • H NM

|φtarget〉 R1,1 ··· Rt,1 ··· R′1,n ··· R′t,n NM

↑ ↑ ↑ ↑ ↑
|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Initially |ψ〉 = |ψ1〉⊗ |ψ2〉⊗ · · ·⊗ |ψlog t〉⊗ |ψtarget〉 = |00 . . . 0〉. For i ∈ {1, . . . , t} we define rotations
Ri,j as follows

Ri,j =

 Rŷ

(
4πki2

n/2−j

2n/2

)
for j ≤ n/2

Rŷ

(
−4πki2

n−j

2n/2

)
for j > n/2

,

and the set of parameters K = {k1, . . . , kt} is “good” according to the Definition 4 with t =
d(2/ε) ln(2 · 2n/2)e.

6

The state of the system after having read the input σ is

|ψ〉 = 1√
t

t∑
i=1

|i〉
(

cos 2πki(σx−σy)

2n/2 |0〉+ sin 2πki(σx−σy)

2n/2 |1〉
)

Applying H⊗ log t ⊗ I we obtain the state

|ψ′〉 =
1

t

t∑
i=1

cos

(
2πki(σx − σy)

2n/2

)
|00 . . . 0〉 |0〉+

2t∑
i=2

αi |i〉 ,

where αi – are some unimportant amplitudes.
The input σ is accepted if the measurement outcome of |ψ1〉 . . . |ψlog t〉 |ψtarget〉 is |00 . . . 0〉 |0〉.

Clearly, the accepting probability is

Praccept(σ) =
1

t2

(
t∑
i=1

cos
2πki(σx − σy)

2n/2

)2

If σx = σy then the program accepts σ with probability 1. Otherwise, we chose the set K =
{k1, . . . , kt} so that

Praccept(σ) =
1

t2

(
t∑
i=1

cos
2πki(σx − σy)

2n/2

)2

< ε

Now it is easy to see that we have used the fingerprinting technique from the section 3 with
parameters m = 2n/2 and g(x, y) = x− y. Therefore, EQn(x, y) can be computed by a log 2t-qubit
QOBDD, where log 2t = O(log logm) = O(log n).

4.2 Palindrome

Definition 6. Palindromen(x1, . . . , xn) ≡
[
x1x2 . . . xbn/2c = xnxn−1 . . . xdn/2e+1

]
As the corollary we can prove that Palindromen has the the same complexity as EQn(x, y).

Theorem 3. For arbitrary ε ∈ (0, 1) the function Palindromen can be computed with constant
one-sided error ε by a QOBDD of width O(n).

Proof. The proof of this result mimics the proof for EQn(x, y), the only difference is the definition
of Ri,j:

Ri,j =

 Rŷ

(
4πki2

bn/2c−j

2bn/2c

)
for j ≤ bn/2c

Rŷ

(
−4πki2

j−dn/2e−1

2bn/2c

)
for j ≥ dn/2e+ 1

4.3 Periodicity

For a set of input variables x = {x0, . . . , xn−1}, and s – the period parameter, we define the
Periodicity function Period sn (x) that takes the input of length n+k, where n = |x|, and k = dlog ne
– the number of bits needed for s.

Period sn (x) ≡
{

1 if xi = xi+s mod n, i = 0, n− 1;
0 otherwise.

7

Theorem 4. For arbitrary ε ∈ (0, 1) the function Period sn (x) can be computed with constant
one-sided error ε by a QOBDD of width O(n), where n = |x|.

Proof. We use the algorithm for EQn(x, y) with rotations

Ri,j = Rŷ

(
4πki(2

j − 2j−s mod n)

2n

)

4.4 Semi-Simon

For a set of input variables x = {x0, . . . , xn−1}, and s ∈ (0, n] we define the Semi-Simon function
as follows

Semi-Simonsn (x) ≡
{

1 xi = xi⊕s, i = 0, n− 1;
0 otherwise.

Note that ⊕ is a bitwise addition modulo 2. Here we treat i both ways: as a natural number, and
as a binary sequence representing the number.

Remark 1. The way we treated binary sequences in the definition above, we should adopt through-
out the paper without further notice.

