
Universal Semantic Communication II:

A Theory of Goal-Oriented Communication

Brendan Juba∗ Madhu Sudan †

MIT CSAIL

{bjuba,madhu}@mit.edu

February 13, 2009

Abstract

We continue the investigation of the task of meaningful communication among intelligent
entities (players, agents) without any prior common language. Our generic thesis is that such
communication is feasible provided the goals of the communicating players are verifiable and
compatible. In a previous work we gave supporting evidence for one specific goal — where one
of the players wished to solve a hard computational problem and communicated with the other
in the hope of finding a solution.

In this work we initiate a “generic” study of the goals of communication. We present two
definitions: one of a “generic” meta-goal, which captures the (potentially unrealizable) wishes
of communicating agents, and the other being a “generic” syntactic goal, which captures effects
that can observed by an agent. We then show, under some technical conditions, that those meta-
goals that have corresponding syntactic versions are also universally achievable, i.e., achievable
when the two communicators do not (necessarily) share a common language.

We also show how our formalism captures a variety of commonplace examples of goals of
communication, including simple control-oriented goals that aim to effect a remote physical
action by communication, as well as more subtle intellectual goals where the communicator’s
intent is mostly to gain knowledge. Our examples from the latter class include a variety of
settings where meta-goals differ significantly from syntactic goals.

∗Supported by a NSF Graduate Research Fellowship, and NSF Awards CCR-0514915 and CCR-0726525.
†Supported in part by NSF Awards CCR-0514915 and CCR-0726525.

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 95 (2008)

ISSN 1433-8092




1 Introduction

In this paper we continue the study of “semantic communication.” Specifically we ask how can two
intelligent entities (or agents), that do not a priori understand each other, communicate to reach a
state of understanding? What is understanding?

We assert that in order to answer the above questions, we need to look into the question: Why
do intelligent, selfish, entities communicate? What goals are they trying to achieve by communi-
cating? We suggest that by studying the goal formally one can attempt to get a formal notion of
understanding. Specifically, if two intelligent entities, Alice and Bob are communicating with each
other, we assert that each must have a “selfish” goal that they wish to achieve by the process of
communication. Further, from the perspective of one of the entities, say Bob, the achievement of a
goal that requires communication (seemingly with another entity that understands Bob) gives an
operational meaning to the notion that Bob understands Alice. Additionally if Bob can determine
whether the goal has been achieved (at any given point of time during his interaction with Alice),
then this gives him a means to test, and improve upon, the current level of understanding.

Motivation: In a previous work [11], we considered the assertions above in a restricted setting
where the goal of communication was taken to be of a particular form. In that work, Bob was
a probabilistic polynomial time bounded algorithm who wished to solve (an instance of) a hard
computational (decision) problem. Alice had unbounded computational power and wished to help
Bob, except she did not know his language. We showed that Alice could help Bob if and only if the
problem that Bob wished to solve was in PSPACE (specifically, solutions to the problem should be
verifiable, possibly interactively, by Bob).

In this work we extend the previous work to study general “goals of communication.” As motivation,
observe that communication certainly serves many purposes, many of which have nothing to do
with solving computational problems. For example, there are many situations where we wish to
remotely exhibit control, e.g., to print a document on a printer or to purchase a book on Amazon.
Moreover, the results of our prior work were only meaningful when we could interact with some
entity who could decide some problem outside of probabilistic polynomial time; since this seems to
be an unrealistic assumption, one might ask whether or not similar models and techniques could be
used to provide some computational benefits among probabilistic polynomial time entities, or model
other modes of interaction based on intellectual curiosity. We attempt to capture this diversity of
motivations with a single definition of a generic goal of communication (though we end up defining
two different kinds of goals).

Overview of the theory: Starting with a mathematical description of the interacting entity, Bob,
we describe “meta-goals,” which capture potential goals of communication for Bob as commonly
perceived, and “syntactic-goals,” which describe goals in terms of information that is actually
available to Bob (and computable by Bob within his resource limits). We stress that the definitions
are somewhat subtle, counterintuitive, and possibly debatable. Part of the challenge is attempting
to create a definition that allows Bob to be adaptive (so as to learn the language of communication
with Alice) without varying the goal of the communication itself. As an analogy, one could recall
the setting of multiparty computations, where it was a non-trivial task to define a generic task in
multiparty computation which could be achieved by different protocols, with or without a trusted
party. Our definition leads to an architecture for communication among intelligent agents which is
somewhat different from the standard architecture for communication. Specifically, in our model,
the role of an “interpreter” of communications emerges as a central one.

2



Using the resulting definition of a generic goal of communication, we extend the notion of universal
semantic communication, where Bob is attempting to converse semantically with some Alice, whom
he does not know a priori. We show sufficient conditions on the goal under which a generic goal
is achievable universally. The net effect is that we are able to formalize and prove the following
“meta-theorem:”

Theorem 1 (Main theorem, informal statement) A goal can be achieved universally iff some
sufficient related verifiable goal exists.

The formalization of this theorem appears as Theorem 14 in Section 2.2. To get a sense of the
conditions that are shown to be sufficient, we compare with our prior work [11]. The previous work
showed that in the computational setting, the ability to verify the result (i.e., obtaining a proof)
was necessary and sufficient. Verifiability remains a central component in our extensions. Indeed,
using a similar technique to our prior paper, it follows that whenever Bob can verify success based
on his view of the interaction with Alice, it is possible to give a universal protocol for his goal.

Applications and examples: This observation already extends the class of goals we can achieve
universally from only computational goals to include the goals we discuss in Section 3.2: goals
involving “remote control” where Bob can observe whether or not he has succeeded. In fact, in
our main theorem, we show that for the classes of algorithms of interest, a sufficient algorithm
for verifying achievement of the goal exists if and only if there exists an algorithm that is efficient
with respect to the given resource bounds and achieves the goal universally. In a sense, this is the
analogue to our results in the computational setting showing that the class of computational goals
that can be achieved universally are computationally equivalent to IP. In this case, it demonstrates
that the verifiability of a goal is necessary and sufficient for universal communication.

This is just one of several consequences of our definitions and theorem that we examine. We show
how a number of common goals of communication can be modeled by our notions of generic goals.
We describe a few more such examples below. In all cases coming up with a meta-goal that captures
our generic goal is relatively straightforward. The more interesting part is seeing how the goal in
these examples can be supported by syntactic goals that satisfy the sufficiency conditions of our
main theorem, and thus achieved universally.

For example, consider the situation in a classroom where Alice is a student and Bob is a teacher.
How might Bob be convinced of Alice’s ability to solve some class of problems that he knows he
is already capable of solving? We show, by taking a more careful view of the communication and
measuring the computational resources used by Bob in interpreting Alice, one approach to such
a problem in Section 3.4. Our definitions and approach are sufficiently generic to apply to other
natural classes of algorithms – in particular, logspace machines – and we show in Section 3.1.2
how to use a recent result of Goldwasser et al. [9] to obtain a logspace protocol that can delegate
any polynomial-time computation to any “server” with a communications protocol that can be
implemented in logspace. Finally, in Section 3.3, we propose an approach by which we might try
to obtain wisdom from a computationally bounded Alice who might only have knowledge of a
relatively sparse collection of theorems.

The theme in these last few examples is that we carefully measure or restrict the computational
resources used during interpretation in pursuit of our goals. Again, as a consequence of our main
theorem, all of these goals can be achieved universally, and in all of these settings, a goal can only be
achieved if it can be verified. We suggest that, in manner similar to these examples, all reasonable

3



Env

γ

α

β
σ

A

Figure 1: An agent A with environment Env

goals for communication can be formulated as syntactic goals in our framework, and therefore that
language is not a barrier to semantic communication. (We elaborate on this further in Section 4.)

2 Generic Semantic Communication: Models and Theorems

In this section we describe the basic model of communicating agents and their goals. Goals come
in two forms: meta-goals, which descibe our wishes, and syntactic goals which can be realistically
achieved. This description is a consequence of our main theorems in this section, demonstrating
that this latter kind of a goal is characterized by a verifiable condition.

2.1 Communicating Agents and Meta-goals

Agents: We start by formalizing one of the most basic ingredients in communication, namely the
communicating agent. We hypothesize the agent as being in one of (possibly uncountably) many
states. We denote the state space by Ω with some fixed state σ0 ∈ Ω denoting a default home state.
The agent has a bounded number k of input channels and a bounded number ` of output channels.
For simplicity we assume all channels carry a finite sequence of symbols from a (finite) alphabet
Σ.1

Mathematically, the agent A is thus defined by its input/output map A : Ω × (Σ∗)k → Ω × (Σ∗)`,
where A(σ, α1, . . . , αk) = (τ, βl, . . . , β`) implies that if the agent is in state ω and receives signals
α1, . . . , αk, then it changes state to τ and outputs signals β1, . . . , βk.

When appropriate, we will require the state space to be countable and we will require the maps
to be computable in polynomial time in appropriate parameters. We may also require the agent
to have a distinguished “halting” state, ωF ∈ Ω satisfying A(ωF , α1, . . . , αk) = (ωF , ε, . . . , ε) for all
α1, . . . , αk, where ε denotes the empty string.

Of the input and output channels, we distinguish one each as the private input channel and the
private output. When considering probabilistic agents we will introduce the randomness explicitly
through a second private input channel. All other inputs and outputs go into some environment,
where the environment is itself be modeled as another agent Env (though at times, we may choose to
model it as a collection of agents), which has its own state space Γ and input/output map, where the

1We note that the restriction that a channel only carry finitely many distinguishable symbols in one unit of time
seems to be an unstated conclusion of Shannon’s model. In particular even if a channel is capable of carrying an
arbitrary real number in [−1, 1], but introduces Gaussian error, the capacity of the channel reduces to a finite amount.

4



 

γ

α

β

x,R

β ’

  A B

σ

Figure 2: Bob’s Meta-Goal is a function of everything except Bob’s internal workings.

inputs to the environment are the outputs of our agent and vice versa. The one principal difference
is that we will often allow Env to be a non-deterministic or probabilistic function. (Note that a
collection of agents is also an agent and so this “bundling” of agents into a single “environment” is
mathematically consistent.)

