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Abstract

Motivated by the quantum algorithm in [MN05] for testing commutativity of black-box groups, we
study the following problem: Given a black-box finite ringR = 〈r1, · · · , rk〉 where{r1, r2, · · · , rk} is
an additive generating set forR and a multilinear polynomialf(x1, · · · , xm) overR also accessed as a
black-box functionf : Rm → R (where we allow the indeterminatesx1, · · · , xm to be commuting or
noncommuting), we study the problem of testing iff is an identity for the ringR. More precisely, the
problem is to test iff(a1, a2, · · · , am) = 0 for all ai ∈ R.

• We give a quantum algorithm with query complexityO(m(1 + α)m/2k
m

m+1 ) assumingk ≥ (1 +
1/α)m+1. Towards a lower bound, we also discuss a reduction from a version ofm-collision to
this problem.

• We also observe a randomized test with query complexity4mmk and constant success probability
and a deterministic test withkm query complexity.

1 Introduction

For any finite ring(R,+, ·) the ringR[x1, x2, · · · , xm] is the ring of polynomials in commuting variables
x1, x2, · · · , xm and coefficients inR. The ringR{x1, x2, · · · , xm} is the ring of polynomials where the
indeterminatesxi arenoncommuting. By noncommuting variables, we meanxixj − xjxi 6= 0 for i 6= j.

For the algorithmic problem we study in this paper, we assumethat that the elements of the ring(R,+, ·)
are uniformly encoded by binary strings of lengthn and R = 〈r1, r2, · · · , rk〉 is given by an additive
generating set{r1, r2, · · · , rk}. That is,

R = {
∑

i

αiri | αi ∈ Z}.

Also, the ring operations ofR are performed by black-box oracles for addition and multiplication that
take as input two strings encoding ring elements and output their sum or product (as the case may be).
Additionally, we assume that the zero element ofR is encoded by some fixed string. We now define the
problem which we study in this paper.

The Multilinear Identity Testing Problem (MIT ): The input to the problem is a black-box ringR =
〈r1, · · · , rk〉 given by an additive generating set, and a multilinear polynomial f(x1, · · · , xm) (in the ring
R[x1, · · · , xm] or the ringR{x1, · · · , xm}) that is also given by black-box access. The problem is to test if
f is anidentityfor the ringR. More precisely, the problem is to test iff(a1, a2, · · · , am) = 0 for all ai ∈ R.
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A natural example of an instance of this problem is the bivariate polynomialf(x1, x2) = x1x2 − x2x1

over the ringR{x1, x2}. This is an identity forR precisely whenR is a commutative ring. Clearly, it
suffices to check if the generators commute with each other which gives a naive algorithm that makesO(k2)
queries to the ring oracles.

Given a polynomialf(x1, · · · , xm) and a black-box ringR by generators, we briefly recall some facts
about the complexity of checking iff = 0 is an identity forR. The problem can be NP-hard when the
number of indeterminatesm is unbounded, even whenR is a fixed ring. To see this, notice that a 3-CNF
formulaF (x1, · · · , xn) can be expressed as aO(n) degree multilinear polynomialf(x1, x2, · · · , xn) over
F2, by writing F in terms of addition and multiplication overF2. It follows thatf = 0 is an identity forF2

if and only if F is an unsatisfiable formula.
We remark that a closely related problem is Polynomial Identity Testing (PIT). ForPIT we ask whether

the polynomialf(x1, · · · , xm) is the zero polynomial, which is a stronger property. To see the difference,
consider a standard example: For a primep, notice thatxp − x = 0 is an identity forFp but xp − x is not a
zero polynomial inFp[x]. However, when the ringR is afieldF and the degree off is smaller than the size of
the fieldF then the two problems coincide as a consequence of the Schwartz-Zippel lemma [Sch80, Zip79].
More precisely,f = 0 is an identity forF if and only if f is the zero polynomial.

Whenf is given by anarithmetic circuit thenPIT is known to be in randomized polynomial time over
fields [Sch80, Zip79] and even finite commutative rings with unity [AB03, AMS08]. This is quite unlike
MIT which can be NP-hard for polynomials over small fields as already observed above.

On the other hand, whenf is given by black-box access as a functionf : Rm → R then there is no way
to distinguish between the problemsPIT andMIT . Algorithmically, they coincide.

Over the years, Polynomial Identity Testing has emerged as an important algorithmic problem [AB03,
KI03]. Due to its significance in complexity theory,PIT has been actively studied in recent years [DS06,
KS07, RS05].

In this paper we focus on thequery complexityof multilinear identity testing(MIT ). In our query model,
each ring operation, which is performed by a query to the ringoracle, is of unit cost. Furthermore, we
consider each evaluation off(a1, · · · , am) to be of unit cost for a given input(a1, · · · , am) ∈ Rm. This
model is reasonable because we considerm as a parameter that is much smaller thank.

