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Abstract

We consider the task of testing properties of Boolean fonstthat are invariant under linear trans-
formations of the Boolean cube. Previous work in propersying, including the linearity test and the
test for Reed-Muller codes, has mostly focused on such taskinear properties. The one excep-
tion is a test due to Green for “triangle freeness™ A funetjp: F5; — F, satisfies this property if
(@), f(y), f(z + y) do not all equal, for any pairz, y € F%.

Here we extend this test to a more systematic study of te&tingear-invariant non-linear proper-
ties. We consider properties that are described by a siogtediden pattern (and its linear transforma-
tions), i.e., a property is given Bypointsvy, . .., v, € F5 andf : F} — [, satisfies the property that if
for all linear mapd. : F§ — F% it is the case thaf (L(v1)), ..., f(L(vi)) do not all equal. We show
that this property is testable if the underlying matroidafied by, .. ., vy is a graphic matroid. This
extends Green’s result to an infinite class of new properties

Our techniques extend those of Green and in particular vabkstt a link between the notion of
“1-complexity linear systems” of Green and Tao, and grapiatroids, to derive the results.
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1 Introduction

Property testing considers the task of testing, “supeciefitly”, if a function f : D — R mapping a finite
domainD to a finite rangeR essentially satisfies some desirable property. Letfilg— R} denote the
set of all functions fromD to R, apropertyis formally specified by a familyv C {D — R} of functions.

A testerhas oracle access to the functigrand should accept with high probability if € F and reject
(also with high probability) functions that afar from F, while making very few queries to the oracle ffrr
Here, distance between functiofisy : D — R, denotedi(f, g), is simply the probability thaf (x) # g(x)
whenz is chosen uniformly at random from andd(f, F) = minge#{d(f,g)}. We sayf is é-far from
Fif 6(f,F) > o6 andd-close otherwise. The central parameter associated wigtartis the number of
oracle queries it makes to the functigrbeing tested. In particular, a property is callgatally) testable

if there is a tester with query complexity that is a constagpehding only on the distance parameter
Property testing was initiated by the works of Blum, Luby diabinfeld [12] and Babai, Forthow and
Lund [9] and was formally defined by Rubinfeld and Sudan [ZBhe systematic exploration of property
testing was initiated by Goldreich, Goldwasser, and Ror {4 expanded the scope of property testing
to combinatorial and graph-theoretic properties (all jmesly considered properties were algebraic). In the
subsequent years, a rich collection of properties have sleann to be testable [5, 4, 1, 13, 22, 3, 2, 19, 18]
and many property tests have ended up playing a crucialmaleristructions of probabilistically checkable
proofs [8, 7, 11, 17, 24].

The rich collection of successes in property testing ragsesatural question: Why are so many different
properties turning out to be locally testable? Are thereesbnoad “features” of properties that make them
amenable to such tests? Our work is part of an attempt to armwel questions. Such questions are best
understood by laying out broad (infinite) classes of prageKhopefully some of them are new) and showing
them to be testable (or characterizing the testable priegestthin the class). In this paper we introduce a
new such class of properties, and show that (1) they arelyaestable, and (2) that they contain infinitely
many new properties that were not previously known to belbdst

The properties, and our results:

The broad scope of properties we are interested in are pirepénat view their domaii as a vector space
and are invariant under linear transformations of the dan@pecifically, we consider the domain= F,

the vector space of-dimensional Boolean vectors, and the raitje- . In this setting, a propert§ is
said to bdinear-invariantif for every f € F and linear mag. : F; — F3 we have thaf o L € F. Specific
examples of linear-invariant properties that were preslipstudied (esp. in the Boolean setting) include
that of linearity, studied by Blum et al. [12] and Bellare &t[&0], and the property of being a “moderate-
degree” polynomial (aka Reed-Muller codeword) studied thynéet al. [2]. While the tests in the above
mentioned works potentially used all features of the prigpeeing tested, Kaufman and Sudan [20] show
that the testability can be attributed principally to theekr-invariance of the property. However their setting
only considerdinear properties, i.e.F itself is a vector space ovéh, and this feature plays a key role in
their results: It lends an algebraic flavor to all the pragsrbeing tested and plays a central role in their
analysis.

We thus ask the question: Does linear-invariance lead tali#ity even when the propert§ is not lin-
ear? The one previous work in the literature that gives exesngf non-linear linear-invariant properties is
Green [15] where a test for the property of being “triangkeef is described. A functiorf : Fy — Fa is
said to beriangle-freeif for every z, y € F} itis the case that at least one tfz), f(y), f(z + y) does not
equall. The property of being triangle-free is easily seen to bedirinvariant and yet not linear. Green [15]

1In the literature, the term low-degree polynomial is tyfiicased for polynomials whose degree is smaller than the Bide.
In the work of [2] the degrees considered are larger than tié §ize, but are best thought of as large constants. Theehra
“moderate-degree” above describes this setting of paemet



shows that the natural test for this property does indee# wanrectly, though the analysis is quite different
from that of typical algebraic tests and is more reminisagrgraph-property testing. In particular, Green
develops an algebraic regularity lemma to analyze this (@& note that the example above is not the prin-
cipal objective of Green’s work, which is directed mostlyaselian groups) and R. The above example
with D = F4 andR = F, is used mainly as a motivating example.)

Motivated by the above example, we consider a broad classopkpies that are linear-invariant and non-
linear. A property in our class is given liyvectorsuvy, . . ., v, in the k-dimensional spacg}. (Throughout
this paper we think of as a constant.) Thegevectors uniformly specify a family¥ = F,,.,, ... ,, for every
positive integem, containing all functions that, for every linear map: F5 — F% take on the valu@ on

at least one of the points(vy), ..., L(vg). (In Appendix C we consider an even more generalized class of
properties where the forbidden pattern of valuesffas not 1* but some other string and show a limited
set of cases where we can test such properties.) To seeithaktbnds the triangle-freeness property, note
that triangle-freeness is just the special case with 3 andv; = (100), vo = (010), v3 = (110). Under
different linear transforms, these three points get mapped the different triples of the form, y, x + y

and saF,.., v,,v; €quals the class of triangle-free functions.

