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A Hypergraph Dictatorship Test with Perfect Completeness

Victor Chen*

Abstract

A hypergraph dictatorship test is first introduced by Sardoitsky and Trevisan in [21] and serves
as a key component in their uniqgue games ba¥€® construction. Such a test has oracle access to a
collection of functions and determines whether all the fioms are the same dictatorship, or all their low

degree influences arg1). The test in [21] makeg > 3 queries and has amortized query complexity
1+0 (1"% but has an inherent loss of perfect completeness. In thierpap give an adaptive
hypergraph dictatorship test that achieves both perfetipteteness and amortized query complexity

140 (l82).

1 Introduction

Linearity and dictatorship testing have been studied irptst decade both for their combinatorial interest
and connection to complexity theory. These tests distsigfiinctions which are linear/dictator from those
which are far from being a linear/dictator function. Thet$edo so by making queries to a function at
certain points and receiving the function’s values at thmsets. The parameters of interest are the number
of queries a test makes and the completeness and soundreetesbf

In this paper we shall work with boolean functions of the fofm {0,1}" — {-1,1}. We say a function
fislinear if f = (—1)xies® for some subses C [n]. A dictator function is simply a linear function
where|S| = 1, i.e,, f(z) = (—1)" for somei. A dictator function is often called ng code and it is
first used in [3] for the constructions of probabilistic ckable proofs PCPs), see e.g., [2, 1]. Since then,
it has become standard to desigh@P system as the composition of two verifiers, an outer verifier an
inner verifier. In such case,RCP system expects the proof to be written in such a way so thabuber
verifier, typically based on the verifier obtained from Ra&2&rallel Repetition Theorem [17], selects some
tables of the proof according to some distribution and thessps the control to the inner verifier. The inner
verifier, with oracle access to these tables, makes querieshese tables and ensures that the tables are
the encoding of some error-correcting codes and satisfiegomt constraint. The long code encoding is
usually employed in these proof constructions, and therimadfier simply tests whether a collection of
tables (functions) are long codes satisfying some comrak-ollowing this paradigm, constructing®?&P
with certain parameters reduces to the problem of designingg code test with similar parameters.

One question of interest is the tradeoff between the sowsdaled query complexity of a tester. If a tester
gueries the functions at every single value, then trivithky verifier can determine all the functions. One
would like to construct a dictatorship test that has the kiwmossible soundness while making as few
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queries as possible. One way to measure this tradeoff bettheesoundness and the number of queries

q is amortized query complexitylefined as—.— This investigation, initiated in [25], has since spurred
a long sequence of works [22, 20, 11, 6]. All the testers frbasé works run many iterations of a single
dictatorship test by reusing queries from previous iterati The techniques used are Fourier analytic, and

the best amortized query complexity from this sequence oksvbas the forni + O (ﬁ)

The next breakthrough occurs when Samorodnitsky [19] duices the notion of eelaxedlinearity test
along with new ideas from additive combinatorics. In prdpeesting, the goal is to distinguish objects
that are very structured from those that are pseudorandorielcase of linearity/dictatorship testing, the
structured objects are the linear/dictator functions, faimdtions that are far from being linear/dictator are
interpreted as pseudorandom. The recent paradigm inaeldiimbinatorics is to find the right framework
of structure and pseudorandomness and analyze combalaibjécts by dividing them into structured and
pseudorandom components, see e.g. [24] for a survey. Onessuis the notion of Gowers norm [7], which
has been fruitful in attacking many problems in additive bomatorics and computer science. In [19], the
notion of pseudorandomness for linearity testing is radakestead of designating the functions that are far
from being linear as pseudorandom, the functions havindl $omadegree Gowers norm are considered to
be pseudorandom. By doing so, an optimal tradeoff betweendseess and query complexity is obtained
for the problem of relaxed linearity testing. (Here the &afflis stronger than the tradeoff for the traditional
problem of linearity testing.)

