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Abstract

It has been shown that for every perfect matching M of the d-dimensional n-vertex hy-
percube, d ≥ 2, n = 2d, there exists a second perfect matching M ′ such that the union of
M and M ′ forms a Hamiltonian circuit of the d-dimensional hypercube. We prove a gener-
alization of a special case of this result when there are two dimensions that do not get used
by M . It is known that the number Md of perfect matchings of the d-dimensional hyper-

cube satisfies Md = (d
e (1 + o(1)))

n/2
and, in particular, (2d/n)n/2(n/2)! ≤ Md ≤ (d!)n/(2d).

It has also been shown that the number Hd of Hamiltonian circuits of the hypercube sat-
isfies 1 ≤ limd→∞(log Hd)/(log Md) ≤ 2. We finally strenthen this result to a nearly tight

bound ((d log 2/(e log log d))(1 − o(1)))
n

≤ Hd ≤ (d!)
n/(2d)

((d − 1)!)
n/(2(d−1))

/2 proving that
limd→∞(log Hd)/(log Md) = 2. The proofs are based on a result for graphs that are the Carte-
sian product of squares and arbitrary bipartite regular graphs that have a Hamiltonian cycle.
We also study a labeling scheme related to matchings.

1 Introduction

We study properties of matchings and Hamiltonian cycles in various classes of graphs, including
Cartesian products of graphs that generalize the hypercube and regular bipartite and non-bipartite
graphs.

A perfect matching M in a graph G is a collection of edges in G such that each vertex of G is
incident to precisely one edge of M . A Hamiltonian cycle H in a graph G is a collection of edges
in G that induce a connected subgraph of G such that each vertex of G is incident to precisely two
edges of H.

Given two graphs G and H, the Cartesian product G�H has V (G�H) = V (G) × V (H) and
E(G�H) = {(zxH , zyH) : (xH , yH) ∈ E(H)} ∪ {(xGt, yGt) : (xG, yG) ∈ E(G)}. Let K2 be the
complete bipartite graph on two vertices 0, 1. The d-dimensional hypercube is the Cartesian product
of d copies of K2 and has n = 2d vertices x = x1 · · · xd with xi ∈ {0, 1} for 1 ≤ i ≤ d, where two
vertices are adjacent if they differ in precisely one xi.

For a balanced bipartite graph G = (U, V,E) where |U | = |V | = n, the bipartite adjacency
matrix A = A(G) = [auv] is the n × n matrix with auv = 1 if uv ∈ E and auv = 0 if uv /∈ E for
u ∈ U, v ∈ V .

Independently, Fisher[10] and Kastelyn[11] proved that the number of perfect matchings of G
is the permanent of A(G) when G is a balanced bipartite graph with adjacency matrix A(G).
Brègman[1] proved the conjecture of Minc[13] that for any n × n 0, 1-matrix A with row sums

r1, . . . , rn, the permanent of A is at most
∏n

i=1 (ri!)
1/ri . In particular, a d-regular bipartite n-

vertex graph has at most (d!)n/(2d) = (d
e (1 + o(1)))

n/2
perfect matchings.
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Independently, Egoryčev [6] and Falikman [7] proved the conjecture of van der Waerden [16]
that for any doubly stochastic n × n matrix A the permanent of A is at least n!/nn. This was
used by Clark, George and Porter [3] to show that the number of perfect matchings of a d-regular

bipartite n-vertex graph is at least (2d/n)n/2(n/2)! = (d
e (1 + o(1)))

n/2
.

It was conjectured by Kreweras [12] that for any perfect matching M of the d-dimensional
hypercube, d ≥ 2, there exists a second perfect matching M ′ such that the union H = M ∪ M ′

forms a Hamiltonian cycle. This was shown by Fink [9]. Let Md be the number of perfect matchings
of the hypercube and let Hd be the number of Hamiltonian cycles of the hypercube. It was shown
by Perezhogin and Potapov [15] that (n/2)((log d) − 1 + o(1)) ≤ log Hd ≤ n((log d) − 1 + o(1)), so
that (log Hd)/(log Md) tends assymtotically to values between 1 and 2. We shall show in this paper
that the limit is actually 2, ending a series of earlier results [2, 4, 5, 14].