Our goal is to find upper and lower bounds on the query complexity for the problem. We are interested
in the query complexity for both classical and quantum computation. The main motivation for our study is
a result of Magniez and Nayak in [MN05], where the authors study the quantum query complexity of group
commutativity testing: LetG be a finite black-box group given by a generating setg1, g2, · · · , gk and group
operations are performed by a group oracle. The algorithmictask is to check ifG is commutative. For this
problem the authors in [MN05] give a quantum algorithm with query complexityO(k2/3 log k) and time
complexityO(k2/3 log2 k). Furthermore aΩ(k2/3) lower bound for the quantum query complexity is also
shown. The main technical tool for their upper bound result was a method of quantization of random walks
first showed by Szegedy [Sze04]. More recently, Magniez et alin [MNRS07] discovered a simpler and
improved description of Szegedy’s method.

Our starting point is the observation that the Magniez-Nayak result [MN05] for group commutativity
can also be easily seen as a commutativity test for arbitraryfinite black-box rings. IfR = 〈r1, · · · , rk〉 is a
finite black-box ring andf is the bivariate polynomialf(x1, x2) = x1x2 − x2x1 over the polynomial ring
R{x1, x2} (x1, x2 do not commute). Testing iff = 0 is an identity forR is testing ifR is commutative.
It turns out that the Magniez-Nayak results can be easily adapted to obtain similar upper and lower bounds
for the quantum query complexity of the problem. Motivated by this connection we study the problem
of testing multilinear identities for any black-box ring. We crucially need the multilinearity condition to
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generalize a result of Pak [Pak00] to multilinear polynomials. Given a black-box groupG = 〈g1, · · · , gk〉
by a generating set, Pak shows in [Pak00] that it suffices to plug in random subproducts of the generators
for variablesg andh in the equationgh = hg to check for commutativity. Pak shows that for such random
subproductsgh 6= hg with constant probability ifG is nonabelian. IfR = 〈r1, · · · , rk〉 is a finite black-
box ring given by an additive generating set, Pak’s result can be easily modified to show the following:
if we plug in random subsumsof the generatorsr1, · · · , rk for the variablesx1 andx2 in the polynomial
x1x2 − x2x1, then for noncommutative ringsR we will havex1x2 − x2x1 6= 0 with constant probability.
We prove a generalization of this property for any multilinear polynomialf(x1, · · · , xm). Then, using the
Magniez-Nayak technique adapted suitably, we show a quantum algorithm for this problem with quantum
query complexityO(m(1 + α)m/2k

m
m+1 ) when(1 + 1/α)m+1 ≤ k.

For the lower bound result Magniez and Nayak show a reductionfrom UNIQUE COLLISION: let
f be a function from{1, 2, · · · , k} to {1, 2, · · · , k} given as a oracle, with the promise is that either
there exists a unique collision pairx 6= y such thatf(x) = f(y) or f is a permutation. It is known
from earlier work [AS04, Kut05, Amb05] that the quantum query complexity ofUNIQUE COLLISION is
Ω(k2/3). In fact Magniez and Nayak define a variant ofUNIQUE COLLISION problem, which they call
UNIQUE SPLIT COLLISIONproblem: Assumek is even. Then, in the Yes instances, one element of the
colliding pair has to come from{1, · · · , k/2} and the other from{k/2 + 1, · · · , k}. Then their paper
shows a reduction fromUNIQUE COLLISION to UNIQUE SPLIT COLLISIONand finally a reduction from
UNIQUE SPLIT COLLISIONto group commutativity testing.

We show a reduction to a somewhat more general version ofMIT from a problem that is closely related
to the m-COLLISION problem studied in quantum computation. Given a functionf : {1, 2, · · · , k} →
{1, 2, · · · , k} as an oracle and a positive integerm, the task is to determine if there is some element in the
range off with exactlym pre-images. More precisely, is there ani ∈ [k] such that|f−1(i)| = m? We define
a new problem closely related tom-COLLISION problem, that we callm-SPLIT COLLISIONproblem. Here
we divide the numbers1, 2, · · · , k into m consecutive equal-sized intervals (assumek is a multiple ofm)
and ask if there is some element in the range off with exactly one pre image in each of them intervals. We
show a reduction fromm-SPLIT COLLISIONto a general version ofMIT . We do not know an explicit lower
bound for the quantum query complexity ofm-SPLIT COLLISION (unlike UNIQUE SPLIT COLLISION in
[MN05]). The reduction ofUNIQUE SPLIT COLLISIONto group commutativity testing problem in[MN05]
directly gives aΩ(k2/3) lower bound for the quantum query complexity of the general version ofMIT .
However, we do not have a stronger lower bound. Ideally, we would like to have a dependence ofm in the
exponent ofk.

Our reduction fromm-SPLIT COLLISION to MIT uses ideas from automata theory to construct a suit-
able black-box ring. Recently, in [AMS08] we used similar ideas to give a new deterministic polynomial
time identity testing (PIT) algorithm for arithmetic circuits computing sparse and small degree multivariate
polynomial over noncommuting variables.

Remark. Ambainis in [Amb04] showed the quantum upper bound ofO(km/m+1) for them-COLLISION
problem. ButΩ(k2/3) is the best known quantum lower bound form-COLLISION for m = 2 [AS04]. The
quantum query complexity ofm-COLLISIONhas been open for some years.