In a similar fashion, in th& CP literature since [9], the pseudorandom objects in dicthiprtests are not
functions that are far from being a dictator. The pseudavemélinctions are typically defined to be either
functions that are far from all “juntas” or functions whosew-degree influences” arg1). Both consider-
ations of a dictatorship test are sufficient to compose tstdrieaP CP construction. In [21], building on the
analysis of the relaxed linearity test in [19], Samorodgitand Trevisan construct a dictatorship test (tak-
ing the view that functions with arbitrary small “low-degrenfluences are pseudorandom) with amortized

qguery complexityl + O (1"% . Furthermore, the test is used as the inner verifier in a tiondi PCP con-

struction (based on unique games [12]) with the same paeametiowever, their dictatorship test suffers
from an inherent loss of perfect completeness. Ideally ooeldvlike testers with one-sided errors. One,
for aesthetic reasons, testers should always accept walids. Two, for some hardness of approximation
applications, in particular coloring problems (see e.g] fr [5]), it is important to construdPCP systems
with one-sided errors.

In this paper, we prove the following theorem:

Theorem 1.1(main theorem) For everyq > 3, there exists an (adaptive) dictatorship test that makes
. 3 . . . . .
gueries, has completenessand soundnesé)%; in particular it has amortized query complexity+

O (k2.

Our tester is a variant of the one given in [21]. Our testededive in the sense that it makes its queries in
two stages. It first makes roughlyg ¢ nonadaptive queries into the function. Based on the valfidtese
gueries, the tester then selects the rest of the query pwnidaptively. Our analysis is based on techniques
developed in [11, 21, 10, 8].

1.1 Future Direction

Unfortunately, the adaptivity of our test is a drawback. Therespondence betwe@CP constructions
and hardness of approximation needs the test to be fullydapiwe. However, a more pressing issue is
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that our hypergraph dictatorship test does not immediatapty a newPCP characterization oNP. The
reason is that a dictatorship test without “consistencyks$ieis most easily composed with the unique label
cover defined in [12] as the outer verifier ilP&@P reduction. As the conjecturédP-hardness of the unique
label cover cannot have perfect completeness, the obvigur®ach in combining our test with the unique
games-based outer verifier does not imply a WP result. However, there are variants of the unique label
cover (e.g., Khot's! to 1 Conjecture) [12] that do have conjectured perfect compkse, and these variants
are used to derive hardness of coloring problems in [5]. Weehbat our result combined with similar
techniques used in [5] may obtain a new conditidR@IP construction and will motivate more progress on
constraint satisfaction problems with bounded projection

1.2 Related Works

The problem of linearity testing was first introduced in [#he framework of property testing was formally
set up in [18]. ThePCP Theorems were first proved in [2, 1]; dictatorship tests fifgbeared in th&CP
context in [3], and many dictatorship tests and variant®apgd throughout tHeCP literature. Dictatorship
test was also considered as a standalone property tesfihg]imPAs mentioned, designing testers dhdPs
focusing on amortized query complexity was first invesggdan [25], and a long sequence of works [22, 20,
11, 6] followed. The first testdPlCP system focusing on this tradeoff while obtaining perfechpteteness
was achieved in [10].

The orthogonal question of designing tester® QPs with as few queries as possible was also considered.
In a highly influential paper [9], Hastad constructeB@P system making only three queries. Many vari-
ants also followed. In particuld?CP systems with perfect completeness making three queries also
achieved in [8, 13]. Similar to our approach, O’Donnell and 4] designed an optimal three bit dictator-
ship test with perfect completeness, and later the samemutbnstructed a conditionRICP system [15].

2 Preliminaries

We fix some notation and provide the necessary backgrountisnsection. We lefn] denote the set
{1,2,...,n}. Foravectow € {0,1}", we write|v| = Zie[n} v;. We letA denote the boolean AND, where
aAb = 1iff a = b = 1. For vectorw, w € {0,1}", we writev Aw to denote the vector obtained by applying
AND to v andw component-wise. We abuse notation and sometimes intesprettorv € {0,1}" as a
subset C [n] wherei € v iff v; = 1. For a boolean functiorf : {0,1}" — {0, 1}, we make the convenient
notational change frorf0,1} to {-1,1} and writef : {0,1}" — {-1,1}.

