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Abstract

We construct public-key cryptosystems that are securav@sgitheworst-casenardness of approxi-
mating the length of a shortest nonzero vector inatimensional lattice to within a smaibly (n) factor.
Prior cryptosystems with worst-case connections weredaiber on the shortest vector problem for
a special clasof lattices (Ajtai and Dwork, STOC 1997; Regev, J. ACM 200z pn the conjectured
hardness of lattice problems fquantumalgorithms (Regev, STOC 2005).

Our main technical innovation is a reduction from certairiasats of the shortest vector problem to
corresponding versions of the “learning with error8ME) problem; previously, only guantunreduc-
tion of this kind was known. In addition, we construct newptnsystems based on thearchversion of
LWE, including a very naturathosen ciphertext-secusystem that has a much simpler description and
tighter underlying worst-case approximation factor theomronstructions.
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1 Introduction

The seminal work of Ajtai in 1996 revealed the intriguing gibdlity of basing cryptography oworst-case
complexity assumptions relatedltdtices[Ajt04]. (An n-dimensional lattice is a discrete additive subgroup
of R™.) Since then, basic cryptographic primitives such as oag-functions and collision-resistant hash
functions (along with other notions from “Minicrypt” [Img#)) have been based on the conjectured hardness
of important and well-studied lattice problems. Perhapsntost well-known of these, thahortest vector
problemGapSVP, is to approximate the length (typically, in the Euclideanwm) of the shortest nonzero
vector in a given lattice; another, called thigort independent vectors proble&tV/P, is (essentially) to find
a full-rank set of lattice vectors that are relatively short

For public-key encryptior{and related strong notions from “Cryptomania”), howevbe underlying
worst-case lattice assumptions are somewhat more subiteegund-breaking cryptosystem of Ajtai and
Dwork J[AD97] and subsequent improvemerits [Reg(04b, ADO&]lzased on a special case of the shortest
vector problem, called “uniqu&VP,” in which the shortest nonzero vector of the input lattiogstrbe signif-
icantly shorter than all other lattice vectors that are ravtjiel to it. Compared to other standard problems,
the complexity of uniqué&VP is not as well-understood. While it does appear to be asytinptly difficult,
there is both theoretical and experimental evidence [G#&P8E] that it may not be as hard as problems on
generallattices, due to the extra geometric structure.

A different class of cryptosystems (and the only others kmtavenjoy worst-case hardness) stem from
a work of Regev|[Reg05], who defined a natural intermediatdlpm callediearning with errors(LWE).
The LWE problem is a generalization of the well-known “learning igawith noise” problem to larger
moduli. It is parameterized by a dimensiona modulusg, and an error distributiory overZ,; typically,
one considers a Gaussian-like distributipthat is relatively concentrated aroudwhereZ, is represented
by the integer residues-11,. . ., L%J. In thesearchversion ofLWE, the goal is to solve for an unknown
vectors € Zjy (chosen uniformly at random, say), given any desined= poly(n) independent “noisy
random inner products”

(al-,bi:<ai,s>+wi)€ZZ><Zq, 1=1,...,m,

where eacla; € Zj is uniformly random and eacty is drawn from the error distributioR. In thedecision
version, the goal is merely to distinguish between noisgirproducts as above amdiform samples over
Zq x ZLq. Itturns out that when the modulygss prime and polynomial im, the search and decision variants
areequivalentvia an elementary reduction (but no such equivalence is krfowlargerg).

The LWE problem has turned out to be amazingly versatile. In additmits first application in a
public-key cryptosysten [RegD5], it has provided the faatiwh for chosen ciphertext-secure cryptosys-
tems [PW08], identity-based encryption [GPV08], and urgaly composable oblivious transfer [PVWO08],
as well as for strong hardness of learning results relatinwatfspaced [KS06]. We emphasize that all of the
above cryptographic applications are based ord#wsionversion ofLWE.

The main technical result of [Reg05] is a remarkable conoedietween lattices and the learning with
errors problem, namely: treearchversion ofLWE is at least as hard agiantumlyapproximating the prob-
lemsGapSVP andSIVP on n-dimensional lattices, in the worst case. In other wordsrethis a polynomial-
time quantum algorithm (a reduction) that solves standaitité problems given access to an oracle that
solves searchWE. This is an intriguing and nontrivial result, because desgignificant research efforts,
efficient quantum algorithms for the lattice problems in sficm have yet to be discovered. Under the
plausible conjecture that no such algorithms exist, it tfeows that LWE is hard and all of the above
cryptographic constructions are secure (even againstguasdversaries).



