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Abstract

We study the properties of the agnostic learning framework of Haussler (1992) and Kearns,
Schapire, and Sellie (1994). In particular, we address the question: is there any situation
in which membership queries are useful in agnostic learning?

Our results show that the answer is negative for distribution-independent agnostic
learning and positive for agnostic learning with respect to a specific marginal distribu-
tion. Namely, we give a simple proof that any concept class learnable agnostically by a
distribution-independent algorithm with access to membership queries is also learnable ag-
nostically without membership queries. This resolves an open problem posed by Kearns
et al. (1994). For agnostic learning with respect to the uniform distribution over {0, 1}n we
show a concept class that is learnable with membership queries but computationally hard
to learn from random examples alone (assuming that one-way functions exist).

Keywords: agnostic learning, membership query, separation, PAC learning

1. Introduction

The agnostic framework (Haussler, 1992; Kearns et al., 1994) is a natural generalization
of Valiant’s PAC learning model (Valiant, 1984). In this model no assumptions are made
on the labels of the examples given to the learning algorithm, in other words, the learning
algorithm has no prior beliefs about the target concept (and hence the name of the model).
The goal of the agnostic learning algorithm for a concept class C is to produce a hypothesis
h whose error on the target concept is close to the best possible by a concept from C. This
model reflects a common empirical approach to learning, where few or no assumptions are
made on the process that generates the examples and a limited space of candidate hypothesis
functions is searched in an attempt to find the best approximation to the given data.

Designing algorithms that learn efficiently in this model is notoriously hard and very
few positive results are known (Kearns et al., 1994; Lee et al., 1995; Goldman et al., 2001;
Gopalan et al., 2008; Kalai et al., 2008a,b). Furthermore, strong computational hardness
results are known for agnostic learning of even the simplest classes of functions such as
parities, monomials and halfspaces (H̊astad, 2001; Feldman, 2006; Feldman et al., 2006;
Guruswami and Raghavendra, 2006) (albeit only for proper learning). Reductions from
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long-standing open problems for PAC learning to agnostic learning of simple classes of
functions provide another indication of the hardness of agnostic learning (Kearns et al.,
1994; Kalai et al., 2008a; Feldman et al., 2006).

A membership oracle allows a learning algorithm to obtain the value of the unknown
target function f on any point in the domain. It can be thought of as modeling the access
to an expert or ability to conduct experiments. Learning with membership queries in both
PAC and Angluin’s exact models (Angluin, 1988) was studied in numerous works. For
example monotone DNF formulas, finite automata and decision trees are only known to
be learnable with membership queries (Valiant, 1984; Angluin, 1988; Bshouty, 1995). It
is well-known and easy to prove that the PAC model with membership queries is strictly
stronger than the PAC model without membership queries (if one-way functions exist).

Membership queries are also used in several agnostic learning algorithms. The first
one is the famous algorithm of Goldreich and Levin (1989) introduced in a cryptographic
context (even before the definition of the agnostic learning model). Their algorithm learns
parities agnostically with respect to the uniform distribution using membership queries.
Kushilevitz and Mansour (1993) used this algorithm to PAC learn decision trees and it has
since found numerous other significant applications. More efficient versions of this algorithm
were also given by Levin (1993), Bshouty, Jackson, and Tamon (2004) and Feldman (2007).
Recently, Gopalan, Kalai, and Klivans (2008) gave an elegant algorithm that learns decision
trees agnostically over the uniform distribution and uses membership queries.

1.1 Our Contribution

In this work we study the power of membership queries in the agnostic learning model.
The question of whether or not membership queries can aid in agnostic learning was first
asked by Kearns et al. (1994) who conjectured that the answer is no. To the best of our
knowledge, the question has not been addressed prior to our work. We present two results
on this question. In the first result we prove that every concept class learnable agnostically
with membership queries is also learnable agnostically without membership queries (see Th.
6 for a formal statement). This proves the conjecture of Kearns et al. (1994). The reduction
we give modifies the distribution of examples and therefore is only valid for distribution-
independent learning, that is, when a single learning algorithm is used for every distribution
over the examples. The simple proof of this result explains why the known distribution-
independent agnostic learning algorithm do not use membership queries (Kearns et al.,
1994; Kalai et al., 2008a,b).

The proof of this result also shows equivalence of two standard agnostic models: the one
in which examples are labeled by an unrestricted function and the one in which examples
come from a joint distribution over the domain and the labels.

Our second result is a proof that there exists a concept class that is agnostically learnable
with membership queries over the uniform distribution on {0, 1}n but hard to learn in the
same setting without membership queries (see Th. 8 for a formal statement). This result
is based on the most basic cryptographic assumption, namely the existence of one-way
functions. Note that an unconditional separation of these two models would imply NP ̸= P.
Cryptographic assumptions are essential for numerous other hardness results in learning
theory (cf., Kearns and Valiant, 1994; Kharitonov, 1995). Our construction is based on
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the use of pseudorandom function families, list-decodable codes and a variant of an idea
from the work of Elbaz, Lee, Servedio, and Wan (2007). Sections 4.1 and 4.2 describe the
technique and its relation to prior work in more detail.

This results is, perhaps, unsurprising since agnostic learning of parities with respect to
the uniform distribution from random examples only is commonly considered hard and is
known to be equivalent to learning of parities with random noise (Feldman et al., 2006), a
long standing open problem which itself is equivalent to decoding of random linear codes, a
long-standing open problem in coding theory. The best known algorithm for this problem
runs in time O(2n/ logn) (Blum et al., 2003; Feldman et al., 2006). If one assumes that
learning of parities with noise is intractable then it immediately follows that membership
queries are provably helpful in agnostic learning over the uniform distribution on {0, 1}n.
The goal of our result is to replace this assumption by a possibly weaker and more general
cryptographic assumption. It is known that if learning of parities with noise is hard then
one-way functions exist (Blum et al., 1993) but, for all we know, it is possible that the
converse is not true. The proof of our result however is substantially less straightforward
than one might expect (and than the analogous separation for PAC learning). Here the main
obstacle is the same as in proving positive results for agnostic learning: the requirements
of the model impose severe limits on concept classes for which the agnostic guarantees can
be provably satisfied.

1.2 Organization

Following the preliminaries, our first result is described in Section 3. The second result
appears in Section 4.

2. Preliminaries

Let X denote the domain or the input space of a learning problem. The domain of the
problems that we study is {0, 1}n, or the n-dimensional Boolean hypercube. A concept over
X is a {−1, 1} function over the domain and a concept class C is a set of concepts over X.
The unknown function f ∈ C that a learning algorithm is trying to learn is referred to as
the target concept.