Theorem 5. For any ε ∈ (0, 1) and all s ∈ (0, n] the function Semi-Simonsn (x) can be computed
with one-sided error ε by a QOBDD of width O(n).

Proof. Computing of equality function will be again in the core for the proof. We use rotations

Ri,j = Rŷ

(
4πki(2

j − 2j⊕s)

2n

)

4.5 Permutation Matrix Test Function

The Permutation Matrix test function (PERMn) is defined on n2 variables xij (1 ≤ i, j ≤ n).
It tests whether the input matrix contains exactly one 1 in each row and each column. Thus,
PERMn = 1 iff the input matrix contains exactly one 1 in each row and each column.

Note, that this function cannot be effectively computed by a deterministic OBDD – the lower
bound is Ω(2nn−5/2) regardless of the variable ordering [Weg00]. The width of the best known
probabilistic OBDD, computing this function with one-sided error, is O(n4 log n) [Weg00]. Our
algorithm has the width O(n log n). Since the lower bound Ω(n− log n) follows from Theorem 1,
our algorithm is almost optimal.

Theorem 6. For any ε ∈ (0, 1) the function PERMn(x) can be computed with one-sided error ε
by a QOBDD of width O(n log n).

Proof. We introduce the notation ri =
n∑
j=1

xij for the number of ones in the i-th row, and

cj =
n∑
i=1

xij for the number of ones in the j-th column. It’s obvious, that 0 ≤ ri, cj ≤ n, and

PERMn(x11, . . . , xnn) = 1 iff all of ri and cj equal 1.

8

We encode all of these numbers as a (n+ 1)-ary number

N(x) =
n∑
i=1

ri(n+ 1)i−1 +
n∑
j=1

cj(n+ 1)n+j−1,

and denote

N1 =
n∑
i=1

(n+ 1)i−1 +
n∑
j=1

(n+ 1)n+j−1 =
2n∑
i=1

(n+ 1)i−1.

Therefore, all of ri and cj equal 1 iff N(x) = N1 or, equivalently, when g(x) = N(x)−N1 = 0.
We induce, that PERMn(x) can be computed by checking whether the input sequence has the

property, encoded by g(x), via the fingerprinting method.
Here is the algorithm in the circuit notation:

x11 •
...x1n •
...xn1 •
...xnn •

|φ1〉 H

R′1,1

···

R′1,n

···

R′n,1

···

R′n,n R′′1

···

R′′2n

H NM

|φ2〉 H ··· ··· ··· ··· H NM

...
|φlog t〉 H ··· ··· ··· ··· H NM

|φtarget〉 ··· ··· ··· ··· NM

↑ ↑ ↑ ↑ ↑ ↑
|ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉 |ψ5〉

Initially qubits |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φlog t〉 ⊗ |φtarget〉 are in the state |ψ0〉 = |0〉⊗ log t |0〉. We define
controlled unitary transformations R′i,j for i, j ∈ {1, . . . , n} and R′′i for i ∈ {1, . . . , 2n} by the
following circuits

R′i,j =

|φ1〉 �������� ··· •
|φ2〉 ��������

|1〉
··· •

|t〉...
|φlog t〉 ��������

 ··· •


|φtarget〉 R1

i,j ··· Rt
i,j

R′′i =

|φ1〉 �������� ··· •
|φ2〉 ��������

|1〉
··· •

|t〉...
|φlog t〉 ��������

 ··· •


|φtarget〉 R1

i
··· Rt

i

Here
Rl
i,j = Rŷ

(
4πkl[(n+1)i−1+(n+1)n+j−1]

(n+1)2n

)
,

Rl
i = Rŷ

(
−4πkl(n+1)i−1

(n+1)2n

)
,

and the set of parameters K = {k1, . . . , kt} is “good” according to the Definition 4 with t =
2dlog((2/ε) ln 2·(n+1)2n)e = O(n log n).

9

Note, that operator Rl
i,j “appends” 1 to positions i− 1 and n+ j − 1, corresponding to ri and

cj. The transformation Rl
i rotates the qubit in the opposite direction by an angle, proportional to

the number with 1 in the (i− 1)-th position and 0 elsewhere.
Let σ = σ11 . . . σnn ∈ {0, 1}n

2
be an input string.

