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Abstract

A hypergraph dictatorship test is first introduced by Sardoitsky and Trevisan in [21] and serves
as a key component in their uniqgue games ba¥€® construction. Such a test has oracle access to a
collection of functions and determines whether all the fioms are the same dictatorship, or all their low
degree influences arg1). The test in [21] makeg > 3 queries and has amortized query complexity

14+0 (k’%) but has an inherent loss of perfect completeness. In thées n@& give another hypergraph

dictatorship test that achieves both perfect completesmme$amortized query complexity+ O (k’%) .

1 Introduction

Linearity and dictatorship testing have been studied irptst decade both for their combinatorial interest
and connection to complexity theory. These tests distsigtunctions which are linear/dictator from those
which are far from being a linear/dictator function. Thet$edo so by making queries to a function at
certain points and receiving the function’s values at thmsets. The parameters of interest are the number
of queries a test makes and the completeness and soundraetesbf

In this paper we shall work with boolean functions of the fofm{0,1}" — {-1,1}. We say a functiory

is linear if f = (—1)Zes ¥ for some subse$ C [n]. A dictator function is simply a linear function where
|S| =1, i.e., f(x) = (—1)% for somei. A dictator function is often calledlang code and it is first used in
[4] for the constructions of probabilistic checkable po@@ CPs), see e.g., [2, 1]. Since then, it has become
standard to designaCP verifier as the composition of two parts, an outer verifier andnner verifier. In
such case, CP verifier expects the proof to be written in such a way so thataihiter verifier, typically
based on the verifier obtained from Raz’s Parallel Repatifioeorem [17], selects some tables of the proof
at random and then passes the control to the inner verifies. ifftier verifier, with oracle access to these
tables, makes queries into these tables and ensures thabtbg are the encoding of some error-correcting
codes and satisfy some joint constraint. Since these tgpleally have constant size, efficiency is not
an issue. The long code encoding is usually employed in thesa constructions, and the inner verifier
simply tests whether the collection of tables (function®) lang codes satisfying some constraints. In this
way, constructing & CP with certain parameters reduces to the problem of desigamiogg code test with
similar parameters.

One question of interest is the tradeoff between the sowsdalrd query complexity of a tester. If a tester
gueries the functions at every single value, then trivigtly verifier can determine all the functions. One
would like to construct a dictatorship test that has the kiwmssible soundness while making as few
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gueries as possible. One way to measure this tradeoff betiieesoundnessand the number of queries

is amortized query complexitgefined aq—,l This line of research, initiated in [25], has since spurred a
long sequence of works [22, 20, 12, 7]. AII these tests ewsdlyntind a way to reuse the queries by running
dependent iterations of a basic linear/dictatorship té$ie techniques used are Fourier analytic, and the

best amortized query complexity from this sequence of whdssthe forml + O <ﬁ) .

More progress is made in [19] when the notion egkaxedlinearity test is introduced along with new ideas
from additive combinatorics. In property testing, the gigaio distinguish objects that are very structured
from those that are pseudorandom. In the case of lineadtgtdrship testing, the structured objects are
the linear/dictator functions, and functions that are fanf being linear/dictator are interpreted as pseu-
dorandom. The recent paradigm in additive combinatoridse find the right framework of structure and
pseudorandomness and analyze combinatorial objects imdjvhem into structured and pseudorandom
components, see e.g., [24] for a survey. One success is tlon rad Gowers norm [8], which has been
fruitful in attacking many problems in additive combinatsrand computer science. In [19], the notion
of pseudorandomness for linearity testing is relaxedesstof designating the functions that are far from
being linear as pseudorandom, the functions having smalidegree Gowers norm are considered to be
pseudorandom. By doing so, an optimal tradeoff betweendsmss and query complexity is obtained for
the problem of relaxed linearity testing. (Here the trafi@ogtronger than the tradeoff for the traditional
problem of linearity testing.)