These definitions naturally fit the same basic outline of agents described elsewhere (e.g., in the
AI textbook of Russell and Norvig [15] and references described there). Likewise, in the following
section, we will introduce a notion of goals of communication for these agents, that resembles
definitions appearing elsewhere. The difference here is that the goals, rather than the agents, come
to play the central role in our study. In particular, the crucial difference between our setting and
some settings considered elsewhere (e.g., the universal agents of Hutter [10]) is that we do not
assume that “utilities” are computed for us by the environment—in our setting, it is up to the
agent to decide whether or not it is satisfied.

Goals of communication: Our principal thesis is that communication can be made “robust”
(across settings) if the “goals” of communication are explicit. To formalize this we first need to
formalize “goals” of communication. In this work, we will consider two notions of “goals:” a global,
objective definition of a goal (or “meta-goal,” when we want to make the distinction clear) that
will serve as our standard of correctness, and a local, subjective definition of a “syntactic goal”
that we will see suffices for most practical purposes.

We will begin by defining “meta-goals.” Given the mathematical definition of an agent and its
communication environment, several natural definitions may occur. Perhaps the agent wishes
to reach a certain state, or perhaps it wishes to see some pattern in its interaction. Somewhat
surprisingly the real notion of a goal turns out to be a bit more subtle. Note that an intelligent
communication agent can and should be able change its behavior and meaning of its own states in
order to achieve its goals, and indeed, much of this work focuses on what algorithms the agent may
employ to achieve its goals. In view of this flexibility it does not make sense to define goals in terms
of the states of the agent! Even more surprisingly, typical goals seem to be about the environment
and its capabilities and state, even though this may not be measurable by the agent. We simply
ignore this obstacle for now – we will return to it when we consider syntactic goals – and define the
goal as being described by a Boolean predicate G that takes as input a sequence of states of the
environment and a transcript of interactions, and accepts or rejects, indicating whether the goal
has been achieved or not. (See Figure 2.)

Definition 2 (Meta-goal) A meta-goal is given by a function G : E ×
(

Γ × (Σ∗)k × (Σ∗)`
)n

→

{0, 1} where G(Env , 〈γ(i), α
(i)
1 , . . . , α

(i)
k , β

(i)
1 , . . . , β

(i)
` 〉i∈[n]) = 1 indicates that the goal is achieved at

5



time n given that the environment Env evolved through states γ1, . . . , γn in the first n rounds, and

the agent received signals α
(i)
1 , . . . , α

(i)
k at time i and sent signals β

(i)
1 , . . . , β

(i)
` in response, for every

i ∈ [n].

As such the goal of an agent seems to completely at the “mercy” of the environment—here, we
invoke the private input and output. These, as well as the private randomness, are assumed to be
outside the control of the environment and thus allow the agent to be selfish. We will see the use
of these in Section 3 where we give examples on how common goals are modeled.

In most examples below we will name our goal-interested agent “Bob,” and consider the case when
he is talking to a single agent within his environment, named Alice. For simplicity we will assume
that Bob has one input channel coming from Alice and one output channel going to Alice. (All
other signals are being ignored.) Also, if Alice and Bob are both deterministic (or probabilistic,
but not non-deterministic), then the eventual achievement of the goal becomes purely a function
of their initial states, and the private input for Bob (which is assumed to be held constant during
an interaction). Thus we use the notation G(Aγ ↔ Bσ(x), n) to denote the condition that the goal
is achieved after n rounds of interaction by Alice A starting in state γ and Bob B starting in state
σ with Bob’s private input being x. If Bob is probabilistic, then we use G(Aγ ↔ Bσ(x;R), n) to
denote the same condition with Bob’s randomness being R. If Alice is probabilistic, or we wish to
ignore the specific randomness used by Bob, we continue to use the notation G(Aγ ↔ Bσ(x), n) to
denote the outcome, with the understanding that this is now a random variable.

Example goals: We now present a few representative examples of meta-goals (which may not be
achievable as stated) to illustrate their versatility. We will also introduce a simple taxonomy of
goals in Section 3.

Example 3 (Printer problem) Here Bob B is a computer and Alice A is a printer. Bob’s goal
is to ensure that Alice enters a state from which every time Bob says “Print 〈X〉”, Alice responds
with “〈X〉”. Formally, the goal is given by G(A, γ) = 1 if ∀x,A(γ,Print x) = (γ′, x) for some
γ′. A weaker goal, specific to Bob’s current printing challenge x0, would be G′(A, γ, x0) = 1 if
A(γ,Print x0) = (γ′, x0) for some γ′, where x0 denotes the private input of B.

Example 4 (Computation) In this setting, B wishes to compute some (hard) function f . The
goal is simply defined so that G(Aγ ↔ Bσ(x), n) = 1 if Bob’s last private output signal is f(x).

Example 5 (Turing test) We recall Turing’s famous test [18], which we can model as follows.
We consider two classes of Alices, computers and humans, which we denote as A1 and A2. Env
consists of a pair of agents, (A,A′), such that if A ∈ A1 then A′ ∈ A2 and vice-versa. The goal is
now defined so that G((A,A′)γ ↔ Bσ, n) = 1 if Bob’s last private output signal is i where A ∈ Ai.

Helpful Alices and Universal Bobs: We now turn to our main objective, which is to model
universal communication. This is the setting where Bob B wishes to communicate with Alice A,
when he is not certain who she is, but knows or believes she comes from a broad class A. We will
give a minimal condition – “helpfulness” – that each Alice in A must satisfy for Bob to be able
to successfully communicate with her, and we will give a definition of a “universal” Bob who can
successfully communicate with every Alice in A.

To formalize what it means to “communicate” we simply fix Bob’s goal for communication, and
seek conditions under which it can be reliably and universally achieved. The ability to communicate

6



universally thus depends on the collection of Alices A that Bob wishes to communicate with, and
his goal G. For any given Alice A ∈ A it may be impossible for any Bob to be able achieve the goal
G when communicating with her. (For instance, an Alice who refuses to communicate may not
be very helpful to Bob, for any non-trivial goal.) Thus one needs to ensure that Alice is helpful.
Defining this is somewhat subtle, since one should avoid definitions that bluntly force her to be
helpful to our Bob B.

In the “universal setting” we model this as follows. From Alice’s perspective, she is willing to talk
to some Bob BA and help him achieve his goal G. Furthermore, this Bob BA is in some sense not
more resourceful than our own Bob B. Generically, this is modeled by saying the BA ∈ B for some
(restricted) class B.

We now have all the ingredients, namely G, A and B, that go into the definition of helpfulness and
universality. We give the formal definitions below.

Definition 6 ((G,B)-Helpful) Alice A is said to be (G,B)-helpful for a goal G and class of Bobs
B if there exists B = BA ∈ B (with initial state σ0) such that for every state γ of Alice and
every private input x, there exists an n0 such that with probability at least 1 − negl(n0) ∀n ≥ n0

G(Aγ ↔ Bσ0
(x), n) = 1

Note that we require something stronger than just the fact that Alice helps Bob. The quantifiers
on γ above require Alice to help Bob, effectively, no matter what her initial state is. Also, while the
definition does not require n0 to be small with respect to, say |x|, one can enforce such restrictions
by picking the class B appropriately.

Ideally, we desire an efficent protocol for the goal, the interactive analogue of an algorithm—a
well-defined sequence of steps of reasonable length that achieves the goal under any circumstances,
when followed. In general, though, we wish to consider classes A for which there is no a priori
bound on the resources required to communicate with the various members of A. Thus, we model
efficiency by introducing a class B of “efficient” algorithms (which should, in particular, reach a
halting state for every input x) and require in each case that the behavior of our agent B should be
simulateable by some member B′ ∈ B. We use a particularly strong notion of simulation, so that
the requirement that B′ simulates B restricts the resources available to B when B′ comes from
some computationally limited class B. The precise notion that we use is described in Appendix A.

Definition 7 ((G,B,A)-Universal Protocol) Bob B is said to implement a (G,B,A)-universal
protocol if for every A ∈ A there exists a B′ ∈ B (with initial state σ0) such that for every private
input x and every starting state γ of A

• there exists an n such that B halts after n rounds and G(Aγ ↔ Bσ0
(x), n) = 1 with probability

at least 1 − negl(|x|).

• B′ simulates B with probability at least 1 − negl(|x|).

Note that we don’t explicitly require the class of Alices to be helpful. Of course, we expect that
Alice must be helpful to some agent in B for the universal protocol to succeed, and generally we will
only consider (G,B,A)-universal protocols for classes A of Alices who are (G,B)-helpful. We might,
however, wish to demand that Alice helps agents in some class B′ on which we impose additional

7



private inputs

β

α

γ

A

I
σ

x R

private
output

B

Figure 3: A controller B using an interpreter I to interact with an agent A

restrictions. In such cases, it will still be useful to know that B is not too powerful relative to the
class B′ and not too inefficient in the number of rounds of communication. In our theorems and
examples in later sections we will comment on the efficiency of the universal protocol.

We use the following notation for “typical” classes of Alices.

Definition 8 (Typical classes) For a goal G and class of Bobs B, the “universal class” (denoted
AG,B) is defined to be {A : A is (G,B)−helpful}. The class of all agents is denoted A0.

2.2 Syntactic Goals: Interpreters and Verifiability

The general definition of goals of communication are too broad to be able to achieve it universally
with a broad class of Alices. For instance, the goals may involve elements of Alice’s state that are
totally independent of Alice’s communication. Many other barriers exist to universal communica-
tion and in this section we attempt to give a more effective description of a goal of communication
– a “syntactic goal for communication” – and consider when it can be used by Bob to achieve a
meta-goal.

For example, some goals obviously cannot be reliably achieved. Consider the following goal:

Example 9 (Guessing a coin toss) Alice tosses a coin and randomly enters either state γ1 or
γ2. G(A, γ, ε, β) = 1 iff β = i such that γ = γi. Any guess β made by Bob is wrong with probability
at least 1/2.

This goal is particularly unfair to Bob in the sense that Alice does not even tell Bob which way
the coin came up. Although Bob might have some hope at predicting the behavior of an efficient,
deterministic Alice (rather than one who chooses her state by tossing coins), it is just as possible
that, if Bob is also deterministic, Alice could compute the same function and transition to the
opposite state—and in this case, he would be wrong with probability 1.

Interpreters and Feedback: In the setting we model, Bob wishes to vary his behavior so that
he can successfully interact with Alice. It thus naturally turns out that it is useful for him to
be able to compute some feedback, indicating whether or not his attempts are successful, using a
“verification predicate.”

