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Abstract

We give a 1.25 approximation algorithm for the Steiner Tree Problem with dis-

tances one and two, improving on the best known bound for that problem.

1 Introduction

We give a new approximation algorithm for the problem of finding a minimum

Steiner tree for metric spaces with distances one and two. It improves over the best

known approximation factor for that problem of 1.279 [4]. Moreover, unlike the

result of Robins and Zelikovsky, our methods yields a single algorithm, whereas [4]

gives an approximation scheme.

2 Definitions and Notation

A metric with distances 1 and 2 can be represented as a graph, so edges are pairs in

distance 1 and non-edges are pairs in distance 2. We will denote by STP[1,2] the

Steiner Tree Problem restricted to such metrics.

The problem instance of STP[1,2] is a graph G = (V,E) that defines a metric

in this way, and a set R ⊂ V of terminal nodes.

A valid solution is a set unordered node pairs T such that R is contained in a

connected component of (V,E). We minimize |T ∩ E| + 2|T − E|.
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An s-star of G consists of a non-terminal c, called the center, s terminals t1, . . . , ts
and edges (c, t1), . . . , (c, ts). If s < 3 we say that the star is degenerate, and proper

otherwise.

In the analysis of the algorithm, we view the algorithm selections as transfor-

mations of the input instance, so after each phase we have a partial solution and a

residual instance. We formalize these notions as follows.

A partition Π of V induces a graph (Π, E(Π)) where (A,B) ∈ E(Π) if (u, v) ∈ E

for some u ∈ A, v ∈ B). We say that (u, v) is a representative of (A,B).

Similarly, Π induces the set of terminals RΠ = {A ∈ Π : A ∩ R 6= ∅}.

In our algorithms, we augment initially empty solution F . Edge set F defines

partition Π(F ) into connected components of (V, F ). In a step, we identify a con-

nected set X in the induced graph (Π(F ), E(Π(F ))) and we augment F with repre-

sentatives of edges that form a spanning tree of X. We will call it “collapsing X”,

because X will become a single node of (Π(F ), E(Π(F ))).

3 Analyzing Greedy Heuristics

We introduce a new way of analyzing greedy heuristics for our problem, and in this

section we illustrate it on the example of Rayward-Smith heuristic [2]. This heuristic

has approximation ratio of exactly 4/3, as demonstrated by Bern and Plassman [1].

However, the new analysis method will allow us to see the effect of more general

classes of greedy choices, as we will show in the next section.

We will analyze now the following three steps algorithm.

Preprocessing: If there is an edge e ⊂ R, we collapse e. This increases the

hidden cost of 1, but it also decreases the cost of any solution by 1.

Greedy selection loop: Find an s-star S with the largest possible s. If

s = 2, exit the loop. Collapse S.

Finishing: Connect the remaining terminals with non-edges (pairs with

cost 2).

In the analysis we use the following notions:

CA, the cost of the partial solution formed by the algorithm;

CR, the cost of the reference solution (derived from an optimum);

P , the sum of potentials distributed among objects.

We initialize CR to be the cost of an optimum solution, CA is initialized to 0 (the

algorithm starts with the empty partial solution) while the initial potential that

satisfies P < CR/4. Later we need to show that

(a) at every step CA + CR + P is unchanged or decreased.

(b) the final value of CR + P is zero.

To show (a), the analysis of a step contains calculation of the balance, −(∆CA +

∆CR + ∆P ), and we need to show that balance is nonnegative.
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The initial reference solution is an optimum solution T ∗. The steps of normaliza-

tion (performed only in the analysis) and of the algorithm will alter the graph and

T ∗ until T ∗ ∩E = ∅. At that point, the Finishing finds optimal set of connections,

as all of them have cost 2.

The potential is given to the following objects:

• edges, elements of T = T ∗ ∪ T

• C-comps which are connected components of (V, T );

• S-comps which are Steiner components, or subtrees of T (connected subgraphs)

in which leaves (nodes of degree 1) are terminals, and internal nodes (of degree

larger than 1) degree are non-terminals.

Initial potential assignment is 1/4 to each edge and zero to other objects.

We will use PC (PE, PS) for the sum of potentials of C-comps (edges, S-comps).

We normalize the T using steps with non-negative balance which preserve the

following additional invariants:

① each edge e ∈ T has p(e) = 1/3, and each C-comp C with less than two edges

has p(C) = 0.

② each C-comp C has p(C) ≥ −2/3, and each S-comp S has p(S) = 0.