2.1 Fourier Analysis

Definition 2.1 (Fourier transform) For a real-valued functiorf : {0,1}" — R, we define its Fourier
transformf : {0,1}" — R to be R
= E «a ’
fly= _E  f@)xa)
wherex,(z) = (—1)%ickl %% We sayf(a) is the Fourier coefficientof f at o, and thecharactersof
{0,1}" are the functiong xa }ac{o,1}-



Itis easy to see that far, 5 € {0,1}", E xo-xgis 1if a = § and0 otherwise. Since there a2é& characters,
they form an orthonormal basis for functions fh 1}", and we have the Fourier inversion formula

o= 3 Faxa)

ae{0,1}"

and Parseval's Identity

S Fle)? =Elf@)?).
ae{0,1}"

2.2 Influence of Variables

For a boolean functiory : {0,1}" — {-1,1}, theinfluenceof the i-variable, I;(f), is defined to be
Procioay[f(x) # f(x + e;)], wheree; is a vector in{0,1}" with 1 on thei-th coordinate) everywhere
else. This corresponds to our intuitive notion of influenlsew likely the outcome off changes when the
i-th variable on a random input is flipped. For the rest of thipay, it will be convenient to work with the
Fourier analytic definition of;(f) instead, and we leave it to the readers to verify that the wfnitions
are equivalent whelfi is a boolean function.

Definition 2.2. Let f : {0,1}" — R. We define the influence of theth variable off to be

L(f) = > fle)?.

aef{0,1}": a;=1

We shall need the following technical lemma, which is Lembhiieom [21], and it gives an upper bound on
the influence of a product of functions.

Lemma 2.1([21]). Let f1,..., fr : {0,1}"" — [—1,1] be a collection of bounded real-valued functions,
and definef (z) = Hle fi(z) to be the product of thegefunctions. Then for eache [n],

k
L(f) <k-) L)
j=1

When{ f;} are boolean functions, it is easy to see thaf) < Z;‘f’:l I;(f;) by the union bound.
We now define the notion of low-degree influence.

Definition 2.3. Letw be an integer betwedhandn. We define thev-th degree influence of thieth variable
of a functionf : {0,1}" — R to be

I=°(f) = > Flo).

ae{0,1}": a;=1, |a|<w

While the definition of low-degree influence is standard mliterature, we shall make a few remarks since
this definition does not have a clean combinatorial inteéghi@n or an immediate justification. Dictatorship
tests (those based on influences) classify functions in thendtances to be those whose low-degree influ-
ences are(1) for two reasons. One is that large parity functions, whickehaany variables with influence

1 but no variables with low-degree influence, must be rejebtethe test. The second is thatifis fixed,
then a bounded function has only a finite number of variabliés karge w-th degree influence. This easy
fact, though we won't need it here, is often needed to lift@alorship test to  CP construction. Both
such considerations fail if we substitute the low-degrdli@mce requirement by just influence, thus the
need for a thresholded version of influence.



2.3 Gowers norm

In [7], Gowers uses analytic technigues to give a new pro@zsfmeéredi’s Theorem [23] and in particular,
initiates the study of a new norm of a function as a measursadgorandomness. Subsequently this norm is
termed theGowers uniformity nornand has been intensively studied and applied in additivebaaiorics,
see e.g. [24] for a survey. The use of the Gowers norm in caengetence is initiated in [19, 21].

Definition 2.4. Let f : {0,1}" — R. We define thel-th dimension Gowers uniformity norai f to be

1/2¢

n={ | f(x{wi)

s TLyenyT
41 sclq ics

For a collection oR2¢ functions fs : {0,1}" — R, S C [d], we define thei-th dimension Gowers inner
productof { fs}scq to be

<{fS}Sg[d}>Ud - z, 1’11?..,1'(1 H fs <x + Z xl)

SC[d] i€S

When f is a boolean function, one can interpret the Gowers normnaglgithe expected number of “affine
parallelepipeds” of dimensio. While this expression may look cumbersome at first glaneeutie of the
Gowers norm is in some sense to control expectations ovee sdiner expressions. For instance, to count
the number ofl + 1-term progressions of the formz +y, ...,z + d -y in a subset, one may be interested
in approximating expressions of the foig , [ f1(x) fa(x +y) - - - fa(x +d - y)], wherefy, ..., f; are some
bounded functions over some appropriate domain. In fashasn by Gowers, these expectations are upper
bounded by the Gowers inner product £f which is also upper bounded byin;c g ||fi||gfi. Thus, in a
rough sense, questions regarding progressions are thecegktb questions regarding the Gowers norms,
which are more amenable to analytic techniques.