2 Balanced Labeling Matching Partitions

The d-dimensional hypercube can be decomposed into d perfect matchings, one for each dimension.
If we orient each matching from 0 to 1, then the orientation of the edges of each matching gives a
label 0 or 1 to each dimension and thus a univocous label x = x1 · · · xd with xi ∈ {0, 1} for 1 ≤ i ≤ d
for the vertices. It is natural to ask whether such a univocous label can similarly be obtained from
any decomposition of the hypercube into perfect matchings. We shall answer this question and a
generalization to gneral regular bipartite graphs affirmatively.

Every d-regular bipartite graph is the union of d edge-disjoint perfect matchings. Suppose
more generally that G is an n-vertex graph that is the union of d edge-disjoint perfect matchings
M1,M2, . . . ,Md. A labeling orientation of G is an assignment of directions to the edges of G and
a corresponding assignment of labels x = x1x2 · · · xd to each vertex v of G, so that if the edge
e of Mi incident to v is outgoing then xi = 0 and if e is incoming then xi = 1. A balanced
labeling orientation of G is a labeling orientation of G such that the number of vertices having any
given label x is either bn/2dc or dn/2de. Notice that if the d-dimensional hypercube, with n = 2d

vertices, is decomposed into d perfect matchings corresponding to the d dimensions, and dimension
i is oriented from 0 to 1 in the ith bit position, then we obtain a balanced labeling orientation of
the hypercube that assigns to each vertex v is corresponding coordinates x = x1x2 · · · xd.

Theorem 1 Suppose that G is an n-vertex graph that is the union of d edge-disjoint perfect match-
ings M1,M2, . . . ,Md. Then G has a balanced labeling orientation.

Proof. Orient the edges of M1 arbitrarily. This assigns to x1 the value 0 to n/2 of the vertices
and 1 to the other n/2 vertices. Suppose inductively that we have already oriented the first t
matchings Mi, 1 ≤ i ≤ t in a balanced manner, so that each label occurs bn/2tc or dn/2te times.
We greedily select edges of Mt+1 and orient them as follows. Select an edge e = uv of Mt+1 and
orient it arbitrarily, say from u to v. Suppose u and v have labels x and y respectively for the
first t bits of the label. If x = y, then x′ = xxt+1 = x0 and y′ = xyt+1 = x1, and we have made
progress towards splitting the label x evenly. If x 6= y, then select another edge e′ = u′v′ of Mt+1

such that the label of u′ is also y, if such an e′ exists, and orient e′ from u′ to v′, so in this case we
have made progress towards splitting y evenly. If no such e′ exists, then the number k of vertices
with label y was odd and we have split k as bk/2c and dk/2e for labels y0 and y1 respectively, as
required. If e′ exists, then either v′ has the same label x as u in which case we have again made
progress towards splitting x evenly as x0 and x1, or v′ has label z 6= x and we proceed inductively
to look for an edge e′′ = u′′v′′ with u′′ having the same label z has v′. Eventually the process ends
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in some edge ei = uivi. If the label of vi is x then we have made progress towards splitting x
evenly as before, otherwise the number of vertices with the label of vi was odd and split evenly as
floor and ceiling as before. In this last case the only imbalance is at u with label x0, so we start
looking for e′ = u′v′ where u′ has label x, and orient e′ from v′ to u′, making progress towards
splitting x evenly. We proceed with the imbalance at v′ with label y0 as we just did for x to make
progress towards splitting y similarly. In the end, each label x with k vertices will have been split
into two labels x0 and x1 having one bk/2c vertices and the other one dk/2e vertices, completing
the induction.

Corollary 1 If the d-dimensional hypercube with n = 2d vertices is decomposed into d edge-disjoint
perfect matchings, then a balanced labeling orientation exists and assigns each label x = x1x2 · · · xd

exactly once.

Proof. The result follows from Theorem 1 and the fact that bn/2dc = dn/2de = 1.

3 Hamiltonian Circuits and Isomorphisms

The following applies to the whole section. Let G = (U, V,E) be a bipartite graph with |U | = |V | =
r = 2k having a Hamiltonian circuit C. We may label the vertices of each of U, V as 1, 2, . . . , r. We
may also decompose C as the union of two perfect matchings M and M ′, and view M and M ′ as
two permutations p and p′ on 1, 2, . . . , r, so that p(i) = j and p′(i′) = j′ if vertex i in U is matched
to j in V by M , and vertex i′ in U is matched to j′ in V by M ′.