A parity function is a function equal to the XOR of some subset of variables. For a
Boolean vector a ∈ {0, 1}n we define the parity function χa(x) = (−1)a·x = (−1)⊕i≤naixi .
We denote the concept class of parity functions {χa | a ∈ {0, 1}n} by PAR. A k-junta is a
function that depends only on k variables.

A representation class is a concept class defined by providing a specific way to represent
each function in the concept class. In fact all the classes of functions that we discuss are
representation classes. We often refer to a representation class simply as concept class when
the representation is implicit in the description of the class. For a representation class F ,
we say that an algorithm outputs f ∈ F if the algorithm outputs f in the representation
associated with F .
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2.1 PAC Learning Model

The learning models discussed in this work are based on Valiant’s well-known PAC model
(Valiant, 1984). In this model, for a concept f and distribution D over X, an example oracle
EX(D, f) is the oracle that, upon request, returns an example ⟨x, f(x)⟩ where x is chosen
randomly with respect to D. For ϵ ≥ 0 we say that a function g ϵ-approximates a function
f with respect to distribution D if PrD[f(x) = g(x)] ≥ 1 − ϵ. In the PAC learning model
the learner is given access to EX(D, f) where f is assumed to belong to a fixed concept
class C.

Definition 1 For a representation class C, we say that an algorithm Alg PAC learns C, if
for every ϵ > 0, δ > 0, f ∈ C, and distribution D over X, Alg, given access to EX(D, f),
outputs, with probability at least 1− δ, a hypothesis h that ϵ-approximates f .

The learning algorithm is efficient if its running time and the time to evaluate h are poly-
nomial in 1/ϵ, 1/δ and the size σ of the learning problem. Here by the size we refer to
the maximum description length of an element in X (e.g., n when X = {0, 1}n) plus the
maximum description length of an element in C in the representation associated with C.

An algorithm is said to weakly learn C if it produces a hypothesis h that (12 − 1
p(σ))-

approximates f for some polynomial p(·).

2.2 Agnostic Learning Model

The agnostic learning model was introduced by Haussler (1992) and Kearns et al. (1994)
in order to model situations in which the assumption that examples are labeled by some
f ∈ C does not hold. In its least restricted version the examples are generated from some
unknown distribution A over X × {−1, 1}. The goal of an agnostic learning algorithm for
a concept class C is to produce a hypothesis whose error on examples generated from A is
close to the best possible by a concept from C. Class C is referred to as the touchstone class
in this setting. More generally, the model allows specification of the assumptions made by
a learning algorithm by describing a set A of distributions over X × {−1, 1} that restricts
the distributions over X × {−1, 1} seen by a learning algorithm. Such A is referred to as
the assumption class. Any distribution A over X × {−1, 1} can be described uniquely by
its marginal distribution D over X and the expectation of b given x. That is, we refer to a
distribution A over X × {−1, 1} by a pair (DA, ϕA) where DA(z) = Pr⟨x,b⟩∼A[x = z] and

ϕA(z) = E⟨x,b⟩∼A[b | z = x].

Formally, for a Boolean function h and a distribution A = (D,ϕ) over X × {−1, 1}, we
define

∆(A, h) = Pr⟨x,b⟩∼A[h(x) ̸= b] = ED[|ϕ(x)− h(x)|/2] .

Similarly, for a concept class C, define

∆(A, C) = inf
h∈C

{∆(A, h)} .

Kearns et al. (1994) define agnostic learning as follows.
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Definition 2 An algorithm Alg agnostically learns a representation class C by a represen-
tation class H assuming A if for every ϵ > 0, δ > 0, A ∈ A, Alg given access to examples
drawn randomly from A, outputs, with probability at least 1 − δ, a hypothesis h ∈ H such
that ∆(A, h) ≤ ∆(A, C) + ϵ.

The learning algorithm is efficient if it runs in time polynomial 1/ϵ, log (1/δ) and σ (the
size of the learning problem). If H = C then, by analogy with the PAC model, the learning
is referred to as proper. We drop the reference to H to indicate that C is learnable by some
representation class.

A number of special cases of the above definition are commonly considered (and often
referred to as the agnostic learning model). In fully agnostic learning A is the set of all
distributions over X × {−1, 1}. Another version assumes that examples are labeled by an
unrestricted function. That is, the set A contains distribution A = (D, f) for every Boolean
function f and distribution D. Note that access to random examples from A = (D, f) is
equivalent to access to EX(D, f). Following Kearns et al. (1994), we refer to this version
as agnostic PAC learning. Theorem 6 implies that these versions are essentially equivalent.
In distribution-specific versions of this model for every (D,ϕ) ∈ A, D equals to some fixed
distribution known in advance.

We also note that the agnostic PAC learning model can also be thought of as a model
of adversarial classification noise. By definition, a Boolean function g differs from some
function f ∈ C on ∆(g, C) fraction of the domain. Therefore g can be thought of as f
corrupted by noise of rate ∆D(f, C). Unlike in the random classification noise model, the
points on which a concept can be corrupted are unrestricted and therefore the noise is
referred to as adversarial.

2.2.1 Uniform Convergence

A natural approach to agnostic learning is to first draw a sample of fixed size and then choose
a hypothesis that best fits the observed labels. The conditions in which this approach is
successful were studied in works of Dudley (1978), Pollard (1984), Haussler (1992), Vap-
nik (1998) and others. They give a number of conditions on the hypothesis class H that
guarantee uniform convergence of empirical error to the true error. That is, existence of
a function mH(ϵ, δ) such that for every distribution A over examples, every h ∈ H, ϵ > 0,
δ > 0, the empirical error of h on sample of mH(ϵ, δ) examples randomly chosen from A is,
with probability at least 1− δ, within ϵ of ∆(A, h). We denote the empirical error of h on
sample S by ∆(S, h). In the Boolean case, the following result of Vapnik and Chervonenkis
(1971) will be sufficient for our purposes.

Theorem 3 Let H be a concept class over X of VC dimension d. Then for every dis-
tribution A over X × {−1, 1}, every h ∈ H, ϵ > 0, δ > 0, and sample S of size m =
O((d log (d/ϵ) + log (1/δ))/ϵ2) randomly drawn with respect to A,

Pr[|∆(A, h)−∆(S, h)| ≥ ϵ] ≤ δ.