Path Step: T contains a path with k > 1 edges between terminals or nodes of

degree larger than 2. We remove this path from T (implicitly, it adds a non-edge

to T ∗). As a result, ∆CR = 2 − k and ∆PE = −k/3, while we split a connected

component C into C0 and C1; we set p(C0) = p(C1) = 0, which yields ∆PE ≤ 2/3.

The balance of Path Step is at least k − 2 + k/3 − 2/3 = 2/3(k − 2) ≥ 0.

Bridge Step: the Path Step does not hold and there is an edge between non-

terminals. We remove this edge from T (again, this adds a non-edge to T ∗). ∆CR =

1 and ∆PE = −1/3, while we split a connected component C into C0 and C1.

Because the Path case does not hold and we have no non-terminal leaves, e(C0) ≥ 2

and e(C1) ≥ 2. We set p(C0) = p(C) and p(C1) = −2/3, so ∆PC = −2/3.

The balance of the Bridge Step is −1 + 1/3 + 2/3 ≥ 0.

The proof of the following is left to the reader:

Lemma 1 After applying Path and Bridge steps, invariants ① and ② hold true, and

every Steiner component is either an s-star or a single edge between two terminal

nodes.

Now we will prove

Lemma 2 After Preprocessing, and after each step of Greedy selection with an s-

star where s > 3, invariants ① and ② hold true and every S-comp is an s-star.

Proof. The only change to S-comps during the Preprocessing is that we collapse S-

comp that consist of one edge only, so we need to show that if we insist on invariants

① and ② a Preprocessing step has a non-negative balance. Such a collapses an edge

between two terminals. As a result, ∆CA = 1, ∆CR = −1, ∆PE = −1/3 (because
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the potential of this Steiner component, which was 1/3, is removed) while ∆PC = 0.

Only ∆PC = 0 requires some argument, because we may create a C-comp with

e(C) < 2, which forces p(C) = 0. However, this would mean that C consisted

solely of edges between terminals and such a component cannot be created by the

Bride Case, so it had p(C) = 0 from the time it was created. Thus the balance is

−1 + 1 + 1/3 > 0.

Now consider a greedy selection of an s-star A with s > 3. Its terminals are in

some a C-comps. To break cycles created in T ∗ when we insert the star, we remove

s − 1 connections, of which a − 1 are non-edges (that connect different C-comps),

so we remove a − 1 non-edges and s − a edges.

Based on this characterization, ∆CA = s, ∆CR = −s−a+2, ∆PE = (s−a)/3.

Because we may reduce the number of C-comps by a − 1, we may have ∆PC =

(a − 1)2/3, and this leads to the balance of (s − 4)/3 ≥ 0.

The balance calculation is false if we create a single C-comp with fewer than 2

edges, and this means, a single node. In this case the resulting C-comp must have

potential 0, so where we had perhaps a C-comps with potential −2/3 each now we

have one with potential 0 and ∆PC = a2/3. This exceed our initial estimate by

2/3. But in this case we also alter the estimates of ∆PE and ∆CR. In particular,

in at least one s-star we removed a maximum number of edges, s−1, that is justified

by the number of cycles we need to break; however, the last edge is unnecessary (it

creates a non-terminal leaf in the reference solution), so we can simply remove it.

This removal decreases CR by 1, and PE by 1/3, so the balance estimate can be

changed by −2/3 + 1 + 1/3 = 2/3, in other words, in this case the balance is better

rather than worse.

To finish the proof, we need to eliminate from T S-comps that are mot proper

stars. Initially, degenerate stars can be created by edge deletions in proper stars.

As described above, a 1-star can be simply removed which improves the balance. A

2-star can be eliminated using a Path Step.

When we perform selections of 3-stars, ② is no longer preserved, instead we will

have invariant

➋ each C-comp C has p(C) ≥ −1/2, and each S-comp S has p(S) ≥ −1/6.

p(S) ≥ −1/6.

The behavior of the algorithm during the selection of 3-stars can be characterized

as follows:

Lemma 3 After the last Greedy Selection with an s-star such that s > 3 and after

each step of Greedy Selection with a 3-star invariants ① and ➋ hold true and every

S-comp is an 3-star.

After the last selection of a star larger than 3-star we clearly have no more S-

comps that are different from 3-stars, because they would be larger stars and would

be selected. Also, invariant ② implies ➋ because we can increase the potential of

each non-trivial C-comp by 1/6 and decrease the potential of one of its S-comps

from 0 to −1/6.
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Thus it remains to show that a selection of a 3-star has a non-negative balance

when we enforce ① and ➋.