The proof showing thak,, , [ f1(x) f2(x+y) - - - fa(x+d-y)] is upper bounded by the minimum Gowers norm
of all the functionsf; is not difficult; it proceeds by repeated applications of@aichy-Schwarz inequality
and substitution of variables. Collectively, statemeratgirsy that certain expressions are governed by the
Gowers norm are coinegbn-Neumann type theorerimsthe literature.

For the analysis of hypergraph-based dictatorship tessha# encounter the following expression.

Definition 2.5. Let {fs}sc(q be a collection of functions whergs : {0,1}" — R. We define thei-th
dimension Gowers linear inner produet { fs} to be

<{fs}sg[d}>wd = xl’?md H [s (Z w)

SC(d] i€S

This definition is a variant of the Gowers inner product anih ifact upper bounded by the square root of
the Gowers inner product as shown in [21]. Furthermore theyved that if a collection of functions has
large Gowers inner product, then two functions must shanafarential variable. Thus, one can infer the
weaker statement that large linear Gowers inner produdiasipwo functions have an influential variable.

For our purposes, we can encapsulate all the prior disqugdio the following statement, which is Lemma
16 from [21]. This is the only fact on the Gowers norm that we @iy need.
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Lemma 2.2([21]). Let{fs}sc[q be a collection of bounded functions of the fofg: {0,1}" — [-1,1].
SupposQ{fg}SgdpLUd > eandE fig = 0. Then there exists some variablesome subsetS # T' C [d]

such that the influences of thixth variable in bothfs and fr are at Ieast25—?d).

3 Dictatorship Test

Definition 3.1 (dictatorship) Fori € [n], thei-th dictatoris the functionf (z) = (—1)%:.

In the PCP literature, thei—th dictator is also known as the long code encoding, df —1)") (o 137
which is simply the evaluation of thieth dictator function at all points.

Now let us define afunction dictatorship test. Suppose we are given oradeszcto a collection of boolean
functions f1,. .., f;. We want to make as few queries as possible into these funsctdecide if all the
functions are the same dictatorship, or no two functionelsme common structure. More precisely, we
have the following definition:

Definition 3.2. We say that a test = 71/t is at—function dictatorship tesiith completeness and
soundness if T'is given oracle access to a family ofunctionsfy, ..., f; : {0,1}" — {-1, 1}, such that

e if there exists some variablec [n] such that for al € [t], f.(z) = (—1)%, thenT accepts with
probability at least, and

e for everye > 0, there exist a positive constant> 0 and a fixed positive integer such that ifl’
accepts with probability at leastt ¢, then there exist two functions,, f, wherea, b € [t], a # b and
some variablé € [n] such thall="(f,), =" (f;) > 7.

A g-function dictatorship test makingqueries, with soundne§%1 was proved in [21], but the test suffers
from imperfect completeness. We obtaifiga— O(log ¢))—dictatorship test that makejueries, has com-

pletenesd, soundnesé)%g), and in particular has amortized query complexity O logq), the same as

the test in [21]. By a simple change of variable, we can moeeipely state the following:

Theorem 3.1(main theorem restatedor infinitely manyt, there exists an adaptivefunction dictatorship
. 2
test that makes+ log(t + 1) queries, has completenessand soundnengg%).

Our test is adaptive and selects queries in two passes. @tmnfirst pass, it picks an arbitrary subset of
log(t + 1) functions out of the functions. For each function selected, our test picks agamentryy and
queries the function at entgy Then based on the values of thése(t + 1) queries, during the second pass,
the test selects positions nonadaptively, one from each function, then iggeall ¢ positions at once. The
adaptivity is necessary in our analysis, and it is uncleand can prove an analogous result with only one
pass.