Before giving a name to our class of functions, we make a qoiidervation. Note that the property specified
by v1,...,vx is equivalent to the property specified BYv, ), ..., T (v;) whereT is a non-singular linear
map fromF5 — F%. Thus the property is effectively specified by the depenigsnamongs, . . . , v which
are in turn captured by the matrdidnderlyingvy, . . ., v. This leads us to our nomenclature:

Definition 1.1 Given a (binary, linear) matroid\t represented by vectors, . .., v, € F%, the property of
being M-freeis given by, for every positive integer the family

Fm = {f :F% — Fo|Vlinear L : F§ — F3, (f(L(v1)), ..., f(L(vg))) # 1%},

The property of being\-free has a naturat-local test associated with it: Pick a random linear niap
F5 — F3 and test that f(L(v1)), ..., f(L(vy))) # 1¥}. Analyzing this test turns out to be non-trivial, and
indeed we only manage to analyze this in special cases.

Recall that a matroid\l = {vy,..., v}, v; € F§, forms agraphic matroidif there exists a grapty’ on k
edges with the edges being associated with the elements. , v, such that a se¥ C {vy,...,v,} has a
linear dependency if and only if the associated set of edgewins a cycle. In this paper, we require that
the graphG be simple, that is, without any self-loops or parallel edgesr main theorem shows that the
propertyF associated with a graphic matraig, . .. , v, € F} is testable.

Theorem 1.1 For a graphic matroidM, the property of being\-free is locally testable. Specifically, let
M = {vy,..., v} be a graphic matroid. Then, there exists a functionR™ — R* and ak-query tester
that accepts members gft-free functions with probability one and rejects functidhat are e-far from
being M-free with probability at least (e).

Our bound onr is quite weak. We letV/ (¢) denote a tower of twos with height] . Our proof only
guarantees that(e) > W, a rather fast vanishing function. We do not know if such akasa@und
is required for any property we consider.

We describe the techniques used to prove this theorem glfartich shed light on why our bound anis
so weak) but first comment on the implications of the theordfirst, note that for a graphic matroid it is
more natural to associate the property with the underlyiragly. We thus use the phra&efree to denote

2For the sake of completeness we include a definition of nagrioi Appendix A. However a reader unfamiliar with this natio
may just use the word matroid as a synonym for a finite colb@atif binary vectors, for the purposes of reading this paper.



the property of being\i-free whereM is the graphic matroid aff. This terminology recovers the notion of
being triangle-free, as in [15], and extends to cover the chdeingk-cycle free (also considered in [15]).
But it includes every other graph too!

Syntactically, Theorem 1.1 seems to include infinitely maew properties (other than beiecycle free).
However, this may not be true semantically. For instancetbperty of being triangle-free is essentially the
same as being/-free for everyG whose biconnected components are triangles. Indeed,tpriur work,

it was not even explicitly noted whether beidg.-free is essentially different from being triangle-free.
(By “essentially”, we ask if there exist triangle-free ftions that ardar from beingCy-free.) It actually
requires careful analysis to conclude that the family opprties being tested include (infinitely-many) new
ones. Our second theorem addresses this point.

Theorem 1.2 The class of>-free properties include infinitely many distinct ones. amtizular:

1. For every odd;, if f is Co-free, then it is als@’;-free. Conversely, there exist functiopshat are
C-free but far from being’x  o-free.

2. Ifk < ¢ and f is K-free, then it is alsd¥,-free. On the other hand, ¥ > 3 and/ > (’;) + 2 then
there exists a function that is K,-free but far from beind<,-free.

Techniques:

Our proof of Theorem 1.1 is based on Green [15]'s analysiBafriangle-free case. To analyze the triangle-
free case, Green develops a “regularity” lemma for grougschvis analogous to Szemerédi’'s regularity
lemma for graphs. In our setting, Green’s regularity lemimas how, given any functiorf : F§ — [y,
one can find a subgroufl of 5 such that the restriction of to almost all cosets off is “regular”,
where “regularity” is defined based on the “Fourier coeffits of f. (These notions are made precise in
Section 3.1.)

This lemma continues to play a central role in our work as walt we need to work further on this.
In particular, a priori it is not clear how to use this lemmaatwalyze M-freeness fomrbitrary matroids
M. To extract a large feasible class of matroids we use a nétmn a work of Green and Tao [16] of
the complexity of a linear system (or matroids, as we refagh&m). The “least complex” matroids have
complexity 1, and we show that the regularity lemma can béegb all matroids of complexity to show
that they are testable (see Section 3).

The notion of a 1-complex matroid is somewhat intricate, aratiori it may not even be clear that this
introduces new testable properties. We show (in Sectiohat)these properties actually capture all graphic
matroids which is already promising. Yet this is not a dedirptoof of novelty, and so in Section 5 we
investigate properties of graphic matroids and give sorobnigues to show that they are “essentially”
different. Our proofs show that if two (binary) matroids a@ “homomorphically” equivalent (in a sense
that we define) then there is an essential difference bettheeproperties represented by them.
Significance of problems/results:

We now return to the motivation for studyingy(-free properties. Our interest in these families is math-
ematical. We are interested in broad classes of propehadsare testable; and invariance seems to be a
central notion in explaining the testability of many intglieg properties. Intuitively, it makes sense that the
symmetries of a property could lead to testability, sinde somehow suggests that the value of a function
at any one point of the domain is no more important than itaeslat any other point. Furthermore this
intuition is backed up in many special cases like graph-grypesting (where the family is invariant under
all permutations of the domain corresponding to relabgltime vertex names). Indeed this was what led



Kaufman and Sudan [20] to examine this notion explicitlyhie tontext of algebraic functions. They con-
sidered families that were linear-invariant dirtear, and our work is motivated by the quest to see if the
latter part is essential.

In contrast to other combinatorial settings, linear-itace counts on a (quantitatively) very restricted
collection of invariances. Indeed the set of linear tramafis only quasi-polynomially large in the do-
main (which may be contrasted with the exponentially lagjeo$ invariances that need to hold for graph-
properties). So ability to test properties based on thitifeds mathematically interesting and leads to the
guestion: what kind of techniques are useful in these ggtti@ur work manages to highlight some of those
(in particular, Green’s regularity lemma).