Because we select a 3-star, ∆CA = 3.

Suppose that the terminals of the selected star belong to 3 different C-comps.

Then we remove 2 non-edges from T ∗, so ∆CR = −4, we do not change S-comps so

∆PE + ∆PS = 0, while we coalesce 3 C-comps into one, hence ∆PC = 1, and the

balance is 0.

Suppose that the terminals of the selected star belong to 2 different C-comps.

∆CR = −3 because we remove one non-edge connection from T ∗ and one edge from

an S-comp. This S-comp becomes a 2-star, hence we remove it from T using a Path

Step, so together we remove 3 edges from T and ∆PE = −1 and ∆PS = 1/6.

Because we coalesce two C-comps, ∆PC = 1/2. Thus the balance of the step is

1/3.

If the terminals of the selected star belong to a single C-comp and we remove

2 edges from a single S-comp, we also remove the third edge of this S-comp and

∆CR = −3, while ∆PE = −1, ∆PS = 1/6, and if its C-comp degenerates to a

single node, we have ∆PC = 1/2 (otherwise, zero). Thus the balance is at least

1/3.

Finally, if the terminals of the selected star belong to a single C-comp and we

remove 2 edges from two S-comps, we have ∆CR = −2. Because we apply Path

Steps to those two S-comps, ∆PE = −2. while ∆PS = 1/3 and ∆PC ≤ 1/2. Thus

the balance is at least 1/6.

We formulate now

Theorem 1 The approximation ratio of Rayward-Smith heuristic is 4/3.

We initialized CA = 0, CR = opt and P ≤ opt/3, the sum CA + CR + P

never increases, and when we finish star selection we have P = 0 and T = ∅. At

this point, we can connect the partial solution using exactly the same number of

non-edges as we have in T ∗ so we obtain a solution with cost CA + CR.

4 A 5/4 Approximation Algorithm for STP[1,2]

We will formulate a new approximation algorithm and we analyze it in the manner

introduced in the previous section.

We generalize a notion of a star. A comet is an S-comp (a Steiner component)

in which a non-terminal node is the center, center is connected terminals as well as

to a non-terminals called fork nodes; each fork node is connected only to the center

and two terminals, those three nodes and edges form a fork. Pictorially, a comet

is like a star with trailing tail consisting of forks. A comet in which the center is

connected to b terminals is called a b-comet, or (a, b) comet if it has a forks.

The new Six-Phase Algorithm proceeds as follows:
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1. Greedily collapse edges between terminals.

2. Greedily collapse s-stars with s > 4.

3. Greedily collapse s-stars with s = 4.

4. Find a maximum size set of 3-stars.

5. Greedily, replace a 3-star with a (1,3)-comet.

6. Greedily, collapse a comet with the least cost

index.

We define the cost index ci(S) of an S-comp with t terminals and c edges as

ci(S) = c/(t − 1) − 1. One can easily see that

Lemma 4

If S is an s-star, ci(S) =
1

s − 1
, if S is an (a, s)-comet ci(S) =

a + 1

2a + b − 1
.

It is somewhat less obvious that

Lemma 5 We can find a star or comet S with the minimum ci(S) in polynomial

time.

First, observe that if b ≥ 3, the cost index of a b-comet does not increase if we delete

the forks Thus we first check for a largest star.

When b ≤ 2 the situation is opposite: (a + 1, b)-comet has lower cost index than

an (a, b)-comet. Thus we can find the best comet as follows. Try every possible

center, and for each center create a graph in which edges are pairs of terminals

that can be connected to a single fork node which in turn is connected to the center

(disregard terminals directly connected to the center). In this graph find a maximum

matching.

In the analysis, we use similar potential as in Section 3, with objects that get

potential defined by the reference solution T ∗ and T = T ∗ ∩ E. We define S-comps

and C-comps as before, and we initialize the analysis as before, with T ∗ being the

optimum solution, except that we have p((e) = 1/4 for e ∈ T .

4.1 Analysis of Phases 1 and 2

As in Section 3, collapsing edges between terminals have a positive balance.

Collapsing an s-star for s > 4 removes s − 1 edges from T , so ∆C ≤ 1 and

∆P ≤ −(s − 1)/4 ≤ −1.