In particular, generally we will wish to consider Bob’s “various behaviors” to be taken from some
efficiently enumerable class of algorithms; we refer to the specific algorithms as interpreters, and

8



I

α

β

x,R

β ’

σ

  A

γ

Figure 4: Bob’s Syntactic Goal is characterized by a verification predicate that is a function of
everything except Alice’s internal workings.

we envision a separation of Bob into two entities, the interpreter and a controller (see Figure 3).
Bob uses the interpreter to interact with Alice, while monitoring the conversation and state of
the interpreter as the controller. Thus, we wish to allow the controller to be able to compute a
function – the verification predicate – that provides feedback on the status of the goal from the
history of computation and interaction of the interpreter. We will let hist(Iσ(x;R)|Aγ) denote the
computation history of the (interpreter) agent I starting from state σ with private input x and
randomness R when the environment consists of the agent A starting in state γ.

Definition 10 ((G,I,A)-Verification Predicate) We say that V is a verification predicate for
G with respect to A or, a (G,I,A)-verification predicate if for every A ∈ A, I ∈ I, and private
input x, whenever V (hist(Iσ(x;R)|Aγ)) = 1, at the final round n of the interaction, G(Aγ ↔
Iσ(x;R), n) = 1 with probability 1 − negl(|x|) over R.

The difference between a verification predicate and the predicate G defining the goal is not merely
that V is “weaker” (in the sense that V = 1 ⇒ G = 1 but G = 1 ; V = 1) but that while G is
blind to the internal workings of the agent B, V sees everything about the interpreter agent I, but
is rather blind to the states and transitions of A. (Contrast Figure 4 with Figure 2.)

For V to be of any practical use, we must restrict it even further, so that it can be computed by
the controller. Thus, we finally arrive at the definition of a syntactic goal, our main definition in
this work:

Definition 11 ((G,B,A)-Syntactic Goal) A syntactic goal for communication for G with re-
spect to B and A, or (G,B,A)-syntactic goal is given by a pair (V,I) such that

• I is an efficiently enumerable class of algorithms

• V is a (G,I,A)-verification predicate

• V is computable from the efficient enumeration simulation of agents in I by agents in B.

The precise definitions of efficient enumerability and our computability requirement are given in
Appendix A.

We note that the verification predicate used in a syntactic goal and a universal protocol are both
algorithms that can be run by Bob. The difference between the two is, naturally, that a universal

9



protocol tells Bob whether to continue the interaction and what to say next if so, whereas the
verification predicate merely tells Bob whether or not G was achieved by some interpreter I.

Helpful Alices for Syntactic Goals: Just as we encountered earlier when considering meta-
goals, whether or not Bob has any hope of succeeding with a class of Alices A depends on his
choice of syntactic goal (V,I). This raises the need for a definition of “well-designed” syntactic
goals which do not eliminate the chance of success with any Alices in A.

We know that for a particular (V,I), it may be impossible for any interpreter I ∈ I to satisfy the
verification predicate V with some given Alice A ∈ A. The situation is particularly acute here,
since asking Alice to satisfy some (G,I,A)-verification predicate V is asking more than that she
can merely satisfy G. (For example, our goal might be to find new theorems and V might require
proofs of all of her assertions, which she might be unable or unwilling to provide.) This motivates
extending the definition of “helpful” Alices to syntactic goals below:

Definition 12 ((V,I)-Helpful) Alice A is said to be (V,I)-helpful for a predicate V and class of
agents I if there exists I = IA ∈ I (with initial state σ0) such that for every state γ of Alice and
every private input x, V (hist(Iσ0

(x)|Aγ)) = 1 with probability at least 1 − negl(n).

Since a Bob in B can succeed using a (G,B,A)-syntactic goal (V,I) whenever some A ∈ A is (V,I)-
helpful by simulating IA, we know that (V,I)-helpfulness for such a syntactic goal immediately
implies (G,B)-helpfulness. A Bob who wishes to achieve his goal with every (G,B)-helpful Alice
(i.e., with every member of A ∩ AG,B) using a particular (V,I) would need the two conditions to
be equivalent, though—which is thus when we call the syntactic goal “well designed.”

Definition 13 (Well-designed Syntactic Goal) We will speak of a (G,B,A)-syntactic goal (V,I)
as well-designed if ∀A ∈ A (G,B)-helpfulness implies (V,I)-helpfulness.

Naturally, we would like to have well-designed syntactic goals, but it is not obvious when they
would exist or how to construct them. Surprisingly, we will see next that it is a consequence of
our main theorem that whenever a (G,B,AG,B)-universal protocol exists for a “standard” class B,
a well-designed syntactic goal exists (Corollary 15).

2.3 Main Theorems

We are now ready to state our main theorems outlining the relationship between universal protocols
and syntactic goals. Roughly, we show two things:

1. A syntactic goal is sufficient for construction of a universal protocol (Theorem 14).

2. A syntactic goal is necessary for a universal protocol; in particular, if the protocol is designed
to work with a sufficiently broad class of Alices, then the goal must be verifiable with respect
to all Alices, i.e., even malicious ones (Theorem 18).

A “standard” class of agents is one that satisfies a few properties typical of classes of algorithms
defined by their asymptotic computational complexity—in particular, the class of polynomial-time
agents, denoted P, and the class of polynomial-time agents that only use logspace, denoted L, are
both examples of “standard” classes. (we give the precise definition in Appendix A).

10



Theorem 14 (Equivalence) For any standard class of agents I, there is a (G,I,A)-universal
protocol iff there is a (G,I,A)-syntactic goal (V,I) such that every A ∈ A is (V,I)-helpful.

The intuition underlying this theorem is that for correctness, a protocol needs to “know” when
the goal has been achieved since it is only allowed to halt before achieving its goal with negligible
probability. On the one hand, this allows us to extract some verification predicate from the protocol;
since the protocol works for every A ∈ A, every A ∈ A is helpful for the V we construct in this way.
On the other hand, standard classes are efficiently enumerable, and the only thing preventing an
efficient enumerator for I from being a universal protocol (when it exists) is that it needs to stop
enumerating, which is achieved by the feedback from V . The full proof appears in Appendix B.

We also obtain the following immediate corollary for (G,B)-helpful Alices (the class AG,B):

Corollary 15 (Sufficiency) For any standard class of agents B if there is a (G,B,AG,B)-universal
protocol then a well-designed (G,B,AG,B)-syntactic goal exists.

We now recall the definition of a “semantically closed class” of Alices from prior work [11] since it
will be useful to us as our notion of “sufficient broadness.”

Definition 16 (Semantically closed class) We say that a class of Alices A is semantically
closed if for every injective function f where f and f−1 are computable in logspace and for ev-
ery logspace Alice A′, for each member A ∈ A, the following incarnation Af

A′ is also in A: for
state (γ1, γ2) (where γ1 is a state of A and γ2 is a state of A′) and β is in the range of f , if

A(γ1, f
−1(β)) = (γ′1, α), then Af

A′((γ1, γ2), β) = ((γ′1, γ2), f(α)). For β outside the range of f , if

A′(γ2, β) = (γ′2, α), then Af
A′((γ1, γ2), β) = ((γ1, γ

′
2), α).

We also introduce one more definition (a technical requirement):

Definition 17 (Simulation closed goal) We say that a goal G is simulation closed if whenever
A simulates A′ and G(Aγ ↔ Bσ, n) = 1, also G(A′

γ ↔ Bσ, n) = 1.

Any G which treats Alice as a black box is clearly simulation closed, but, for example, one which
aims to test her running time would not be.

Theorem 18 (Verifiability) For any (G,B,A)-syntactic goal (V,I), if G is simulation closed
and A is semantically closed and nonempty then (V,I) is a (G,B,A0)-syntactic goal.

This is the generalization of our limitation result from previous work: roughly, if some malicious
Ã ∈ A0 could trick V into outputting 1 when G was not satisfied on some instance with high
probability, then we can construct some A′ in the semantic closure of A that also achieves this, so
V would not be a verification predicate. Again, the full proof appears in Appendix B.

Note now, the “universal classes” of Alices are sufficiently broad, i.e.,

Proposition 19 For any standard class B, AG,B is semantically closed.

11



This is so since for any Alice A ∈ AG,B helping some BA ∈ B, the Alice Af
A′ helps an B′ who

applies f to each outgoing message and f−1 to each incoming message. We can then obtain the
following strong version of Corollary 15

Corollary 20 (Strong sufficiency) For any standard class of agents B, simulation closed G,
and nonempty AG,B, if there is a (G,B,AG,B)-universal protocol then a well-designed (G,B,A0)-
syntactic goal exists.

This, together with Corollary 15, motivates a study of semantic communication where the semantics
are defined by the verifiable conditions achieved. To this end, we next show how a variety of natural
communication problems can be formulated in our framework.

3 Syntactic goals for communication

We now turn to the problem of constructing syntactic goals for communication corresponding to
meta-goals that formalize a host of natural communications problems. Recall that we use P to
denote the class of polynomial-time agents and L ⊂ P to denote the class of polynomial-time
agents that only use logspace. (Note that these are standard classes in the sense we require: see
Section A for details.)

We will use the following simple taxonomy of goals for communication to guide our discussion:

Definition 21 (Intellectual goal) We say that a goal G is an intellectual goal if it is a function
of Bob’s private outputs. It is purely intellectual if it is only a function of these private inputs and
and outputs.

Definition 22 (Physical goal) We say that a goal G is physical if it is a function of either the
states of Env or inputs from Env. It is purely physical if it is independent of Bob’s private outputs.

So, the computational goal in Example 4 is a purely intellectual goal, whereas the goal of printing in
Example 3 is purely physical. Finally, the goal of the Turing test examiner in Example 5 is neither
(it is both intellectual and physical). Note that purely intellectual goals are necessarily simulation
closed. Physical goals may not be simulation closed, but the examples of purely physical goals we
consider next also turn out to satisfy this property.

We are interested in goals for which Bob obtains some benefit from Alice’s help. In the interest
of formulating this notion precisely, we will let Φ denote the Alice who always responds with the
empty string. Since this Alice can be simulated easily by Bob, she will be our canonical example
of a “trivial” Alice in the following sense:

Definition 23 (Nontrivial goal) We say that a goal G is nontrivial with respect to a class of
agents B if for every Bob in B there are infinitely many private inputs x such that the probability
that Bob achieves G on private input x when interacting with Φ is at most 1/3.