In fact a simple uniform convergence result based on the cardinality of the function class
follows easily from Chernoff bounds (Haussler, 1992). That is Theorem 3 holds for m =
O(log |H|/ϵ2 · log (1/δ)). This result would also be sufficient for our purposes but might give
somewhat weaker bounds.
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2.3 Membership Queries

A membership oracle for a function f is the oracle that, given any point z ∈ {0, 1}n, returns
the value f(z) (Valiant, 1984). We denote it by MEM(f). We refer to agnostic PAC
learning with access to MEM(f), where f is the unknown function that labels the examples,
as agnostic PAC+MQ learning. Similarly, one can extend the definition of a membership
oracle to fully agnostic learning. For a distribution A over X × {−1, 1}, let MEM(A) be
the oracle that, upon query z, returns b ∈ {−1, 1} with probability PrA[(x, b) | x = z]. We
say that MEM(A) is persistent if given the same query the oracle responds with the same
label. When learning with persistent membership queries the learning algorithm is allowed
to fail with some negligible probability over the answers of MEM(A). This is necessary to
account for probability that the answers of MEM(A) might be not “representative” of A (a
more formal argument can be found for example in the work of Goldman et al. 2001).

2.4 List-Decodable Codes

As we have mentioned earlier, agnostic learning can be seen as recovery of an unknown
concept from possibly malicious errors. Therefore, encoding of information that allows
recovery from errors, or error-correcting codes, can be useful in the design of agnostic
learning algorithms. In our construction we will use binary list-decodable error-correcting
codes. A list-decodable code is a code that allows recovery from errors when the number of
errors is larger than the distance of the code, and hence there is more than one valid way to
decode the corrupted encoding, each giving a different message (see for example the book
of van Lint 1998). List-decoding of the code gives the list of all the messages corresponding
to the valid ways to decode the corrupt encoding. Formally, let C : {0, 1}u → {0, 1}v be
a binary code of message length u and block length v. Our construction requires efficient
encoding and efficient list-decoding from 1/2− γ fraction of errors for a γ > 0 that we will
define later. Specifically,

• Efficient encoding algorithm. For any z ∈ {0, 1}u and j ≤ v, C(z)j (the jth bit of
C(z)) is computable in time polynomial in u and log v.

• Efficient list-decoding from (1/2−γ′)v errors in time polynomial in u and 1/γ′ for any
γ′ ≥ γ. That is, an algorithm that given oracle access to the bits of string y ∈ {0, 1}v,
produces the list of all messages z such that Prj∈[v][C(z)j ̸= yj ] ≤ 1/2 − γ′ (in time
polynomial in u and 1/γ′).

Our main result is achieved using the Reed-Solomon code concatenated with the Hadamard
code for which the list-decoding algorithm was given by Guruswami and Sudan (2000).
Their code has the desired properties for v = O(u2/γ4). In the description of our construc-
tion, for simplicity, we use the more familiar but exponentially longer Hadamard code.

2.4.1 Hadamard Code

The Hadamard code encodes a vector a ∈ {0, 1}n as the values of the parity function χa

on all the points in {0, 1}n (that is the length of the encoding is 2n). It is convenient
to describe list-decoding of the Hadamard code using Fourier analysis over {0, 1}n that is
commonly used in the context of learning with respect to the uniform distribution (Linial,
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Mansour, and Nisan, 1993). We now briefly review a number of simple facts on the Fourier
representation of functions over {0, 1}n and refer the reader to a survey by Mansour (1994)
for more details. In the discussion below all probabilities and expectations are taken with
respect to the uniform distribution U unless specifically stated otherwise.

Define an inner product of two real-valued functions over {0, 1}n to be ⟨f, g⟩ = Ex[f(x)g(x)].
The technique is based on the fact that the set of all parity functions {χa(x)}a∈{0,1}n forms
an orthonormal basis of the linear space of real-valued functions over {0, 1}n with the above
inner product. This fact implies that any real-valued function f over {0, 1}n can be uniquely
represented as a linear combination of parities, that is f(x) =

∑
a∈{0,1}n f̂(a)χa(x). The

coefficient f̂(a) is called Fourier coefficient of f on a and equals Ex[f(x)χa(x)]; a is called
the index of f̂(a). We say that a Fourier coefficient f̂(a) is θ-heavy if |f̂(a)| ≥ θ. Let
L2(f) = Ex[(f(x))

2]1/2. Parseval’s identity states that

(L2(f))
2 = Ex[(f(x))

2] =
∑
a

f̂2(a) .

Let A = (U, ϕ) be a distribution over {0, 1}n×{−1, 1} with uniform marginal distribution
over {0, 1}n. Fourier coefficient ϕ̂(a) can be easily related to the error of χa(x) on A. That
is,

Pr⟨x,b⟩∼A[b ̸= χa(x)] = (1− ϕ̂(a))/2. (1)

Therefore, both list-decoding of the Hadamard code and agnostic learning of parities amount
to finding the largest (within 2ϵ) Fourier coefficient of ϕ(x). The first algorithm for this
task was given by Goldreich and Levin (1989). Given access to a membership oracle, for
every ϵ > 0 their algorithm can efficiently find all ϵ-heavy Fourier coefficients.

Theorem 4 (Goldreich and Levin, 1989) There exists an algorithm GL that for every
distribution A = (U, ϕ) and every ϵ, δ > 0, given access to MEM(A), GL(ϵ, δ) returns, with
probability at least 1− δ, a set of indices T ⊆ {0, 1}n that contains all a such that |ϕ̂(a)| ≥ ϵ
and for all a ∈ T , |ϕ̂(a)| ≥ ϵ/2. Furthermore, the algorithm runs in time polynomial in
n,1/ϵ and log (1/δ).

Note that by Parseval’s identity, the condition |ϕ̂(a)| ≥ ϵ/2 implies that there are at most
4/ϵ2 elements in T .

2.5 Pseudo-random Function Families

A key part of our construction in Section 4 will be based on the use of pseudorandom
functions families defined by Goldreich, Goldwasser, and Micali (1986).

Definition 5 A function family F = {Fn}∞n=1 where Fn = {πz}z∈{0,1}n is a pseudorandom
function family of Boolean functions over {0, 1}n if

• There exists a polynomial time algorithm that for every n, given z ∈ {0, 1}n and
x ∈ {0, 1}n computes πz(x).