There is a randomized reduction fromm-COLLISION to m-SPLIT COLLISIONwith success probability
e−m: let f : [k] → [k] be a ’yes’ instance ofm-COLLISION, and supposef−1(i) = {i1, i2, · · · , im}. To
reduce this instance tom-SPLIT COLLISIONwe pick a randomm-partitionI1, I2, · · · , Im of the domain[k]
with each|Ij| = k/m. Clearly, with probabilitye−m the set{i1, i2, · · · , im} will be a split collision for
the functionf . Consequently, showing a quantum lower bound ofΩ(kα) for m-COLLISION will imply a
quantum lower bound ofΩ(kα/em) for m-SPLIT COLLISIONand hence toMIT .
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2 Black-box rings and the quantum query model

As already explained, the ring operations (addition and multiplication) for a black-box ring are performed by
querying a ring oracle. We can modify the definition of black-box ring operations by making them unitary
transforms that can be used in quantum algorithms. For a black-box ringR, we have two oraclesOa

R andOm
R

for addition and multiplication respectively. For any two ring elementsr, s, and a binary stringt ∈ {0, 1}n

we haveOa
R|r〉|s〉 = |r〉|r + s〉 andOm

R |r〉|s〉|t〉 = |r〉|s〉|rs ⊕ t〉, where the elements ofR are encoded as
strings in{0, 1}n. Notice thatOa

R is a reversible function by virtue of(R,+) being an additive group. On
the other hand,(R, ·) does not have a group structure. Thus we have madeOm

R reversible by defining it as
a 3-place functionOm

R : {0, 1}3n → {0, 1}3n. Whenr or s do not encode ring elements these oracles can
compute any arbitrary string.

The query model in quantum computation is a natural extension of classical query model. The basic
difference is that a classical algorithm queries deterministically or randomly selected basis states, whereas a
quantum algorithm can query a quantum state which is a suitably prepared superposition of basis states. For
a black-box ring operation the query operators are simplyOa

R andOm
R (as defined above). For an arbitrary

oracle functionF : X → Y , the corresponding unitary operator isOF : |g〉|h〉 → |g〉|h ⊕ F (g)〉. In the
query complexity model, we charge unit cost for a single query to the oracle and all other computations are
free. We will assume that the input black-box polynomialf : Rm → R is given by such an unitary operator
Uf .

All the quantum registers used during the computation can beinitialised to |0〉. Then ak-query
algorithm for a black-box ring is a sequence ofk + 1 unitary operators andk ring oracle operators:
U0, Q1, U1, · · · , Uk−1, Qk, Uk whereQi ∈ {Oa

R, Om
R , OF } are the oracle queries andUi’s are unitary opera-

tors. The final step of the algorithm is to measure designatedqubits and decide according to the measurement
output.

3 Quantum Algorithm for multilinear Identity Testing

In this section we describe our quantum algorithm for multilinear identity testingMIT . Our algorithm is
motivated by (and based on) the group commutativity testingalgorithm of Magniez and Nayak [MN05]. We
briefly explain the algorithm of Magniez and Nayak. Their problem was the following: given a black-box
groupG by a set of generatorsg1, g2, · · · , gk, the task is to find nontrivial upper bound on the quantum query
complexity to determine whetherG is commutative. The group operators (corresponding to the oracle) are
OG andOG−1 .

Note that for this problem, there is a trivial classical algorithm (so as quantum) of query complexity
O(k2). In an interesting paper Pak showed a classical randomized algorithm of query complexityO(k) for
the same problem [Pak00]. Pak’s algorithm is based on the following observation (Lemma 1.3 in [Pak00]):
consider a subproducth = ge1

1 ge2
2 · · · gek

k whereei’ s are picked uniformly at random from{0, 1}. Then for
any proper subgroupH of G, Prob[h 6∈ H] ≥ 1/2.

One important step of the algorithm in [MN05] is a generalization of Pak’s lemma. LetS` be the set of all
distinct element̀ tuples of elements from{1, 2, · · · , k}. Foru = (u1, · · · , u`), definegu = gu1 ·gu2 · · · gu`

.

Let p = `(`−1)+(k−`)(k−`−1)
k(k−1) .

Lemma 3.1 [MN05] For any proper subgroupK of G, Probu∈S`
[gu 6∈ K] ≥ 1−p

2

As a simple corollary of this lemma, Magniez and Nayak show in[MN05] that if G is nonabelian then for

randomly pickedu andv from S` the elementsgu andgv will not commute with probability at least(1−p)2

4 .
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Thus, for noncommutativeG there will be at least(1−p)2

4 fraction of noncommuting pairs(u, v). Call such
pairs as ”marked pairs”. Next, their idea is to do a random walk in the space of all pairs and hit a marked pair
quickly (i.e. using only a few queries to the group oracle). They achieved this by defining a random walk
and quantizing it using [Sze04, MNRS07]. The random walk consists of two independent random walks on
S`. For eachu ∈ S`, they maintain a binary treetu whose leaves corresponds togu1 , gu2 , · · · , gu`

and the
internal nodes corresponds to the group product of its two children. Sogu is computed at the root oftu. The
description of the random walk is simple. Suppose the state is u ∈ S` at some stage. With probability1/2
the walk will stay atu (this ensures the ergodicity of the walk) and with probability 1/2 do the following:
Pick i uniformly at random from1, 2, · · · , ` and pickj uniformly at random from1, 2, · · · , k. If j is already
equal to someum, exchangeui andum. Otherwise setui = j. Recompute the group operations at the nodes
of tu which are affected by this substitution. It is easy to see that tu can be updated using onlyO(log `)
queries to group oracle. Using a coupling argument of MarkovChain it is shown in [MN05] that the spectral
gapδ of this random walk is at least 1