We will use nontriviality primarily as a “sanity check” on our definitions of intellectual goals.

12



3.1 Computational goals

We first consider computational meta-goals, as introduced in Example 4. We begin by showing how
results from interactive proofs allow us to easily obtain the results from prior work [11] which char-
acterizes the class of computational meta-goals that can be achieved by polynomial time bounded
agents. We then show an application to delegating polynomial-time computations to unknown
servers by logspace agents, and conclude by discussing some challenges to obtaining a similar char-
acterization of the class of computational meta-goals that can be achieved by logspace agents.

3.1.1 Polynomial time agents seeking wisdom

Returning to the fantastic scenario sketched in prior work [11], we suppose that Bob has been
contacted by some computationally powerful extraterrestrial Alice, and we ask what Bob can learn
by communicating with her. We do not limit Alice’s computational power a priori: we imagine
that she can solve any computational problem, and thus see how Bob’s lack of understanding
places inherent limitations on the communication. Again, we model the lack of understanding by
considering a class of Alices, A, defined by the existence of a suitable communications protocol
(i.e., “language”), and we ask that Bob’s protocol work with every member of the class A. In this
case, since it turns out that verifiability the goal is necessary and sufficient, the inability for Bob
to verify solutions to problems outside PSPACE prevents Bob from using Alice’s help to solve such
problems, but interactive proofs allow Bob to use Alice’s help to solve PSPACE-complete problems.
We will show how these results can be recovered in the framework of this paper.

Technically, we proceed as follows. We start by recalling the computational meta-goals associated
with a class of computational problems, and invoke Theorem 14 to cast the existence of protocols
in terms of the existence of syntactic (verifiable) goals. We then show, on the one hand, how
Theorem 18 leads to a computational limitation result, and on the other how the existing protocols
for PSPACE [13, 16] lead to the consrtruction of a syntactic goal. Finally, we show that the goal
is well-designed, thus yielding a universal protocol for the computational meta-goal.

Main definitions in this setting: Let the class of Bobs B = P, and recall the computational
goal GΠ from Example 4 for a decision/promise problem Π. Recall that AGΠ,P is the class of
(GΠ,P)-helpful Alices: those Alices A for which there exists some BA ∈ P who reliably achieves
GΠ (i.e., computes Π on its private input) when interacting with A. Observe that, as long as we
assume that all states of Alice can be reached by some message history, this is exactly the same
as the class of Alices who are “Π-helpful,” as defined in prior work [11]: if Alice helps some Bob
compute Π with probability 2/3, she helps some agent B′ – who simulates O(n) interactions with
Alice and takes a majority vote – compute Π with probability at least 1 − 2−n.

We wish to know, for what class of problems can we hope to design a (GΠ,P,AGΠ,P)-universal
protocol: a protocol that, for every (GΠ,P)-helpful A, achieves GΠ and is simulated by some
polynomial-time agent. Since Bob achieves GΠ precisely when A helps him decide Π, notice that
such a Bob is essentially a Π-universal Bob, as defined in prior work2.

Theorem 14 tells us that it is necessary and sufficient that we exhibit a (GΠ,P,AGΠ,P)-syntactic
goal (V,P) that is “well-designed,” which consists of a (GΠ,P,AGΠ,P)-verification predicate V that

2It is similarly not hard to see that a Π-universal Bob can have its success probabilities amplified by repetitions
with a majority vote to construct a (GΠ,P ,AGΠ,P)-universal protocol; the only difference is that a (GΠ,P ,AG,P )-
universal protocol runs in polynomial time with 1 − negl(n) probability, whereas a Π-universal Bob was defined to
run in expected polynomial time.

13



can be evaluated for our enumeration of agents in P by agents in P. In particular, V should look at
the computation history of the current agent in the enumeration and only accept when that agent
has achieved GΠ (since it is a verification predicate), but should be able to accept for some agent
in P whenever A is (GΠ,P)-helpful (i.e., it is well-designed).

Characterization of problems with polynomial-time universal protocols: So, the ex-
istence of our universal protocols is equivalent to the existence of well-designed (GΠ,P,AGΠ,P)-
syntactic goals. Theorem 18, on the other hand, tells us that such a syntactic goal has a very
strong verifiability requirement: it is actually a (GΠ,P,A0)-syntactic goal, where A0 is the class of
all Alices. (As in the soundness of an interactive proof system.) This will allow us to obtain the
impossibility result stated in prior work:

Theorem 24 Let Π be a decision problem that is not in PSPACE. Let A be a nonempty seman-
tically closed class of Π-helpful Alices. Then for every probabilistic algorithm B, there exists an
A ∈ A such that B fails to decide Π with the help of A.

Proof Fix a nonempty semantically closed class of Π-helpful Alices A, and a (GΠ,P,A)-universal
B. We will show that this forces Π ∈ PSPACE.

By Theorem 14, there exists a (GΠ,P,A)-syntactic goal, (V,P). On the other hand, since satisfying
this goal depends only on Bob’s private outputs which are identical regardless of whether Bob
converses with some Alice A or some Alice A′ who simulates A, this goal is simulation closed and
hence by Theorem 18, (V,P) must also be a (GΠ,P,A0)-syntactic goal. Therefore, in PSPACE,
we can compute the probabilities over the coins R used by the universal protocol that V accepts
(polynomial-length) computation histories for input x in which the agent outputs 0 or 1 in the final
round. By the correctness of the verification predicate for A0, and nonemptiness of A, the value of
Π(x) will be much more likely. This gives a scheme for computing Π(x) in PSPACE.

We can design a syntactic goal for problems in PSPACE, though. Informally, our syntactic goal
is to find not only whether or not “x ∈ Π” holds, but also obtain an interactive proof (i.e., for
Shamir’s verifier [16, 13]). Moreover, if Π is also PSPACE-complete, we claim that this syntactic
goal is well-designed. (Clearly such a GΠ is also nontrivial unless PSPACE = BPP.) Formally, this
yields the main theorem from our prior work:

Theorem 25 For every PSPACE complete problem Π, there is a Bob that is (GΠ,P,AGΠ,P)-
universal.

Proof We will begin by observing that the sum-check protocol [16, 13], as a public-coin protocol,
readily yields a well-designed syntactic goal. (This observation simplifies our analysis considerably
but is unessential, cf. Section 3.1.3, where this distinction is important).

Construction: For any PSPACE-complete Π, let Π′ = {(x, b) : b = Π(x)}, and let VΠ be the
public-coin verifier for an interactive proof for membership in Π′ with perfect completeness and
negligible soundness error, guaranteed to exist by Shamir’s Theorem [16].

V (hist(Iσ0
(x)|Aγ)) accepts if, when we simulate VΠ(x, 0) and VΠ(x, 1) in sequence using the private

outputs of I as the messages from the prover, and using the coin tosses of I following each output
as the verifier’s randomness in the corresponding round, if the final private output of I is b, VΠ(x, b)
accepts.

14



Analysis: It is easy to see that V is a (GΠ,P,A0)-verification predicate: if the final private
output of I is b 6= Π(x), then V accepting implies that VΠ(x, b) accepted the preceding transcript
as an interactive proof of (x, b) ∈ Π′. Since the coin tosses on each round were independent of the
prover’s message in the prior round, the probability that I generates a transcript that V accepts
is equal to the probability that VΠ would accept in the interaction with a prover who sends the
outputs of I as its messages. Thus, by the assumed soundness of VΠ, this probability is negligible,
and V is a (GΠ,P,A0)-verification predicate. Since P is efficiently enumerable and each round of
VΠ can be simulated in polynomial time, V can also be computed from the efficient enumeration
with only an additional polynomial factor overhead by simulating one check by VΠ following each
output by I ∈ P, so (V,P) is a syntactic goal.

On the other hand, by the perfect completeness of VΠ, for every sequence of coin tosses of I, there is
some sequence of messages such that VΠ(x,Π(x)) accepts. Since the optimal prover’s next message
can be computed from the current history and x in polynomial space, there is a polynomial time
reduction from the optimal prover’s messages to instances of Π, where these messages lead V to
accept with probability 1. Therefore, if A helps some B′ ∈ P decide Π, there is some polynomial
time IA such that V (hist(IA

σ0
(x)|Aγ)) accepts, as claimed, so (V,P) is a well-designed (GΠ,P,A0)-

syntactic goal. It now follows from Theorem 14 that a universal protocol exists (for the universal
class AGΠ,P ⊂ A0).

3.1.2 Logspace agents delegating computation

Section 3.1.1 demonstrated how any agent who can compute PSPACE can communicate the results
to a polynomial-time universal agent. If we believe that PSPACE-complete problems cannot be
solved by any agent in a reasonable amount of time, though, it is hard to see what practical value
the resulting protocol has, if any. In light of this, the more interesting question to ask is if, in a
similar way, polynomial-time agents can communicate the results of “hard” computations to some
weaker universal agent; in this section, we will envision the weaker universal agent “delegating”
the problem to the polynomial-time agent. For example, we might imagine wishing to use a weak
handheld wireless device to solve some hard problem, e.g., solving a linear program, using the aid
of some foreign server that happens to be within its range. Our objective here will be to design a
protocol for the weak device that allows it to use any server which can be accessed by a lightweight
communications protocol. (We will investigate another variant of this question, about the sharing of
knowledge among polynomial-time agents – as opposed to delegating computation to more powerful
agents – in Section 3.3.)

Technically, we will use L, the class of logspace and polynomial-time agents as our class of weak
devices, and we will see that we can use a recent result of Goldwasser et al. [9] to scale down the
syntactic goal of Section 3.1.1 to an interesting well-designed goal verifiable in logspace. In short,
we use their verifier to construct a syntactic goal (V,L) and invoke Theorem 14 to obtain a protocol.
We then show that the syntactic goal is well-designed, so the protocol we thus obtain is a universal
protocol (for the class of all Alices who help some agent in L).

Let Π ∈ P be given; again, for the corresponding computational meta-goal GΠ of Example 4,
recalling that AGΠ,L is the class of all Alices who help some B ∈ L achieve GΠ, we wish to
construct a (GΠ,L,AGΠ,L)-universal protocol. Note that such a GΠ is clearly nontrivial unless
BPL = P. The following theorem asserts that this is possible:

15



Theorem 26 For any P-complete Π (under logspace reductions), if GΠ is the corresponding com-
putational meta-goal, then there is a (GΠ,L,AGΠ,L)-universal protocol.