• Any adversary M whose resources are bounded by a polynomial in n can distinguish
between a function πz (where z ∈ {0, 1}n is chosen randomly and kept secret) and a
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totally random function from {0, 1}n to {−1, 1} only with negligible probability. That
is, for every probabilistic polynomial time M with an oracle access to a function from
{0, 1}n to {−1, 1} there exists a negligible function ν(n),

|Pr[Mπz(1n) = 1]−Pr[Mρ(1n) = 1]| ≤ ν(n),

where πz is a function randomly and uniformly chosen from Fn and ρ is a randomly
chosen function from {0, 1}n to {−1, 1}. The probability is taken over the random
choice of πz or ρ and the coin flips of M .

Results of H̊astad et al. (1999) and Goldreich et al. (1986) give a construction of pseu-
dorandom function families based on the existence of one-way functions.

3. Distribution-Independent Agnostic Learning

In this section we show that in distribution-independent agnostic learning membership
queries do not help. In addition, we prove that fully agnostic learning is equivalent to
agnostic PAC learning. Our proof is based on two simple observations about agnostic
learning via empirical error minimization. Values of the unknown function on points outside
of the sample can be set to any value without changing the best fit by a function from the
touchstone class. Therefore membership queries do not make empirical error minimization
easier. In addition, points with contradicting labels do not influence the complexity of
empirical error minimization since any function has the same error on pairs of contradicting
labels. We will now provide the formal statement of this result.

Theorem 6 Let Alg be an algorithm that agnostically PAC+MQ learns a concept class C in
time T (σ, ϵ, δ) and outputs a hypothesis in a representation class H(σ, ϵ). Then C is (fully)
agnostically learnable by H(σ, ϵ/2) in time T (σ, ϵ/2, δ/2) + O(d · log (d/ϵ) + log (1/δ))/ϵ2),
where d is the VC dimension of H(σ, ϵ/2) ∪ C.

Proof Let A = (D,ϕ) be a distribution over X ×{−1, 1}. Our reduction works as follows.
Start by drawing m examples from A for m to be defined later. Denote this sample by S.
Let S′ be S with all contradicting pairs of examples removed, that is for each example ⟨x, 1⟩
we remove it together with one example ⟨x,−1⟩. Every function has the same error rate of
1/2 on examples in S \ S′. Therefore for every function h,

∆(S, h) =
∆(S′, h)|S′|+ |S \ S′|/2

|S|
= ∆(S′, h)

|S′|
m

+
m− |S′|

2m
(2)

and hence

∆(S, C) = ∆(S′, C)
|S′|
m

+
m− |S′|

2m
(3)

Let f(x) denote the function equal to b if ⟨x, b⟩ ∈ S′ and equal to 1 otherwise. Let
US′ denote the uniform distribution over S′. Given the sample S′ we can easily simulate
the example oracle EX(US′ , f) and MEM(f). We run Alg(ϵ/2, δ/2) with theses oracles and
denote its output by h. Note, that this simulates A in the agnostic PAC+MQ setting over
distribution (US′ , f).
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By the definition of US′ , for any Boolean function g(x),

PrUS′ [f(x) ̸= g(x)] =
1

|S′|
∣∣{x ∈ S′ | f(x) ̸= g(x)}

∣∣ = ∆(S′, g) .

That is, the error of any function g on US′ is exactly the empirical error of g on sample S′.
Thus ∆((US′ , f), h) = ∆(S′, h) and ∆((US′ , f), C) = ∆(S′, C). By the correctness of Alg,
with probability at least 1 − δ/2, ∆(S′, h) ≤ ∆(S′, C) + ϵ/2. By Equations (2) and (3) we
thus obtain that

∆(S, h) = ∆(S′, h)
|S′|
m

+
m− |S′|

2m
≤ (∆(S′, C) + ϵ

2
)
|S′|
m

+
m− |S′|

2m
= ∆(S, C) + ϵ

2

|S′|
m

Therefore ∆(S, h) ≤ ∆(S, C)+ ϵ/2. We can apply the VC dimension-based uniform conver-
gence results for H(σ, ϵ/2) ∪ C (Theorem 3) to conclude that for

m(ϵ/4, δ/4) = O

(
d log (d/ϵ) + log (1/δ)

ϵ2

)
,

with probability at least 1−δ/2, ∆(A, h) ≤ ∆(S, h)+ ϵ
4 and ∆(S, C)+ ϵ

4 ≤ ∆(A, C). Finally,
we obtain that with probability at least 1− δ,

∆(A, h) ≤ ∆(S, h) +
ϵ

4
≤ ∆(S, C) + 3ϵ

4
≤ ∆(A, C) + ϵ.

It easy to verify that the running time and hypothesis space of this algorithm are as claimed.

Note that if Alg is efficient then d(σ, ϵ/2) is polynomial in σ and 1/ϵ and, in particular,
the obtained algorithm is efficient. In addition, in place of VC-dim one can use the uniform
convergence result based on the cardinality of the hypothesis space. The description length
of a hypothesis output by Alg is polynomial in σ and 1/ϵ and hence in this case a polynomial
number of samples will be required to simulate Alg.

Remark 7 We note that while this proof is given for the strongest version of agnostic
learning in which the error of an agnostic algorithm is bounded by ∆(A, C) + ϵ, it can be
easily extended to weaker forms of agnostic learning, such as algorithms that only guarantee
error bounded by α · ∆(A, C) + β + ϵ for some α ≥ 1 and β ≥ 0. This is true since the
reduction adds at most ϵ/2 to the error of the original algorithm.

4. Learning with Respect to the Uniform Distribution

In this section we show that when learning with respect to the uniform distribution over
{0, 1}n, membership queries are helpful. Specifically, we show that if one-way functions
exist, then there exists a concept class C that is not agnostically PAC learnable (even weakly)
with respect to the uniform distribution but is agnostically learnable over the uniform
distribution given membership queries. Our agnostic learning algorithm is successful only
when ϵ ≥ 1/p(n) for a polynomial p fixed in advance (the definition of C depends on p).
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While this is slightly weaker than required by the definition of the model it still exhibits
the gap between agnostic learning with and without membership queries. We remark that
a number of known PAC and agnostic learning algorithms are efficient only for restricted
values of ϵ (O’Donnell and Servedio, 2006; Gopalan et al., 2008; Kalai et al., 2008a).

Theorem 8 For every polynomial p(·), there exists a concept class Cp over {0, 1}n such
that,

1. there exists no efficient algorithm that weakly PAC learns Cp with respect to the uni-
form distribution over {0, 1}n;

2. there exists a randomized algorithm AgnLearn that for every distribution A = (U, ϕ)
over {0, 1}n × {−1, 1} and every ϵ ≥ 1/p(n), δ > 0, given access to MEM(A), with
probability at least 1− δ, finds h such that ∆(A, h) ≤ ∆(A, Cp

n) + ϵ. The probability is
taken over the coin flips of MEM(A) and AgnLearn. AgnLearn runs in time polynomial
in n and log (1/δ).