Parallel Works:

After completing our work, we learned from Asaf Shapira thatlependently of usM-freeness for an
arbitrary matroidM has been shown to be testable in Shapira’s recent prepbit [2is result solves a
guestion that we posed as open in an earlier version of tigierpddis result is built on the work of Kral’,
Serra, and Vena in [21], where an alternate proof of Gregretedreeness result is provided. Essentially
the authors in [21] demonstrate a reduction from testingrfess of the cycle matroid in a function to testing
freeness of the cycle subgraph in a graph, and then they agglyarity lemmas for graphs to analyze the
number of cycles in a function far from being cycle-free. Histmanner, the authors show that Theorem 1.1
holds as well. By extending this method and utilizing hypapip regularity lemmas, Shapira [25] shows
that arbitrary monotone matroid-freeness propertiesestalble.

We remark that our proofs are very different from [21] and][2Bd in particular, our view on invariance
leads us to develop technigues to show that syntacticdfigreit properties are indeed distinct.
Organization of this paper:

In the following section (Section 2) we define a slightly lteaclass of properties that we can consider
(including some non-monotone properties). We also defimadtion of 1-complexity matroids which forms
a central tool in our analysis of the tests. In Section 3 wevsthat for any 1-complexity matroidA, M-
freeness is testable. In Section 4 we show that graphic idatewe 1-complexity matroids. Theorem 1.1
thus follows from the results of Section 3 and 4. In Sectioné mwove that there are infinitely many
distinct properties among-free properties. Finally, in Appendix C, we include resuw testing some
non-monotone properties, along with some “collapse” tesshowing that many non-monotone properties
collapse to some simple ones in Appendix D.

2 Additional Definitions, Results, and Overview of Proofs

In this section, we describe some further results that wegmtan the paper and give an outline of proofs.

2.1 Extensions to Non-Monotone families

We start with a generalization of Definition 1.1 to a widerection of forbidden patterns.

Definition 2.1 GivenX. € F5 and a binary matroid\ represented by vectors, . . ., v, € F%, the property
of being(M, X)-freeis given by, for every positive, the family 7, sy = {f : F§ — Fa|V linear L :

F§ — F3, (f(L(v1)),..., f(L(v))) # Z}.

If for some linearL : F§ — F2, (f(L(v1)),..., f(L(v))) = ¥, then we sayf contains(M,¥) at L.
Also, to be consistent with Definition 1.1, we suppress noentif © wheny = 1%,

Recall that a propert C {D — {0,1}} is said to bemonotonéf f € P andg < f impliesg € P, where
g < f means thay(z) < f(z) forall z € D.



Observation 2.1 For a binary matroidM, (M, X)-freeness is a monotone property if and onli£if= 1%.

In addition to our main results (Theorems 1.1 and 1.2) on nm@properties, we also obtain local testa-
bility results for a limited class of non-monotone propesti

Theorem 2.2 Let Cy, denote the cycle oh vertices and let: be an arbitrary element df. Then, there
exists a functiomr : R™ — R™ and ak-query tester that accepts membersraf, v with probability 1 and
rejectsf that aree-far from 7 ¢, s with probability at leastr (¢).

However, in strong contrast to Theorem 1.2, we show thatssribeequalso"? or 1%, the class of Cy, X)-
freeness properties is not at all very rich semantically.

Theorem 2.3 The class of propertie§F ¢, s : k > 3,5 # 0k, ¥ £ 1*} is only finitely large.

The goal of Theorem 2.2 is not to introduce new testable ptigsebut rather to illustrate possible techniques
for analyzing local tests that may lead to more classes t#liEssnon-monotone properties.

2.2 Overview of Proofs

We now give an outline of the proofs of our main theorems (Tées 1.1 and 1.2), and also the extensions
(Theorems 2.2 and 2.3).

Our claim in Theorem 1.1, that graphic matroid freenessegntgs are locally testable, is based on analyzing
the structure of dependencies among elements of a graphioichaTo this end, we first recall the classi-
fication of linear forms due to Green and Tao in [16]. We reg@iminor reformulation of their definition
since, for us, the structure of the linear constraints isiilesd by elements of a matroid.

Definition 2.2 Given a binary matroid\ represented by, .. ., v, € F5, we say thatM hascomplexityc
at coordinate if we can partition{v; } () (s into ¢ + 1 classes such that; is not in the span of any of the
classes. We say thaul hascomplexityc if ¢ is the minimum such that! has complexity: at coordinate:
for all i € [k].

The above definition makes sense because the span of a saheinds$ is not dependent on the specific basis
chosen to represent the matroid. As a motivating examplesider the graphic matroid @f}, studied by
Green in [15]. It can be represented by= e, v = e, ..., 051 = ex_1 anduv, = e; + --- + ex_1. We
see then that the graphic matroid@f has complexityl because for every < k, the rest of the matroid
elements can be partitioned into two sts} and{zje[k] ej} such that; is not contained in the span

of either set, and foi = k, any nontrivial partition of the remaining elements ensulatyv;, does not lie in
the span of either partition. In Section 4, we extend thisokzion about}, to all graphs.

Lemma 2.4 For all graphsG, the graphic matroid oy has complexityl.

Green and Tao in [16] showed that if a matroid has complexityc and if A is a subset oF%, then the
number of linear mapg : F5 — F3 such thatL(v;) € A for all i € [k] is controlled by the(c + 1)'th
Gowers uniformity norm ofd. Previously, Green proved in [15] an arithmetic regulalggnma, which
essentially states that any sétC F; can be partitioned into subsets of affine subspaces sucinelaty
every partition is nearly uniform with respect to lineartsesWe show in Section 3 how to combine these
two results to obtain the following:



Lemma 2.5 Given any binary matroid\U represented by, ..., v, € FX, if M has complexityi, then
there exists a function : R™ — R™ and ak-query tester that accepts membersAf; with probability 1
and rejectsf that aree-far from F,, with probability at leastr(¢).