3.1 Folding

As introduced by Bellare, Goldreich, and Sudan [3], we siisdume that the functions are “folded” as only
half of the entries of a function are accessed. We requiradmtatorship test to make queries in a special
manner. Suppose the test wants to quéat the pointr € {0,1}". If x; = 1, then the test querie&(z) as
usual. Ifz; = 0, then the test queriegat the pointl + 2 = (1,14 z9,...,1+ z,) and negates the value
it receives. It is instructive to note that folding ensufés + =) = — f(x) andE f = 0.
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3.2 Basic Test

For ease of exposition, we first consider the following sistjd scenario. Suppose we have oracle access
to just one boolean function. Furthermore we ignore thestnéfcbetween soundness and query complexity.
We simply want a dictatorship test that has completeressd soundnesé. There are many such tests
in the literature; however, we need a suitable one which gpetgraph dictatorship test can base on. Our
basic test below is a close variant of the one proposed by<®anmi, Lewin, Sudan, and Trevisan [8].

BAsic TESTT: with oracle access t@,

1. Pickz;, z;,y, z uniformly at random fron{0, 1}".

2. Queryf(y).

_1-f i
3. Letv = % Accept iff

f(xi) f(zj) = fl@i+xj;+ (I +y) A 2).

Lemma 3.2. The tesfl" is a dictatorship test with completeneks

Proof. Supposef is the/-th dictator, i.e.,f(z) = (—1)**. First note that

1—(=1)¥
vt Y= Yy + Ye,
which evaluates t0. Thus by linearity off
flaitzj+ l+y)Az) = fl)f()f((l+y)Az)
= (i) () (1)
= f(z)f(x5)
and the test always accepts. O

To analyze the soundness of the t€stwe need to derive a Fourier analytic expression for the@acee
probability of 7.

Proposition 3.3. Letp be the acceptance probability ®f Then

p=yty 3 Tt (143 fp)

ac{0,1}" BCa

For sanity check, let us interpret the expressionfoBupposef = y. for somea # 0 € {0,1}", i.e.,
f(@) = 1 and all other Fourier coefficients gfare0. Then clearlyp = 1 + 2%/, which equals whenever
f is a dictator function as we have just shown|df is large, therf” accepts with probability close t%x We
shall first analyze the soundness and then derive this anakpression fop.



Lemma 3.4. The tesfl" is a dictatorship test with soundne%s

Proof. Suppose the tegt passes with probability at Iea%:ﬂ-e, for somee > 0. By applying Proposition 3.3,
Cauchy-Schwarz, and Parseval’s Identity, respectivetyplatain

e < 5 Y e 1+2f<5>)

ac{0,1}" BCa

D=

IN

% Y flayPoll 1+(2f<5>2) 25

BCa

IN
=)
Q
—
~

B

Pick the least positive integer such thak~z < 5. Then by Parseval's again,
< S e
ae{0,1}":|a|<w

= ae{O%%):Ta\Sw ‘f(a) ‘

DN

So there exists some € {0,1}", || < w such that§ <
exists an € [n] such that3; = 1 and

f(ﬂ)‘ . With f being folded,3 # 0. Thus, there

C<fB2< 3 fla).

aef{0,1}":a;=1,|a|<w

Now we give the straightforward Fourier analytic calcudatfor p.

Proof of Proposition 3.3.As usual, we first arithmetize. We write

b = E <1+f(y)>(1+Acc(mi,xj,y,z)>+

Ti,T 5,12 2 2

E 1— f(y) 1—|—Acc(3:i,a:j,f—|—y,z)
TiyTj,Y,2 2 2 ’

Acc(zi, xj,y,2) = f(a) f(xj) f(xi + 25+ (Y A 2)).

where

Sincef is folded, f(I +y) = — f(y). Asy and1 + y are both identically distributed if0,1}", we have

. (1 +§f(y)> <1+ACC(€i,$j7y7z)> _

p=2

Z3,L5,Y,%
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SinceE f = 0, we can further simplify the above expression to be

1 1
s+5 E [(1+ f(y) Acc(ws, 25,9, 2)] -
2 2 TiyLj,Y,2

It suffices to expand out the teris, . ,, .[Acc(z;, vj,y, 2)] andEy, .., - [f (y) Acc(zi, 75,9, 2)]-
For the first term, it is not hard to show that

E [Acc(riajy,2)]= Y Fl)? 27,

TiyXj,Y,2
v ae{0,1}"

by applying the Fourier inversion formula gnand averaging over; andz; and then averaging ovgrand
z over the AND operator.