Proof Theorem 14 tells us that this is equivalent to constructing a (GΠ,L,AGΠ,L)-syntactic goal
(V,L), which is how we proceed:

Construction: Let Π′ = {(x, b) : b = Π(x)}; observe that Π′ is also P-complete. Goldwasser
et al. show that there is a public-coin interactive proof system (PΠ, VΠ) for Π′ such that VΠ runs
in logspace. We can assume wlog (by sequential repetition) that this proof system has negligible
soundness error. Now, our verification predicate V (hist(Iσ0

(x)|Aγ)) accepts if VΠ would accept (x, b)
using the private outputs of I as the messages from the prover and the coin tosses in hist(Iσ0

(x)|Aγ)
following each private output as its random moves in that round, and I outputs b as its final private
output.

Analysis: As in the proof of Theorem 25, the key is that the coin tosses for each round are
independent of the prover’s prior message, since I tosses these coins after it outputs its prover
message. Therefore V accepting implies that VΠ accepted the preceding interaction as an interactive
proof of (x, b) ∈ Π′, so the probability that V accepts the messages generated by I is equal to the
probability that VΠ would accept (x, b) when interacting with a prover who sends the private outputs
of I as its messages. Since we assumed that VΠ only accepts a “proof” that x takes some other value
than Π(x) with negilgible probability, an interpreter who satisfies V only outputs b 6= Π(x) with
negligible probability. It follows that V is a (GΠ,L,A0)-verification predicate. Moreover, since VΠ

uses only O(log n) space, we can simulate its computation in parallel with any logspace interpreter
I in O(log n) space overall, and thus this is a (GΠ,L,A0)-syntactic goal.

There is a reduction due to Condon and Ladner [6] that shows how, for a public-coin interactive
proof system with a logspace verifier, the next bit from an optimal prover can be computed by a
reduction to linear programming. Since the reduction from Condon and Ladner shows that the next
bit from the optimal prover can be computed in polynomial time given x and the current state of
VΠ (which can be maintained in logspace), since Π is P-complete under logspace reductions, we will
now see that V is well-designed. By the completeness of the proof system (VΠ, PΠ), there is some
prover strategy PΠ that makes VΠ accept. Since there is a logspace reduction from the problem of
computing the next bit from the optimal prover to Π, there is also a logspace interpreter IA such
that V (hist(IA

σ0
(x)|Aγ)) accepts for any A who helps some logspace B′ decide Π. Thus, (V,L) is a

well-designed (GΠ,L,A0)-syntactic goal, and by Therorem 14, we therefore have a (GΠ,L,AGΠ,L)-
universal protocol.

3.1.3 Classifying the computational capabilities of logspace universal protocols

Of course, our objective in Section 3.1.1 was not just to construct a universal protocol, but to
give a characterization of the class of problems which have polynomial-time universal protocols.
We might also wish characterize the class of computational goals that can be achieved by logspace
universal protocols. That is, we might again imagine that Bob is communicating with an all-
powerful Alice, and we might again wish to know how his lack of understanding limits what he
can learn from Alice—with the twist now that Bob is additionally restricted to run in logspace.
Formally, this corresponds to finding the class of problems Π for which there exist (GΠ,L,AGΠ,L)-
universal protocols.

16



We note that since AGΠ,L is semantically closed and nonempty, and L ⊂ P, Theorem 24 shows
one limitation: any such Π is contained in PSPACE. This is the best limitation result we know;
it is possible that this is tight, but we do not know how to show this. One cannot, for example,
insert the reduction of Condon and Ladner [6] in the proof of Theorem 24 and obtain a tighter
result since this reduction only applies to public-coin protocols, whereas a universal protocol is, in
general, a private-coin protocol.

By contrast, there is a construction due to Condon [5] that can be used to convert a polynomial-
time verifier into a verifer that runs in polynomial-time and logspace, e.g., given Π ∈ PSPACE, we
would let VΠ be the verifier for an interactive proof for membership in Π′ = {(x, b) : Π(x) = b} as
before. We can use Condon’s construction to convert VΠ into V ′

Π; now, V (hist(Iσ0
(x)|Aγ)) checks

that

1. I is a particular syntactic composition of V ′
Π and I ′ for some I ′ (i.e., so I simulates V ′

Π ↔ I ′)

2. V ′
Π enters an accepting state in the simulation

3. I outputs b such that V ′
Π accepted (x, b)

By the soundness of V ′
Π, this is a verification predicate, and thus (V,L) is a (GΠ,L,A0)-syntactic

goal. Although the existence of the honest prover guarantees that the class of (V,L)-helpful Alices
is nonempty, it isn’t clear whether or not this is a well-designed syntactic goal, and hence it isn’t
clear whether or not a universal protocol exists for the class AGΠ,L for a PSPACE-complete Π. We
can show that the key issue here is not just the efficiency of the verifier in an interactive proof for
PSPACE but also how efficient the prover can be for such an efficiently verifiable proof system.

Competitive interactive proofs: Competitive interactive proofs were introduced by Bellare
and Goldwasser [3] to study the complexity of the prover in an interactive proof system. In their
terminology, (P, V ) was a competitive interactive proof system for a decision problem Π if P
was a probabilistic polynomial-time oracle machine such that (PΠ, V ) was an interactive proof
system for Π. In particular, the question of the existence of competitive interactive proof systems
is a generalization of the decision-versus-search question for NP proof systems—simulating the
interaction between P and V using an oracle for Π allows one to generate “proofs” in polynomial
time given the ability to decide Π.

In a similar spirit, we introduce the following modification of their definition to logspace-bounded
machines:

Definition 27 (Logspace competitive interactive proof) Let P be a probabilistic logspace and
polynomial-time oracle machine, and let V be a probabilistic logspace and polynomial-time machine.
We say that (P, V ) is a logspace competitive interactive proof system for a problem Π if

1. For every x ∈ Π, the probability that V accepts when interacting with PΠ on common input
x is at least 2/3

2. For every x /∈ Π, and every interactive function P̃ , the probability that V accepts when
interacting with P̃ on common input x is at most 1/3

This definition has similar virtues to its polynomial-time counterpart—if it exists, then one can
generate a proof in logspace given the ability to decide Π. This is the main observation involved in
the following theorem:

17



Theorem 28 There is a logspace competitive interactive proof system for problems Π and Π̄
(Π̄(x) = ¬Π(x)) iff there is a (GΠ,L,AGΠ,L)-universal protocol.

The proof of this theorem is straightforward; it is contained in Appendix B for completeness.
Of course, a logspace competitive interactive proof system for any PSPACE-complete problem
implies an interactive proof system for the language’s complement since PSPACE is closed under
complement. (We can observe such a step in action in the proofs of Theorem 25 and Theorem 26)
Unfortunately, we don’t know of such a proof system – for example, in particular it isn’t clear how
we could simulate the prover in Condon’s proof system [5] without using polynomial space – and
the capabilities of logspace universal protocols remains open.

3.2 Control-oriented goals

We next consider some purely physical goals. Designing syntactic goals for these meta-goals is
straightforward, especially if Bob only wants to manipulate his input signals, as we will see. Both
examples follow the same rough outline: we define an appropriate meta-goal, and use Theorem 14
to reduce the problem of constructing a universal protocol for the meta-goal to the problem of
constructing a well-designed syntactic goal, which is then easily achieved.

3.2.1 Control/function evaluation

We again let the class of Bobs B = P. We return to the weaker printing goal G′ from Example 3,
and generalize it slightly to a goal G′′ as follows. The informal goal is that Bob wants Alice to
print a string x on her output tape (modeling the task of printing) or, more generally, wants her to
print f(x) where f is some polynomial-time computable function, and f and x are given as private
inputs to Bob. If f(x) is a nonempty string for infinitely many x, it is easy to see that this goal is
nontrivial.

Recall that AG′′,P is defined to be the class of (G′′,P)-helpful Alices: those Alices A for which there
is some BA ∈ P which can reliably get A to print any f(x) on its output. We wish to design a
(G′′,P,AG′′,P)-universal protocol, which for every A ∈ AG′′,P would get A to print any f(x) from
any state γ, and would be simulateable by some agent in P. Theorem 14 tells us that we can,
equivalently, attempt to construct a well-designed (G′′,P,AG′′,P)-syntactic goal (V,P), i.e., where
V should be a function computable by agents in P that looks at the computation histories of agents
in P, tells us if an agent has achieved G′′, and which can succeed for every A ∈ AG′′,P with some
IA ∈ P on every input (f, x) and state of Alice γ.

This is easy to do, though, sinceG′′ is a simple function of Alice’s output. Formally, V (hist(Iσ0
(f, x)|Aγ))

first computes f(x) and then accepts if some message from A in hist(Iσ0
(f, x)|Aγ) is f(x). Since f

is assumed to be polynomial time computable, V is clearly also polynomial time computable. It is
easy to see that (V,P) is a well-designed (G′′,P,AG′′,P)-syntactic goal since G′′ is satisfied iff V is.

3.2.2 Searching

Suppose that Bob is searching for an object in Env satisfying some O(nk)-time verifiable property,
VO, and wishes to enlist Alice’s help in the search. We will suppose that Bob can examine a location
` (labeled by a string) in his environment by sending Env the message `; we denote the response
of Env by Env(`) (ignoring the state).

18



Formally now, we fix Env and the class of Bobs B = P, and define both G((Aγ ,Env) ↔ Iσ0
(VO), n)

and V (hist(Iσ0
(VO)|(A,Env )) to accept if for some message ` sent to Env by I, VO(Env(`)) accepts,

and note that V can be evaluated in time O(nk+1). Thus, it is immediate that (V,P) is a well-
designed (G,P,AG,P )-syntactic goal. By Theorem 14, we therefore have a (G,P,AG,P )-universal
protocol, which efficiently finds suitable objects with the help of an Alice A whenever some BA ∈ P
could. Furthermore, depending on Env , the goal may be nontrivial, for example if the environment
does not initially contain a string satisfying VO and Bob cannot introduce such a string into the
environment on his own.