In a similar fashion, in th&CP literature since [10], the pseudorandom objects in dicship tests are not
functions that are far from being a dictator. The pseudavamélinctions are typically defined to be either
functions that are far from all “juntas” or functions whodew-degree influences” arg1). Both consid-
erations of a dictatorship test are sufficient to composedbein aPCP construction. In [21], building
on the analysis of the relaxed linearity test in [19], a dimtship test (taking the view that functions with
arbitrary small “low-degree influences are pseudorandesmsphnstructed with amortized query complexity
1+0 (1"% . Furthermore, the test is used as the inner verifier in a tiondi PCP construction (based
on uniqgue games [13]) with the same parameters. Howevér,diotatorship test suffers from an inherent
loss of perfect completeness. Ideally one would like testdth one-sided errors. One, for aesthetic rea-
sons, testers should always accept valid inputs. Two, foresbardness of approximation applications, in
particular coloring problems (see e.g., [11], [6]), it ispartant to construcPCP systems with one-sided
errors.

In this paper, we prove the following theorem:

Theorem 1.1 For everyq > 3, there exists an (adaptive) dictatorship test that makgseries, has com-
2
pletenesd, and soundnesg%; in particular it has amortized query complexity+ O (“’%)

Our tester is a variant of the one given in [21]. Our testedmgdive in the sense that it makes its queries in
two stages. It first makes roughlyg ¢ nonadaptive queries into the function. Based on the valtittsese
gueries, the tester then selects the rest of the query panedaptively. Our analysis is based on techniques
developed in [12, 21, 11, 9].

1.1 Future Direction

Unfortunately, the adaptivity of our test is a drawback. Therespondence betwe@&CP constructions
and hardness of approximation needs the test to be fullydapiae. However, a more pressing issue is
that our hypergraph dictatorship test does not immediatapty a newPCP characterization oNP. The
reason is that a dictatorship test without “consistencyks$ieis most easily composed with the unique label
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cover defined in [13] as the outer verifier iP&P reduction. As the conjectur@dP-hardness of the unique
label cover cannot have perfect completeness, the obvigu®ach in combining our test with the unique
games-based outer verifier does not imply a &P result. However, there are variants of the unique label
cover (e.g., Khot'® to 1 Conjecture) [13] that do have conjectured perfect compkss, and these variants
are used to derive hardness of coloring problems in [6]. Weaehbat our result combined with similar
techniques used in [6] may obtain a new conditidR@IP construction and will motivate more progress on
the unique games conjecture.

1.2 Related Works

The problem of linearity testing was first introduced in [Bhe framework of property testing was formally
set up in [18]. Thé®CP Theorems were first proved in [2, 1]; dictatorship tests fipgpeared in th&® CP
context in [4], and many dictatorship tests and varianteapgd throughout thBCP literature. Dictator-
ship test was also investigated in a general, combinatprigerty testing setting in [16]. As mentioned,
designing testers andCPs focusing on amortized query complexity was first inveséidan [25], and a
long sequence of works [22, 20, 12, 7] followed. The firstagBICP system focusing on this tradeoff while
obtaining perfect completeness was achieved in [11].

The orthogonal question of designing tester®0iPs with as few queries as possible was also considered.
In a highly influential paper [10], Hastad constructed®@P system making only three queries. Many
variants also followed. In particuld?CP systems with perfect completeness making three queries wer
also achieved in [9, 14], and similar to our approach, O’'Dahand Wu designed an optimal three bit
dictatorship test with perfect completeness in [15] as jp&ti&ard constructing a conditionBICP system.

2 Preliminaries

We fix some notation and provide the necessary backgrountisnsection. We lefn] denote the set
{1,2,...,n}. Foravectow € {0,1}", we write|v| = > _ic[n) Vi- We letA denote the boolean AND, where
aAb = 1iff a = b = 1. For vectorw, w € {0,1}", we writev Aw to denote the vector obtained by applying
AND to v andw component-wise. We abuse notation and sometimes inteaprettorv € {0,1}" as a
subset C [n| wherei € viff v; = 1. For a boolean functiorf : {0,1}" — {0, 1}, we make the convenient
notational change frorf0, 1} to {-1, 1} and writef : {0,1}" — {-1,1}.