Theorem 2 Of the two permutations p and p′, one is odd and the other one even. Thus the graph
joining pairs of matchings M and M ′ if they jointly form a Hamiltonian circuit is bipartite, and if
MG and HG are the number of perfect matchings and Hamiltonian circuits of G, respectively, then
HG ≤ M2

G/4.

Proof. We may relabel the vertices so that p and p′ become q and q′ with q(i) = i and q′(i) = i+1
modulo r. Thus there exist permutations s and t such that p = sqt = st and p′ = sq′t, where s and
t permute vertices of U and V respectively. An even permutation is a product of an even number
of transpositions, and an odd permutation is a product of an odd number of transpositions. The
proof is completed by observing that q′ = (12 · · · r) = (12)(13) · · · (1r) is odd since r − 1 = 2k − 1.

Thus the two perfect matchings M and M ′ forming a Hamiltonian cycle are chosen from M1

and M2 possible matchings such that M1 + M2 = MG respectively, so HG ≤ M1M2 ≤ M2
G/4.

This improves by a factor of two the bound M2
G/2 of Clark [2] on the number of Hamiltonian

circuits, which is also an improvement on earlier results by Dixon and Goodman [4], Douglas [5],
and Mollard [14]. We improve this bound further.

Theorem 3 Let G be a d-regular bipartite graph G = (U, V,E) with |U | = |V | = n/2. Then
for k ≤ d, the number of sequences M1, . . . ,Mk of k edge-disjoint perfect matchings for G is at
most

∏j−1
i=0 ((d − i)!)n/(2(d−i)) and at least

∏j−1
i=0 (2(d − i)/n)n/2(n/2)!. In particular, the number of

Hamiltonian circuits of G is at most (d!)n/(2d)((d − 1)!)n/(2(d−1))/2.
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Proof. The result follows on the bound on the permanent of Brègman [1] and Clark, George, and
Potter [3] mentioned in the introduction for G and the successive sugraphs obtained from G by
removing perfect matchings M1, . . . ,Mk one at a time, thus successively reducing the degree by
one. For Hamiltonian circuits, the bound follows by choosing M1 and M2 forming the circuit in
the two possible orders and dividing by two.

We may ask whether there exists in general an isomorphism of G sending M to M ′ for a
Hamiltonian circuit C. We answer this in the case of the hypercube.

Theorem 4 An isomorphism sending M to M ′ for a Hamiltonian circuit C in the d-dimensional
hypercube exists only if d = 2.

Proof. It is clear that such an isomorphism of the 2-dimensional hypercube mapping one perfect
matching to the other exists. Suppose d ≥ 3, and choose the r = 2d−1 = 2k labels 1, 2, . . . , r by
labeling two vertices that differ only in the first dimension the same. Of p and p′, one is odd and
the other one even. If the isomorphism exists, we may write p′ = qpq′, where q and q′ define the
isomorphism. The isomorphism given by q and q′ is a composition of two types of isomorphisms,
either flipping bit i or exchanging bits i and j, as every permutation of dimensions is a product of
transpositions (see e.g. [8]). The case d = 3 can be verified directly as the Hamiltonian circuit is
in that case essentially, unique. If d ≥ 4, then each subcube determined by dimensions 1, i in the
case of a flip, or by dimensions 1, i, j in the case of an exchange, involves some number r ≤ 3 of
dimensions and t transpositions, for a total of 2d−rt transpositions, which is even. For instance, if
we flip dimension i > 1, we incur 2d−1 transpositions for both q and q′. Thus q and q′ are both
even, so p and p′ = qpq′ are either both even or both odd, a contradiction to the fact that p and p′

have different parity.

4 Number of Hamiltonian Circuits in Products by a Square

Theorem 5 Let G = Q2�G′ be the product of a graph G′ that has an even number of vertices and
a Hamiltonian path, and a square Q2 (the 2-dimensional hypercube). Then any perfect matching
M of G that does not use the edges of Q2 can be extended to a Hamiltonian circuit of G. Thus if
MG′ is the number of perfect matchings of G′ and H is the number of Hamiltonian circuits of G,
then H ≥ (MG′)4.