Due to the relative novelty of quantum computing, howewenay yet be premature to place a great deal
of confidence in such conjectures, and in any case, it is wihith to base hardness results and cryptographic
schemes on the weakest possible assumptions. A centraiouiest open in[[Reg05] is whether there is a
classicalreduction from lattice problems {WVE. More generally, basing a public-key cryptosystem on any
“conventional” worst-case lattice assumption has renthareelusive open question.

1.1 Results

Our main result is the first public-key cryptosystem whosigty is based on the conjectured worst-case
hardness of approximating the shortest vector problem aergélattices. The core technical innovation
is aclassicalreduction from certain lattice problems to correspondiagsions of the learning with errors
problem. In more detail:

¢ We show that theearchversion ofLWE, for any sufficiently large modulug > 2", is at least as hard
as approximatingapSVP in the worst case, via a classical (probabilistic polyndttiirae) reduction.
The concrete approximation factor fGapSVP has essentially the same dependence on the error
distribution as in the quantum reduction of [Reg05].

e Our main reduction additionally shows that for moduli as Basg > w(/n), the search version of
LWE is at least as hard as (classically) approximatingpweel variantof the shortest vector problem
on general lattices in the worst case. The new problem isigablg the GapSVP problem on “higher
quality” representations of the input lattice; hence, ihdésharder than standafehpSVP, yet it still
appears to be exponentially hard given the state of the &attine algorithms[[AKSO1].

By the above-mentioned equivalence between search- amatedVE for prime g = poly(n), our
result provides a classical (but incomparable) foundafiwrthe hardness of decisidWE and the
many cryptographic applications that are based upon it.

e We construct new cryptosystems based onstrchversion ofLWE (for any modulusy), including
a simple and natural cryptosystem that is secure ucti@sen-ciphertext attack

In our basic (semantically secure) system, public keys asize O(n?log? q), and the expansion
factor of ann-bit plaintext can be as small &log ¢). (The chosen ciphertext-secure cryptosystem
just incurs additionah? factors.) The underlying worst-case approximation fafoGapSVP (or its
new variant) isO(n2log q), and has the potential to be reducedxm'5/Iog ¢) with an improved
key-generation algorithm.

Assuming hardness of the stand&apSVP problem (and letting = 2°(), the public key size and
ciphertext expansion factor are theref@én*) and O(n), respectively; these quantities match the
(amortized) Ajtai-Dwork cryptosystem based on unigié&? J[ADO7].

Assuming hardness of the neapSVP variant (and letting; = poly(n)), the public key size and
ciphertext expansion can be as small@&?) and O(logn), respectively; these match the most
efficient known cryptosystems basedaecisionLWE [PVWO08,[GPV08].

Our chosen ciphertext-secure cryptosystem provides amative to a recent construction of Peikert
and Waters [PW(08] based on the decisi®®E problem. In addition to the new system’s classical worst-
case foundation, other key advantages include its tightdenlying approximation factor and its relatively
simple description and analysis (the construction in [P}¥8omewhat cumbersome in both regards).

1The(5(~) notation hides factors that are polynomialig 7.
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1.2 Overview
1.2.1 Conceptual Summary

We start by giving a high-level description of the commonigiesind analysis paradigm of prior cryptosys-
tems with worst-case connections [AD97, Red(04b, Reg05, ADT hese works consider two types of
probability distributions over some additive domain: osdhie uniform distribution, while the other type
consists of “lumpy” distributions that angeriodic and concentratedaround multiples of the period. As
a simple example, irf [Reg04b] the domain is the real intejwal) with addition modulol, and lumpy
distributions are concentrated around integer multipfels/ for some large integei.

The cryptosystems are constructed roughly as follows: éboees key is a period chosen at random, and
the public key consists of several samples from the corretipg lumpy distribution. A) bit is encrypted by
letting the ciphertext be ndom subset-suf the samples in the public key;las encrypted by choosing
auniformly randonwvalue in the domain (other slight variations are also pdssilDecryption simply tests
whether the ciphertext is “relatively close” to a multipletbhe secret period (to decrypt &% or not (to
decrypt adl).

Semantic security is proved by a thought experiment in wiighpublic key is instead made up of
samples drawn from thaniform distribution. It so happens that encrypting under such aHidgs the
message btatistically(i.e., information-theoretically), because random stibgms are distributed almost
uniformly. It follows that an adversary capable of breakihg semantic security of the cryptosystem can
likewise distinguish between the uniform and lumpy disttibns.

Finally, the core technical component is a reduction defnatisg that the two kinds of distributions are
computationally indistinguishablessuming the worst-case hardness of some lattice prolitssentially,
the reduction takes a lattice as input and produces sampulgs dne of the two kinds of distributions,
depending on the geometric properties of the lattice. @tygiin order to guarantee that the reduction
produces samples from the specific kindstiicturedlumpy distributions that are used in the cryptosystem,
it has so far been necessary to impose additional geometnatraints on the reduction’s input. This is why
prior works have relied on specialized assumptions, estating to uniquesVP.