2.1 Fourier Analysis

Definition 2.1 (Fourier transform) For a real-valued functioff : {0,1}" — R, we define its Fourier
transformf : {0,1}" — R to be

flay= E  f(@)xa(@),

ze{0,1}"

wherey,(z) = (—1)Zi€[n1 YT We sayf(a) is the Fourier coefficient of at «, and the characters of
{0,1}" are the functiong xa }ac{o,1}"-

Itis easy to see that fer, 3 € {0,1}", E xo-xgis 1if @ = 3 and0 otherwise. Since there a2& characters,
they form an orthonormal basis f¢6, 1}", and we have the Fourier inversion formula

f@)= > fl@)xa()

aef{0,1}"



and Parseval’s Identity

S Fle)? =E[f@)?).

ae{0,1}"

2.2 Influence of Variables

For a boolean functiory : {0,1}" — {-1,1}, theinfluenceof the i-variable, I;(f), is defined to be
Procio1y[f(z) # f(x + e;)], wheree; is a vector in{0, 1}" with 1 on thei-th coordinate) everywhere
else. This corresponds to our intuitive notion of influenlkeew likely the outcome off changes when the
i-th variable on a random input is flipped. For the rest of tkspgy, it will be convenient to work with the
Fourier analytic definition of;(f) instead, and we leave it to the readers to verify that the tefmitions
are equivalent whetfi is a boolean function.

Definition 2.2 Let f : {0,1}" — R. We define the influence of th¢h variable off to be

LH= >,  fl

ae{0,1}": a;=1

We shall need the following technical lemma that gives aneugmund on the influence of a product of
functions.

Lemma 2.3 (Lemma4 from [21]) Let f1,..., fr : {0,1}" — [—1,1] be a collection ofc bounded real-
valued functions, and defing(z) = Hf;l fi(x) to be the product of thesk functions. Then for each
i€ [n],

k
L(f) <k- Zli(fj)-
=1

When{ f;} are boolean functions, it is easy to see thaf) < Zle I;(f;) by the union bound.
We now define the notion dbw-degree influence

Definition 2.4 Letw be an integer betweehandn. We define the-th degree influence of thieth variable
of a functionf : {0,1}" — Rto be

FY(f) = > fle)®.

ae{0,1}": a;=1, |a|<w

While the definition of low-degree influence is standard mliterature, we shall make a few remarks since
this definition does not have a clean combinatorial inteégpien or an immediate justification. Dictatorship
tests (those based on influences) classify functions in thénstances to be those whose low-degree influ-
ences are(1) for two reasons. One is that large parity functions, whickehmany variables with influence

1 but no variables with low-degree influence, must be rejebtethe test. The second is thatifis fixed,
then a bounded function has only a finite number of variabliés large w-th degree influence. This easy
fact, though we won'’t need it here, is often needed to lift@adorship test to  CP construction. Both
such considerations fail if we substitute the low-degrdluémce requirement by just influence, thus the
need for a thresholded version of influence.



2.3 Gowers norm

In [8], Gowers uses analytic technigues to give a new pro&@zsmeéredi’s Theorem [23] and in particular,
initiates the study of a new norm of a function as a measursaifgiorandomness. Subsequently this normis
termed theGowers uniformity nornand has been intensively studied and applied in additivebgmattorics,
see e.g. [24] for a survey. The use of the Gowers norm in cagnjgeience is initiated in [19, 21].

Definition 2.5 Let f : {0,1}" — R. We define thé-th dimension Gowers uniformity norm gfto be

1/2¢
e =1, E 11 f<x+zxi>

T Scld] icS

For a collection of2? functionsfs : {0,1}" — R,S C [d], we define thel-th dimensionGowers inner
productof { fs }scq to be

<{fS}SC[d}>Ud = JE H fs <9€ + Z%)

1ye5Td

When f is a boolean function, one can interpret the Gowers normnaglgithe expected number of “affine
parallelepiped” of dimensiod. While this expression may look cumbersome at first glaneeute of the
Gowers norm is in some sense to control expectations ovee stiner expressions. For instance, to count
the number ofi + 1-term progressions of the formz + v, ..., x + d -y in a subset, one may be interested
in approximating expressions of the foitn , [ f1(x) fa(x +vy) - - - fa(x +d - y)], wherefy, ..., f; are some
bounded functions over some appropriate domain. In fashesn by Gowers, these expectations are upper
bounded by the Gowers inner product £f which is also upper bounded byin;c 4 ||fi||?j;. Thus, in a
rough sense, questions regarding progressions are thecektb questions regarding the Gowers norms,
which are more amenable to analytic techniques.