4.1 Background

We first show why some of the known separation results will not work in the agnostic setting.
It is well-known that the PAC model with membership queries is strictly stronger than the
PAC model without membership queries (under the same cryptographic assumption). The
separation result is obtained by using a concept class C that is not PAC learnable and
augmenting each concept f ∈ C with the encoding of f in a fixed part of the domain. This
encoding is readable using membership queries and therefore an MQ algorithm can “learn”
the augmented C by querying the points that contain the encoding. On the other hand,
with overwhelming probability this encoding will not be observed in random examples and
therefore does not help learning from random examples. This simple approach would fail
in the agnostic setting. The unknown function might be random on the part of the domain
that contains the encoding and equal to a concept from C elsewhere. The agreement of the
unknown function with a concept from C is almost 1 but membership queries on the points
of encoding will not yield any useful information.

A similar problem arises with encoding schemes used in the separation results of Elbaz
et al. (2007) and Feldman and Shah (2009). There too the secret encoding can be rendered
unusable by a function that agrees with a concept in C on a significant fraction of the
domain.

4.2 Outline

We start by presenting some of the intuition behind our construction. As in most other
separation results our goal is to create a concept class that is not learnable from uniform
examples but includes an encoding of the unknown function that is readable using member-
ship queries. We first note that in order for this approach to work in the agnostic setting
the secret encoding has to be “spread” over at least 1 − 2ϵ fraction of {0, 1}n. To see this
let f be a concept and let S ⊆ {0, 1}n be the subset of the domain where the encoding of
f is contained. Assume, for simplicity, that without the encoding the learning algorithm
cannot predict f on S̄ = {0, 1}n \ S with any significant advantage over random guessing.

10
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Let f ′ be a function equal to f on S̄ and truly random on S. Then

Pr[f = f ′] ≈ (|S̄|+ |S|/2)/2n = 1/2 +
|S̄|
2n+1

.

On the other hand, f ′ does not contain any information about the encoding of f and there-
fore, by our assumption, no efficient algorithm can produce a hypothesis with advantage
significantly higher than 1/2 on both S and S̄. This means that the error of any effi-
cient algorithm will be higher by at least |S̄|/2n+1 than the best possible. To ensure that
|S̄|/2n+1 ≤ ϵ, we need |S| ≥ (1− 2ϵ)2n.

Another requirement that the construction has to satisfy is that the encoding of the
secret has to be resilient to almost any amount of noise. In particular, since the encoding
is a part of the function, we also need to be able to reconstruct an encoding that is close to
the best possible. An encoding with this property is in essence a list-decodable binary code.
In order to achieve the strongest separation result we will use the code of Guruswami and
Sudan (2000) that is the concatenation of Reed-Solomon code with the binary Hadamard
code. However, to simplify the presentation, we will use the more familiar binary Hadamard
code in our construction. In Section 4.6 we provide the details on the use of the Guruswami-
Sudan code in place of the Hadamard code.

The Hadamard code is equivalent to encoding a vector a ∈ {0, 1}n as the values of the
parity function χa on all points in {0, 1}n. That is, n bit vector a is encoded into 2n bits
given by χa(x) for every x ∈ {0, 1}n. This might appear quite inefficient since a learning
algorithm will not be able to read all the bits of the encoding. However the Goldreich-Levin
algorithm provides an efficient way to recover the indices of all the parities that agree with
a given function with probability significantly higher than 1/2 (Goldreich and Levin, 1989).
Therefore the Hadamard code can be decoded by reading the code in only a polynomial
number of (appropriately-chosen) locations.

The next problem that arises is that the encoding should not be readable from random
examples. As we have observed earlier, we cannot simply “hide” it on a negligible fraction
of the domain. Specifically, we need to make sure that our Hadamard encoding is not
recoverable from random examples. Our solution to this problem is to use a pseudo-random
function to make values on random examples indistinguishable from random coin flips in
the following manner. Let a ∈ {0, 1}n be the vector we want to encode and let πd :
{0, 1}n → {−1, 1} be a pseudo-random function from some pseudorandom function family
F = {πb}b∈{0,1}n . We define a function g : {0, 1}n × {0, 1}n → {−1, 1} as

g(z, x) = πd(z)⊕ χa(x)

(⊕ is simply the product in {−1, 1}). The label of a random point (z, x) ∈ {0, 1}2n is a XOR
of a pseudorandom bit with an independent bit and therefore is pseudorandom. Values of
a pseudorandom function b on any polynomial set of distinct points are pseudorandom and
therefore random points will have pseudorandom labels as long as their z parts are distinct.
In a sample of polynomial in n size of random and uniform points from {0, 1}2n this happens
with overwhelming probability and therefore g(z, x) is not learnable from random examples.
On the other hand, for a fixed z, πd(z) ⊕ χa(x) gives a Hadamard encoding of a or its
negation. Hence it is possible to find a using membership queries with the same prefix. A

11
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construction based on a similar idea was used by Elbaz et al. (2007) in their separation
result.

Finally, the problem with the construction we have so far is that while a membership
query learning algorithm can find the secret a, it cannot predict g(z, x) without knowing
d. This means that we also need to provide d to the learning algorithm. It is tempting to
use the Hadamard code to encode d together with a. However, a bit of the encoding of d
is no longer independent of πd, and therefore the previous argument does not hold. We are
unaware of any constructions of pseudorandom functions that would remain pseudorandom
when the value of the function is “mixed” with the description of the function (see the work
of Halevi and Krawczyk (2007) for a discussion of this problem). An identical problem
also arises in the construction of Elbaz et al. (2007). They used another pseudorandom
function πd1 to “hide” the encoding of d, then used another pseudorandom function πd2 to
“hide” the encoding of d1 and so on. The fraction of the domain used up for the encoding
of di is becoming progressively smaller as i grows. In their construction a PAC learning
algorithm can recover as many of the encodings as is required to reach accuracy ϵ. This
method would not be effective in our case. First, in the agnostic setting all the encodings
but the one using the largest fraction of the domain can be “corrupted”. This makes the
largest encoding unrecoverable and implies that the best ϵ achievable is at most half of the
fraction of the domain used by the largest encoding. In addition, in the agnostic setting the
encoding of di for every odd i can be completely “corrupted” making all the other encodings
unrecoverable. To solve these problems in our construction we split the domain into p equal
parts and on part i we use a pseudorandom function πdi to “hide” the encoding of dj for all
j < i. In Figure 1 we provide a schematic view of a concept that we construct (for p = 4).