Theorem 1.1 directly follows from combining Lemma 2.4 andrimea 2.5. In fact, Lemma 2.5 implies
testability of all matroids that have complexity one, notyatmose that are graphic. In Section 4, we give
examples of binary matroids that have complexignd yet are provably not graphic.

Theorem 1.2 provides a proper hierarchy among the grappicgderties. Moreover, the containments
P1 € P» in this hierarchy are shown to be “statistically proper”lie tsense that we demonstrate functions
f that arec-far from P; but are inP,. The theorem implies the following hierarchy:

<o C Cryo-freeC Cyp-freeC --- C Cs-free= Kz-freeC --- C Ky-free C K(k) -freeC ---
2

+2
Thus, the class of properti€s; does indeed contain infinitely many more properties thamcyoke freeness
properties considered by Green in [15].

Both the hierarchy among the cyclic freeness propertiesiamahg the clique freeness properties are derived
in Section 5 using a general technique. In order to show stitally proper containmentt-free C M-
free, we construct a functiofi that, by its definition, containd1, at a large number of linear maps and so
is far from beingM;-free. On the other hand, the construction ensures thatsfalso notMs-free, then
there is amatroid homomorphisnrom M to M;. We define a matroid homomorphism from a binary
matroid M, to a binary matroid\1; to be a map from the ground set.df to the ground set af; which
maps cycles to cycles. The separation betwge¢nfreeness and1;-freeness is then obtained by proving
that there do not exist any matroid homomorphisms frbta to M;. This proof framework suffices for
both the claims in Theorem 1.2 and is reminiscent of prodineges involving graph homomorphisms in
the area of graph property testing (see [6] for a survey).

Theorem 2.2 is the result of a more involved application efrgularity lemma. To deal with non-monotone
properties, we employ a different “rounding” scheme insgiby the testability of hon-monotone graph
properties in [1]. Unlike Szemerédi’s regularity lemmastréng form” of the arithmetic regularity lemma
is not known, so we restrict our attention to cyclic matraisl exploit the additive structure of the pattern.
Theorem 2.3 is based on a characterization theorem in AppBrttiat classifieCy,, X)-freeness properties
into 9 classes wheit # 0%, 1*.

3 Freeness of Complexity 1 Matroids is Testable

In this section we prove Lemma 2.5. Before doing so, we fix atation and provide a quick background
on Fourier analysis. I is a subgroup oft~, the cosets off are indicated by + H, with g in G. Let
fq+m : H — Fo denotef restricted to the coset+ H, defined by sending to f(g + h); that is, for every
heH,geG, foru(h) = f(g+h). Foro € Fy, we defineuq (fg+r) := Pryen|fg+m(h) = o] to be the
density ofo in f restricted to cosej + H.

3.1 Fourier Analysis and Green’s Regularity Lemma

Definition 3.1 [Fourier transform] If f : F} — Fo, then we define its Fourier transforgh: F% — R to be
f(a) = Ezerp[f () xa()], Wherex,(z) = (—1)%i€m *%  f(q) is called the Fourier coefficient of at
a, and the{x,, }, are the characters df?.



It is easy to see that fan, 3 € F", (xa,Xs) = Eserplxa(®)xp(z)] is 1 if a = § and0 otherwise.
So the characters form an orthonormal basisHpr and we have the Fourier inversion formyléar) =

> aery f(@)xa(z) and Parseval's Identity”,, . fla)? = E.[f(x)?] = £(0).

Next we turn to Green'’s arithmetic regularity lemma, thexaofithe analysis of our local testing algorithm.
Green’s regularity lemma ovély is a structural theorem for Boolean functions. It asseras fbr every
Boolean function, there is some decomposition of the Hargnairbe into cosets, such that the function
restricted to most of these cosets are uniform and pseudiomanvith respect to the linear functions. An
alternate and equivalent way is that no matter where wetsleelamming cube by a hyperplane, the density
of f on these cosets of the hyperplane is what we expect a randutidio looks like. Formally, we say
that a function is uniform if all of its nonzero Fourier coeféints are small.

Definition 3.2 [Unifprmity] For every0 < e < 1, we say that a functiorf : 5 — Iy is e-uniform if for
everya # 0 € F3, | f(a)| <e.

Recall that we let?/ (¢) denote a tower of twos with height]. To obtain a partition of the Hamming cube
that satisfies the required uniformity requirement, the peinof cosets in the partition may be rather large.
More precisely,

Lemma 3.1 [Green’s Regularity Lemma ovéi}] Let f : Fy — Fs. Lete € (0,1). Then there exists a
subspacef of G = {0,1}" of co-dimension at mo$t (e ~3), such thaPr e[ fy+ i is e-uniform] > 1 —e.

3.2 Testability of Complexity 1 Matroid Freeness

The proposition below is proved in [16]. Collectively, statents capturing the phenomenon that expec-
tation over certain forms are controlled by varying degrekethe Gowers norm are termeageneralized
von-Neumann type Theorefimsthe additive combinatorics literature. In particulas,v@e only require the
degree2 Gowers norm of a function, which is the sum of its Fourier Gots raised to the fourth power,
the following holds:

Proposition 3.2 [[16]] Suppose a binary matroidU = {v; ..., v} has complexity and letfy, ..., fx :
F% — Fa. Then

k
E [H fi<L<vi>>] <min 3 fil@)".

TRk
LFS—Fp |3

It is an easy deduction from Proposition 3.2 to see thgt i§ uniform, then the number of linear maps
L where f has aM-pattern is close t@&[f]™ N9, whereN = 2". Combining this observation with the
regularity lemma, we prove Lemma 2.5.

Proof: [of Lemma 2.5] Consider a test that picks a linear niapniformly at random from all linear maps
from FX — F% and rejects iff for alli € [k], f(L(v;)) = 1. Clearly the test has completeness one.

Now we analyze the soundness of this test. Supgose:-far from being M-free. We want to show that
the test rejects with probability at leaste), such thatr(e) > 0 wheneverr > 0. Leta(e) andb(e) be two
functions ofe that satisfy the constraint(¢) + b(e) < ¢, we shall specify these two functions at the end of
the proof. We now apply Lemma 3.1 foto obtain a subspacdé of G of co-dimension at most/ (a(e)~3).
Consequentlyf restricted to all but at mosi(e) fraction of the cosets off area(e)-uniform. We define a
reduced functiorf® : F} — Fy as follows.