The proof showing thak,. , [ f1(x) f2(x+y) - - - fa(x+d-y)] is upper bounded by the minimum Gowers norm
of all the functionsf; is not difficult; it proceeds by repeated applications of@aichy-Schwarz inequality
and substitution of variables. Collectively, statemeratgirsy that certain expressions are governed by the
Gowers norm are coinegbn-Neumann type theoreiimsthe literature.

For the analysis of hypergraph-based dictatorship tessha# encounter the following expression.

Definition 2.6 Let {fs}sc[q be a collection of functions wherg; : {0,1}" — R. We define thel-th
dimension Gowers linear inner product fs} to be

{fstsca) Ly, = - IT 7s <Z 55@)

Scld] i€S

This definition is a variant of the Gowers inner product anih ifact upper bounded by the square root of
the Gowers inner product as shown in [21]. Furthermore theyved that if a collection of functions has
large Gowers inner product, then two functions must sharafarential variable. Thus, one can infer the
weaker statement that large linear Gowers inner produdiésifwo functions have an influential variable.
For our purposes, we can encapsulate all the prior discug#io the following statement, which is Lemma
16 from [21]. This is the only fact on the Gowers norm that we @iy need.

Lemma 2.7 (Lemmal6 from [21]) Let {fs}sc[q be a collection of bounded functions of the fof :
{0,1}" — [~1,1]. Suppose.Uq({fs}sciq) = € andE fig = 0. Then there exists some varialilesome

subsetsS # T' C [d] such that the influences of tlieh variable in bothfs and fr are at IeastQOE—‘;).



3 Dictatorship Test
Definition 3.1 (dictatorship) Fori € [n], thei-th dictator is the functiorf (z) = (—1)":.

Alternatively, it is often referred to as the long code enagcbf 4, ((—1)") (g 13, Which is simply the
evaluation of thé-th dictator function at all points. However, for most applions of long code; is a large
constant.

Now let us define &-function dictatorship test. Suppose we are given oraaesscto a collection of boolean
functions f1, ..., f;. We want to make as few queries as possible into these fusctmdecide if all the
functions are the same dictatorship, or no two functionersme common structure. More precisely, we
have the following definition:

Definition 3.2 We say that a test’ = 71/t is a t-function dictatorship test with completenesand
soundness if T' is given oracle access to a family ofunctionsfy, ..., f; : {0,1}" — {-1,1}, such that

e if there exists some variablec [n] such that for alk € [t], f,(x) = (—1)*, thenT accepts with
probability at least, and

e for everye > 0, there exist a positive constant> 0 and a fixed positive integar such that ifl’
accepts with probability at leastt ¢, then there exist two functiong,, f, wherea, b € [t],a # b and
some variablé € [n] such thal =" (f,), =" (f) > 7.

A g-function dictatorship test makingqueries, with soundne§§‘;—1 was proved in [21], but the test suffers
from imperfect completeness. We obtaig a O(log q)-dictatorship test that makesqueries, has com-

pletenesd, soundnes%%, and in particular has amortized query complexity O 1"% , the same as
the test in [21]. By a simple change of variable, we can moeeipely state the following:

Theorem 3.3 (main theorem restated)For infinitely manyt, there exists an adaptiviefunction dictator-
ship test that makes+ log(t + 1) queries, has completenessand soundnes%l.

Our test is adaptive and selects queries in two passes. @tmnfirst pass, it picks an arbitrary subset of
log(t + 1) functions out of the functions. For each function selected, our test picks aganentryy and
queries the function at entry. Then based on the values of thésg(t + 1) queries, during the second
pass, the test seleatpositions nonadaptively from each function, then querikes positions at once. The
adaptivity is necessary in our analysis, and it is uncleand can prove an analogous result with only one
pass.

3.1 Folding

As introduced in [3], we shall assume that the functions aldéeld. We do so by requiring our dictatorship
test to make queries in a special manner. Suppose the test teaqueryf at the pointr € {0,1}". If

x1 = 1, then the test querieg(z) as usual. Ifz; = 0, then the test querieg at the point] + = =
(1,1 + x9,...,1 + x,) and negates the value it receives. It is instructive to niote tolding ensures

~

f(IT42z) = —f(z) andf(0) = 0.