Proof. Let G′

00, G
′

01, G
′

10, G
′

11 be the four copies of G′ in G, and let M00,M01,M10,M11 be the
corresponding perfect matchings forming M . Let M0 be the union of M00 and M01 in G′, and let
M1 be the union of M10 and M11 in G′. Each component of Mi can be viewed as an alternat-
ing cycle combining alternating edges across dimension 2 of Q2 and edges of Mi0 and Mi1 taken
alternatively. It remains to combine these cycles into a single cycle. Let M ′ be the union of M0

and M1 in G′. Each component of M consists in G of cycles corresponding to components in M0

and in M1. These cycles can be pairwise combined by replacing at a shared vertex of two cycles
corresponding to M0 and to M1 the two edges across dimension 2 by two edges across dimension 1
of Q2. Thus if a vertex v of G′ has edges v00v01 in a cycle from M0 and edges v10v11 in a cycle from
M1, we may remove these two edges and add edges v00v10 and v01v11 to combine the two cycles into
a single cycle. It remains to combine the resulting cycles corresponding to components of M ′ into
a single cycle. Join the components of M ′ with a minimal number of edges from the Hamiltonian
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path of G′ to form a single component in G′. This gives a tree-like structure to the components of
M . Any component C of M has at some vertex u of C at most two child components C1 and C2

at vertices v and w respectively. If at u we are using dimension 1 (resp. 2) of Q2 for C, say edges
u00u10 and u01u11, we may use dimension 1 (resp. 2) at C1 and C2 as well. Removing edges u00u10,
u01u11, v00v10, w01w11, and adding edges u00v00, u10v10, u01w01, u11w11, combines the cycles for
the children C1, C2 connected at v,w respectively to the cycle for the parent C connected at u by
the Hamiltonian cycle of G′, forming the Hamiltonian circuit of G. We always have the freedom to
choose to join at dimension 1 or 2 at the vertices v or w of C1 or C2 that will connect to the parent.
For suppose we leave C1 at v joining across dimension 2 and obtain two cycles C ′

1, C
′′

1 instead of
just one C1. As dimension 2 is traversed by a cycle in M0 or M1 an even number of times, there
would have to be an even number of vertices of C ′

1 that occur only in M0 or in M1, so there must
exist a vertex v′ other than v where C ′

1 and C ′′

1 can be joined by exchanging dimensions 1 and 2.
Clearly we have M4

G′ choices of possible Mij , which proves H ≥ M4
G′ .

Corollary 2 Let G′ = (U, V,E) be a regular bipartite graph, and let G = Q2�G′. be an n-vertex,
d-regular graph that is the product of G′ by a 2-dimensional cube Q2. Suppose that G′ has a
Hamiltonian path. When d tends to infinity, the number of Hamiltonian circuits of G is at least
((d/e)(1 − o(1)))n/2 as d and n tend to infinity.

Proof. Follows from Theorem 5 the remarks in the Introduction. We replace 1 + o(1) by 1 − o(1)
because of the loss of degree 2 from d to d − 2 since the square Q2 is not used by the matching.

The upper and lower bounds for Hamiltonian circuits in the hypercube differ essentially by a
square (a factor of two in the exponent). We can reduce this gap by considering decompositions
into cycles instead of Hamiltonian circuits, where the cycles are required to be of length a multiple
of 2k for some k.

Theorem 6 The number of decompositions of the d-dimensional hypercube into cycles of length a
multiple of 2k is at least ((d/(ek))(1 − o(1)))n.

Proof. Partition the d dimensions into k groups Ri of about d/k dimensions. If we combine
together the dimensions in each group Ri and replace it by the parity of the bits in the group Ri,
we obtain a k-dimensional hypercube that has a Hamiltonian cycle C of length 2k. Back in the
original hypercube, each edge in the reduced cycle C corresponds to choosing matchings in smaller
cubes corresponding to the d/k dimensions of each cube in one group Ri of dimensions, where
by the remarks in the Introduction the number of choices per vertex is about (d/(ek))(1 − o(1)).
Combining these choices of matchings of subcubes over all n vertices gives the stated bound.

We now combine the approach of Theorems 5 and 6 to infer the following.