4.2 Preliminary to the Analysis of Phases 3-6

We normalize the reference solution using Bridge Steps and Path Steps. The differ-

ence from Section 3 is that when we consider edge e in a Bridge Step, and removing

it from T would split some C-comp C into C0 and C1, we (a) require that |Ci| ≥ 3,

i = 0.1 and (b) while one of Ci’s inherits p(C), the other gets p(Ci) = −3/4.
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Lemma 6 After normalizing the reference solution T ∗ using Bridge and Path steps,

every nontrivial S-comp is either an s-star, s > 2 or an (a, b)-comet, a+b > 2. Each

S-comp will have potential 0, and each C-comp, zero or −3/4.

The proof is obvious.

4.3 Analysis of the Phase 3

Now we discuss the phase of selecting 4-stars. We change the potential distribu-

tion by setting p(C) = −2/3 for each C-comp C that had potential −3/4, and we

compensate by setting, for one of its S-comps, say, S, p(S) = −1/12.

When we select a 4-star, we remove 3 connections from T ∗. To each such removal

we can “allocate” 4/3 of ∆CA (i.e. we split the cost of the selected 4-star into three

equal parts).

When we remove a non-edge, we have ∆CR = −2, so ∆C = −2/3. We also

coalesce two C-comps, so we may to increase PC by 2/3, (cancel one of p(C) =

−2/3). Edges and S-comps are not affected, so we get a balance.

When we remove an edge from a fork (i.e. incident to a fork node of a comet), we

can apply Path Step and remove two more edges from T . Thus we have ∆C = 1/3

and ∆PE = −3/4, a positive balance. The balance is even better when we remove

two edges from the same fork, because in that case ∆C is better; in the solution

we erase three edges of a fork, rather then erasing one and replacing two with a

non-edge. Thus we have ∆C = 8/3 − 3 = −1/3, and we have ∆PE = −3/4.

When we remove an edge from a 3-star or a “borderline” comet, like (2, 1)-comet

or (3, 0)-comet, the reasoning is similar to the fork case. We have significant surplus.

We also eliminate a negative potential of the star, but the surplus is so big we will

not calculate it here.

The cases that remain is removing edges from stars, or edges that connect termi-

nals with centers of comets. Without changing the potential of the affected S-comp

we would have a deficit: ∆C = 1/3 and ∆PE = −1/4, for the “preliminary” balance

of 1/12. We obtain the balance by decreasing the potential of the affected S-comp

by 1/12.

This process has the following invariants:

(a) the sum of the potentials of S-comps of a C-comp, and of that C-comp, is a

multiple of 1/4.

(b) a s-star or a s-comet has potential at least −(5 − s)/12.

Invariant (a) follows from the fact that cost change is integral, and the other

potentials that change are edge potentials, each 1/4. Moreover, we coalesce a group

of C-comps if we charge more than one. (A careful reasoning would consider conse-

quences of breaking a C-comp by applying a Path Step).

Invariant (b) is clearly true at the start of the process. Then when we remove

an edge from an s star we subtract 1 from s and 1/12 from the potential, and the

invariant is preserved.
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4.4 Preliminary to the Analysis of Phases 4-5

When Phase 3 is over, we reorganize the potential in a manner more appropriate

for considering 3-stars. We increase a potential of a C-comp from −2/3 to −1/, and

we decrease the potential of one of its S-comps. In the same time, we want to have

the following potential for S-comps:

p4(S) =







−1

4
if S is a 3-star or a 3-comet

−3−s

4
if S is an s-comet, s < 3

Note that before the decrease, 3-stars and 3-comets had potential at least −2/12,

so it is OK. Similarly, 1-comet had potential at least −4/12, so they would get

−5/12 > −2/4, and the balance of 0 comets is even better. We have a problem with

2-comets. However, the reason is that we want to make one increase in the entire

C-comp. If not even a single S-comp has a “slack” to absorb this 1/12 charge, then

the sum of the potentials in the C-comp is a multiple of 1/4, plus 1/12, and this

contradicts invariant (a).

Before phase 6 we need a different distribution of potential. In that phase we do

not have 3-stars, the best cost index is above 1/2. The following values of potential

are sufficiently high for the analysis:

p6(S) =



























− 7

12
if S is a 2-comet

−1 if S is a 1-comet

−29

20
if S is a 0-comet

Moreover, we will have potential zero for C-comps except for C-comps that

consist of one S-comp only; for such C-comp C we can have p6(C) = −1/3 if C is a

2-comet and p6(C) = −1/4 if C is an 1-comet.