3.2 Basic Test

For ease of exposition, we first consider the following sistjg scenario. Suppose we have oracle access
to just one boolean function. Furthermore we ignore thesnécbetween soundness and query complexity.
We simply want a dictatorship test that always accepts tdictanctions and rejects all functions with small
low-degree influence with probability at Iea§t+ e,¢ > 0. There are many such tests in the literature;
however, we need a suitable one which our hypergraph distafptest can base on. Our basic test below is
a close variant of the one considered in [9].

BAasic TEST T with oracle access tf,

1. Pickz;, z;,y, z uniformly at random fron{0, 1}".

2. Queryf(y).
3. Letw = =L Accept iff

Fx) f(a;) = flai+a;+ (0l +y) Az)).

Lemma 3.4 The tesfl" is a dictatorship test with completeneks

Proof: Supposef is the/-th dictator, i.e.,f(z) = (—1)*¢. First note that
1—(—1)v

5 + Ye,

Wty =
which evaluates t0. Thus by linearity off
Flaita;+@l+y)nz) = flai)fa)f(wl+y)Az)
= () f () (= n)tns
= f(z:)f(x))
and the test always acceptsl

To analyze the soundness of the t€stwe need to derive a Fourier analytic expression for theaoee
probability of T".

Proposition 3.5 Letp be the acceptance probability @t Then

p:

by Y Ferel (1Y Fe)

ae{0,1}" JEANY

NN

For sanity check, let us interpret the expressiongfoBupposef = y. for somea # 0 € {0,1}", i.e.,
f(a) = 1 and all other Fourier coefficients gfare0. Then clearlyp = %Jr 2~ 1ol which equals whenever
f is a dictator function as we have just shown |df is large, therl” accepts with probability close t§
Furthermore, ag is folded,f(ﬁ) = 0. So if f is a constant function, then= % We shall first analyze the
soundness and then derive this analytic expressiop. for



Lemma 3.6 The testl" is a dictatorship test with soundne%s

Proof. Suppose the tedt passes with probability at Iea§t+ e, for somee > 0. By Proposition 3.5 and
applying Parseval’s Identity and Cauchy-Schwarz, we abtai

5 forrn (e 50)

B

™
IN
|

IN
3
=)
o}
A
l\Dl
m‘g

ae{0,1}":|a|<w

aE{O,lni%ﬁa\Sw ‘f(Oé)

So there exists some € {0,1}",[3| < w such that§ < |/(8)]. With f being folded,8 # 0. Thus, there
exists an € [n] such that3; = 1 and

[\

€

< <If02 < zj f(a)?.

ae{0,1}":a;=1, || <|w|

Now we give the straightforward Fourier analytic calcudatfor p.

Proof (of Proposition 3.5): As usual, we first arithmetize. We write

b = E <1—|—f(y)><1+Acc(:ci,:cj,y,z)>+

Zi,%j5,Y,2 2 2

g (1@ (Lt Acelai, oy, T +y,2)
$7j7$‘7',y72 2 2 ’

Acc(mi, xj,y,2) = f(oi) f(@5) f (@i + 25+ (Y A 2)).
Sincef is folded, f(I + y) = — f(y). Asy and1 + y are both identically distributed if0,1}", we have

b2 E (1+f(y)> (l—l—Acc(xi,xj,y,z)).

Tiy 55,2 2 2

where

SinceE f = 0, we can further simplify the above expression to be

p=sti E [(1+ () Acclas .y 2)].

2 @i,z

1
2
It suffices to expand out the termis, ., ,, .[Acc(z;, x5, y, 2)] andEy, 4., - [f (y) Acc(zi, x5y, 2)].
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For the first term, it is not hard to show that

E [ACC(CCZ',CCJ',y, Z)] = Z f(a)B 27\04’

T, T5,Y,2
v ae{0,1}"

by applying the Fourier inversion formula gnand averaging over; andz; and then averaging ovgrand

z over the AND operator.

Now we compute the second term. Applying the Fourier inegr$ormula to the last three occurrences of
f and averaging over; andx;, we obtain

E [f(y) Acc(zizjy.2)] = > F(@)® E[fy)xaly A 2)].