Our Approach. We retain the use of uniform and (a certain kind of) lumpyribistions, and give a reduc-
tion that samples from one of the two types. Our cryptosystem the other hand, depart substantially from
the previous design and analysis paradigm: public keys lirspgtems are instead drawn from th&iform
distribution, whereas lumpy distributions are used onlthmsecurity proofto show statistical hiding. The
principal advantage of this approach is thatignificantly relaxes the structural propertiesquired of the
lumpy distributions: first, because they no longer need ppstt decryption, and more importantly, because
they never need to be sampled in the “real world” at alll Thiskes additional geometric constraints on
the reduction’s input unnecessary, and allows for a sgcpraof under worst-case assumptions on general
lattices.

Several natural questions immediately arise about thisoagp, such as: What is the supporting secret
key for a uniformly-distributed public key? How does one rgpt and decrypt? And how do the lumpy
distributions induce statistically secure encryption? aifdress these issues in the following more technical
overview.



1.2.2 New Cryptosystems

Here we describe new cryptosystems based on the sE@fElproblem. At their heart is a certain collection
of injective (i.e., one-to-one) trapdoor functions. Thidlection appeared in a recent work of Gentry, Peik-
ert, and Vaikuntanathan [GPV08], and is closely relatednt@arlier proposal by Goldreich, Goldwasser,
and Halevi [GGH97]. In this work, we prove that the colleatis one-way under classical worst-case
assumptions, and we establish additional properties teaiseful in constructing cryptosystems.

The description of a functiopa from the collection is a matriA € Zp*™ made up ofm uniformly
random and independent colummse Z;, for some large enougi. A random input toya comes in two
parts: a uniformly random € Zj, and an error vectat € Z;* whose entries;; are chosen independently
from the error distributiony of the LWE problem. The function is defined simply as

b =ga(s,x) =A's+x € Z}".

Note that in the output vectds, each entryb; = (a;,s) + x;, S0 inverting the function is syntactically
identical to solving searchWE given m noisy inner products (note thatis easily computed onceis
known, and vice versa). Moreover, ¢fy is one-way, then there is a generic hard-core preditéte for
ga (s, x) [GL89].

As shown in[GPV0B], the functiona has a@rapdoorthat enables efficient recovery of the ingutom
b, so long as the error distribution is sufficiently concentrated. Concretely, the trapdabis a “good”
basis for a certain lattice defined ky, which can be generated together with Anhaving the desired
(almost-)uniform distribution [Ajt99, AP08]. The invewsi algorithm uses the trapdoor ba%isn a simple
rounding algorithm to recove.

Using this collection of trapdoor functions, it is straifgittvard to construct a basic semantically secure
cryptosystem. The secret and public keysBrand A (respectively), as above. An encryption of a message
bit 1 consists ob = ga (s, x) for randoms andx as above, as well gs® h(s). The decryption algorithm
uses the trapdodrF to recovers from b, recomputes the predicakés), and recovers the message

Improved efficiency and chosen-ciphertext security. One of our technical results is that the functiggn
actually admits a very simple hard-core predicate, nantiegparity of any coordinates; € Z, of s (when

q is even). Moreover, we show how to extend this hard bit ihsimultaneouslyhard bits, by lifting the
LWE problem from dimensiom to n + ¢ — 1 via an elementary reduction. This results in an “amortized
cryptosystem that can encrypt messages of length,/sayn bits using public keys and ciphertexts that
are only a constant factor larger than in the basic systemilé® amortization techniques for other lattice-
based cryptosystems were also recently proposed in [PVWWD8/7].) As a further optimization, we also
show that the output aofa can be represented in a “coarser” gratf for some modulug’ = poly(n),
which reduces the ciphertext size by an almost-linear fanta wheng is large (e.g.g = 2").

To construct cryptosystems that are secure under chophertéxt attacks, we rely on a recent approach
of [PWO0E] and additional perspectives of Rosen and Sege@8R I he key observation is thatindepen-
dently chosen functionga,, ga., - .., ga, remain one-way even when evaluated onghmeinputs (but
independent error vectoss,, .. ., xx), assuming the hardness of seal®WE given k - m samples. (This
fact was also observed independently by Goldwasser andidMaikathan [GV(8], for the same purpose.)
For injective trapdoor functions, one-wayness under swchrélated inputs” immediately yields chosen-
ciphertext security, as shown in [RS08]. At the same time, poof of one-wayness under correlation
follows by showing that the functions have “lossy” counteipa la [PWO0E], as we now explain.