Now we compute the second term. Applying the Fourier inegrdormula to the last three occurrences of
f and averaging over; andx;, we obtain

LB ) Aceli iy, 2] = D0 Fl@) E [F)xelyA2)].
e aef0,1}" ’

It suffices to expand ouE, . [f(y)xa(y A z)]. By grouping thez’s according to their intersection with
different possible subsefsof «, we have

E [f(y)Xa(y A 2)]

y?z

= Pr [zNna=0]E

3Ca z€{0,1}" Y =1
= > 2 E W [ 1~

BCa i Bi=1

2711 N f(B).

BCa

Putting everything together, it is easy to see that we hawd-turier analytic expression fpras stated in
the lemma. O

3.3 Hypergraph Dictatorship Test

We prove the main theorem in this section. The basis of ouetgypph dictatorship test will be very similar
to the test in the previous section. We remark that we did hobse to present the exact same basic test for
hopefully a clearer exposition.

We now address the tradeoff between query complexity anddsmss. If we simply repeat the basic test a
number of iterations independently, the error is reducatithe query complexity increases. In other words,
the amortized query complexity does not change if we simply the basic test for many independent
iterations. Following Trevisan [25], all the dictatorshigsts that save query complexity do so by reusing
gueries made in previous iterations of the basic test. Uetilate this idea, suppose t@sgueriesf at the
pointsx; + hi, z2 + ho, 21 + x2 + hy 2 to make a decision. For the second iteration, welefuery f at
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the pointses + hs andz; + z3 + hy 3 and reuse the valug(xz; + hi) queried during the first run &f. T’
then uses the three values to make a second decision. IAtatakes five queries to run two iterations.

We may think of the first run of" as parametrized by the points andx, and the second run af by z;
andzs. In general, we may have pointszy, ..., x; and a graph ork] vertices, such that each edge
of the graph corresponds to an iterationfoparametrized by the points:; };c.. We shall use a complete
hypergraph otk vertices to save on query complexity, and we will argue thatsoundness of the algorithm
decreases exponentially with respect to the number otibea

Formally, consider a hypergraphi = ([k], E). Let{f.}.cpjur be a collection of boolean functions of
the form f, : {0,1}" — {-1,1}. We assume all the functions are folded, and so in particHlgy, = 0.
Consider the following test:

HYPERGRAPHH -TEST. with oracle access t0f. }.c(xjuE
1. Pickz1, ... Tk, Y1, - - - Yk, ANA{ 20 }ocprjur iNdependently and uniformly at random frof@, 13"
2. Foreach € [k], query fi(yi).

3. Letv;, = %L(yl)

Accept iff for everye € F,

I1 |:fi(xi + (0T + i) A Zi)] = fe (Z z; + (EiEe(viI+ yi)) A Ze> -

i€e i€e

We make a few remarks regarding the desigriiefrest. The hypergraph test by Samorodnitsky and Tre-
visan [21] accepts iff for every € E, [[,., fi(zi + n:) equalsf.(>,c. zi + 1¢), where the bits in each
vectorn, are chosen independently to bavith some small constant, s@y01. The noise vectorg, rule

out the possibility that linear functions with large suppecan be accepted. To obtain a test with perfect
completeness, we use ideas from [8, 16, 10] to simulate fheteff the noise perturbation.

Note that fory, z chosen uniformly at random fro, 1}", the vectory Az is a%—noisy vector. As observed
by Parnas, Ron, and Samorodnitsky [16], the fdstA z) = f(y) A f(z) distinguishes between dictators
and linear functions with large support. One can also comliirearity and dictatorship testing into a single
test of the formf (z1 + 22 + y A 2)(f(y) A f(2)) = f(x1)f(x2) as Hastad and Khot demonstrated [10].
However, iterating this test is too costly for us. In fact,stéil and Khot also consider an adaptive variant
that reads:? + 2k bits to obtain a soundnessf*”, the same parameters as in [20], while achieving perfect
completeness as well. Without adaptivity, the test in [B@ldsk? + 4% bits. While both the nonadaptive and
adaptive tests in [10] have the same amortized query corityglextending the nonadaptive test by Hastad
and Khot to the hypergraph setting does not work for us. Scohiese the same amortized query complexity
as the hypergraph test in [21], we also exploit adaptivitgun test.