8e` log ` . Since the random walk is ergodic its stationary distribution

will be uniform. So the fraction of the marked states (pairs)in S` × S` will be at least(1−p)2

4 . Now they
invoke Szegedy’s result to perform a quantum walk onS` × S` and hit a marked element pair. We recall the
statement of Szegedy’s theorem. (For a detailed explanation see the section2.3 of [MN05])

Theorem 3.2 [Sze04] LetP be the transition matrix of a Markov Chain on a graphG = (V,E) andδ be
the spectral gap ofP . Also letM be the set of all marked vertices inV and |M |/|V | ≥ ε > 0, whenever
M is nonempty. Then there is a quantum algorithm which determines whetherM is nonempty with constant
success probability and query complexityS+O((U +C)/

√
δε). S is the set up cost of the quantum process,

U is the update cost for one step of the walk andC is the checking cost.

The set up cost of the Magniez-Nayak algorithm is2(`−1) and update cost isO(log k). Combined with
Szegedy’s theorem, some calculation shows that the query cost is minimized at̀ = k2/3 and the quantum
query complexity isO(k2/3 log k).

3.1 Multilinear identity testing (MIT)

Now we are ready to describe our result for multilinear identity testing for a given black-box ring. We
start with describing the problem first. LetR be a black-box ring given by a set of additive generators
{r1, r2, · · · , rk} andf(x1, x2, · · · , xm) overR be a multilinear polynomial also given by a black-box. Our
problem is to test whetherf(a1, · · · , am) = 0 for all ai ∈ R.

The first step is a suitable generalization of Pak’s lemma. For any i ∈ [m], consider the setRi ⊆ R
defined as follows:

Ri = {u ∈ R | ∀(b1, · · · , bi−1, bi+1, · · · , bm) ∈ Rm−1, f(b1, · · · , bi−1, u, bi+1, · · · , bm) = 0}

Clearly, if f is not a zero function fromRm → R, then|Ri| < |R|. In the following lemma, we prove
that if f is not a zero function then|Ri| ≤ |R|/2.

Lemma 3.3 LetR be any finite ring andf(x1, x2, · · · , xm) be a multilinear polynomial overR (commuting
or noncommuting) such thatf = 0 is not an identity forR. For i ∈ [m] define

Ri = {u ∈ R | ∀(b1, · · · , bi−1, bi+1, · · · , bm) ∈ Rm−1, f(b1, · · · , bi−1, u, bi+1, · · · , bm) = 0}. (1)

ThenRi is an additive coset of a proper additive subgroup ofR and hence|Ri| ≤ |R|/2.
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Proof. Write f = A(x1, · · · , xi−1, xi, xi+1, · · · , xm) + B(x1, · · · , xi−1, xi+1, · · · , xm) whereA is the
sum of all the monomials off containingxi andB is the sum of the rest of the monomials. Letv1, v2

be any two distinct elements inRi. Then for any fixed̄y = (y1, · · · , yi−1, yi+1, · · · , ym) ∈ Rm−1, con-
sider the evaluation ofA andB over(y1, · · · , yi−1, v1, yi+1, · · · , ym) and(y1, · · · , yi−1, v2, yi+1, · · · , ym)
respectively. For convenience, we abuse the notation and write,

A(v1, ȳ) + B(ȳ) = A(v2, ȳ) + B(ȳ) = 0.

ȳ is an assignment tox1, x2, · · · , xi−1, xi+1, · · · , xk andv1, v2 are the assignments toxi respectively. Note
that, asf is a multilinear polynomial, the above relation in turns implies thatA(v1 − v2, ȳ) = 0.

Consider the set̂Ri, defined as follows: fix anyu(i) ∈ Ri.

R̂i = {x − u(i) | x ∈ Ri}

We claim thatR̂i is an (additive) subgroup ofR. We only need to show that̂Ri is closed under the addition
(of R). Consider(x1 − u(i)), (x2 − u(i)) ∈ R̂i. Then(x1 − u(i)) + (x2 −u(i)) = (x1 + x2 − u(i))− u(i). It
is now enough to show that for anȳy ∈ Rm−1, f(x1 + x2 − u(i), ȳ) = 0 (x1 + x2 + u(i) is an assignment
to xi). Again using the fact thatf is multilinear, we can easily see the following:

f(x1+x2−u(i), ȳ) = A(x1, ȳ)+A(x2, ȳ)−A(u(i), ȳ)+B(ȳ) = A(x2, ȳ)−A(u(i), ȳ) = A(x2−u(i), ȳ) = 0.

Note that the last equality follows becausex2 andu are inRi. Hence we have proved that̂Ri is a subgroup
of R. SoRi = R̂i + u(i) i.e Ri is a coset ofR̂i insideR. Also |Ri| < |R| (f is not identically zero overR).
Thus, finally we get|Ri| = |R̂i| ≤ |R|/2.