1.2.3 Classical Hardness of WE

Here we give a simplified description of our worst-c&spSVP to LWE reduction, which conveys all the
essential ideas (we refer the reader to Seéfion 3 for fudlidgt The input to the reduction is some arbitrary
n-dimensional latticeA (represented by a basis), and the goal is to approxifGapSVP given access to
an oracle that solves the sealdiVE problem onm samples. That is, the reduction should determine if the
minimum distance of\ (i.e., the length of its shortest nonzero vector) is “smali™large,” where these
quantities are separated by somgy (n) multiplicative gap (and in between, any answer is accegjabl

Abstractly, the reduction first invokes a certain samplingcpdure over thdual lattice A* to generate
independensy, ..., a,, € Zy according to some (unknown) distribution. Concretely,gfeeedure samples
vectorsy; € A* from a Gaussian-likedistribution (as first used in [Reg04b], and refined in subsat
works [MR07]Reg08, GPV08]), and leis identify the residue class ¢\* /gA*) = Z; containingy;. The
reduction then chooses a random sesretZ; and error terms;; from , and gives the noisy inner products
(a;,b; = (a;,s) + x;) to the LWE oracle. If the oracle correctly producesas its solution, the reduction
outputs “large,” otherwise it outputs “small.”

When the minimum distance of is large, thea; are distributed essentiallyniformly over Zy; this
follows by a bound on themoothing parametesf A* due to Micciancio and Regev [MRD7]. Therefore, the
input provided to the oracle is faithful to th®VE distribution, the oracle solves ferby hypothesis, and the
reduction outputs “large” as desired.

The case of small minimum distance is more interesting, amdtdutes the chief novelty of our ap-
proach and analysis. In this case, the distribution ofathis lumpy; in the following sense: there is some
(unknown) nonzera’ € Zg such that the distribution ofa;, s’) mod gq is relatively concentrated around
0. (Concretely,s’ is the coefficient vector, reduced modujpof a short vector iM\). For a sufficiently
wide error distributiony overZ,, the noisy inner products thestatistically hidethe reduction’s choice of
s, i.e., it is about as likely to be + s’, conditioned on the view of the oracle. The oracle must foeee
guess incorrectly with noticeable probability, and theuettbn outputs “small” as desired. (Using a more
technical argument, we also show that a particpl@dicateon s is essentially uniform, hence hard-core,
conditioned on the view.)

Additional details. The modulusy must be large enough so that in the lumpy case, the distitwf
(a;, s) is well-concentrated relative to the sizefThe degree of concentration is dictated by the tightness
of the reduction’s main sampling algorithm, which in turrgisverned by the “quality” of the input basis.
Using an LLL-reduced basis [LLL82] (which may be computedomiynomial time), the valug = 2™
suffices. However, if the reduction is given a basis of bejtality, then a smallegy may be used; this is
where the new variant diapSVP comes into play.

The reduction we have outlined above, while technicallyexdr is still not quite as strong as we would
like. This is because in the lumpy case, the amount of noigeined to hides growswith the number of
samplesn that the oracle uses, whereas ideally it should be indep¢raden. This is important for op-
timizing the underlying worst-case approximation fact@specially for chosen-ciphertext security, which
uses more samples), and is also needed fok\tfie search/decision equivalence for prige- poly(n).

To address this issue, our reduction actually generatdspaQ a;, b;) together at oncéor any desired
number of samples, by adding noiaeoriori to a known vectov € A in the input lattice, rather thaa
posteriorito the inner productsa;, s). When the minimum distance is large, th&E oracle can be used to
recoverv, whereas when the minimum distance is smal statistically hidden. In the end, our reduction
relies heavily upon the classical component of Regev’'s atalu [Reg05], though in our case the are
generated by a classical sampling algorithm[of [GPVO08]aathan by a quantum step, and we follow a



different approach for solvinGapSVP.

1.3 Discussion and Open Problems

Note that the (simplified) reduction above essentially clesca functioya under an unknown distribution
on A, evaluates it on a known input, and checks whether the oractevers that same input. The uniform
distribution onA induces an injective (trapdoor) function, whereas a lumptridution induces a function
that statistically hides its input. This is essentially tiwtion of alossy trapdoor functiorfrom [PWOQ08§],
but in a slightly relaxed sense: in our case, there isingle, fully-specifiedand efficiently-sampleable)
distribution that induces a lossy function — larty lattice with small minimum distance does so.

It is worth pointing out explicitly how our reduction avoidsiantum computation. Recall that thé/E
oracle solves for a secrst(alternately, a vectox in the input lattice) that the reduction chooses itself.
In [Reg05], this allowed the quantum part of the reductiofiulcompute”s and create a useful quantum
state, but it was unclear whether such an oracle was of anglassically. Here we avoid quantum computa-
tion by introducing, as a complementary case, a lattice snithll minimum distance that statistically hides
the reduction’s random choices. In this case, the inputgighed to the oracle (in particular, tlgs) arenot
faithful to the LWE distribution, but this is of absolutely no consequence! Wmtion that related forms
of statistical hiding via small minimum distance have alppeared in the context of interactive proofs for
lattice problems [GGQ00, MV03] and algorithms for the shsirteector problen [AKSQ1].