The first layer of Hadamard operators transforms the state |ψ0〉 = |φ1〉 ⊗ · · · ⊗ |φlog t〉 into

|ψ1〉 =
1√
t

t∑
l=1

|l〉 |0〉 .

Next, upon input symbol 0 identity transformation I is applied. But if the value of xij is
1, then the state of the last qubit is transformed by the operator Rl

i,j, rotating it by the angle
4πkl[(n+1)i−1+(n+1)n+j−1]

(n+1)2n . Moreover, the rotation is done in each of t subspaces with the corresponding

amplitude 1/
√
t. Thus, the qubit |φtarget〉 is in some sense simultaneously rotated by t similar angles

about the ŷ axis of the Bloch sphere. Such a parallelism is implemented by the controlled operators
Cl(R

l
i,j), which transform the states |l〉 |·〉 into |l〉Rl

i,j |·〉, and leave others unchanged. For instance,
having read the input symbol x11 = 1, the system would evolve into state

|ψ2〉 = 1√
t

t∑
l=1

|l〉
(

cos 2πkl[(n+1)+(n+1)n]
(n+1)2n |0〉+ sin 2πkl[(n+1)+(n+1)n]

(n+1)2n |1〉
)
.

Thus, after having read the input σ the amplitudes would “collect” the value N(σ)

|ψ3〉 = 1√
t

t∑
l=1

|l〉
(

cos 2πklN(σ)
(n+1)2n |0〉+ sin 2πklN(σ)

(n+1)2n |1〉
)
.

At the next step we perform the rotations by the angle − 4πklN1

(n+1)2n about the ŷ axis of the Bloch

sphere for each l ∈ {1, . . . , t}. Therefore, the state of the system would be

|ψ4〉 = 1√
t

t∑
l=1

|l〉
(

cos 2πkl(N(σ)−N1)
(n+1)2n |0〉+ sin 2πkl(N(σ)−N1)

(n+1)2n |1〉
)

= 1√
t

t∑
l=1

|l〉
(

cos 2πklg(σ)
(n+1)2n |0〉+ sin 2πklg(σ)

(n+1)2n |1〉
)
,

where g(σ) = N(σ)−N1 checks whether σ defines a permutational matrix.
Applying H⊗ log t ⊗ I we obtain the state

|ψ5〉 =

(
1
t

t∑
l=1

cos 2πklg(σ)
(n+1)2n

)
|0〉⊗ log t |0〉+

+ γ |0〉⊗ log t |1〉+
t∑
l=2

|l〉 (αl |0〉+ βl |1〉) ,

where γ, αi, and βi are some unimportant amplitudes.
The input σ is accepted if the measurement outcome is |0〉⊗ log t |0〉. Clearly, the accepting

probability is

Praccept(σ) =
1

t2

(
t∑
l=1

cos
2πklg(σ)

(n+ 1)2n

)2

.

10

PERMn(σ) = 1 iff g(σ) = 0, and in that case the accepting probability is 1. Otherwise
g(σ) 6= 0, and the probability of erroneously accepting σ ∈ PERM−1

n (0) is bounded by ε because
of the choice of the set K = {k1, . . . , kt}:

Praccept(σ) =
1

t2

(
t∑
l=1

cos
2πklg(σ)

(n+ 1)2n

)2

< ε.

Thus, f can be computed by a q-qubit quantum OBDD, where q = log t + 1 = O(log n +
log log n). The width of the program is 2q = 2t = O

(
n logn
ε

)
, where ε is a constant, 0 < ε < 1.

5 The upper bound for Hidden Subgroup Function

This problem was first defined and considered in [KH05]. The proof of the theorem in this section
follows somewhat different presentation from [KH06]. In this paper we give a shorter and more
illustrative proof of the result via circuit presentation, the approach first applied in [AV08].

In order to investigate Quantum Branching Program complexity of the Hidden Subgroup Prob-
lem, we define a function.