Ti,T5,Y,% Y,z
’ ae{0,1}"

It suffices to expand ouE, . [f(y)xa(y A z)]. By grouping thez’s according to their intersection with
different possible subsefsof «, we have

E [f(y)xa(y A 2)]

y?Z

= Pr [zNna=0]E

fo) 11 (—1)3’”“]

ca FEOL” Y irai=1
= Y el I o

BCa i Bi=1

2711 " 7).

[BCa

Putting everything together, it is easy to see that we hawd-thurier analytic expression fpras stated in
the lemma.l

3.3 Hypergraph Dictatorship Test

We prove the main theorem in this section. The basis of ouetgypph dictatorship test will be very similar
to the test in the previous section. We remark that we did hoose to present the exact same basic test for
hopefully a clearer exposition.

We now address the tradeoff between query complexity anddsmss. If we simply repeat the basic test a
number of iterations independently, the error is reducatthe query complexity increases. In other words,
the amortized query complexity does not change if we simply the basic test for many independent
iterations. Following [25], all the dictatorship tests ttlsave query complexity do so by reusing queries
made in previous iterations of the basic test. To give astilation, the tesi” might queryf at the points
x1+ (YA z1), 22+ (yAze), 1+ 22+ (y A z12) to make a decision. For the second iteration, wé&lguery

f atthe pointses + (y A z3) andz; + z3 + (y A z13) and reuse the valug(z, + (y A z1)) queried during
the first run of . T then uses the three values to make a second decision. Irftotalkes five queries to
run two iterations.

We may think of the first run of” as parameterized by the points and x5 and the second run &f by

x1 andzxs. In general, we may havie pointszy, . .., z; and a graph ofk| vertices, such that each edge
of the graph corresponds to an iteratiorifloparameterized by the poin{s:; };c.. We shall use a complete
hypergraph ok vertices to save on query complexity, and we will argue thatstoundness of the algorithm
decreases exponentially with respect to the number otibera

9



Formally, consider a hypergraght = ([k], E). Let{f.}qcxjur be a collection of boolean functions of the
form f, : {0,1}" — {-1,1}. We assume all the functions are folded, and so in particBl#r= 0. Consider
the following test:

HYPERGRAPHH -TEST. with oracle access t0f }.c(xjue

1. Pickzy, ..., 2x, Y1, - - -, Yk, aNd{z4 }ockur iNdependently and uniformly at random frof, 1}".
2. Foreach € [k], query fi(y;).

_ 1-fi(y:
3. Letw; = =50,
Accept iff for everye € F,

1T [fz‘(%' + (wil + i) A Zz‘)] = fe <Z z; + <Eiee(wz’f+ yi)) A Ze> :

i€e i€e

We make some remarks regarding the desigi/efest. The hypergraph test in [21] accepts iff for every
e € B, [Lic. fi(zi +m:) equalsfe(D ;. =i +ne), where the bits in each vectgy, are chosen independently
to bel with some small constant, s@y1. The noise vectors, rules out the possibility that linear functions
with large support can be accepted. To obtain a test witlepecbmpleteness, we use ideas from [9, 16, 11]
to simulate the effect of the noise perturbation.

Note that fory, 2 chosen uniformly at random frorf0,1}", the vectory A z is a i-noisy vector. As
observed in [16] the test(y A z) = f(y) A f(z) distinguishes between dictators and linear functions with
large support. As shown in [11], one can also combine lityamnd dictatorship testing into a single test
that checks iff (x1 +z2 +y A 2)(f(y) A f(2)) equalsf(z1) f(z2). However, iterating such a test increases
the number of queries made. In fact, the graph test in [11]cbaspleteness and reads:? + 4k bits to
obtain a soundness 8f **. The authors in [11] only achieve a test that queries the samber of bits as

in [20] (k% + 2k bits) when they allow the test to be adaptive. While both theadlaptive and adaptive tests
in [11] have the same amortized query complexity, extenttiegnonadaptive test in [11] to the hypergraph
setting is too costly for us. So to achieve the same amortipedy complexity as the hypergraph test in
[21], we also exploit adaptivity in our test.