We also remark that there is a close connection between our model of searching here and the model
of computational awareness proposed by Devanur and Fortnow [7]. In their model, Bob is endowed
with an enumeration procedure M with oracle access to an environment and some input context,
which in our case would be a description of VO. We note that our model extends their formal
model slightly, as we take Env to be an entity that is interacting with B (and A, so that B and A
can modify Env—we note that this is also implicitly done by Devanur and Fortnow, but they still
formally model Env as an oracle). Recall that Devanur and Fortnow define the unawareness of an
object with respect to I to be the time for I to print it, so V is accepting iff I has unawareness of
a satisfactory ` (with Alice’s help) that is less than its time bound.

3.3 Intellectual curiosity

Not all intellectual goals involve computing a hard function on a specific instance. In particular,
we may wish to grant Alice the latitude to suggest a context (e.g., where she knows how to do
something) as in the following example: suppose Bob wishes to learn something “interesting” from
Alice, e.g., a proof of a “deep” theorem. Informally, we would like to obtain a theorem that no
efficient Bob lacking prior knowledge would be able to prove and a proof of that theorem. Our
formalization of this will be in terms of computational depth [2], and we minimally wish that B
outputs a theorem x followed by an output containing a proof of x such that any proof of x has
t-time bounded depth at least f(k, t) = Θ(log k + log t) conditioned on x, so in this sense the
theorem is “hard.” We want a little bit more than this, though, so that B does not ignore Alice
and try to generate theorems together with proofs on his own.

Formally, we take the class of Bobs B = P and G(Aγ ↔ Bσ0
(0k;R), n) = 1 if by the nth round,

B outputs a theorem x followed by an output containing a proof of x such that there is some
interactive algorithm B′ ∈ P with encoding 〈B′〉 that outputs x in state ω when interacting with
Aγ on randomness R, outputs a proof of x t steps later, for which x does not have proofs of t-time
bounded depth f(k, t) conditioned on x and 〈B′〉 (i.e., B′ does not a priori “know” a proof), and
does not have proofs of t-time bounded depth f(k, t) conditioned on x, ω, and 〈B′〉 (so B′ does not
already have the proof stored in ω). Properly, we should also give B′ Bob’s “prior knowledge” as
an auxillary input and condition on this as well, but we will suppress this in the discussion below.
Conditioning can increase or decrease the depth of a string substantially – additional auxillary
inputs can, respectively, either provide context that makes a string deep, or provide immediate
access to a string that makes it shallow – so each of these properties is, in general, quite different.

A result of Antunes et al. [1] shows that, assuming pseudorandom generators against polynomial
time with logarithmic seeds exist, if B′

σ0
(0k) ↔ Φ outputs a theorem x and a proof at most t steps

later, then the t-time bounded depth of the proof conditioned on x, 〈B′〉, and the state of B′ when
it outputs x is at most O(log t) and hence the goal is nontrivial for an appropriate choice of f .

19



To design V for G, we use an efficient probabilistic algorithm Π such that Π(x; 0t, 0k|y) either
outputs a proof of x or ⊥, which we interpret as “I don’t know.” Antunes et al. also show that
there exists a choice of Π that finds proofs of any theorem of depth f(t, k) = O(log k + log t) with
high probability. For this choice of Π, V accepts if the following holds: in hist(Iσ0

(0k)|Aγ), I has
some private output x, followed by a private output containing a proof of x at most t steps later, such
that if ω is the state of I when it outputs x, then Π(x; 0t, 0k|〈I〉) = ⊥ and Π(x; 0t, 0k|ω, 〈I〉) = ⊥.
Note that for our choice of Π, with high probability V (only) accepts theorems with proofs of depth
f(k, t), so (V,P) is a (G,P,A0)-syntactic goal. Moreover, whenever a B′ ∈ P exists that produces
a sufficiently deep theorem and proof with A, it is easy to see that V will accept hist(B′

σ0
(0k)|Aγ)

so (V,P) is “well-designed” (for a slightly restricted class of Alices, or up to some constant factors
in the depth required).

3.4 Tests

We have seen ways we can design syntactic goals (and hence universal protocols) for meta-goals
that are purely intellectual or purely physical in our taxonomy; we now turn to some of the most
interesting kinds of goals, that are both intellectual and physical, i.e., tests.

We recall the goal of the Turing test examiner, as considered in Example 5. There, we had two
possible classes of Alices, A1 and A2, which corresponded to computers and humans, respectively,
and the goal was that given a pair (A1, A2) where one Ai ∈ A1 and the other was from A2, to decide
whether A1 ∈ A1. So, the examiner wished to determine some property of the Env , specifically
some property of an Alice he was conversing with. (Of course, the computer would be said to pass
the Turing test if no such examiner could succeed at this goal better than chance; we only consider
the examiner’s goal here.) We won’t attempt to formalize the Turing test further, and it isn’t clear
how this could ever be captured by a syntactic goal. Instead we will exhibit a test of computational
ability (irrespective of whether or not this corresponds to “intelligence”) which will illustrate several
important issues in the design of such tests.

3.4.1 A test of computational ability

We fix the following parameters. Let t(n) be the polynomial time bound we wish to test for, and
let k(n) = O(log n) be a bound on the number of bits for the maximum size interactive Turing
machines we wish to consider for Alice. Let A1 be the class of t(n)-time bounded machines. We
wish to rule out the possibility that Alice is some k(n)-bit member of A1. (This description bound
is critical, since it rules out the possibility that Alice has a look-up table for her responses “at
length n;” incidentally, an essentially similar modification to the actual Turing test is stressed by
Shieber [17] in response to essentially this issue as raised by Block [4].) Ideally, we would like to
distinguish A1 from A0 \A1, but this is clearly impossible, since some Alices in A′ ∈ A0 are merely
inefficient simulations of members of A ∈ A1, in the sense that A′ may have the same behavior as
A when interacting with Bob, but the internal state history of A′ cannot be computed efficiently.

We show how to approach a still more restricted “promise” version of the goal: namely, fix a
polynomial time bound t′(n) and let A2 be the class of Alices A such that for any problem S that
can be decided in time t(n) + t′(n) on a four-tape Turing machine, for the goal GS of computing S
(as in Example 4) and class It′ of t′(n)-time bounded interactive Turing machines, A is (GS ,It′)-
helpful. That is, for every S decidable in time t(n) + t′(n) on a four-tape Turing machine, A has

20



some interpreter IS running in time t′(n) that computes S when interacting with A from any state
γ. We will also bound the description lengths of the interpreters we search over by some function
b(n) = O(log n).

A meta-goal for testing ability: We will describe a test that works for the class A1 ∪ A2.
Precisely, the meta-goal G1,2 here is that if an A ∈ A1 has no k(`)-bit descriptions, or an A ∈ A2

is not helpful to any b(`)-bit I ∈ It′ , then always G1,2(Aγ ↔ Bσ0
(0`), n) = 1 since we don’t care

what Bob does in this case. Otherwise, for A ∈ Ai, G1,2(Aγ ↔ Bσ0
(0`), n) = 1 if the last output of

B is “i.”

Obviously, every A ∈ A1 ∪A2 is trivially (G1,2,P)-helpful (to the appropriate Bob who prints “i”);
the entire problem is in selecting the correct output, which, it is easy to see, would be performed by
a (G1,2,P,A1 ∪ A2)-universal protocol. Theorem 14 merely formalizes common sense here, when
it tells us that we should attempt to construct a (G1,2,P,A1 ∪ A2)-syntactic goal.

Theorem 29 There is a (G1,2,P,A1 ∪ A2)-universal protocol

Proof Consider the predicate V that checks that on input 0n, if the interpreter has a b(n) =
O(log n) bit description and runs in time t′, the jth private output of the interpreter is the negation
of the jth output of the jth O(b+ k)-bit four-tape Turing machine (the actual function of b and k
will be clear later), restricted to run in t(n) + t′ steps. If this is true for every such machine and I
outputs “2,” V accepts. Note that there are a polynomial number of O(b(n)+ k(n)) = O(log n)-bit
Turing machines. If, on the other hand, the interpreter simulates every b(n)-bit t′(n)-time bounded
interpreter, none correctly compute this diagonal language, and I outputs “1,” then V accepts. In
all other cases, V rejects.

Observe that a four-tape O(b+ k(n))-bit Turing machine can simulate the interaction between a b-
bit t′-time bounded interpreter and a k(n)-bit t(n)-time bounded Alice in time t(n)+ t′. Therefore,
since we know that our interpreter has a b-bit description and runs in time t′, if V accepts a “2,”
Alice must either need more than k(n) bits or run for more than t(n) steps. On the other hand, if
V accepts a “1,” we witnessed the failure of every t′(n)-time b(n)-bit interpreter, so either A /∈ A2

or the interpreter needs more than b(n) bits. Thus, V is a (G1,2,P,A1 ∪A2)-verification predicate.

Of course, some polynomial time interpreter does simulate every t′(n)-time bounded b(n)-bit Turing
machine and witnesses its failure to find the diagonal language with A ∈ A1, so we will correctly
identify any sufficiently small A ∈ A1. Furthermore, if there is a b(n)-bit interpreter running in
time t′(n) such that Alice helps this interpreter decide this diagonal set, then V will accept, so any
A ∈ A2 will pass this test with some interpreter in P on every n. Therefore, we see that this is
a well-designed (G1,2,P,A1 ∪ A2)-syntactic goal, as needed. The result now follows immediately
from Theorem 14.

Promises and verifiability: Our restriction of the class of Alices to A1 ∪ A2 seems to play a
substantial role in our success at desigining a protocol for this goal: Theorem 14 tells us that we
shouldn’t expect to give a protocol unless we can verify its correctness, and our earlier observations
about the indistinguishability of certain members of A0 \ A1 from members of A1 would seem to
dash our hopes. It is only by assuming an Alice who exhibits her powers – i.e., a member of A2,
playing a role analogous to that of AG,B preivously – that we can achieve success.

Moreover, observe that our usual restrictions on the goals and classes of Alices that we employ in
our limitation results fail to hold here: on the one hand, the goal we would ideally wish to achieve

21



– distinguishing A1 from the rest of A0 – is a prototypical example of one that is not simulation
closed; on the other hand, the semantic closure of A1 in particular contains many Alices who fall
neither in A1 (since, for strings outside their language, they might take time greater than t(n))
nor in A2 (since they may be unhelpful to t′(n)-time bounded interpreters), so A1 ∪ A2 is not
semantically closed. Thus, at least, the usual strong limitations (Theorem 18) do not apply here.
Upon reflection, it’s the latter change – the lack of semantic closure – that makes Bob’s success
possible; the lack of simulation-closedness of this goal is part of what makes Bob’s task difficult!