Figure 1: Structure of a concept in Cp
n for p = 4. Arrow from part i to part j indicates that

the secret key to part j is encoded using the Hadamard code in part i. Errata:
should be d̄ = (d1, d2, d3) and there should be an arrow from part 3 to part 2.

The crucial property of this construction is that the unknown concept can be “recovered”
on all but one part of the domain. Specifically, the only part where the unknown concept
cannot be “recovered” agnostic is the part i such for all j > i agreement of the target
function with every gd̄ ∈ Cp

n on part j is close to 1/2 and hence dj cannot be recovered.
Therefore, by making the number of parts p larger than 1/ϵ, we can make sure that there
exists an efficient algorithm that finds a hypothesis with the error within ϵ of the optimum.

12



On The Power of Membership Queries in Agnostic Learning

4.3 The Construction

We will now describe the construction formally and give a proof of its correctness. Let
p = p(n) be a polynomial, let ℓ = log p(n) (we assume for simplicity that p(n) is a power of
2) and let m = ℓ+ n · p. We refer to an element of {0, 1}m by triple (k, z, x̄) where k ∈ [p],
z ∈ {0, 1}n, and

x̄ = (x1, x2, . . . , xp−1) ∈ {0, 1}n×(p−1).

Here k indexes the encodings, z is the input to the k-th pseudorandom function and x̄ is
the input to a parity function on n(p − 1) variables that encodes the secret keys for all
pseudorandom functions used for encodings 1 through k − 1. Formally, let

d̄ = (d1, d2, . . . , dp−1)

be a vector in {0, 1}n×(p−1) (where each di ∈ {0, 1}n) and for k ∈ [p] let

d̄(k) = (d1, d2, . . . , dk−1, 0n, . . . , 0n).

Let F = {πy}y∈{0,1}∗ be a pseudorandom function family (Definition 5). We define gd̄ :
{0, 1}m → {−1, 1} as follows:

gd̄(k, z, x̄) = πdk(z)⊕ χd̄(k)(x̄) .

Finally, we define

Cp
n =

{
gd̄ | d̄ ∈ {0, 1}n×(p−1)

}
.

4.4 Hardness of Learning Cp
n From Random Examples

We start by showing that Cp
n is not agnostically learnable from random and uniform examples

only. In fact, we will show that it is not even weakly PAC learnable. Our proof is similar
to the proof by Elbaz et al. (2007) who show that the same holds for the concept class they
define.

Theorem 9 There exists no efficient algorithm that weakly PAC learns Cp
n with respect to

the uniform distribution over {0, 1}m.

Proof In order to prove the claim we show that a weak PAC learning algorithm for Cp
n can

be used to distinguish a pseudorandom function family from a truly random function. A
weak learning algorithm for Cp

n implies that every function in Cp
n can be distinguished from

a truly random function on {0, 1}m. If, on the other hand, in the computation of gd̄(k, z, x̄)
we used a truly random function in place of each πdk(z) then the resulting labels would be
truly random and, in particular, unpredictable.

Formally, let Alg be a weak learning algorithm for Cp
n that, with probability at least

1− δ, produces a hypothesis with error of at most 1/2− 1/q(m) and runs in time t(m, 1/δ)
for some polynomials t(·, ·) and q(·). Our concept class Cp

n uses numerous pseudorandom
functions from Fn and therefore we use a so-called “hybrid” argument to show that one can
replace a single πdk(z) with a truly random function to cause Alg to fail.

For 0 ≤ i ≤ p, let O(i) denote an oracle randomly chosen according to the following
procedure. First choose randomly and uniformly πd1 , πd2 , . . . , πdi ∈ Fn and then choose ran-
domly and uniformly ρi+1, ρi+2, . . . , ρp from the set of all Boolean functions over {0, 1}n.

13
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Upon request such an oracle returns an example ⟨(k, z, x̄), b⟩ where (k, z, x̄) is chosen ran-
domly and uniformly from {0, 1}m and

b =

{
πdk(z)⊕ χd̄(k)(x̄) 0 ≤ k ≤ i

ρk(z) i < k ≤ p

We note that in order to simulate such an oracle it is not needed to explicitly choose
ρi+1, ρi+2, . . . , ρp (and, indeed that would not be possible in polynomial time). Instead
their values can be generated upon request by flipping a fair coin. This means that for
every i, O(i) can be chosen and then simulated in time polynomial in m and the number
of examples requested. Let M(i) denote the algorithm that performs the following steps.

• Choose O(i) randomly according to the above procedure.

• Simulate Alg with random examples from O(i) and δ = 1/2. Let h be the output of
Alg.

• Produce an estimate ẽh of the error of h on distribution defined by O(i) that, with
probability at least 7/8, is within 1/(3q(m)) of the true error. Chernoff bounds imply
that this can be done using an empirical estimate on O(q2(m)) random samples.

• Output 1 if ẽh ≤ 1/2− 2/(3q(m)) and 0 otherwise.

We denote by δi the probability that M(i) outputs 1. The probability is taken over all
the random choices made by M(i): the random choice and simulation of O(i), the coin flips
of Alg and the estimation of the error of h.

Claim 10 δp − δ0 ≥ 1/4.

Proof To see this we first observe that O(0) is defined using p truly random functions
and therefore, the probability that there exists a hypothesis of size at most t(m, 2) that has
error less than 1/2−1/3q(m) is some negligible function ν(n). In particular, the error of the
hypothesis produced by Alg is at least 1/2− 1/3q(m) (with probability at least 1− ν(n)).
This means that ẽh ≤ 1/2 − 2/(3q(m)) only if the estimation fails. By the definition of
our error estimation procedure, this happens with probability at most 1/8 and therefore
δ0 ≤ 1/8 + ν(n). On the other hand, O(p) is equivalent to EX(U, gd̄) for some randomly
chosen d̄. This implies that with probability at least 1/2, Alg outputs a hypothesis with
error of at most 1/2 − 1/q(m). With probability at least 7/8, ẽh ≤ 1/2 − 2/(3q(m)), and
hence δp ≥ 7/16. This implies our claim.