Our quantum algorithm is based on the algorithm of [MN05]. Inthe rest of the paper we denote byS` the
set of all` size subsets of{1, 2, · · · , k} 1. We follow a quantization of a random walk onS`×· · ·×S` = Sm

` .
For u = {u1, u2, · · · , u`}, defineru = ru1 + · · · + ru`

. Now, we suitably adapt the Lemma 1 of [MN05]
in our context. LetR be a finite ring given by a additive generating setS = {r1, · · · , rk}. W.l.o.g, assume
thatr1 is the zero element ofR. Let R̂ be a proper additive subgroup of(R,+). Let j be the least integer in
[k] such thatrj 6∈ R̂. SinceR̂ is a proper subgroup ofR, such aj always exists.

Lemma 3.4 Let R̂ < R be a proper additive subgroup ofR andT be an additive coset of̂R in R. Then
Probu∈S`

[ru 6∈ T] ≥ 1−p
2 , wherep = `(`−1)+(k−`)(k−`−1)

k(k−1) .

Proof. Let j be the least integer in[k] such thatrj 6∈ R̂. SinceR̂ is a proper subgroup ofR, such aj always
exists. Fix a setu of size` such that1 ∈ u andj 6∈ u. Denote byv the set obtained fromu by deleting1 and
insertingj. This define a one to one correspondence (matching) between all such pair of(u, v). Moreover
rv = ru + rj (notice thatr1 = 0). Then at least one of the elementru or rv is not in T . For otherwise
(rv − ru) ∈ R̂ implying rj ∈ R̂, which is a contradiction.

Therefore,

Probu∈S`
[ru ∈ T | j ∈ u xor 1 ∈ u] ≤ 1

2
.

1Notice that in [MN05], the author consider the set of all` tuples instead of subsets. This is important for them as theywork in
nonabelian structure in general (where order matters). Butwe will be interested only over additive abelian structure of a ring and
thus order does not matter for us.
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For any two indicesi, j,

Probu∈S`
[i, j ∈ u or i, j 6∈ u] =

`(` − 1) + (k − `)(k − ` − 1)

k(k − 1)
= p.

Thus,
Probu∈S`

[ru ∈ T] ≤ (1 − p)/2 + p ≤ (1 + p)/2.

This completes the proof.

Let T = Ri in Lemma 3.4, whereRi is as defined in Lemma 3.3.
Supposef = 0 is not an identity for the ringR. Then, using Lemma 3.4 we show foru1, u2, · · · , um

picked uniformly at random fromS` thatf(ru1, · · · , rum) is non zero with non-negligible probability. This
is analogous to [MN05, Lemma 2].

Lemma 3.5 Let f(x1, · · · , xm) be a multilinear polynomial (in commuting or noncommuting indetermi-
nates) overR such thatf = 0 is not an identity for the ringR. Then,

Probu1,··· ,um∈S`
[f(ru1 , · · · , rum) 6= 0] ≥

(

1 − p

2

)m

.

Proof. For i ∈ [m], let Ri be the additive coset defined in Equation 1 of Lemma 3.3. The proof is by
simple induction onm. The proof for the base case of the induction (i.e form = 1) follows easily from the
definition ofRi and Lemma 3.4. By induction hypothesis assume that the result of this lemma holds for all
t-variate multilinear polynomialsg such thatg = 0 is not an identity forR with t ≤ m − 1.

Consider the given multilinear polynomialf(x1, x2, · · · , xm). Then by the Lemma 3.3,Rm is a coset
of an additive subgroup̂Rm insideR. Pick um ∈ S̀ uniformly at random. Iff = 0 is not an identity
on R then by Lemma 3.4 we getrum 6∈ Rm with probability at least1−p

2 . Let g(x1, x2, · · · , xm−1) =

f(x1, · · · , xm−1, rum). Sincerum 6∈ Rm with probability at least1−p
2 , it follows thatg = 0 is not an identity

on R with probability at least1−p
2 . Then, by induction hypothesis,Probu1,··· ,um−1∈S`

[g(ru1 , · · · , rum−1) 6=
0] ≥

(

1−p
2

)m−1
. Hence we get,Probu1,··· ,um∈S`

[f(ru1 , · · · , rum) 6= 0] ≥
(

1−p
2

)m
, which proves the

lemma.

We observe two simple consequences of Lemma 3.5. Notice that1−p
2 = `(k−`)

k(k−1) . Letting ` = 1 we get
1−p
2 = 1/k, and Lemma 3.5 implies that iff = 0 is not an identity forR thenf(a1, · · · , am) 6= 0 for one

of thekm choices for theai from the generating set{r1, · · · , rk}.

Corollary 3.6 There is a deterministickm query algorithm forMIT , wheref is m-variate andR is given
by an additive generating set of sizek.

Letting ` = k/2 in Lemma 3.5 we get1−p
2 ≥ 1/4. Hence we obtain the following randomized test

which makes4mmk queries.

Corollary 3.7 There is a randomized4mmk query algorithm forMIT with constant success probability,
wheref is m-variate andR is given by an additive generating set of sizek.