Theorem 3.5(main theorem restatedor infinitely manyt, there exists an adaptivefunction dictatorship
2
test witht 4 log(¢ + 1) queries, completenedsand soundnesgg%).

Proof. Take a complete hypergraph éivertices, wheré = log(¢ + 1). The statement follows by applying
Lemmas 3.6 and 3.7. O
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Lemma 3.6. The H-Test is a(k + | E|)-function dictatorship test that makég| + 2k queries and has
completeness.

Proof. The test makek queriesf;(y;) in the first pass, and based on the answers to theseries, the test
then makes one query into each functjGnfor eacha € [k]U E. So the total number of queries|&| + 2k.

Now suppose all the functions are th¢h dictator for somé € [n], i.e., for alla € [k] U E, f, = f, where
f(z) = (—1)**. Note that for each € [k],

1 - (—1)%©
U; +yz(€) = 7( )

which evaluates t0. Thus for eacle € E,

Hfz T; + vzl"‘yz)/\zz) = f sz

= f (Z:EZ) ( 1)(Ui+yi(£))AZi(f)

(il + i) A 2)

and similarly,

(Z i+ ( ice 'Uzl + yz)) N Ze

1€e
Hence the test always accepts. O

Lemma 3.7. The H-Test has soundneg§~I£!

Before proving Lemma 3.7 we first prove a proposition retathre Fourier transform of a function perturbed
by noise to the function’s Fourier transform itself.

Proposition 3.8. Let f : {0,1}" — {-1,1} . Defineg : {0,1}*" — [—1,1] to be

jy) = E +z+(c+y)A
9(z;y) 26{01},Lf(c r+ (c+y)Az),

wherec, ¢ are some fixed vectors i), 1}" . Then
9(c; 8)* = F()® 1pcayd .

Proof. This is a straightforward Fourier analytic calculation. dsfinition,

2
30 B)? :( E f<c'+:c+<c+y>Az>xa<x>Xﬁ<y>> |

$7y72€{071}’”

By averaging over it is easy to see that

2
§<a;ﬁ>2=f<a>2( E xa<<c+y>m>><5<y>>.

y,2€{0,1}"
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Since the bits ofy are chosen independently and uniformly at randomj\if is nonempty, the above
expression is zero. So we can write

2
(cz+yz Az; H E )(cz'+y¢)Azz~+yi )
Yi,Zi Yi,Zi
ica\B Z i€l ‘ Z

9(a;8)? = f()? Liscay ( IT E(

Itis easy to see that the terfy, ., (—1)(©+¥) % evaluates t@ and the ternE,, ., (—1)(¢i+v:) =¥ evalu-
ates to(—1)% 5. Thus

9(e: 8)? = f(a)? Lgpcapd
as claimed. O

Now we prove Lemma 3.7.

Proof of Lemma 3.7Let p be the acceptance probability Hf-test. Suppose that—Zl + ¢ < p. We want
to show that there are two functiorfs and f; such that for some € [n], some fixed positive integen,
some constard > 0, it is the case thalfw( fa) “(fp) > €. As usual we first arithmetize. We write

_ L+ (=1)" fi(ys) 14+ Acc({xs, yi, i, 2i Yices Ze)
p= 2 {L}{E}{ZG}H 2 11

2 )
TifYiss .
ve{0,1}F i€[k] eckl

where

Ace({zi,yi,vir zitieer 7). = ] [fi(l'i + (0l +y3) A zi)]

(sz < ice(vil +y2)) A ze> .

1€e

For eachi € [k], f; is folded, so(—1)% f;(y;) = fi(v;1 + ;). Since the vector$y; }ic(x) are uniformly and
independently chosen frogo, 1}", for a fixedv € {0, 1}’“, the vectors{v; 1 + Yi}ie[x) are also uniformly
and independently chosen froffi, 1}" . So we can simplify the expression ferand write

[T 1+ sy [ - Aecteoted }>] .