Similar to the tests in [9, 11], our test has two stages, whaegies made during the second stage depends
on the answers received during the first stage. Essentiedlgueries from the first stage determine whether
the vectory; or its complement + y; should be used during the second stage. Of interest is thberunh
gueries made during the first stage. While a single randonovga@nd the corresponding adaptive query
suffices for the analysis of a single edge test, it is unclear to prove this works for a general hypergraph.
To circumvent this we seleétvectors{y; } to match them up with the vectofs;; } to facilitate the analysis

of the Gowers norm.

Theorem 3.7 (main theorem restated)For infinitely manyt, there exists an adaptiviefunction dictator-
ship test witht + log(t + 1) queries, completenedsand soundnes%l.

Proof: Take a complete hypergraph érvertices, wheré = log(t + 1). The statement follows by applying
Lemmas 3.8 and 3.9
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Lemma 3.8 The H-Test is a(k + |E|)-function dictatorship test that makég| + 2k queries and has
completeness.

Proof: The test makes queriesf;(y;) in the first pass, and based on the answers to theseries, the test
then makes one query into each functjnfor eacha € [k]U E. So the total number of queries|i&| + 2k.

Now suppose all the functions are th¢h dictator for some < [n], i.e., for alla € [k]U E, f, = f, where
f(z) = (—1)*t. Note that for each € [k],

1— (=1)¥®

w; + () = 5

+ i (0),

which evaluates t0. Thus for eacle € E,

Hfi($i+(wif+yz’)AZz') = f sz

= f <sz> . (_1)(wz'+yi(f))/\2i(f)

Al +yi) A 2)

and similarly,

fe <Z T+ <Ei66(wif+yi)) Nze | = f <Z xz> :

i€e
Hence the test always acceptl.
Lemma 3.9 The H-Test has soundnegs!Z!.

Before proving Lemma 3.9 we first prove a proposition retathe Fourier transform of a function perturbed
by noise to the function’s transform itself.

Proposition 3.10 Let f : {0,1}" — {-1,1} . Defineg : {0,1}*" — [~1, 1] such that

iy)= E 4 A
gy = B Iz ety nz),

wherec, ¢ are some fixed vectors i), 1}" . Then
9(0;8)” = F(o)* Lggcapd ™.

Proof: This is a straightforward Fourier analytic calculation. @afinition,

2
50 B)? = ( FEé (e ty)A z)xa<x>m<y>> |

E
x?y7ze{071}n

By averaging over it is easy to see that

2
§(a;ﬁ)2=f(a)2< E Xa((0+y)AZ)Xﬁ(y))-

y,2€{0,1}"
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Since the bits ofy are chosen independently and uniformly at randomj\if is nonempty, the above
expression is zero. So we can write

2
(cz+y1 Nz H E )(Ci+yi)AZi+yi )
y K y VZ
zEa\ﬁ (3 z Eﬁ (3 z

9(a; B)% = F(0)* 1{gcay ( IT E(

It is easy to see that the tefy, ., (—1)(¢+¥)"% evaluates tg and the ternE,, ., (—1)(cH¥) =4y evalu-
ates to(—1)%1. Thus

9(0: )" = F(@)* Lypcapa™
as claimed. lI

Now we prove Lemma 3.9.

Proof (of Lemma 3.9): Let p be the acceptance probability &f-test. Suppose that |Zl + ¢ < p. We
want to show that there are two functiofisand f;, such that for someé € [n], some fixed positive integer
w, some constant > 0, it is the case that="(f.),1="(f,) > €. As usual we first arithmetize. We write

L+ (=1)" fi(y:) 1+ Acc({i, i, vi, 2 fice, 2e)
p= Z K H 2 H 2 !
, eihduhiza)
ve{0,1} 1€[k] ecE

where

Acc({xi, yi, Vi, Zi bice, 2e) = H [fz’(wi + (01 + ;) A Zi)]

<Z x; + ( ice(v;l —i—yl)) A ze> )

For eachi e [k], f; is folded, so(—1)% f;(y;) = fi(vil + ;). Since the vector$y; };c(x) are uniformly and
independently chosen fro, 1}", for a fixedv € {0, 1}’“, the vectors{vif + Yi}ie[x) are also uniformly
and independently chosen froffi, 1}" . So we can simplify the expression feand write

p:

1 + (ACC{(I)Z‘, Yi, 67 z’i}ZEev ze)
E 1+ fiyi )
(o) i 0} Lgl( fiw) gﬂ 2

Instead of writingAcc({z;, v, 0, zi Yice, 2e ), fOr convenience we shall writécc(e) to be a notational short-

hand.
Note that the product of sunfg, . ; 2725 expands into a sum of products of the form

2~ |Fl <1+ > 11 Acc(e)) .