Currently, our core reductions am@n-adaptive(all queries to the WE oracle can be prepared in ad-
vance), and seem to be limited to solving ttexisionversionGapSVP of the shortest vector problem. It
would be very interesting if the reductions could be maderétive” and/or extended to solgearchprob-
lems such aSIVP, like the quantum reduction df [Redg05] and prior reductimrs‘Minicrypt” primitives
(e.g., [Ajt04,[MROQT]). Another open problem is to design duetion that solves theearchversion of the
shortest vector problem; such a result would be quite ssingyj because even the prior reductions mentioned
above have also been limited to the decision version.

Finally, we believe that it may be very fruitful to study thenaoplexity of our new variant oGapSVP
(and related lattice problems), in which a gap of intermiediguality is already promised and a tighter
approximation is desired.

2 Preliminaries

We denote the set of real humbers Ryand the set of integers b§. For a positive integen, define
[n] = {1,...,n}. We extend any real functiofi(-) to any countable set by definingf(A) =>"__, f(z).

The main security parameter throughout the paper, Bnd all other quantities are implicitly functions
of n. We use standard(-), o(-), (), andw(-) notation to describe the growth of functions, and write
f(n) = O(g(n))if f(n) = O(g(n)-log®n) for some fixed constamt We letpoly(n) denote an unspecified
polynomial functionf(n) = O(n°) for some constant. A function f(n) is negligible written negl(n), if
f(n) = o(n=°) for every constant. We say that a probability isverwhelmingf itis 1 — negl(n).

Vector spaces. By convention, all vectors are in column form and are naméugusold lower-case letters
(e.g.,x), andz; denotes théth component ok. Matrices are named using bold capital letters (€49,
andx; denotes théth column vector ofX. We identify a matrixX with the (ordered) set of its column
vectors. For a se$ C R", pointx € R", and scalar € R, we defineS +x = {y +x : y € S} and
cS={cy : yeS}



The Euclidean (of3) norm onR™ is ||x|| = />, 7. The open unit balB,, C R"™ (in the {3 norm) is
defined as3,, = {x € R" : ||x|| < 1}.

For any (ordered) s&8 = {si,...,s,} C R” of linearly independent vectors, I8t = {s1,...,8n}
denote itsGram-Schmidt orthogonalizatiorefined iteratively as follows: lef = s1, and for each =
2,...,n, lets; be the projection o$; OntOSpani(sl, L >Si—1)1 i.e.,s; =s; — Z;_:ll ,ui,js}, Whel'e,U,Z'J =

(si,s;)/(Sj,s;). Observe thafs;|| < ||s;|| for all <.

Probability. For a probability distributionX over a domainD, let fx : D — R denote its density
function. Let X" denote then-fold product distribution oveD™, which has density functiorfx»(x) =
f%(x) :== fx(x1)--- fx(z,). The statistical distancebetween two distributions{’ andY over D (or
two random variables having those distributions) is defiagd\(X,Y) = maxacp |fx(A4) — fy(4)|.
Statistical distance is a metric on probability distribas; in particular, it obeys the triangle inequality.
Applying a (possibly randomized) functiop cannot increase the statistical distaneée(g(X), g(Y)) <
A(X,Y). The uniform distribution oveD is denoted/ (D).

Let X andY be two distributions, and gD be a probabilistic algorithm. We say that thévantageof
D in distinguishingX fromY is |Pr[D(X) = 1] — Pr[D(Y) = 1]|. We say that two ensemblés,, } and
{Y,,} of distributions indexed by, arecomputationally indistinguishabli¢ every probabilistic polynomial-
time D has negligible advantagegl(n) in distinguishingX,, fromY,.

For anyr > 0, define the one-dimensional Gaussian funcppn R — R with parameter as

pr(z) = exp(—m(z/r)?).

(We taker = 1 when it is omitted.) The total measure associategl s fRn pr(z) dz = r, sowe can define
a continuous Gaussian probability distribution ofeby its density functionD,.(z) = p,(x)/r (as before,
we may omitr). These extend t&” in the usual way agl*(x) = p,(z1) - - - pr(zn) = exp(—=(||x||/7)?)
andD,(x) = p,(x)/r"™. We also define the Gaussian norm distributi®s®’, which is obtained by sampling
avectorx € R™ from D]' and outputting|x||.

The Gaussian distributio® is spherically symmetric, so fot distributed according t®; and any
unit vectoru € R", (u, x) is distributed according t®,. Forz € R distributed according t@, and any
t > 1, a standard tail inequality says that < r - ¢ except with probability at mostcp(—t2). In addition,
for x € R™ distributed according t®]', we have||x|| < r/n except with probability at mo—".