We now describe our distinguisher Mπ, where π denotes the function given to M as an
oracle. Let Oπ(i) denote the example oracle generated by using π in place of πdi in the
definition of O(i). That is, first choose randomly and uniformly πd1 , πd2 , . . . , πdi−1 ∈ Fn and
then choose randomly and uniformly ρi+1, ρi+2, . . . , ρp from the set of all Boolean functions
over {0, 1}n. Upon request Oπ(i) returns an example ⟨(k, z, x̄), b⟩ where (k, z, x̄) is chosen
randomly and uniformly from {0, 1}m and

b =


πdk(z)⊕ χd̄(k)(x̄) k < i

π(z)⊕ χd̄(k)(x̄) k = i

ρk(z) k > i

14
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Similarly, we denote by Mπ(i) the algorithm that is the same as M(i) but chooses a random
Oπ(i) in place of O(i). The distinguishing test Mπ chooses a random i ∈ [p] and runs Mπ(i).

We first observe that if π is chosen randomly from Fn then choosing and simulating a
random Oπ(i) is equivalent to choosing and simulating a random O(i). Therefore for every
i ∈ [p], Mπ(i) is equivalent to M(i). This implies that in this case Mπ will output 1 with
probability

1

p

∑
i∈[p]

δi.

On the other hand, if π is chosen randomly from the set of all Boolean function over
{0, 1}n then Oπ(i) is equivalent to O(i− 1). Therefore in this case Mπ will output 1 with
probability

1

p

∑
i∈[p]

δi−1.

Therefore, by Claim 10 this implies that the difference in the probability that M outputs 1
in these two cases is

1

p

∑
i∈[p]

δi −
1

p

∑
i∈[p]

δi−1 =
1

p
(δp − δ0) ≥ 1/(4p),

that is, non-negligible.
The efficiency of M follows readily from the efficiency of Alg and the efficiency of the

steps we described. This gives us the contradiction to the pseudorandomness property of
function family F .

4.5 Agnostic Learning of Cp
n with Membership Queries

We now describe a (fully) agnostic learning algorithm for Cp
n that uses membership queries

and is successful for any ϵ ≥ 1/p(n).

Theorem 11 There exists a randomized algorithm AgnLearn that for every distribution
A = (U, ϕ) over {0, 1}m × {−1, 1} and every ϵ ≥ 1/p(n), δ > 0, given access to MEM(A),
with probability at least 1− δ, finds h such that ∆(A, h) ≤ ∆(A, Cp

n) + ϵ. The probability is
taken over the coin flips of MEM(A) and AgnLearn. AgnLearn runs in time polynomial in
m and log (1/δ).

Proof Let gē for ē = (e1, e2, . . . , ep−1) ∈ {0, 1}(p−1)×n be the function for which ∆(A, gē) =
∆(A, Cp

n). The goal of our algorithm is to find the largest j such that on random exam-
ples from the j-th part of the domain (i.e., for k = j) A agrees with the encoding of
ē(j) = (e1, e2, . . . , ej−1, 0n, . . . , 0n) with probability at least 1/2 + ϵ/4. Using Goldreich-
Levin algorithm such j can be used to recover ē(j) and therefore will allow us to reconstruct
gē on all points (k, z, x̄) for k < j. For points with k ≥ j, our hypothesis will be either
constant 1 or constant -1, whichever has the higher agreement with A. This guarantees
that the error on this part is at most 1/2. By the definition of j, gē has error of at least
1/2 − ϵ/4 − 1/(2p) ≥ 1/2 − ϵ on this part of the domain and therefore our hypothesis has
error close to that of gē.
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We now describe AgnLearn formally. For every i ∈ [p] and y ∈ {0, 1}n, let Ai,y be A
restricted to points in {0, 1}m with prefix i, y. That is A = (U(p−1)×n, ϕi,y) where ϕi,y(x̄) ≡
ϕ(i, y, x̄) and U(p−1)×n is the uniform distribution over {0, 1}(p−1)×n. Note that MEM(Ai,y)

can be simulated using MEM(A): when queried on a point x̄ ∈ {0, 1}(p−1)×n MEM(Ai,y)
returns the answer of MEM(A) on point (i, y, x̄). Further, for each vector d̄ ∈ {0, 1}(p−1)×n

and b ∈ {−1, 1}, let hd̄,i,b be defined as

hd̄,i,b(k, z, x̄) =

{
πdk(z)⊕ χd̄(k)(x̄) k < i

b k ≥ i
(4)

(Here πdk is an element of the pseudorandom function family Fn used in the construction.)
AgnLearn performs the following steps.

1. Initializes H = {h1, h−1}, where h1 ≡ 1 and h−1 ≡ −1.

2. For each 2 ≤ i ≤ p:

(a) Chooses r independent random and uniform points in {0, 1}n, for r to be defined
later. Denote the obtained set of points by Yi.

(b) For each y ∈ Yi:

i. Runs GL(ϵ/4, 1/2) over {0, 1}(p−1)×n using MEM(Ai,y). Let T denote the set
of indices of heavy Fourier coefficients returned by GL.

ii. For each vector d̄ ∈ T and b ∈ {−1, 1} adds hd̄,i,b to the set of hypotheses
H.

3. For each h ∈ H, estimates ∆(A, h) to within accuracy ϵ/8 and with overall confidence
1− δ/2 using the empirical error on random samples from A. Chernoff bounds imply
that this can be done using samples of size O(log (|H|/δ)/ϵ2). Denote the estimate
obtained for a hypothesis hd̄,i,b ∈ H by ∆̃d̄,i,b.

4. Returns h ∈ H with the lowest empirical error.

Claim 12 For r = O(log (1/δ)/ϵ), with probability at least 1− δ, AgnLearn returns h such
that ∆(A, h) ≤ ∆(A, Cp

n) + ϵ.

Proof We show that in the set H of hypotheses considered by AgnLearn there will be a
hypothesis h′ such that ∆(A, h′) ≤ ∆(A, gē)+3ϵ/4 (with sufficiently high probability). The
estimates of the error of each hypothesis are within ϵ/8 of the true error and therefore the
hypothesis h with the smallest empirical error will satisfy

∆(A, h) ≤ ∆(A, h′) + ϵ/4 ≤ ∆(A, gē) + ϵ .