= E 2
{-’Ei}7{yi}7{2a} Ze[k] eckE

Instead of writingAcc({z;, i, 0, i }ice, z¢), for convenience we shall writdcc(e) to be a notational short-
hand. Observe that sindet f;(y;) is either0 or 2, we may write

<ot E H 1+ Acc(e)
{ehlvibdza} | S p 2

Note that the product of sunjg, . 1+A2CC(6) expands into a sum of products of the form

Pl <1+ Z H Acc(e)) ,

0£E'CE ecE’
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SO we have

€
— < E 2~ |E| Acc(e
28 = {ei} fvitdza) { 2 I Accle)

0£E'CE ecE’

By averaging, there must exist some nonempty subs&i E such that

H Acc(e

eck’

€

oF = {a:}, {yl} {za}

Let Odd consists of the vertices ift] with odd degree inE’. Expanding out the definition okcc(e), we
can conclude

2% b b} I] fitei+yinz): er<zx"+<zyi>me>]'

1€0dd ecE’ i€e i€e

We now define a family of functions that represent the “noisysions” of f,. Fora € [k] U E, define
gl :{0,1}*" — [~1,1] to be
o (5 E  falz+yA
9a(T3y) = e falz +y A 2).
Thus we have
€

[T gitxw) - 11 9 (Z%Z%)] .

ok
2 {:c } {vi} 1€0dd ecE’ i€e i€e

Following the approach in [11, 21], we are going to reduceathedysis of the iterated test to one hyperedge.
Let d be the maximum size of an edge ffi, and without loss of generality, I€1,2, ..., d) be a maximal
edge inE’. Now, fix the values ofry, 1, ...,z andygy1, ...,y SO that the following inequality holds:

€

5% o | IL s T (S| o

€0dd ecE’ i€e i€e

We group the edges iA’ based on their intersection with, . .. , d). We rewrite Inequality 3.1 as

7 < E {H I1 o <Zwi§zyi>] : (3.2)

2n
(@1,91),-+5(za,ya)€{0,1} SCld] a€Odd UE":aN[d]= icS ieS

where for eactu € (k]| U E, ga(x;y) = gL(c, + x;5¢4 + y), With ¢, = Dica\[g Ti andca = 3o g Yi
fixed vectors in{0, 1}" .

By grouping the edges based on their intersection Withwe can rewrite Inequality 3.2 as

H Gs (Z xuyi)ﬂ

€S

|
IA

2k (1,91),-- 7($d7yd)€{0 13

= ({Gs}scia) Ly,
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whereGy is simply the product of all the functiong, such thatt € Odd UE’ anda N [d] = S.

Since(1,...,d) is maximal, all the other edges fiY do not contair(1, ... ,d) as a subset. Thugy = gjg
andEG|y = 0. By Lemma 2.2, the linear Gowers inner product of a family afidiions {Gs} being
positive implies that two functions from the family must sha variable with positive influence. More
precisely, there exist # T' C [d], i € [2n], 7 > 0, such thaf;(Gs),1;(Gr) > 7, wherer = 25—2)

Note thatGy is the product of all the functiong, that are indexed by vertices or edges outsidg/jofSo G|
is a constant function, and all of its variables clearly hiafteience0. Thus neithetS norT' is empty. Since
Gs andGr are products of at mog¥ functions, by Lemma 2.1 there must exist some: b € [d] U E
such thaf;(g.), 1;(g95) > 557 Recall that we have defingd (z; y) to beE, f,(c, + + (ca +y) A2). Thus

we can apply Proposition 3.8 to obtain

Ii(ga) = Z @z(a?ﬁ)2

(a,3)€{0,1}°"i€(,3)

= Z Z falc)? 47 le

a€e{0,1}"ica BCa

= Y fa@?P2rll

ae{0,1}";icx

Let w be the least positive integer such that” < sz . Then it is easy to see th@%“’(fa) > Sty
Similarly, Ifw(fb) > st as well. Hence this completes the proof. O
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