It is possible to sample efficiently fromv, (henceD]") to within any desired level of precision. It
is possible to sample efficiently froi(5,,) by first choosing arx according toD™ to select a random
direction, then scaling to have (Euclidean) norm € [0, 1) with probability proportional ta-"~!. For
simplicity, we use real numbers in this work and assume thetcan sample fronD;' exactly; all the
arguments can be made rigorous by using a suitable amourg@gon.

To prove the hardness of seardE, we need the following lemma about the statistical distanee
tween the uniform distributions over twedimensional balls whose centers are relatively close.

Lemma 2.1([GGO0Q]). For any constants, d > 0 and anyz € R" with ||z|| < dandd’ = d-+/n/(clogn),
we haveA(U(d' - B,,), U(z+d' - B,,)) < 1—1/poly(n).
2.1 Learning with Errors

Let T = R/Z be the additive group on the real intery@l 1) with modulo1 addition. For positive integers
n andg > 2, avectors € Z;, and a probability distributiom on T, defineAs , to be the distribution on



Zq x T obtained by choosing a vectare Z; uniformly at random, choosing an error teens T according
to ¢, and outputtinga, (a, s)/q + ¢), where the addition is performed T

We are primarily concerned with error distributioneverT that are derived from Gaussians. kor- 0,
defineV,, to be the distribution off' obtained by taking a sample from the one-dimensional Gau.@sil)
and reducing modula. At times we consider an error distributi@nthat isitself a random variable, e.g.,
U for 3 chosen according to some distribution. We point out sucescagplicitly when they arise, but
retain the same notation as wheiis a fixed distribution.

Definition 2.2. For an integer functiog = ¢(n) and an error distributio@ on T, the goal of thdearning
with errorsproblemLWE, , in n dimensions is to find € Z; (with overwhelming probability) given access
to any desiregboly(n) number of samples froms ,, for some arbitrarys.

The above definition dfWE is for a “worst-case” search problem. As shown in [Reg05% @quivalent
(up to a polynomial factor in the number of samples used) ttamarage-case” version in which the goal
is to find auniformly randoms € Zgy with non-negligibleprobability givenAs , (where the probability
is taken over all the randomness in the experiment). This/algunce follows by a simple reduction from
arbitrary s to uniformly randoms’ € Z, [Reg03, Lemma 4.1], and the ability to verify a correct vatifie
s’ once it is found[[Reg05, Lemma 3.6]). Specifically, suppdsés an oracle that solves the average-case
version ofLWE. To find an arbitrary with overwhelming probability giverls ;, we transform itintaAy
for a uniformly randons’ = s+t by choosing random € Z and mapping pairéa, b) to (a,b+ (a, t)/q).
By invoking W, we obtain a candidate solutién check whetheg = s’, and outputs = § — t if so. By
repeating a polynomial number of times, we findith overwhelming probability.

For a functionr : Zy — {0, 1}¢, we say thatr is hard-corefor LWE, ¢ (in n dimensions) if, given
access tod; ,, for uniformly randoms € Z7, w(s) is computationally indistinguishable frofi({0,1}*).
When/ = 1, this is equivalent (via standard reductions) to saying tieaprobabilistic polynomial-time
algorithm computesr(s) with probability better thari /2 + negl(n). We are interested in a particular
candidate collection of hard-core functions fA¥E. Foreveng and any? > 1, define

h'zZt —{0,1}*  as  h(s) =h(s1) o oh(s),

whereh(s) for s = 5+¢Z € Z, denotes thearity of the integer residug € Z, ando denotes concatenation.
(Note that becausgis even, any choice of residgdor s has the same parity.)

2.2 Lattices

An n-dimensionalattice is a discrete additive subgroup &f*. Equivalently, leB = {by,...,b,} C R"
consist ofn linearly independent vectors; the lattikegenerated by thbasisB is
A=L(B)={Bc= ZZGM ci-b; 1 ceZ).
(Technically, this is the definition of fall-rank lattice, which is all we will be concerned with in this work.)
Theminimum distance\; (A) of A (in the; norm) is the length of its shortest nonzero vector{A) =
mingxea|[x[|- It is well-known (and easy to prove) that for any baBisof A, the minimum distance
Thedual latticeof A, denoted\*, is defined as\* = {x e R" : Vv € A, (x,v) € Z}. By symmetry,
it can be seen thdt\*)* = A. If B is a basis of\, it can be seen that the dual baBis = (B~!) is in fact
a basis ofA*. The following standard fact relates the Gram-Schmidtagtimalizations of a basis and its
dual (a proof can be found in [Reg04a, Lecture 8]).
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Lemma 2.3. Let {by,...,b,} be an (ordered) basis, and I¢tl;,...,d,} be its dual basis in reversed
order (i.e.,d; = b},_, ;). Thend; = b;/|[b;||? for all i € [n]. In particular, ||d,|| = 1/

Computational problems. We are mainly interested in the shortest vector problem ticds.