More broadly, one could envision situations where restrictions on the class of environments Bob
faces could permit him to succeed at goals that would otherwise be impossible—we could variously
assume kinds of “commonality” (common knowledge, etc.) between Alice and Bob, and these
would be reflected in restrictions on the class of environments (class of Alices) that the protocol is
designed to work with.

4 Discussion

In this paper we asserted that any form of communication should be “goal-oriented.” Under this
assumption, we showed that it is possible for any task to be achieved by two players, without any
common language or background, if and only if the goal is verifiable by the individual players.
The insistence that communication ought to be goal-oriented seems to be totally defensible. Yet
formulating explicit goals for natural scenarios is a non-trivial task and we provided a few examples
on how goals may be formulated to model natural motivations for communication.

We can even go so far as to claim that we capture all significant semantics of communication
under our definitions—that achieving one’s own selfish goals is understanding. This claim that
such goal-oriented communication is really “semantic communication” is probably controversial,
but we mention that modern philosophers such as Quine [14] often take recourse to such a view of
communication and thus implicitly (and independently) assert it, and more recently such a view
of communication was explicitly asserted by Gauker [8] to solve some problems of reference. From
a philosophical standpoint, our contribution is a rigorous, quantitative (algorithmic) modeling of
semantic communication – phenomena that had previously been only qualitatively described – and
an investigation of the consequences of this model, specifically what it says about the possibilities
for and limitations on meaningful communication in the absence of a common background. We
further remark that since the notion of a “goal” for communication certainly applies in essentially
all practical contexts, (i.e., all contexts falling within the scope of engineering) one does not need
to accept the thesis to appreciate our resuts.

Supposing we accept this thesis for now, does this mean we don’t need (common) languages, and can
simply proceed without them? We believe not, and suggest that language is a means to achieving
efficiency in communication over the long term. This raises the question, “what is the resource
whose usage language is trying to optimize?” This seems to be an interesting question to explore
further. Some possible candidates are that language tries to reduce the number of bits exchanged
by Alice and Bob or tries to minimize the number of rounds of communication. At the moment
we are not sure which, if any, of these resources best models the use of language, or if language
offers asymptotic improvements on the efficiency. But the idea that language can potentially be
understood by the tools of computational complexity seems quite promising.

22



4.1 Open problems: restricting A

In prior work [11], we showed a limitation result for universal protocols for the goal outlined in
Section 3.1.1, which roughly asserted that an exponential dependence in the running time on the
length of the interpreter we needed for communication was essentially necessary. Nothing about the
proof of this theorem depended on the details of this goal, except that it was nontrivial (under the
assumption that PSPACE 6= BPP) and I was a well-behaved class (i.e., polynomial-time interactive
Turing machines). We can generalize it as follows:

Theorem 30 Let I be P or L, and let G be a nontrivial, simulation closed goal. Let A be a
semantically closed class of (G,I)-helpful Alices, and let A|t ⊂ A be the subclass that help some
protocol running in time O(t(n)). Then a (G,I,A)-universal protocol B must run for a number of
rounds that is exponential in the description length of the shortest protocol that is helped by Alice
in time O(t(n)).

The proof remains essentially the same: we construct an infinite family of Alices {Aσ}σ∈{0,1}∗ , each
helping some interpreter of description length |σ| + O(1). Since Alice is a black-box to Bob, a
subexponential-round Bob does not have enough messages to try every σ, and must achieve the
goal without Alice’s help. (The full proof appears in Appendix B.)

With the exception of the goal of testing computational ability (in Section 3.4, which succeeds
when it identifies Φ ∈ A1), all of the goals we considered were nontrivial in our sense. The point
here is that enumeration is optimal for these natural classes of interpreters when we require that
A is semantically closed, and this effect is widespread.

Since this exponential constant factor in the running time of a universal protocol is extremely
undesirable, we need to explore means of restricting A so that it is not semantically closed but
is still broad enough to yield useful protocols. This result suggests that mere restrictions on
computational resources cannot suffice for these purposes; intuitively, we need some definition that
rules out this degenerative “hiding” behavior of the Aσ (and allows an appropriate interpreter to
be efficiently found). Alternatively, we might hope to find a measure of the “degeneracy” of Alice
and we might then hope to find a protocol for which the efficiency scales appropriately with this
quantity.

Acknowledgements

We would like to thank Oded Goldreich and Ryan Williams for their input on earlier revisions of
this work, Or Meir for discussing alternatives to some definitions with us, and Guy Rothblum for
helpful discussions on space-bounded interactive proofs.

References

[1] Luis Antunes, Lance Fortnow, Alexandre Pinto, and Andre Souto. Low depth witnesses are
easy to find. In Proc. 22nd Conference on Computational Complexity, 2007.

[2] Luis Antunes, Lance Fortnow, Dieter van Melkebeek, and N. V. Vinodchandran. Computa-
tional depth: concept and applications. Theor. Comput. Sci., 354(3):391–404, 2006.

23



[3] Mihir Bellare and Shafi Goldwasser. The complexity of decision versus search. SIAM J.
Comput., 23(1):91–119, 1994.

[4] Ned Block. Psychologism and behaviorism. Philosophical Review, 90(1):5–43, 1981.

[5] Anne Condon. Space-bounded probabilistic game automata. J. ACM, 38(2):472–494, 1991.

[6] Anne Condon and Richard Ladner. Probabilistic game automata. JCSS, 36(3):452–489, 1988.

[7] Nikhil R. Devanur and Lance Fortnow. A computational theory of awareness and decision
making. Technical Report TR08-046, ECCC, 2008.

[8] Christopher Gauker. Words Without Meaning. MIT Press, Cambridge, 2003.

[9] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: In-
teractive proofs for muggles. In Proc. 40th STOC, 2008.

[10] Marcus Hutter. Universal Artificial Intelligence. Springer, Berlin, 2004.

[11] Brendan Juba and Madhu Sudan. Universal semantic communication I. In Proc. 40th STOC,
2008.

[12] Leonid A. Levin. Universal search problems. Probl. Inform. Transm., 9:265–266, 1973.

[13] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. Journal of the ACM, 39(4):859–868, October 1992.

[14] Willard Van Orman Quine. Word and Object. MIT Press, Cambridge, 1960.

[15] Stuart Russell and Peter Norvig. Artificial Intelligence: A modern approach. Prentice Hall,
New Jersey, 1995.

[16] Adi Shamir. IP = PSPACE. JACM, 39(4):869–877, 1992.

[17] Stuart M. Shieber. The Turing test as interactive proof. Noûs, 41(4):686–713, December 2007.

[18] Alan M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, 1950.

A Technical definitions

In this section, we will define the technical notions underlying the definitions in Section 2, which
will be necessary to give formal proofs of our main theorems in Appendix B. In particular, we
will describe a variety of properties of classes of algorithms that we will require. Unfortunately,
we are not aware of any existing definitions that would allow us to state our main theorem in the
generality we desire, so although the properties we demand will be familiar, the definitions are not
standard.

Naturally, in this section we will consider interactive Turing machines as our models of algorithms
computing the functions defining our agents. Sometimes we will say that an interactive Turing
machine B “sets a bit.” We mean that if B has state set Q, there is some subset of these states,
R ⊂ Q where the bit is considered to be 1, and for any q /∈ R, the bit is considered to be 0. So,
for example, “setting the bit to 1” means that B enters some state in R as it continues with its
computation.

24



Definition 31 (Simulation) We will say that B′ simulates B in a collection of computation
histories if there is a surjective mapping σ from states of B′ to states of B and a projection π
mapping the tape configuration of B′ to a tape configuration of B such that for all histories in
the collection, B′ and B produce the same outputs; the mapping ψ from configurations of B′ to
configurations of B obtained from σ and π is surjective on the set of configurations of B occurring
in the history; and if for configurations ci and ci+1 of B′ ci → ci+1 (on a coin toss b), then it is
either the case that ψ(ci) = ψ(ci+1) or ψ(ci) → ψ(ci+1) (on a coin toss b).

Typical examples of such simulations are the standard “clocked” simulations. Notice that if B′

simulates B, B′ takes at least as many steps on each history in the collection, uses at least as much
space, and uses at least as many coin tosses. Note also that if B sets a bit to 1 in some states R,
and B′ simulates B, we can say B′ also sets this bit to 1 in states σ−1(R).

Definition 32 (Efficiently enumerable class) We say that a class of interactive algorithms I
is B-efficiently enumerable (or, if I = B, simply efficiently enumerable) if there is some efficient
enumerator U such that, for each I ∈ I there is some machine UI ∈ B that for all x and all response
histories, UI(x) simulates some prefix of U(x) and UI(x) simulates I(x) in some suffix.

Definition 33 (Comparable class) We say that a class of efficiently enumerable interactive al-
gorithms I is comparable if, for any interactive algorithm I1 which, for every environment, is
simulated by some I2 ∈ I then there is some efficient enumerator U ′ such that whenever U ′ simu-
lates a machine I ∈ I that halts, U ′ sets a bit (initially 0) indicating whether I and I1 would have
produced the same outputs if I1 had been given the same coins and inputs on each round.

Definition 34 (Logspace-closed class) We say that a class of agents I is logspace-closed if
given any pair of logspace functions f and g and an agent I ∈ I, there is an agent I ′ ∈ I that
simulates I with f applied to each of its inputs from Env and g applied to each of its outputs to
Env.

Definition 35 (Monotone class) We say that a class of agents I is monotone if, for any M ∈ I,
if M ′ is constructed by replacing some states of M with halting states, then M ′ ∈ I as well.

Definition 36 (Standard class) We say that a class of agents I ⊇ L is standard if it is effi-
ciently enumerable, comparable, logspace-closed, monotone, and all members halt with probability
1 − negl(|x|) on every private input x.

All of the classes we consider are defined in terms of the asymptotic resource usage of the ma-
chines involved, and so trivially will satisfy these properties. The nontrivial part – the efficient
enumerability of polynomial time – is originally due to Levin [12].

Lemma 37 The class of polynomial-time interactive Turing machines is standard.

Lemma 38 For space constructible s(n) = Ω(log n), the class of space-s(n) and polynomial time
bounded interactive Turing machines is standard.