Theorem 7 Let G = Q2�G1� · · ·�Gk be an n-vertex graph that is the Cartesian product of a
square Q2 and k regular bipartite graphs Gi of degrees di ≥ f that have a Hamiltonian circuit.

Then G has at least ((f/e)(1 + o(1)))n(1−k/2k) Hamiltonian circuits as f and k tend to infinity.

Proof. If we do not take into account Q2 and replace each bipartite graph Gi by two adjacent
vertices vi

0 and vi
1 representing both sides of the bipartition, we obtain a k-dimensional hypercube

that has a Hamiltonian cycle C that takes edges corresponding to the first dimension v1
0v

1
1 in
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alternation. For each occurrence of an edge vi
0v

i
1 in C we may take a perfect matching in Gi, so by

the remarks in the Introduction we have ((f/e)(1 + o(1)))n possible choices of matchings that give
a decomposition of G into cycles, as n vertices have each about f/e choices to be matched in the
appropriate Gi.

Now for each choice of vi
j, i ≥ 2, that chooses vi

0 for all but at most one of the i ≥ 2, replace

the edge corresponding to (v1
0 , v

1
1) by the edge on dimension 1 of Q2. This corresponds to k

choices of the 2k edges of C, namely all the k − 1 choices to choose a single vi
1 for 2 ≤ i ≤ k

and the choice that chooses all vi
0. Therefore the bound on the number of choices is reduced to

((f/e)(1 + o(1)))n(1−k/2k). Now all cycles in such a choice go through dimension 2 of Q2 with the
choice vi

0 for i ≥ 2. We thus have as in the proof of Theorem 5 a union of cycles corresponding
to M0 and M1 for dimension 1, and all such cycles go through vertices that choose vi

0 for all the
i ≥ 2. We may combine such cycles as in the proof of Theorem 5 by alternating dimensions 1 and
2 of Q2 at the vertices that choose vi

0 for all but at most one of the i ≥ 2, as before removing edges
v00v01, v10v11 and adding edges v00v10, v01v11. We shall show that a Cartesian product of cycles
is Hamiltonian. Select the Hamiltonian cycle C1 for G1, and for each Hamiltonian cycle Ci for
i ≥ 2 consider the cycle C ′

i going through the vertices of the form vi
0 by replacing paths of length

two in Ci by a single edge in C ′

i. The product C1�C ′

2� · · ·�C ′

k has a Hamiltonian cycle C ′ going
through all vertices that choose vi

0 for each i ≥ 2. We may replace each edge of C in dimension
i ≥ 2 by a path of length two by going back from C ′

i to Ci, thus visiting some vertices with at most
one vi

1 chosen for a cycle C. We finally combine all the cycles as in the proof of Theorem 5 using
edges corresponding to C, by removing edges u00u10, u01u11, v00v10, w01w11, and adding edges
u00v00, u10v10, u01w01, u11w11, thus combining the cycles for the children C1, C2 connected at v,w
respectively to the cycle for the parent C connected at u as before by the cycle C.

It remains to show that the product C1�C ′

2� · · ·�C ′

k has a Hamiltonian cycle C ′. It suf-
fices to iteratively replace a product of two cycles by a single cycle, i.e., to show that a product
C1�C2 of two cycles has a Hamiltonian cycle. If C0 is a1 · · · ar and C1 is b1 · · · bs, we may take
the cycle that starts a1b1, a1b2, . . . , a1bs, then boes in alternating directions a2bs, a3bs, . . . , arbs,
then arbs−1, ar−1bs−1, . . . , a2bs−1, then a2bs−2, a3bs−2, . . . , arbs−2, and so on, until it finishes with
arb1, ar−1b1, . . . , a2b1 or a2b1, a3b1, . . . , arb1 back to a1b1.

Corollary 3 Let G be the n-vertex d-dimensional hypercube, with n = 2d, and Hd be the number of
Hamiltonian cycles of G. Then ((d log 2/(e log log d))(1 − o(1)))n ≤ Hd ≤ (d!)n/(2d)((d − 1)!)n/(2(d−1))/2

Proof. The upper bound is from Theorem 3. For the lower bound, we apply Theorem 7 with
f = b(d − 2)/kc and choose k such that 2k/k2 = log d.