For eacty € G, if f restricted to the coset+ H is a(e)-uniform, then define

{o if f(fysrr) < be)

R
w prg
g+1(7) fy+m  oOtherwise.

Else, definefgﬂH =0.

Note that at most(e) + b(e) fraction of modification has been madeftdo obtainf . Sincef is e-far from
being M-free, f# has aM-pattern at some linear mdp More precisely, for every € [k], f%(L(v;)) = 1.
Now consider the cosefs(v;) + H. By our choice of rounding, we know thdtrestricted to each of these
cosets isu(e)-uniform and at leasl(e) dense. We will count the number of linear mapsF5 — H such
that f has aM pattern atl. + ¢. Notice that the probability the test rejects is at least

27k.W(a(€)_3) Pr [V’L, fL(U»L)+H(¢(UZ)) = 1] )
qﬁ:]Fg—»H

To lower-bound this rejection probability, it suffices tashthat the probability

Pr Vi, fLiw)+a(P(vi) = 1]
o:F5—H

is bounded below by at least some constant depending o this end, we rewrite this probability as
E st |[Lieq fi(8(11)] , wherefi = 1., . By replacing each functior; by £;(0) + (f; — /:(0)),

it is easy to see that the above expression can be expanaethésum of2* terms, one of which is
Hie[k] ﬁ(o), which is at leasb(¢)*. For the other® — 1 terms, by applying Proposition 3.2 and using
Parseval's Identity, each of these terms is bounded aboved)y. So the expression is at ledgt)" —
(2% — 1)a(e)?. To finish the analysis, we need to speaify), b(¢) such thab(e)* — (28 — 1)a(e)? > 0 and
a(e) + b(e) < e. Both are satisfied by settirige) = §, a(e) = (5)*. Thus, the rejection probability is at
leastr(e) > 2 FW (™) a=k(ck — 2k completing the proof. ll

4 Graphic Matroids have Complexity 1

Here we prove that graphic matroids have complexity 1. Witike proof is simple, we believe it sheds
insight into the notion of complexity and shows that evendlass of 1-complexity matroids is quite rich.
Proof: [of Lemma 2.4] Recall that throughout we are assumihgp be a simple graph. Fix an arbitrary
edgee in G with verticesv; andwvs as its two ends. We partition the remaining edge& @fito two setsS,
andS, such that, if an edge is incident tg then it is inS; and otherwise, it is irby. Becausd is simple,

a cycle inG containinge must include an edge (apart from edgevhich is incident ta; and another edge
(other thare) which is not incident ta;;. Thereforee is not in the span of eithe¥; or Ss.

As we have seen earlier, Lemma 2.5 holds for any matroid ofpbexity 1. Hence, it is a natural question
to ask whether there exist non-graphic matroids which haveptexity 1. In Appendix B we show that
such matroids do exist. It is an open question to come up wildtaral characterization of matroids having
complexity1.



5 Infinitely many Monotone Properties

In this section we prove Theorem 1.2, that there are infinitghny matroids for which the property of being
M-free are pairwise very different.

To do so we consider a pair of target matrojt, and M. Based on just the first matrojtit;, we create

a canonical functiorf = fq, : F5 — Fo. We show, using a simple analysis, that this canonical fanct
is far from beingM; free. We then show that if this function has an instancétf inside, then there is
a “homomorphism” (in a sense we define below) frdr, to M. Finally we show two different ways in
which one can rule out homomorphisms between pairs of graphtroids; one based on the odd girth of
the matroids, and the other based on the maximum degréedof Together these ideas lead to proofs of
distinguishability of many different matroids.

Definition 5.1 Given a binary matroidM represented by vectors, ..., v, € F5, and integem > k, let
the canonical functiorf = fu : F§ — Fo be given byf(z,y) = 1if x € {v1,..., v} and0 otherwise;
wherez € F% andy € F3 .

Claim 5.2 Let M be a binary matroid withy; # 0 for all i € {1,...,k}. Thenfu is QL,C-far from being
M-free.

Proof: Note that if we consider the linear mdp: F§ — F% that sendse to (x,0), then f containsM
at L. Sof is not M-free. However we wish to show that any function tha2ig-close tof containsM
somewhere. Fix a functiomsuch that(f, g) = 6 < 2. We will show thatg containsM somewhere.
Fori € [k] letd; = PI’ye]Fg—k[f(’Ui,y) # g(vi,y)]. Note thath:1 6 < 2¢.§ < 1. Now consider

a random linear mag,; : F5 — F7~*, and its extensior, : F§ — F% given by L(z) = (z, Li(x)).
For every non-zera: and in particular forx € {vy,..., v}, we haveL;(x) is distributed uniformly over
F3~". Thus, for any fixed € [k], we havePry, [g(L(v;)) # 1] < §;. By the union bound, we get that
Prp, [Fist.g(L(v;)) # 1] < >, 6; < 1. In other words there exists a linear map (and thusL) such that
for everyi, g(L(v;)) = 1 and sog containsM at L. i

We now introduce our notion of a “homomorphism” between bimaatroids. (We stress that the phrase
homomorphism is conjured up here and we are not aware of ¢fttsenotion, or the phrase being used in
the literature. We apologize for confusion if this phrasadged to mean something else.)

Definition 5.3 Let M; and M, be binary matroids given by, ..., v, € F5 andwy,...,w, € F5. We
say thatMs has a homomorphism t&1; if there is a mapp : {wy,...,we} — {v1,..., v} such that for
every sefl” C [/] such thaty , - w; = 0, itis the case thap_, - ¢(w;) = 0.

For graphic matroids, the matroid-homomorphism fréo H is a map from the edges 6f to the edges
of H that ensures that cycles are mapped to even degree subgfafihs

Lemma 5.4 If the canonical functioryf,, contains an instance o¥1> somewhere, theM s has a homo-
morphism taM .