For i ∈ [p], denote
∆i = PrA[b ̸= gē(k, z, x̄) | k = i]

(here and below by probability with respect toA we mean that a labeled example ⟨(k, z, x̄), b⟩
is chosen randomly according to A). By the definition,

1

p

∑
i∈[p]

∆i = ∆(A, gē). (5)
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Let j be the largest i ∈ [p] that satisfies ∆i ≤ 1/2−ϵ/4. If j is undefined (when no i satisfies
the condition) then by Equation (5), ∆(A, gē) > 1/2 − ϵ/4. Either h1 or h−1 has error of
at most 1/2 on A and therefore there exists h′ ∈ H such that ∆(A, h′) ≤ ∆(A, gē) + 3ϵ/4.

We can now assume that j is well-defined. For i ∈ [p] and y ∈ {0, 1}n denote

∆i,y = PrA[b ̸= gē(k, z, x̄) | k = i, z = y] = Pr⟨x̄,b⟩∼Ai,y
[b ̸= gē(i, y, x̄)].

The function gē(j, y, x̄) equals πdj (y) · χē(j)(x̄). If πdj (y) = 1 then by Equation (1) and the
definition of Aj,y,

∆j,y =
1− ϕ̂j,y(ē(j))

2
,

and therefore ϕ̂j,y(ē(j)) = 1− 2∆j,y. If πdj (y) = −1 then

∆j,y = 1− 1− ϕ̂j,y(ē(j))

2
=

1 + ϕ̂j,y(ē(j))

2

and thus ϕ̂j,y(ē(j)) = −(1− 2∆j,y). In either case

|ϕ̂j,y(ē(j))| ≥ 1− 2∆j,y. (6)

By the definition,
Ey∈{0,1}n [∆i,y] = ∆i.

This implies that for a randomly and uniformly chosen y, with probability at least ϵ/4,
∆j,y ≤ 1/2− ϵ/8. This is true since otherwise

∆j ≥ (1− ϵ

4
)(
1

2
− ϵ

8
) >

1

2
− ϵ

4
,

contradicting the choice of j.
Together with Equation (6) we obtain that for a randomly chosen y, with probability

at least ϵ/4, |ϕ̂j,y(ē(j))| ≥ ϵ/4. In this case, by Theorem 4, GL(ϵ/4, 1/2) with access to
MEM(Aj,y) will return ē(j) with probability at least 1/2 (possibly, among other vectors).
This means that ē(j) will be found with probability at least ϵ/8. By taking r = 8 ln (2/δ)/ϵ
we ensure that AgnLearn finds ē(j) with probability at least 1− δ/2.

Now let bj be the constant with the lowest error on examples from A for which k ≥ j,
that is

bj = sign(EA[b | k ≥ j]).

Clearly, the error of bj on A when k ≥ j is at most 1/2. By the definition of hē(j),j,bj
(Equation 4), hē(j),j,bj equals gē on points for which k < j and equals bj on the rest of the
domain. Therefore

∆(A, hē(j),j,bj ) =
j − 1

p
PrA[b ̸= gē(k, z, x̄) | k < j] +

p− j + 1

p
PrA[b ̸= bj | k ≥ j]

≤ 1

p

∑
i<j

∆i +
p− j + 1

2

 .
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On the other hand, by the properties of j, for all i > j, ∆i ≥ 1/2− ϵ/4 and thus

∆(A, gē) =
1

p

∑
i∈[p]

∆i

 ≥ 1

p

∑
i<j

∆i + (p− j)

(
1

2
− ϵ

4

) .

By combining these equations we obtain that

∆(A, hē(j),j,bj )−∆(A, gē) ≤
1

2p
+

ϵ

4
≤ 3ϵ

4
.

As noted before, this implies the claim.

Given Claim 12, we only need to check that the running time of AgnLearn is polynomial
in m and log (1/δ). By Parseval’s identity there are O(1/ϵ2) elements in each set of vectors
returned by GL and r = 8 ln (2/δ)/ϵ. Therefore the efficiency of GL implies that H is found
in polynomial time and the size of H is O(p · log (1/δ)/ϵ3). This implies that the error
estimation step of AgnLearn takes polynomial time.

Remark 13 In Theorem 11 we assumed that MEM(A) is not persistent. If MEM(A) is
persistent then executions of GL for different y’s are not completely independent and GL might
fail with some negligible probability. A simple and standard modification of the analysis (as
in the work of Bshouty et al. (2004) for example) can be used to show that the probability
of failure of AgnLearn in this case is negligible. This implies that AgnLearn agnostically
learns Cp

n from persistent membership queries.

4.6 Bounds on ϵ

In Theorem 11 Cp
n is defined over {0, 1}m for m = n ·p(n)+log p(n) and is learnable agnosti-

cally for any ϵ ≥ 1/p(n). This means that this construction cannot achieve dependence on ϵ
beyond 1/m. To improve this dependence we use a more efficient list-decodable code in place
of the Hadamard code. Specifically, we need a list-decodable code C : {0, 1}u → {0, 1}v that
can be list-decoded from (1/2−γ′)v errors in time polynomial in u and 1/γ′ for any γ′ ≥ ϵ/8.
Guruswami and Sudan (2000) gave a list-decoding algorithm for the Reed-Solomon code
concatenated with the Hadamard code that has the desired properties for v = O(u2/ϵ4).
Note that this is exponentially more efficient than the Hadamard code for which v = 2u.
In fact for this code we can afford to read the whole corrupt message in polynomial time.
This means that we can assume that the output of the list-decoding algorithm is exact
(and not approximate as in the case of list-decoding using the Hadamard code using the
Goldreich-Levin algorithm).

In our construction u = n(p(n) − 1). To apply the above code we index a position in
the code using log v = O(log(n/ϵ)) bits. Further we can use pseudorandom functions over
{0, 1}n/2 instead of {0, 1}n in the definition of Cp

n. We would then obtain that the dimension
of Cp

n is m = n/2+log v+log p(n) ≤ n for any polynomial p(n) and ϵ ≥ 1/p(n). This implies
that our learning algorithm is successful for every ϵ ≥ 1/p(n) ≥ 1/p(m). It is easy to verify
that Theorems 9 and 11 still hold for this variant of the construction and imply Theorem
8.
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5. Discussion

Our results clarify the role of membership queries in agnostic learning. They imply that in
order to extract any meaningful information from membership queries the learner needs to
have significant prior knowledge about the distribution of examples. Specifically, either the
set of possible classification functions has to be restricted (as in the PAC model) or the set
of possible marginal distributions (as in distribution-specific agnostic learning).

A interesting result in this direction would be a demonstration that membership queries
are useful for distribution-specific agnostic learning of a natural concept class such as half-
spaces.

Finally, we would be interested to see a proof that membership queries are useful in
distribution-specific agnostic learning that places no restriction on ϵ.
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