5 Matchings and Hamiltonian Circuits in Grids

Theorem 8 Let G be an n-vertex d-dimensional grid, which is the Cartesian product of paths
P1, P2, . . . , Pd, where Pi has ri ≥ 2 vertices, with r1 even. When d tends to infinity, the graph G
has at least ((d/(2e))(1 − o(1)))n/2 perfect matchings and at most ((2d)!)n/(4d) perfect matchings.

Proof. The upper bound follows from the remarks in the Introduction and the bound 2d on the
degree.

For the lower bound, divide each path Pi of length ri into r′i = bri/2c matched pairs and at
most one single additional vertex. This divides the grid into hypercubes of various dimensions.
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Suppose the ri for 1 ≤ i ≤ k are even and the ri for k + 1 ≤ i ≤ d are odd. Suppose we divide the
d − k odd dimensions into t dimensions for which we choose the r′i matched edges and d − k − t
dimensions for which we choose the additional vertex. This gives cubes of k + t dimensions with

(((k + t)/e)(1 − o(1)))2k+t/2 perfect matchings, and the number of such cubes is the product of
k + t factors r′i. When we multiply these terms, the exponents add up to terms in the product of
terms 2r′i for i ≤ k and terms 2r′i + 1 for i ≥ k + 1, divided by 2, and this product is the product
of the ri divided by 2, which is n/2. This expression is significantly dominated by the terms with

k + t ≥ d(1 − o(1))/2, giving the expression (d(1 − o(1))/(2e)n/2.

Theorem 9 Let G be the d-dimensional grid, the Cartesian product of paths P1, P2, . . . , Pd, where
Pi has ri ≥ 2 vertices. If d = 1, or all ri are odd, then G does not have a Hamiltonian circuit.
Otherwise (d ≥ 2 and some ri is even) G has a Hamiltonian circuit.

Proof. If d = 1 then G is a path P1 and does not have a Hamiltonian circuit. If all Pi have an
odd number of vertices ri, then G has an odd number of vertices r = r1r2 · · · rd. A bipartite graph
with an odd number of vertices cannot have a Hamiltonian circuit.

Suppose instead d ≥ 2 and some Pi has ri even, say P1 has r1 even. If d = 2, then a Hamiltonian
circuit is obtained by going down P1 at the left end of P2, then going in the direction of backwards
P1 one vertex at a time, each time traversing P2 back and forth while avoinding the left vertex of
P2 that was already visited. Since r1 is even, the last time P2 will be traversed backwards to its
leftmost vertex where the circuit was started. If d ≥ 3, assume inductively the result without Pd

for the product G′ of P1, P2, . . . , Pd−1, giving a Hamiltonian circuit C ′. Place the even edges of C ′

at one end of Pd and the odd edges of C ′ at the other end of Pd in G, and add all copies of the
path Pd to obtain the Hamiltonian circuit.

Theorem 10 Let G be a d-dimensional grid that has a Hamiltonian circuit as in Theorem 9.
The number of Hamiltonian circuits of G is at least ((d log 2/(2e log log d))(1 − o(1)))n and at most

((2d)!)n/(4d)((2d − 1)!)n/(4d−2)/2. when d tends to infinity.

Proof. The upper bound follows by the remarks in the Introduction by choosing a matching in
a graph of degree at most 2d, removing it, and choosing a matching in a graph of degree at most
2d − 1.

For the lower bound, decompose the grid into cubes as in Theorem 8, find Hamiltonian circuits
in each subcube, with the asymptotics larger than for matchings by Corollary 3. To interconnect
these subcubes, we contract the subcubes, replacing ri by dri/2e, while keeping r1 even as ri, and
use on this smaller grid the cycle from Theorem 9. This requires entering and exiting each subcube
at adjacent vertices x and y that have the edge (x, y) in the Hamiltonian cycle for the subcube.
We choose x and y with all coordinates even except for at most two coordinates, and say x with an
even number of odd coordinates. If the subcube must be exited in two dimensions in the direction
that has an odd value in the dimension, then this determines the two odd value dimensions for x
and the one odd value dimension for y. After exiting at such an x, there is one odd value dimension
carried over from x into the next subcube, until we exit through an even value dimension, in which
case the corresponding x will have all even values. This completes combining the cycles of the
various subcubes, with the bounds following from Corollary 3 as in Theorem 8.
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