Remark. Corollary 3.6 can be seen as a generalization of thek2 query deterministic test for commutativity.
Likewise, Corollary 3.7 is analogous to Pak’sO(k) query randomized test for commutativity.

7



We use Lemma 3.5 to design our quantum algorithm. Our quantumalgorithm is based on a quantization
of a random walk on Sm` and motivated by the one described in [MN05]. The Lemma 3.5 isused to guarantee

that there will at least
(

1−p
2

)m
fraction ofmarked pointsin the spaceSm

` i.e the points wheref evaluates
to non zero.

Now we describe the random walk onSm
` which is the main building block of our quantum algorithm.

In fact we only describe the random walk onS`. OverSm
` , the random walk consists of justm independent

simultaneous random walks onS`.

3.1.1 Random walk on S`

Our random walk can be described as a random walk over a graphG = (V,E) which we define as follows:
The vertices ofG are all possiblè subsets of[k]. Two vertices are connected by an edge whenever the
corresponding sets differ by exactly one element. Notice that G is a connected̀(k − `)-regular graph.
Also G is well known in the literature as Johnson Graph (with parameter (k, `, ` − 1)) [BCN89]. Let P
be the normalized adjacency matrix ofG with rows and columns are indexed by the subsets of[k]. Then
PXY = 1/`(k − `) if |X ∩ Y | = ` − 1 and0 otherwise. It is well known that the spectral gapδ of P
(δ = 1 − λ, whereλ is the second largest eigenvalue ofP ) is Ω(1/`) for ` ≤ k/2 [BCN89]. Now we
describe the random walk onG.

Let the current vertex isu = {u1, u2, · · · , u`} andru = ru1 + ru2 + · · · + ru`
. With probability1/2

stay atu and with probability1/2 do the following: randomly pickui ∈ u andj ∈ [k] \ u. Then move to
vertexv such thatv is obtained fromu by removingui and insertingj. Computerv by simply subtracting
rui from ru and addingrj to it. That will only cost2 oracle access. Staying in any vertex with probability
1/2 ensures that the random walk is ergodic. So the stationary distribution of the random walk is always
uniform. It is easy to see that the transition matrix of the random walk isA = (I + P )/2 whereI is the
identity matrix of suitable dimension. So the spectral gap of the transition matrixA is δ̂ = (1−λ)/2 = δ/2.

Now, in the following theorem we present the analysis of the query complexity.

Theorem 3.8 Let R be a finite ring given as an oracle andf(x1, · · · , xm) be a multilinear polynomial
overR given as a black-box. Moreover let{r1, · · · , rk} is a given additive generating set forR. Then the
quantum query complexity of identity testing off is O(m(1 + α)m/2k

m
m+1 ) assumingk ≥ (1 + 1/α)m+1.

Proof. Our algorithm analysis is similar to the analysis of [MN05].
Setup cost(S): For the quantum walk step we need to start with an uniform distribution onSm

` . With
eachu ∈ S`, we maintain a quantum register|du〉 that computesru. So we need to prepare the following
state|Ψ〉:

|Ψ〉 =
1

√

|Sm
` |

∑

u1,u2,··· ,um∈Sm
`

|u1, ru1〉 ⊗ |u2, ru2〉 ⊗ · · · ⊗ |um, rum〉.

It is easy to see that to compute anyruj we need` − 1 oracle access to the ring oracle. Since in each
of m independent walk, quantum queries over all choices ofu will be made in parallel (using quantum
superposition), the total query cost for setup ism(` − 1).

Update cost(U): It is clear from the random walk described in the section 3.1.1, that the update cost over
S` is only2 oracle access. Thus for the random walk on Sm

` which is justm independent random walks, one
on each copy of S̀, we need a total update cost2m.2

2In [MN05] the underlying group operation is not necessarilycommutative (it is being tested for commutativity). Thus the
update cost is more.
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Checking cost(C): To check whetherf is zero on a point during the walk, we simply query the oracle
for f once.

Recall from Szegedy’s result [Sze04] (as stated in Theorem 3.2), the total cost for query complex-

ity is Q = S + 1√
δ̂ε

(U + C) where ε =
(

1−p
2

)m
is the proportion of the marked elements andδ̂

is the spectral gap of the transition matrixA described in section 3.1.1. Combining together we get,

Q ≤ m

[

(` − 1) + 3√
δ̂ε

]

. From the random walk described in the section 3.1.1, we knowthat δ̂ ≥ 1
2` .

Hence,Q ≤ m

[

(` − 1) + 3
√

2`

( 1−p
2 )

m
2

]

. Notice that, 1−p
2 = `

k

(

1− `
k

1− 1
k

)

. Substituting for 1−p
2 we get,

Q ≤ m

[

(` − 1) + 3
√

2km/2 1

`
m−1

2 ( k−`
k−1)

m/2

]

. We will choose a suitably smallα > 0 so thatk−1
k−` < 1 + α.