0£E'CE ecE’

fi being folded implies thak f; = 0, so we have

i\Yi ~lEl cc(e
= b loehen) {H (Lt fitw) 2770 >0 [T Ace(e)

iclk] 0£E'CE ecE’
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By averaging, there must exist some nonempty subset E such that

= o o) {H (1+ fily) T Acc(e } :

i€[k] ecE!
Sincel + f;(y;) is either0 or 2, we have

€

2k — {xi},{yz Aza}

H Acc(e

ecE’

Let Odd consists of the vertices ift| with odd degree irE’. Expanding out the definition ckcc(e), we
can conclude

1€0dd ecE’ i€e i€e

We now define a family of functions that represent the “noisysions” of f,. Fora € [k] U E, define
g\ :{0,1}*" — [-1,1] to be
" (x; E ox+yA
9a(@3y) = e 1}nf (+yA2).

Thus we have
€

II di@isv) - ] 9 <Z$ZZyl>] .

ok
2 {IZ} it [;¢6dd ecE’ ice  ice

Following the approach of [12, 21], we are going to reducesttadysis of the iterated test to one hyperedge.
Let d be the maximum size of an edge i, and without loss of generality, I€t, ..., d) be a maximum
edge inE’. Now, fix the values of:y, 1, ...,z andygy1, . . ., yx SO that the following inequality holds:

€

=, [ 1T gitsw)- I o (Z%Z%)] : (3.1)

€0dd ecE’ i€e i€e

We group the edges iB’ based on their intersection with, . .. , d). We rewrite Inequality 3.1 as

7 < E { 11 11 9 (Z w5y y)] : (3.2)

2n
@191);- (@) O™ | 514 ae0dd UE"an(d]=8 €S ies

where for eactu € [k] U E, go(z;y) = ga(c; + zi¢a +y), With ¢, = 37,0\ (g Ti @ndca = 37c 00 () Vi
fixed vectors in{0,1}" .
By grouping the edges based on their intersection Withwe can rewrite Inequality 3.2 as

H Gs <Z xz??/i)>:|

|
IA

Qk (xlvyl)v 7(xdvyd)€{0 1}2n

= ({Gs}scia) Ly,

€S
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whereGy is simply the product of all the functiong such thatz € OddUE’ anda N [d] = S.

Since(l, . .., d) is maximum, all the other edges if do not contair(1, . . ., d) as a subset. Thusyy = gy
andE Gg = 0. By Lemma 2.7, the linear Gowers inner product of a family ofdiions {G's} is positive
implies that two functions from the family must share a Malgawith positive influence. More precisely,
there existS # T C [d], i € [2n], T > 0, such thaf;(Gs),L;(Gr) > 7, wherer = 25—;)

Note thatGy is the product of ally/, that depends on the fixed variables with indices outsidd]oSo G is

a constant function and all its variables clearly have imftig®). Thus neitherS nor T' is empty. Sincexg
andGr are products of at mogt functions, by Lemma 2.3 there must exist somg b € [d] U E’ such
thatl;(g.),1i(gs) > 557 Recall that we have definggd (z;y) to beE. fu(c;, + 2 + (ca +y) A 2). Thus we
can apply Proposition 3.10 to obtain

Ii(ga) = Z /g\a(OC;ﬁ)Q

(a,8)€{0,1}*" i€ (v, 0)

= Z Z falc)? 4o

ae{0,1}";ica BCa

= > falw)P2rll

aef{0,1}""ica

Let w be the least positive integer such that’ < sz+. Then it is easy to see th@%w(fa) > ooty
Similarly, Ifw(fb) > smr as well. Hence this completes the prolf.
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