4.5 Analysis of Phases 4-5

In phase 4 we insert a maximum set of 3-stars to the solution, and this selection can

be modified in phase 5. Note that we can obtain a set of 3-stars from the reference

solution by taking all 3-stars and stripping forks from 3-comets.

If a selected 3-star has terminals in three C-comps, we can collapse it, ∆PE =

∆PS = 0, ∆CA = 3, ∆CR = −4 and ∆PC = −1, so this analysis step has balance

zero. And we still can find at least as many 3-stars as we have 3-stars and 3-comets

in the reference solution.

Now consider connected component created by the inserted 3-stars together with

C-comps of the reference solutions, before we deleted any edges. Suppose that this

component had some i C-comps, j 3-stars and 3-comets and within this component

we inserted j 3-stars (if we inserted more, the balance is only more favorable).

In counting the balance, we have ∆CA = 3i, and we need to delete 2i connec-

tions, so we split ∆CA into 2i equal parts to analyze the balance of each connection
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deletion. We can represent the connections with artificial edges, and insert them

one at the time, and after each insertion remove a connection from the reference

solution.

Case 1: the new connection causes a deletion of a non-edge. This entails ∆CR = −2

and ∆PC = 1/2, so we have balance zero. In the analysis of the subsequent cases

we can assume ∆PC = 0, because we consider Case 1 connections first, with the

exception, considered at the very end, that we can annihilate each and every S-comp

in the process, and thus increase PC further by 1/2.

Case 2: the new connection causes a deletion of a single connection from a 3-

star. This entails ∆CR = −1, ∆PE = −3/4 and ∆PS = 1/4 for the balance of

−3/2 + 1 + 3/4 − 1/4 = 0.

Case 3: the new connection causes a deletion of a single connection from a 3-

comet. This can be done in two ways: from a fork or from the center to a terminal.

However, we can assume that no 3-star will survive the deletion process, otherwise

they would be present in the set we inserted. Thus we alter a (a, 3)-comet into

(a, 2) comet. We have ∆CR = −1, ∆PE = −1/4, ∆PS = −4/12 for the balance

of −3/2 + 1 + 1/4 + 4/12 = 1/12.

Case 4: the new connection causes a deletion of a connection from a pre-existing

2-comet.

Case 4.1: the deletion “annihilates” the 2-comet. This means that it was a (1,2)-

comet. We have ∆CR = −1, ∆PE = −5/4, ∆PS = 1/4 for the balance of

−3/2 + 1 + 5/4 − 1/4 = 1/2.

Case 4.2: the deletion is from the center to a terminal, so we change a (a, 2)-comet

to a (a, 1) comet. We have ∆CR = −1, ∆PE = −1/4, ∆PS = −3/4 for the balance

of −3/2 + 1 + 1/4 + 3/4 = 1/2.

Case 4.3: the deletion is in a fork, so we change a (a, 2)-comet to a (a − 1, 2)

comet. This entails ∆CR = −1, ∆PE = −3/4 and ∆PS = −4/12 for the balance

of −3/2 + 1 + 3/4 + 4/12 = 7/12.

Case 5: the new connection causes a deletion of a connection from a pre-existing

1-comet or 0-comet. The balance calculation is almost the same, except that in the

annihilation sub-case, ∆PE is more favorable, while in other cases, ∆PS is more

favorable.

Case 6: a subsequent deletion of a connection to a deleted fork or an annihilated

S-comp. This entails ∆CR = −2 with no changes in PE and PS, for the balance

of −3/2 + 2 = 1/2.

Case 7: the new connection causes a subsequent deletion of a connection from a

pre-existing b-comet, b ≤ 2, not annihilated by the first deletion. In phase 6 we will

have an identical balance calculations, except for higher ∆CA because of higher cost

index of a collapsed comet.

Case 7.1: the deletion “annihilates” a 2-comet. This means that it was a (1,2)-

comet. We have ∆CR = −1, ∆PE = −5/4, ∆PS = 7/12 for the balance of

−3/2 + 1 + 5/4 − 7/12 = 1/6.

Case 7.2: the deletion “annihilates” a 1-comet. This means that it was a (2,1)-

comet. We have ∆CR = −1, ∆PE = −7/4, ∆PS = 1 for the balance of −3/2 +
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1 + 7/4 − 1 = 1/4.