Definition 7. Let K be a normal subgroup of a finite group G. Let X be a finite set. For a
sequence χ ∈ X |G| let σ = bin(χ) be its representation in binary. If σ encodes no correct sequence
χ = χ1 . . . χ|X|, then Hidden Subgroup function of σ is set to be zero, otherwise:

HSPG,K (σ) =


1, if ∀a ∈ G ∀ i, j ∈ aK (χi = χj)

and ∀ a, b ∈ G ∀ i ∈ aK ∀ j ∈ bK
(aK 6= bK ⇒ χi 6= χj);

0, otherwise.

aK

bK

cK

...

K

X

G f

Let f be the function encoded by the input sequence. We want to know if a function f : G→ X
“hides” the subgroupK in the groupG. Our program receivesG andK as parameters, and function
f as an input string containing values of f it takes on G. The values are arranged in lexicographical
order. See Definition 7.

We make two assumptions. First, we assume that the set X contains exactly (G : K) elements.
Indeed, having read the function f , encoded in the input sequence σ, we have X to be the set of all
different values that f takes. Obviously, if |X| is less or greater than (G : K), then HSPG,K (σ) = 0.

11

The second assumption, is that we replace all values of f by numbers from 1 through (G : K).
Thus, HSPG,K (x1, . . . , xn) is a Boolean function of n = |G|dlogG : Ke variables. In these two
assumptions the following theorem holds.

Theorem 7. Function HSPG,K (x) can be computed with one-sided error by a quantum OBDD of
width O(n).

5.1 Proof of theorem 7

First we shall prove the following lemma.

Lemma 2. In order to correctly compute HSPG,K (x) it is enough to perform following calculations.

1. For every coset we check equalities for all input sequence values that have indices from this
coset;

2. From every coset we choose a representative, and check if the sum of values of f on all the
representatives equals to the following value

S =
G:K∑
i=1

i =
(G : K)((G : K) + 1)

2
.

Proof. One direction is straightforward. The other direction is also not difficult. Suppose we have
the two conditions of the lemma satisfied. Let aK and bK be two different cosets with elements
d ∈ aK and c ∈ bK, such that σd = σc, where σd, σc are binary encoded images f(d) and f(c)
respectively. We fix c ∈ bK. There are two cases possible:

1. For all d ∈ aK(σd = σc);

2. There exists d′ ∈ aK(σd 6= σc).

Apparently in the first case we indeed could choose any of the elements of a coset to check in-
equalities. In the second case the first condition of the lemma would fail. The reasoning for bK is
analogous.

When the values of f are different on different cosets, obviously, the sum of these values is
the sum of numbers from 1 through G : K. Therefore, HSPG,K (σ) = 1 iff both conditions of the
lemma are satisfied.

In the plan laid down by the previous lemma, our algorithm will consist of two parts checking
conditions of the lemma.

Additionally, we shall use another indexation of χ when convenient: χa,q is a value of f on the
qth element of the coset aK.

Therefore, for a binary input symbol σj we define

• a = a(j) for the number of the corresponding coset;

• We also define a−1(a0) to be the index of the first bit of the first encountered element of ath

coset in the binary input sequence σ;

• q = q(j) for the number of the corresponding element of the coset a;

12

• r = r(j) for the number of bit in the binary representation of χa,q

and start indexation from 0. Thus a = 0, (G : K)− 1, q = 0, |aK| − 1.

x1 ··· • ··· • ··· ···
...xn ··· ··· ··· • ··· •

|ψ1〉 H �������� ··· • �������� ··· • ··· �������� ··· • NM

|ψ2〉 H �������� ··· • �������� ··· • ··· �������� ··· • NM

...

|1〉 |t〉 |1〉 |t〉 |1〉 |t〉











|ψlog t〉 H �������� ··· • �������� ··· • ··· �������� ··· • NM

∣∣ψ′target〉 ···

R1,1

···

Rt,1

···

R1,n

···

Rt,n
NM

∣∣ψ′′target〉 R̃1
··· R̃t

··· ··· ··· NM

Denote l = dlogG : Ke. First part of the algorithm performs calculation of the sequence of
equalities:

σa−1(0) = σa−1(1) = . . . = σa−1((G:K)−1)

This can be done using the algorithm for Equality function with rotations:

R′i,j = Rŷ

(
2πki2

|K|al(2ql+r−2(q+1)l+r mod |K|l)
2n

)
In this equation

• ql + r is the index of the first, as it is appeared in the input sequence, representative of the
current considered by the equality algorithm coset.