Proof: Let f = fa, containMs, at L. SoL : Fy — F2 is a linear map satisfying' (L(w;)) = 1 for
everyi € [(]. Now consider the projection map: F} — F% which sendgz, y) to = (wherez € F5 and
Y€ Fgfk).



We claim that the map which sends: to 7(L(z)) gives a homomorphism from1, to M;. On the one
hand¢ is linear and so iy ;. w; = 0, then we have) ;- ¢(w;) = ¢(D_;crwi) = #(0) = 0. On the
other hand, we also have thatw;) € {v1,...,v;}. Thisis true sincef (L(w;)) = 1, which implies, by the
definition of the canonical functioffi that=(L(w;)) € {v1,...,vx}. Thus¢ satisfies the requirements of a
homomorphism fromM 5 to M. i

The above lemma now motivates the search for matraitisthat are not homomorphic t&1;. Proving
non-homomorphism in general may be hard, but we give a confpdettings where we can find simple
proofs. Each addresses a different case of Theorem 1.2.

For a matroidM, let its odd girth, denotedbg(M), be the size of the smallest dependent set of odd cardi-
nality, i.e. the size of the smallest odd §et_ [¢] such that) ", _, w; = 0.

Lemma 5.5 If M5 has a homomorphism td1;, thenog(Ms) > og(M;).

Proof: Let ¢ be a homomorphism from\1, to M; and letT" C [¢] denote the smallest odd dependent set of
M. Now letT” C [k] be the sel” = {j € [k]|#{i € T|¢(w;) = v;}is odd}. On the one hand, we have
T" has odd cardinality; and on the other, we have 3, ¢(w;) = 3, vj. SOT"is an odd dependent

set inM;. The lemma follows sincgl’| > |77 |

For graphic matroids constructed from the odd cycle gi@phwe have that its odd girth is justand so the
above lemmas combine to give th@j-freeness is distinguishable frof).,-freeness, and this suffices to
prove Part (1) of Theorem 1.2.

However the odd girth criterion might suggest tiiafreeness for any graph containing a triangle might be
equivalent. Below we rule this possibility out.

Lemma 5.6 Let M7 be the graphic matroid of the complete grapfy on a vertices, and letM5 be the
graphic matroid ofKj. Then, ifb > (g) + 2, there is no homomorphism froml, to M.

Proof: Assume otherwise and let be such a homomorphism. Fix any vertexiof and leteq, ..., ep_1
denote thé — 1 edges incident to this vertex. By the pigeonhole princifdagceb — 1 > (;)) there must
exist a pair of incident edges ande; such thatp(e;) = ¢(e;). But now letf denote the edge which forms
atriangle withe; ande;. Since inK; we havee; + e; + f = 0 (viewing these elements as vectors o¥gy,

it must be thaip(f) = ¢(e;) + ¢(e;) = 0 which is not an element of the ground set/ef;. This yields the
desired contradiction.ll

We are now ready to prove Theorem 1.2.

Proof: [of Theorem 1.2] First note thdty, . o-free functions are alsO);-free. Informally, suppose a function

f has ak cycle at pointzy, ..., x, i.e., f(z;) = 1 at these points any, z; = 0. Thenf has ak + 2 cycle

at the pointsey, 1, x1, 2o, ..., z;. (This informal argument can obviously be converted to anfdrone
once we specify the graphic matroids correspondingig@ndCy,, o formally.)

On the other hand, if we tak&1; to be the graphic matroid corresponding(p and f to be the canonical
function corresponding ta1;, then by Claim 5.2 it i ~*-far from M, -free, and by Lemmas 5.4 and 5.5

it does not contain\,, the graphic matroid o’y 5.

For the second part of the theorem, note that every propeatyisG-free is alsoH -free if G is a subgraph

of H. ThusK-free is contained ik, free isk < ¢. The proper containment can now be shown as above,
now using Claim 5.2 and Lemmas 5.4 and 5B
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6 Conclusions and Future Work

We introduced an infinite family of properties of Booleandtians and showed them to be testable. These
properties were specified by a matroid on k& elements and a patteth C {0, 1}*. However to capture
the full range of linear-invariant non-linear propertieattallow one-sided error local tests, we should also
allow the conjunction of a constant number of constraintg. Balieve this could lead to a characterization
of all linear-invariant non-linear properties that allowessided error local tests.

In a different direction, we feel that it would also be niced®velop richer techniques to show the distin-
guishability of syntactically different properties. Famistance, even for the graphic case we don'’t have a
good understanding of when two different graphs represesdrgially the same properties, and when they
are very different.
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A Matroids

For background on matroid theory, we refer the reader ta [27]

Definition A.1 A matroid M is a finite setS (called ground sétand a collectionF of subsets of (called
independent setsuch that the following hold:

1.0eF.
2. If X e FandY C X, thenY € F.

3. If X andY are both inF with | X | = |Y'| 4+ 1, then there exists an € X \ Y such thatt’ Uz € F.

A matroid M on a ground sef = {z1,...,x} is said to bdinear if there exists a field and vectors
v1, ..., v € F¥ such that some subsgt;|i € T} indexed by’ C {1, ..., k} is independent if and only if
the corresponding vectofw;|i € T'} are linearly independent. A linear matroicbimary if F = Fs.

B Non Graphic Matroids of Complexity 1

First, we make the following claim that follows immediatéipm the definition of cographic matroids and
the notion of complexity.

Claim B.1 A cographic matroidM*(G) has complexityl if and only if, for every edge € E(G), there is
a partition of E(G) \ {e} into two disjoint setsA and B such that both of the subgrapl¥(G), A) and
(V(G), B) are connected.

Proposition B.2 There is a matroid with complexity one that is not graphic.

Proof: Consider the cographic matroid &f;. Embedk; in the plane as a pentagon and all its diagonals.
Fix an outer edge and partition the remaining edges into two sets. One is the@uter edges and the other
is the remaining diagonal edges. Clearly both outer-edge set and diagalg@-get make the five vertices
connected. Therefore by Claim B.1, the cographic matroiff 9fs of complexity one. On the other hand,
by a theorem of Tutte [26], a matroid cannot be graphic if iiteisAM*(K5) as a minor, which\* (K5)
clearly does. SaM*(Kj5) is an example of a non-graphic matroid that has complexityl

We remark that not all cographic matroids have complekitfjFor example, the cographic matroid &% 3
cannot have complexity because if we remove an edge frdi 3, there do not remain enough edges to
form two edge-disjoint connected graphs@wertices, violating Claim B.1.