Definition 2.4 (Shortest Vector Problem)or a functiony(n) > 1, an input toGapSVP.,, is a pair(B, d),
whereB is a basis of am-dimensional lattice\ = £(B) andd > 0 is a real number. It is a YES instance
if A1(A) <d, andis a NO instance X;(A) > v(n) - d.

Note that given an oracle fdapSVP,, the minimum distance\; of any lattice can be computed to
within a factor of (sayR~ by binary search on the valuke

We now define a variant of the shortest vector problem, whiche problem that our main worst-case
to average-case reductions will be based upon.

Definition 2.5. For functions((n) > v(n) > 1, an input toGapSVP, ., is a pair(B, d), where:
e B is a basis of am-dimensional lattice\ = £(B) for which A;(A) < ((n),
° mlnzHBzH >1,and

o 1<d<((n)/y(n).
Itis a YES instance if\; (A) < d, and is a NO instance X;(A) > v(n) - d.

A few remarks about this definition are in order. First, ndtattthe second conditiomin||b;|| > 1
implies that\; (A) > 1, and is without loss of generality by scaling the bd3isSimilarly, the last condition
1 < d < {(n)/v(n) is without loss of generality, because the instance isatfivisolvable whend lies
outside that range.

The first condition is the interesting one. For ajfy) > 2("~1/2, GapSVP, ., is actuallyequivalentto
the standar&apSVP,, problem, because an arbitrary baBisof A can be reduced in polynomial time using
the LLL algorithm [LLL82] to another basiB of A so that\;(A) < ||by|| < 2(*=1/2 . min,||b;||. (In fact,
alternate parameters and analysis of the LLL algorithm yntipat we can even takgn) ~ (2/+/3)".) For
smaller functiong((n), particularly((n) = poly(n), the condition is nontrivial and more interesting. The
nature of the problem is to approximate the minimum distaoceithin a gapy(n), given a promise that it
lies within a looser range having a gé). The promise could be made efficiently verifiable by restrict
to “high quality” bases that contain (or guarantee the erist of) a vector of length at mostn), though
this could potentially make the problem easier. To our kialge, none of the lattice algorithms in the
literature are able to soM8apSVP, . for y(n) < ¢(n) = poly(n) in time better than exponentiaf*(),
even when the promise is verifiable efficiently, and even weap((n) = 2y(n).

Gaussians on lattices. Micciancio and Regev [MR07] introduced a lattice quanti&éied thesmoothing
parametey and related it to the minimum distance of the dual lattice.

Definition 2.6. For ann-dimensional lattice\ and positive reat > 0, the smoothing parameter.(A) is
defined to be the smallestsuch thaip; /. (A*\{0}) < e.

Lemma 2.7([MRO7, Lemma 3.2]) For anyn-dimensional lattice\, we havej,—.(A) < /n/ i (A¥).



For ann-dimensional latticeA, realr > 0, andc € R"”, define thediscrete Gaussian probability
distribution overA (with parameter, centered at) as:

pr(x —c)
Vx € A, Dppe(x) = 22X
5= o)

(As above,;r andc are taken to bé ando, respectively, when omitted.) Note that the denominatdhén
above expression is merely a normalization factor.

Our reductions use, as a subroutine, an efficient algorittahgenerates samples from discrete Gaussian
distributions.

Proposition 2.8([GPVOE, Theorem 4.1]) There is a probabilistic polynomial-time algorithm thatyen
any n-dimensional lattice basiB, anyr > max;||b;| - w(v/logn), and an arbitraryc € R", outputs a
sample from a distribution that is withimegl(n) statistical distance oD, g) .c-

To demonstrate a particular hard-core predicatd Y8E, we also need the following simple (but new,
to our knowledge) fact about discrete Gaussians.

Lemma 2.9. Let B be a basis of am-dimensional lattice\ = £(B), and letv = Bz € A be a nonzero
lattice vector whoséth coefficientz; is odd Letr > ||v|| - w(v/Iogn), letc € R™ be arbitrary, and let
x = Bz be a random variable having distributioR, ,... Then theparity of coefficient:] (i.e., z/ mod 2)
is negligibly close to uniform ove0, 1}.

We remark that the lemma easily generalizes to any prime tasguy where forz; # 0 mod p and
r > p-|v] - w(vIogn), we have that, mod p is negligibly close to uniform ovef,,.