• Subsequently, (q+1)l+r is the index of the corresponding bit in the binary representation of
the first element of the next considered coset, to be compared with the currently considered
bit of the binary input.

• We use the power expression modulo |K|l in order to compare the first and the last cosets.

The second part of the algorithm calculates the following equality:

(G:K)∑
j=1

χij
?
= S, where S =

G:K∑
i=1

i =
(G : K)((G : K) + 1)

2
.

This can be done performing the following rotations on
∣∣ψ′′target〉 in each of the t subspaces while

reading jth bit of the binary input σ:

R′′i,j = Rŷ

(
2πki2

r

2n

)
,

where the initial state of
∣∣ψ′′target〉 was created by R̃i = Rŷ(−2πkiS

2n) with S = G:K(G:K+1)
2

.

13

Assume the set of parameters K = {k1, . . . , kt} is “good” according to the Definition 4 and
t = d(2/ε) ln 2 · 2ne = O(n).

Now consider the circuit representation. Initially |ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψlog t〉 ⊗
∣∣ψ′target〉 ⊗∣∣ψ′′target〉 = |00 . . . 0〉. For i ∈ {1, . . . , t}, j ∈ {1, . . . , n} operators Ri,j = (R′i,j ⊗ R′′i,j) are combined

rotations of
∣∣ψ′target〉 and

∣∣ψ′′target〉. We define them as follows

R′i,j = Rŷ

(
2πki2

|K|al(2ql+r−2(q+1)l+r mod |K|l)
2n

)
and

R′′i,j =

 Rŷ

(
2πki2

r

2n

)
, when the jth input symbol corresponds to the 1st

encounter of the coset a representative;
I, otherwise.

The state of the system after having read the input σ is

|ψ〉 = 1√
t

t∑
i=1

|i〉
∣∣ψ′target〉 ∣∣ψ′′target〉 ;∣∣ψ′target〉 = cos πkig1(σ)

2n |0〉+ sin πkig1(σ)
2n |1〉 ;∣∣ψ′′target〉 = cos πkig2(σ)

2n |0〉+ sin πkig2(σ)
2n |1〉 ;

where

1. g1(σ) =
∑

a

∑
q 2(|K|a+q)dlogG:Ke(χa,q − χa,q−1 mod |K|). Thus, g1(σ) = 0 iff for every coset a

function f maps all the elements of a onto the same element of X.

2. g2(σ) =
(∑(G:K)

j=1 χij

)
− S, where χij is the representative chosen from the jth coset. There-

fore, g2(σ) checks whether the images of elements from different cosets are distinct.

We accept the input σ if the measurement outcome of
∣∣ψ′target〉 ⊗ ∣∣ψ′′target〉 is |00〉. Clearly, the

accepting probability is

Praccept(σ) =
1

t

t∑
i=1

cos2 πkig1(σ)

2n
cos2 πkig2(σ)

2n

When the function f “hides” the subgroup K the acceptance probability is 1. Otherwise, at
least one gj(σ) of g1(σ), g2(σ) is not zero and thus Praccept(σ) is bounded as follows

Praccept(σ) ≤ 1

t

t∑
i=1

cos2 πkigj(σ)

2n
=

1

2
+

1

2t

t∑
i=1

cos
2πkigj(σ)

2n
<

1

2
+

1

2

√
ε

since the set K = {k1, . . . , kt} is “good”.
It is easy to see that the width of the program is linear, while the number of qubits used by

our algorithm is O(log n).

6 Conclusions

Sauerhoff and Sieling in 2004 [SS04] have shown the incomparability between classical and quantum
OBDD. Therefore, we consider quantum OBDD complexity of certain important functions.