C Testing Non-monotone Properties

In this section we prove Theorem 2.2. (Readers may find ituligefrecall the background material in
Section 3.1.) We show that for non-monotone properties,vileeny # 0* or 1, the property of{ M, ¥)-
free is testable when the underlying graph is a cycle. Howes opposed to Section 5, the number of
non-monotone properties associated with cycles is finitefatt we give a complete characterization of
these non-monotone properties in Appendix D.

Proof: [of Theorem 2.2] Suppose we have oracle access to a fungtidify — [F,. Consider the following
k-query testl’, which selects a linear map : F5 — F2 uniformly at random from all such possible linear
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maps.T has oracle access joand querieg at the points.(v1), ..., L(vg). T rejects iff all of these points
are evaluated to. If f is (M, X)-free,T never rejects and has completeness one.

Now we analyze the soundnessiaf Suppose thaf is e-far from being( M, X)-free. We want to show that
T rejects with probability at least(¢), such that-(¢) > 0 whenever > 0.

Let 2 < n < 1 be any constant, and(e) andb(e) be functions of epsilons that satisfy the constraints
a(e) + b(e) < eandl — n > b(e). We shall specify these two functions at the end of the proof.

Now let G denoteF;. We apply Lemma 3.1 t¢ to obtain a subspacH of G of co-dimension at most
W(a(e)~3). We define a reduced functioff® : F; — F, as follows. We assume that has at least two
occurrences of. (Otherwise it has at least two occurrenceg)pfind in the construction of*, we flip
the role ofl and0 for non-uniform cosets. The rest of the proof will proceedlagously, and we leave its
verification to the readers.)

For eacty € G, if f restricted to the coset+ H is a(e)-uniform, then define

0 if u(fyem) < b(e)
flim=41 if p(fg+m) >1—b(e)
fo+mr  otherwise.

Else, define

R _ )1 if u(form) >m
g+H 0 otherwise.

Note that at most(e) + b(¢) fraction of modification has been madetdo obtain £, so f ¥ is e-close to

I

By assumption/ is e-far from (M, ¥)-free, sof® has a(M, X) pattern at some linear mdp: F§ — F7,

i.e., for eachi € [k], f®(L(v;)) = oy, whereX =< o,..., 0}, >, ando; € Fo. Now consider the cosets
L(v;) + H. By our choice of rounding/ restricted to eacli(v;) + H is dense in the symbat;, i.e.,

to; (frw)+8) = b(e). We want to show that there are mapyt, X2) patterns spanning across these cosets.
In particular, we restrict our attention to the relative rnenof (M, ¥)-patterns at linear maps of the form
L + ¢, where$ maps linearly fronfs to H. Notice that the probability the teStrejects is at least

o~ (k=UW@©™) . Py [for eachi, fr(v,)+u(¢(vi)) = oil.
¢ F5—H

It suffices to show that the probability

Pr [for eachi, fr,.,)4m(P(vi)) = i (1)
¢:F5—H

is bounded below by some constant depending only. dio this end, we divide our analysis into two cases,
based on whether there is sorhe [k] such thatf,(,,)x is a(e)-uniform or not.

Casel: There exists somg € [k] such thatfy ., u i a(e)-uniform.
We begin by arithmetizing Equation 1 as

I | REC O

1€[k]
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wheref; = fr,)+r + 0i + 1. SinceM is a cyclic matroid, it is not hard to show, by Fourier expansi

that
4iE, [Hf@ ] > 11 /i@

i€[k] a€H ielk]

Using the facts that eacfi has density at leadt(¢), some;j € [k] such thatf; is a(e)-uniform, there
exist distinctiy, io € [k] not equal toj (sincek > 3), Cauchy-Schwarz Inequality, and Parseval’s Identity,
respectively, we have

ST die) = 0= 3 T 1w

a€H iclk] a#0€H i€k

> S I )
a#0cH i€[k]\{j}
> b(e)f —ale) Y Ifu(@lfi(@),
a#0eH
1/2 1/2
> b(e)ka(€)< Z fil(a)2) ( Z fi2(a)2)
a#0eH a#0eH

> ble)* —a(e).

To finish the analysis, we need to specify), b(e
are satisfied. Lefi(e) = (1 —n) - e anda(e) = 1(
T(€) > 2*(]“’1)W(a(6)_3)(1 —n)kek /2.

Case 2: Ngj € [k] exists such thafy,,) 1 x is a(e)-uniform.

Since M is a cyclic matroid, it is not hard to see that Equation 1 isadtm

P Vi € [k], friv(xi) = 03] . 2
oot oo 7€ B fr (@) = 1] 2)

) such that the constraintge) +b(e) < eandl—n > b(e)
1 —n)ke*, we have that the rejection probability is at least

Recall thatt contains two occurrences of the symhoMithout loss of generality we assume that | =
or = 1. FiXxy,...,z,_2 € H such thath(vi)(xi) =o;. Letz = Zf;f x;. By union bound and the fact
thatn > 3, we have

xlze)%[fL(vk H@) = fruy@+2)=1 = 1- xPE’YH[fL (wp_)(®) =00r fr,)(x+2) =0
> 1-2(1-n)
> 0.

For eachi € [k], Procn[fr(v,)(z:) = oy] is at leastl — n. By picking z; uniformly at random from# in
sequence, it is not hard to see that the rejection probabilithe test is at least

7(e) > 27 R=DWEO™) (1 —pyh=2(2p — 1),

wherea(e) = £ (1 —n)ke+. |
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D Characterization of Cycle Free Functions

In this section we consider the property of bei, X)-free, whereM is the matroid of thek-cycle.
Syntactically these appear to be infinitely many differertperties. We show that there are only finitely
many distinct properties here wh&his not equal td” or 1*. (As noted in Section 5, whexi = 1*, we do

get infinitely many distinct properties.)
We start with some terminology that describes the distiactilies we get.