25



In addition, when we vary the class I, we will need to further restrict the verification predicate to
satisfy the following definition:

Definition 39 (Verifiable in B) We say that a verification predicate (V,I) is verifiable in B if
there is a B-efficient enumerator UV for I with a special “accept” bit such that for each I ∈ I and
each x, V (hist(Iσ0

(x)|Aγ)) = 1 iff UV (x) sets the accept bit to 1 after simulating I on private input
x and interacting with A with probability at least 1 − negl(n).

B Proofs of Theorems

In this section, we give the proofs our our main theorems (stated in Section 2.2) and the limitation
result stated in Section 4.1. The proofs depend crucially on the technical notions introduced in
Appendix A, in addition to the various definitions of Section 2.

Proof (of Theorem 14)

(⇒): Suppose that there is a universal protocol B for the goal with respect to A and I. Let V
test if I simulates B (using the same coin tosses) until it halts in Iσ0

(x) ↔ Aγ , and note that
when B is simulated by BA ∈ I, B halts. Moreover, since BA simulates B with probability
at least 1 − negl(n) and Bσ0

(x) ↔ Aγ achieves G on x with probability at least 1 − negl(n),
if I produces the same outputs as B until it halts, then I achieves the goal with probability
at least 1 − negl(n), and we have that V is a verification predicate for G with respect to I
and A.

Since I is efficiently enumerable we know there is an efficient enumerator U , and since it is
comparable, we know that there is a machine UV that simulates U and B and compares the
outputs of each I and B, so V is verifiable in I, and hence (V,I) is a (G,I,A)-syntactic goal
of communication.

It only remains to show that every A ∈ A is (V,I)-helpful. This is so, since for every A ∈ A
we have the BA ∈ I that ∀x and states of Alice γ, B simulates to completion with probability
at least 1 − negl(n), for which V then clearly accepts (hist(BA

σ0
(x)|Aγ)).

(⇐): Suppose that there is a (G,I,A)-syntactic goal of communication (V,I) such that every
A ∈ A is (V,I)-helpful.

Since this means that V is verifiable in I, there is an efficient enumerator UV for I that
maintains an “accept” bit that is set after simulating I ∈ I on x with probability 1−negl(|x|)
iff V would accept hist(Iσ0

(x)|Aγ). Let B be the following modification of UV : whenever UV

would set the accept bit, B halts.

Let any A ∈ A be given. Since every A ∈ A is (V,I)-helpful, for any such A we know that
there exists some IA ∈ I such that for all x ∈ {0, 1}n and states of Alice γ, with probability
at least 1−negl(n), V (hist(IA

σ0
(x)|Aγ)) = 1. Since UV is an efficient enumeration of I, there is

some UA ∈ I such that ∀x UA(x) simulates some prefix of UV (x) and UA(x) simulates IA(x)
in some suffix. Since UA simulates UV , it also has an accept bit. Let BA be the following
modification of UA: whenever UA would set the accept bit, BA halts, and note that since I
is monotone, BA ∈ I as well.

We now show that B and BA are as required for a universal protocol:

26



– Since V is a (G,I,A)-verification predicate, whenever V accepts hist(Iσ0
(x)|Aγ), I has

achieved G on x with A with probability 1 − negl(n); since BA(x) simulates some I(x)
such that V accepts hist(Iσ0

(x)|Aγ)) with probability at least 1−negl(n), they produced
the same outputs, and hence BA achieves G on x with A with probability at least
1 − negl(n).

– Note that BA has states and configurations identical to UA (which simulates UV ) until
UA would set the accept bit, and B has states and configurations identical to UV , again
until UA would set the accept bit, and when this happens, B also halts. So, in any
history where UA sets the accept bit, we can use the mappings from UA to UV to find
that BA simulates B until it halts. Since V accepts hist(IA(x)|Aγ) with probability at
least 1 − negl(n), and UA simulates IA in some suffix of its computation, UA sets the
accept bit with probability at least 1 − negl(n), as needed.

Proof (of Theorem 18) Let a semantically closed and nonempty A be given, and suppose that
(V,I) is not a (G,B,A0)-syntactic goal. Then, V must not be a (G,I,A0)-verification predicate,
and we find that for any negligible failiure probability f(n), there is some A ∈ A0 and I ∈ I
such that there exists a private input x and a finite set of coin tosses occurring with probability
greater than f(n) for which I halts at step n′ when interacting with A, V (hist(Iσ0

(x)|Aγ) = 1 and
G(Aγ ↔ Iσ0

(x), n′) 6= 1. Let ` be the length of the longest message sent by Iσ0
(x) on these coins

when interacting with A.

We now convert such an Alice A into A′
x ∈ A: let Ã be any Alice in A. If A′

x answers messages
of the form 0`+1 ◦ y as Ã answers y padded with 0`+1, and computes the same function as A does
on prefixes of the finite set of histories where I fails, then A′

x is contained in the semantic closure
of Ã since this finite function can be computed in L and likewise the padding can be performed in
logspace, and hence A′

x ∈ A since it is semantically closed. Yet, since G is simulation closed, A′
x

simulates A, and G(Aγ ↔ Iσ0
(x), n′) 6= 1 with probability greater than f(n), we also find that with

probability greater than f(n), G((A′
x)(γ,γ̃) ↔ Iσ0

(x), n′) 6= 1 but

V (hist(Iσ0
(x)|(A′

x)(γ,γ̃)) = V (hist(Iσ0
(x)|Aγ) = 1

so V was not a (G,I,A)-verification predicate with any such correctness probability 1− f(n), and
we find that (V,I) could not have been a (G,B,A)-syntactic goal.

Proof (of Theorem 30) Let any A ∈ A|t be given. We start by constructing a family of (G,I)-
helpful Alices {Aσ}σ for every σ ∈ {0, 1}∗, where Aσ behaves as follows: for Aφ which always

responds with the empty string and fσ(y) = σ ◦ y, Aσ = Afσ

Aφ
.

Clearly, for the Bob B∗ that is helped by A and runs in time O(t(|x|)), the Bob B∗
σ who converts

each query y to σ ◦ y, ignores the prefix σ of Alice’s reponses, and otherwise computes the same
function as B∗ has description length |σ| + O(1), runs in time O(t(|x|)), and has the same space
requirements. Furthermore, every Aσ is in the semantic closure of A, and thus is clearly also in
A|t.

Now suppose there is a (G,I,A)-universal Bob B whose probabilistic running time when interacting
with any Aσ on input x is O(|x|k), and runs in a number of rounds that is subexponential in |σ|;

27



since Bob runs for at least one step on each round, this is at most 2o(|σ|)|x|k rounds in total. Notice
that if B runs for less than 22k lg |x| rounds, then there is some σ of length 2k lg |x| such that Aσ is
consistent with this set of responses, since Bob sends at most one such σ on each round. Since B
runs in O(|x|1.5k) rounds for all such Aσ, for all sufficiently large x B must halt without receiving
a response from Alice other than the empty string. Since all Aσ ∈ A help Bob, Φ is simulated by
some Aσ in this case, and G is simulation closed, Φ helps Bob as well contradicting our assumption
that G is nontrivial.

Proof (of Theorem 28)

(⇐): Given a (GΠ,L,AGΠ,L)-universal protocol B, let PΠ respond to any message x with Π(x),
and let V on input x run B on private input x, and accept iff B would halt with 1 as the final
private output of B. We claim that this is a logspace competitive interactive proof system.

Clearly P can be implemented in deterministic logspace (given oracle access to Π) and PΠ

is (GΠ,L)-helpful. In turn, this guarantees that the interaction between B and PΠ can
be simulated in probabilistic logspace and polynomial-time, so V can be implemented in
probabilistic logspace and polynomial-time. It is easy to see that V is complete: if x ∈ Π, then
since B achieves GΠ with high probability, B will output 1 before it halts with probability
greater than 2/3, and hence V will accept with this probability. To see that V is sound,
notice that in transcripts where B halts, V would have simulated B faithfully, and hence we
would have satisfied the verification predicate constructed in Theorem 14. Since this goal
is simulation closed and AGΠ,L is semantically closed and nonempty, Theorem 18 says that
this verification predicate is valid for A0; in particular, no matter what prover P̃ B would
converse with, B can only output 1 and halt when x /∈ Π with negligible probability. Thus,
when x /∈ Π, for every P̃ , V accepts with probability less than 1/3 for sufficiently large inputs,
which is sufficient.

The proof system for Π̄ is similar: V accepts iff B would output 0 and halt.

(⇒): Suppose that our logspace competitive interactive proof systems are given by (PΠ, VΠ) and
(PΠ̄, VΠ̄). Our verification predicate is then as follows: V checks that I repeatedly simulates
n runs of VΠ followed by n runs of VΠ̄, that I produces an output after its final simulation,
and that if the final private output of I is a 1, then VΠ accepted in the majority of the n
preceding simulations, or else if the final private output of I is a 0, then VΠ̄ accepted in the
majority of the n preceding simulations. By the assumed soundness of VΠ and VΠ̄, no matter
what A ∈ A0 causes I to output, the probability that a majority of the runs accept when
x /∈ Π or x ∈ Π, respectively, is exponentially small, so an interpreter can only satisfy V when
it outputs Π(x) except with negligible probability, and hence V is a verification predicate for
GΠ that is sound against A0.

Since VΠ and VΠ̄ can be implemented in probabilistic polynomial time and logspace, these
checks can also be performed in parallel in polynomial time and logspace (given the coin
tosses of I). Therefore, (V,L) is a (GΠ,L,A0)-syntactic goal.

To see that (V,L) is a well-designed (GΠ,L,AGΠ,L)-syntactic goal, observe that whenever
A ∈ AGΠ,L, there is a BA ∈ L such that BA(x) outputs Π(x) with high probability when
interacting with A; wlog, we can assume that this probability is 1 − negl(n). We also know
that PΠ and PΠ̄ run in logspace and polynomial time, so there is an interpreter IΠ ∈ L that

28



simulates PΠ and PΠ̄, using BA as a subroutine to simulate an oracle for Π. Since on any
query x′, the response from BA agrees with Π(x′) with probability 1 − negl(n), IΠ simulates
PΠ

Π and PΠ
Π̄

correctly with probability 1 − negl(n) on each interaction, and hence satisfies
V with probability 1 − negl(n), so A is also (V,L)-helpful, and so (V,L) is well-designed, as
claimed. Theorem 14 therefore shows that a (GΠ,L,AGΠ,L)-universal protocol exists.

29

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