Using the modified fingerprinting technique we have shown a refined proof of the upper bound
for hidden subgroup problem [KH05], [Høy97], [ME99] for certain assumptions. The circuit presen-
tation of the results is significantly more illustrative, simplifying the presentation of proofs.

14

Acknowledgements We thank Juhani Karhumaki for invitation to the University of Turku and
a number of interesting discussions on the subject of the paper.

Research was supported by the University of Turku and the Russian Fund for Basic Research
(under the grant 08-07-00449).

References

[AK97] F. Ablayev and M. Karpinski, On the power of randomized ordered branching programs,
Tech. Report 85181-CS, University of Bonn, 1997, see also Electronic Colloquium on Compu-
tational Complexity, TR98-004, (1998), available at http://www.eccc.uni-trier.de/eccc/.

[AKK] F. Ablayev, M. Karpinski, and A. Khasianov, Complexity of Computing Functions on
Quantum Branching Programs, Manuscript, 2008.

[AF98] A. Ambainis and R. Freivalds, 1-way quantum finite automata: strengths, weaknesses and
generalization, Proceeding of the 39th IEEE Conference on Foundation of Computer Science,
1998, See also arXiv:quant-ph/9802062 v3, pp. 332–342.

[AGK01] F. Ablayev, A. Gainutdinova, and M. Karpinski, On computational power of quantum
branching programs, Lecture Notes in Computer Science, no. 2138, Springer-Verlag, 2001, See
also arXiv:quant-ph/0302022 v1, pp. 59–70.

[AGKMP] F. Ablayev, A. Gainutdinova, M. Karpinski, C. Moore, and C. Pollette, On the compu-
tational power of probabilistic and quantum branching programs of constant width, Information
and Computation (2005).

[AN08] A. Ambainis and N. Nahimovs, Improved constructions of quantum automata. Manuscript,
2008, from personal communication.

[AV08] F. Ablayev and A. Vasiliev On the Computation of Boolean Functions by Quantum
Branching Programs via Fingerprinting, TR08-059, (2008), available at http://www.eccc.uni-
trier.de/eccc/.

[Fre79] R. Freivalds, Fast probabilistic algorithms, FCT’79, LNCS 74 (Berlin, New York), Springer-
Verlag, 1979, pp. 57–69.

[Høy97] Peter Høyer, Conjugated operators in quantum algorithms, Tech. report, University of
Southern Denmar, 1997.

[KH05] A. Khasianov, Complexity Bounds On Some Fundamental Computational Problems For
Quantum Branching Programs, http://nbn-resolving.de/urn:nbn:de:hbz:5N-05696.

[KH06] A. Khasianov, Complexity Bounds On Some Fundamental Computational Problems For
Quantum Branching Programs, Manuscript (in Russian), 2006.

[MC97] C. Moore and J.P. Crutchfield, Quantum automata and quantum grammars. Theoretical
Computer Science 237: 275–306, 2000.

[ME99] M. Mosca and A. Ekert, The hidden subgroup problem and eigenvalue estimation on a
quantum computer, arXive e-print quant-ph/9903071, 1999.

15

[MR95] R. Motwani, P. Raghavan, Randomized Algorithms. Cambridge University Press, 1995.

[Nag51] T. Nagell, Introduction to number theory, New York: Wiley, 1951.

[NC00] Michael A. Nielsen and Isaac L. Chuang, Quantum computation and quantum information,
Cambridge University Press, 2000.

[NHK00] Masaki Nakanishi, Kiyoharu Hamaguchi, and Toshinobu Kashiwabara, Ordered quantum
branching programs are more powerful than ordered probabilistic branching programs under a
bounded-width restriction, Computing and Combinatorics, LNCS 1858 (Sydney, Australia),
6th Annual International Conference, COCOON 2000, Springer-Verlag, July 2000, pp. 467–
476.

[SS04] M. Sauerhoff and Detlef Sieling, Quantum branching programs and space-bounded nonuni-
form quantum complexity, Theoretical Computer Science (2004), no. 334, 177–225.

[Weg00] I. Wegener, Branching programs and binary decision diagrams, SIAM Monographs on
Discrete Mathematics and Applications, SIAM Press, 2000.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