Case 7.3: the deletion “annihilates” a 0-comet. This means that it was a (3,0)-

comet. We have ∆CR = −1, ∆PE = −9/4, ∆PS = 29/20 for the balance of

−3/2 + 1 + 9/4 − 29/20 = 3/10.

Case 7.4: the deletion “reduces” a 2-comet to a 1-comet. This entails ∆CR = −1,

∆PE = −1/4, ∆PS = −5/12 for the balance of −3/2 + 1 + 1/4 + 5/12 = 1/6.

Case 7.5: the deletion “reduces” a 1-comet to a 0-comet. This entails ∆CR = −1,

∆PE = −1/4, ∆PS = −9/20 for the balance of −3/2 + 1 + 1/4 + 9/20 = 4/20.

Case 7.6: the deletion removes a fork. This entails ∆CR = −1, ∆PE = −3/4,

∆PS = 0 for the balance of −3/2 + 1 + 3/4 = 1/4.

As we see, no deletion has negative balance. However, we have the problem of

accounting for the remaining p(C) = −1/2.

This problem is solved is if the sum of balances of the deletions was at least 1/2.

Thus we can inspect the possible combinations of deletions that do not have such

sum. Clearly, they do not contain any deletion in a pre-existing 2-, 1- or 0-comet,

nor a deletion in a fork or S-comp annihilated by the first deletion (cases 4 and 5).

There are few cases of second deletions within 3-stars and 3-comets that we

need to consider. First, a second deletion within an S-comp annihilated by the first

deletion is case 5, otherwise we have a combination of Case 3 with Case 7.1 or Case

7.4, with the balance of 1/4. Hence with two such second deletions our problem is

solved.

Thus if we had i 3-stars and 3-comets, we made at most i + 1 deletions within

them, hence i − 1 other deletions, and of the latter, all were Case 1, merging C-

components. Thus we started with as many C-comps as we have 3-stars. This also

means that we had to have a second deletion and the balance of the deletions is at

least 1/4.

Suppose that in the merged assembly of C-comps we had a b-comet, b < 3; we

do not delete in that comet, so we can decrease its potential, and the least decrease

is 7/12 − 1/4 = 1/3. Together with the minimum balance of the deletions, we have

the desired 1/2.

Now the picture becomes rather restricted. In the reference solution we have

some i C-comps, each consisting of exactly one S-comp, a 3-star or a 3-comet. We

inserted a set of i 3-stars, and each of them has at least two terminals in one of

C-comps, thus making one or two connection inside and one or none outside. Thus

we have i or i − 1 connections made between C-comps.

If we have i − 1 such connections, then they form a tree and we can consider

a leaf, one that does not contain an inserted 3-star. If this leaf is a 3-star, we can

disregard it, because it means that the inserted 3-star overlapping the leaf C-comp

cannot create cycles. If it is not a 3-star, in Phase 5 we can replace the inserted

overlapping 3-star with a (1,3)-comet.

If we have i such connections, then they form a simple cycle. If there is a comet

on this cycle, we can make the same observation: replace one of the overlapping

3-stars with a (1,3) comet without creating cycles. If all C-comps are 3-stars, then

we actually have balance.
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Thus for every case when we have a deficit, the deficit is at most 1/4 and we

have an opportunity to replace a 3-star with a (1,3)-comet in Phase 5. Each such

replacement improves the balance by at least 1, hence it suffices to find 1/4 fraction

of the possible, and the greedy selections obviously accomplish as much.

4.6 Analysis of the Phase 6

Basically, when we contract a comet with i + 1 terminals, we have to delete i

connections from the reference solution, and the accounting is pretty much like in

Case 7 in the previous sections, except that we have a higher ∆CA, which was in

that calculation assumed to be 3/2.

If we remove from a 2-comet, then the portion of the cost per connection is at

most 5/3 = 3/2+1/6, so it suffices that in the respective subcases of Case 7 we had

balance at least 1/6. Similarly, if we delete from a 1-comet, the cost per connection

is at most 7/4 = 3/1/4 and it suffices that we had a balance of 1/4 in those subcases.

For 0-stars, the cost is at most 9/5 = 3/2 + 3/10, and when we annihilate, we have

such balance in Case 7.3. When we remove a fork without annihilation, then we

have at least (4,1)-comet and the cost is at most 12/7 < 3/2 + 1/4, and the balance

of the fork removal is 1/4.

We can formulate our conclusion as follows:

Theorem 2 The Six-Phase Algorithm has the approximation ratio of 5/4 for the

Steiner Tree Problem in metrics with distances 1 and 2.

�
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