Definition D.1 ¢ Let Const denote the set of constant functions (i.e., the zero fumeit the one
function).

LetLin denote the set of all linear functions, including the consfanctions. (We note that through-
out we think of the constant functions as linear, affine et} Lin denote the complementary family,
i.e., all functions whose complements ardLim.

Let Aff denote the set of all affine functions, i.e., the linear fiomst and their complements. LAff
denote the complementary family.

We use the notatiothy;, to denote the family of linear subspace functions andOttienction, i.e.,
Fiin = {0} U{f : F¥ — Fo|f~1(1) is a linear subspace d?%}. Fy, is the complementary family.

We use the notatiotF,& to denote the family of affine subspace functions andthenction, i.e.,
Fap = {0} U{f : F3 — Fo|f~1(1) is an affine subspace &% }. Fog is the complementary family.

It turns out that for every: > 3 and everys # 0%, 1%, a(Cy, )-free family is one of the nine families
Const, Lin, Lin, Aff, Aff, Fin, Flin, Faft, Faf- 10 give further details, lef (X) denote the number of
zeroes int andO(X) denote the number of onesih We have:

Theorem D.2 For everyk > 3 and eveny # 0%, 1%, a (Cy, X)-free family is one of

Const, Lin, Lin, Aff, Aff, Fiin, Flin, Fafts Faff-
Specifically:

1. If Z(¥) andO(X) are even, theF¢, 5, = Const.

2. IfO(X) > lis odd andZ(X) is even, ther¥¢, s, = Lin. Complementarily, iZ(3) > 1is odd and
O(X) is even, therF¢, », = Lin.

3. fO(X) =1andZ(X) is even, thetF¢, s = Fiin. Complementarily, i (X) = 1 andO(X) is even,
thenFc, > = Flin.

4. IfO(%), Z(X) > 1 are odd, therF¢, 5, = Fag.

5. IfZ(¥) =1andO(X) > lis odd, thenF¢, 5, = Fag. Complementarily, iO(X) = 1andZ(X) > 1
is odd, thenF¢, . = Fag.

We begin with some simple facts and observations.

Fact D.3 [[22]] Let S be an affine subspace. Theny and z are all in S impliesz + y + z is also inS.
Conversely, if for any triple:, y andz in S implyingx + y + z in S, thenS is an affine subspace.
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This fact immediately gives the following Observation.
Observation D.4 A functionf : {0,1}" — {0,1} is (C4, 1110)-free if and only iff is in Fag.

Observation D.5 A functionf : {0,1}" — {0, 1} is (Cs, 100)-free if and only iff is the disjunction (OR)
of linear functions (or the all function). Consequently, is (Cs, 110)-free if and only iff is in Fp.

Proof: Let S = {z € {0,1}" : f(x) = 0}. If S'is empty, thery is the all1 function. Otherwise lei: andy

be any two elements ifi (not necessarily distinct). Then ffis (Cs, 100)-free, it must be the case that-y

is also inS. ThusS is a linear subspace ¢, 1}". Suppose the dimension Sfis k& with £ > 1. Then there
arek linearly independent vectors, ..., a; € {0,1}" such that € S'iff ((z,a1) =0) A A({z,ax) =

0). Therefore, by De Morgan's lawf(z) = 1iff z € Siff ((z,a1) = 1)\ ---V({2,a) = 1), which is
equivalent to the claim.ll

Observation D.6 If 32 # 1% for somek > 2, then(Cy2, X 0 00)-free C (Cy, X2)-free. Similarly, if> # 0F
for somek > 2, then(Cj,2, % o 11)-free C (Cy, X)-free.

Proof: By symmetry, we only need to prove the first part. lfete (Cyo, X 000)-free. Suppose ¢

(Cy, X)-free, then there exists a violating tuple, s@y,, x2, . .., z;) such that"7_, z; = 0 and
<f(.’IJ1), f(wQ)v s 7f(wj)> =X
SinceX is not an alll vector, there exists somiesuch thatf (z;) = 0. But then(zy,z, ..., 25, 2k, k)

would be a violation tuple of patterfCy_ 2, X o 00), contradicting our assumption that the functipis in
(Chia, S 0 00)-free. |

Observation D.7 (C4,0011)-free equals the set of constant functions.

Proof: Clearly a constant function has 0611 pattern. For the reverse inclusion, suppgse (Cy, 0011)-
free but not a constant function. Then there exiandy such thatf(z) = 0 f(y) = 1. Then

i
Proof: [of Theorem D.2]

1. Follows from Observation D.6 and Observation D.7.

2. We only need to prove the first half of the claim, the secaalfl Will then follow by symmetry. It
is easy to check that, iD(X) > 1 is odd andZ(X) is even, therLin C F¢, ». Furthermore, by
Observation D.5 and Observation D.6, in this cds€ x; is contained in the disjunction of linear
functions. Now supposg is (Cs,00111). So f(z) = ((a1,z) = 1) \/({a2,xz) = 1)/ ---, where
ai,as,...,are non-zero, distinct and linearly independent vectarges; andas are linearly inde-
pendent, there exist;, xo such that{a;, z1) = (as,x2) = 1 while (a1, z2) = (as,x1) = 0. Then
(0,0,21, 22,21 + x2) = 00111. Thereforef can not be the disjunction of more than one linear
function, making it linear. Finally note thdtin C (Cy, X)-free C (C5,00111)-free C Lin.

3. This follows from Observation D.5 and Observation D.6.
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4. Leti andj be odd integers. If (x) is linear, then it iSC; j, 0°17)-free sincej is odd. If f(z) is the
complement of linear, then it iﬁsCiH,Oilj)-free sincei is odd. So iff is an affine function, then it
is (Cy4;,017)-free. Now considetCg,000111)-free. If f is (Cg,000111)-free then the sef (1)
form an affine subspace (singeis also(Cy, 0111)-free.). Similarly the seff~1(0) form an affine
subspace (sincg is also(Cy, 0001)-free) and sof is an affine function.

5. This follows from Observation D.4 and Observation D.6.

ECCC ISSN 1433-809
http://eccc.hpi-web.de/

18