Then we can upper boundQ as follows.Q ≤ m

[

(` − 1) + 3
√

2 · (1 + α)m/2km/2 1

`
m−1

2

]

. Now our goal

is to minimizeQ with respect tò andα. For that we choosè = kt where we will fix t appropriately in

the analysis. Substituting̀= kt we get,Q ≤ m
[

(kt − 1) + 3
√

2 · (1 + α)m/2t1/2k
m−(m−1)t

2

]

. Choosing

t = (m/(m + 1)), we can easily see that the query complexity of the algorithmis O(m(1 + α)m/2k
m

m+1 ).
Finally, recall that we need choose anα > 0 so that k−1

k−` ≤ 1 + α. Clearly, it suffices to chooseα so

that (1 + α)` ≤ αk. Letting ` = km/m+1 we get the constraint(1 + 1/α)m+1 ≤ k which is satisfied if
e(m+1)/α ≤ k. We can chooseα = m+1

ln k .

Remark. The choice ofα in the above theorem shows some trade-offs in the query complexity between
the parametersk andm. For constantm notice that this gives us anO(km/m+1) query upper bound for the
quantum algorithm.

Finally, it is easy to observe that the quantum algorithm andits analysis given in Theorem 3.8 hold for
a more general problem stated in the following theorem.

Theorem 3.9 Let R be a black-box finite ring given by ring oracle and supposeA = 〈r1, r2, · · · , rk〉 is
an additive subgroupof R given by generatorsri ∈ R. Let f(x1, x2, · · · , xm) be a black-box multilinear
polynomialf : Rm → R. There is a quantum algorithm with query complexityO(m(1 + α)m/2k

m
m+1 )

(assumingk ≥ (1 + 1/α)m+1), to check iff = 0 is an identity for the additive abelian groupA.3

4 A reduction from m-SPLIT COLLISIONproblem

We can easily show that any classical algorithm for theMIT problem must makeΩ(k) queries. This is an easy
consequence of observations in [MN05]. Specifically, anΩ(k) is shown in [MN05]for commutativity testing
of a black-box groupG given byk generators. It is a consequence of the randomized query complexity for
the UNIQUE SPLIT COLLISIONproblem. The lower bound argument applies toMIT as well, implying an
Ω(k) query lower bound for the problem.

We do not have an explicit lower bound result for the quantum query complexity of multilinear iden-
tity testing problem (MIT) on rings. However, in this section we show that the more general problem

3I.e. checking iff(a1, · · · , am) = 0 for all ai ∈ A.
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of multilinear identity testing for additive subgroups (described in Theorem 3.9) is at least as hard as
m-SPLIT COLLISION, which is a version of them-COLLISIONproblem.

We first describe some automata theory that is useful for our reduction.

4.1 Automata theory background

We recall some standard automata theory notation (see, for example, [HU78]). Fix a finite automaton
A = (Q,Σ, δ, q0, qf ) which takes as input strings inΣ∗. Q is the set of states ofA, Σ is the alphabet,δ :
Q×Σ → Q is the transition function, andq0 andqf are the initial and final states respectively (throughout,
we only consider automata with unique accepting states). For each letterb ∈ Σ, let δb : Q → Q be the
function defined by:δb(q) = δ(q, b). These functions generate a submonoid of the monoid of all functions
from Q to Q. This is the transition monoid of the automatonA and is well-studied in automata theory: for
example, see [Str94, page 55]. We now define the0-1 matrix Mb ∈ F

|Q|×|Q| as follows:Mb(q, q
′) = 1 if

δb(q) = q′, and0 otherwise.
The matrixMb is simply the adjacency matrix of the graph of the functionδb. As the entries ofMb are

only zeros and ones, we can considerMb to be a matrix over any fieldF.
Furthermore, for anyw = w1w2 · · ·wk ∈ Σ∗ we define the matrixMw to be the matrix product

Mw1Mw2 · · ·Mwk
. If w is the empty string, defineMw to be the identity matrix of dimension|Q| × |Q|.

For a stringw, let δw denote the natural extension of the transition function tow; if w is the empty string,δw

is simply the identity function. It is easy to check that:Mw(q, q′) = 1 if δw(q) = q′ and0 otherwise. Thus,
Mw is also a matrix of zeros and ones for any stringw. Also, Mw(q0, qf ) = 1 if and only if w is accepted
by the automatonA. We now describe the reduction.

Theorem 4.1 Them-SPLIT COLLISIONproblem reduces to multilinear polynomial identity testing (MIT )
for additive subgroups of black-box rings.

Proof. An instance ofm-SPLIT COLLISIONis a functionf : [k] → [k] given as an oracle, where we assume
w.l.o.g. thatk = nm. Divide {1, 2, · · · , k} into m intervalsI1, I2, · · · , Im, each containingn consecutive
points of[k]. Recall thatf has anm-collision if for somej ∈ [k] we have|f−1(j)| = m. Furthermore,f is
said to have anm-split collision if for somej ∈ [k] we have|f−1(j)| = m and|f−1(j) ∩ Ii| = 1 for each
intervalIi.

Consider the alphabetΣ = {b, c, b1, b2, · · · , bm}. For eachi ∈ [k], define thek-tuple ri over Σ as
follows: ri[i] = b andri[f(i)] = bj wherei ∈ Ij. For an indexs ∈ [k] \ {i, f(i)} defineri[s] = c.

Let A = (Q,Σ, δ, q0, qf ) be a deterministic finite state automaton that accepts all stringsw ∈ Σ∗ such
that eachbj, 1 ≤ j ≤ m occurs at least once inw. It is easy to see that such an automaton with a single
final stateqf can be designed with total number of states|Q| = 2O(m) = t. W.l.o.g. let the set of statesQ
be renamed as{1, 2, · · · , t}, where1 is the initial state andt is the final state.

For each lettera ∈ Σ, let Ma denote thet × t transition matrix forδa (as defined in Section 4.1). Since
eachMa is a t × t 0-1 matrix, eachMa is in the ringMt(F2) of t × t matrices with entries from the field
F2. Let R denote thek-fold product ring(Mt(F2))

k. Clearly,R is a finite ring (which is going to play the
role of the black-box ring in our reduction). We now define an additive subgroupT of R, where we describe
the generating set ofT using them-SPLIT COLLISIONinstancef .

For each indexi ∈ [k], define ank-tupleTi ∈ R as follows. LetTi[i] = Mb, Ti[f(i)] = Mbj
(where

i ∈ Ij) and for each indexs 6∈ {i, f(i)} defineTi[s] = Mc. The additive subgroup ofR we consider is
T = 〈T1, T2, · · · , Tk〉 generated by theTi, 1 ≤ i ≤ k.

Furthermore, define twot× t matricesA andB in Mt(F2) as follows. LetA[1, 1] = 1 andA[u, `] = 0
for (u, `) 6= (1, 1). For the matrixB, let B[t, 1] = 1 andB[u, `] = 0 for (u, `) 6= (t, 1).
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Claim 4.2 Letw = w1w2 · · ·wt ∈ Σ∗ be any string. Then the automatonA defined above acceptsw if and
only if the matrixAMw1Mw2 · · ·MwtB is nonzero.

Proof of Claim By definition of the matricesMa, the(1, k)th entry of the productMw1Mw2 · · ·Mwt is 1 if
and only ifw is accepted byA. By definition of the matricesA andB the claim follows immediately.

Now, consider the polynomialP (x1, x2, · · · , xm) in noncommuting indeterminatesx1, · · · , xm with
coefficients from the matrix ringR defined as follows:

P (x1, x2, · · · , xm) = Āx1x2 · · · xmB̄,

whereĀ = (A,A, . . . , A) ∈ R andB̄ = (B,B, · · · , B) ∈ R arek-tuples ofA’s andB’s respectively. We
claim that the multilinear polynomialP (x1, x2, · · · , xm) = 0 is an identity for the additive subgroupT if
and only iff has nom-split collision.

Claim 4.3 P (x1, · · · , xm) = 0 is an identity for the ringT = 〈T1, · · · , Tk〉 if and only iff has nom-split
collision.

Proof of Claim Supposef has anm-split collision. Specifically, letij ∈ Ij 1 ≤ j ≤ m be indices such that
f(i1) = · · · = f(im) = `. In the polynomialP , we substitute for indeterminatexj by Tij for 1 ≤ j ≤ m.
Consider the productM = Ti1 · · ·Tim in the ringT . This product is ank-tuple oft× t matrices such that in
the`th componentM has the matrix

∏m
t=1 Mbt whereit ∈ It. Sincebi1bi2 · · · bim ∈ Σ∗ is a lengthm-string

containing all thebj ’s it will be accepted by the automatonA. Consequently, the(q0, qf )th entry of the
matrix M , which is the(1, k)th entry, is1 (as explained in Section 4.1). It follows that the(1, 1) entry of
the matrixAMB is 1. HenceP = 0 is not an identity over the ringT .

For the other direction, assume thatf has nom-split collision. We need to show thatP = 0 is an identity
for the ringT . For anym elementsS1, S2, · · · , Sm ∈ T considerP (S1, S2, · · · , Sm) = ĀS1S2 · · ·SmB̄.
Since EachSj is anF2-linear combination of the generatorsT1, · · · , Tk, it follows by distributivity in the
ring R thatP (S1, S2, · · · , Sm) is anF2-linear combination of terms of the formP (Tk1 , Tk2 , · · · , Tkm) for
somem indicesk1, · · · , km ∈ [k]. Thus, it suffices to show thatP (Tk1 , Tk2 , · · · , Tkm) = 0.

Let T̂ = Tk1Tk2 · · ·Tkm . Then, for eachj ∈ [k] we haveT̂ [j] = Tk1[j]Tk2 [j] · · · Tkm[j]. Sincef has
no m-split collision, for eachj ∈ [N ] the set of matrices{Mb1 ,Mb2 , · · · ,Mbm} is not contained in the set
{T1[j], T2[j], · · · , Tk[j]}. Thus,T̂ [j] = Tk1[j]Tk2 [j] · · · Tkm[j] is a product of matricesMw1Mw2 · · ·Mwm

for a wordw = w1w2 · · ·wm that is not accepted byA. It follows from the previous claim thatAT̂ [j]B = 0.
HenceP (Tk1 , Tk2 , · · · , Tkm) = 0 which completes the proof.

Acknowledgment. We thank Ashwin Nayak for comments and suggestions.
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