Proof. Define a basi®’ of a sublattice’ = L(B') C A asb; = 2b; andb’, = b for all j # i. Then we
havev = Bz ¢ A/, andA = A’ U (A’ + v). Observe that fok = Bz’ € A, the parity ofz] is zero ifx € A/,
andisoneifx € A’ + v.

For x distributed according td, , ., the probability that; is even or odd is therefore proportional to
Py = p.(N —c)or P, = p.(N+v—c), respectively. A routine argument (using techniques fitfR07])
shows that for > ||v||-w(v/log n), the quantities?, and P, are within a(1 + negl(n)) factor of each other,
which proves the claim. We defer a complete proof to the feibkion. O

3 Classical Hardness of WE

In this section we show that certain versions of the learmiftfy errors problem are at least as hard as
classically solving corresponding versions of the shostestor problem. In Sectidn 3.1 we give a reduction
establishing the hardness BIVE in its search version. This proves that the injective trapdanctions
from [GPVQ08] are indeed one-way, hence have a generic tanelfiredicate that can be used to encrypt a
single bit at atime. In Sectidn 3.2 we give a more technicabpshowing that WE admits aspecificnatural
hard-core predicate, which has the advantage that it candily extended into mansimultaneoushhard
bits (as shown in Sectidn 4.1); this leads to more efficieritirbit cryptosystems.

3.1 Hardness of SearcH\WE

Theorem 3.1. Leta = a(n) € (0,1) be a real number ang = y(n) > n/(ay/logn). Let{ = {(n) >~
andq = ¢(n) > (¢//n) - w(vTogn).
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There is a (classical) probabilistic polynomial-time retion from solvingGapSVP, ., in the worst case
(with overwhelming probability) to solvingVE, v, with non-negligible probability (for uniformly random
s € Zy) using a polynomial number of samples.

Note thatGapSVP, , is potentially hard in the worst case wheneyer -, so Theoreri 3]1 allows for a

choice ofg as small as
q > (v/vn) - w(y/logn) = w(v/n/a).

We also mention that using results from [Pei08], Thedrenca@rieasily be generalized to work feapSVP, .,
inany/, norm,2 < p < oo, for essentially the same approximation factor
Our proof of Theorerh 311 relies on the core classical compooieRegev’s reduction.

Proposition 3.2([Reg05, Lemma 3.4])Lete = ¢(n) be a negligible functiong = ¢(n) > 2 be an integer,
a = a(n) € (0,1) and¢ = ¥,, and A be anyn-dimensional lattice. There is a classical probabilistic
polynomial-time reductiom that soIvesCVPaq/(\/ir) on A in the worst case (with overwhelming probabil-
ity), given:

1. an oracleW that solved WE, , with non-negligible probability (for uniformly randome Z}) using
a polynomial number of samples, and

2. an oracle that samples from - ,. for a given number > v/2q - . (A*).

For completeness, we give a brief description of the rednatlaimed in Proposition 3.2 (however, this
is not required to understand the proof of Theotem 3.1 andlveasafely skipped). It is given a badssof
A and a pointc € R™ within distanceng/(v/2r) of some vectov € A. Supposes = B~!'v mod q is the
coefficient vector ot reduced modulg. To generate a sample frory, 4, the reduction obtains a sampfe
from Dy~ ., letsa = (B*) "1y = B’y mod ¢, and outputs

(a, b=(y,x)/q+e) € ZyxT,

wheree € R is a small extra error term chosen from a continuous Gaus$kmitting many details, this
faithfully simulates theLWE distribution for two reasons: first is essentially uniform oveZ; since
r > q-n(A), and second,

(y,x) ~ (y,v) = (B'y,B7'v) = (a,s) mod .

The oraclelV solves fors = B~'v mod ¢ by hypothesis, and the entire vectoercan be obtained by
iterating the procedure as described in [Reg05, Lemma 3.5].

We stress that the precise error distribution in thiex) term requires some care to analyze precisely;
the exact distance betwegrandv and the extra error termboth play an important role. The details are not
relevant at this point, though they will be more importanétaon in Section 3]2 when we analyze specific
hard-core predicates.

Proving the theorem. We are now ready to prove Theoréml3.1. Essentially, the testuevorks as
follows: given a latticeA, it perturbs a pointv € A, invokes the reductio? from Propositio 3.2 on
the perturbed point, and checks whettiesuccessfully recovere. When\;(A) is large, R must indeed
recoverv by hypothesis. When (A) is small,v is statistically hidderand R must guess incorrectly with
some non-negligible probability. (The same basic prircipiderlies the interactive proofs of Goldreich and
Goldwasser [GGQO0], where here the reducti®rs playing the role of the unbounded prover.)
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Proof of Theorerh 3]1The input to our reduction is an instance @pSVP, ., i.e., a pair(B, d) where
min||by|| > 1, the minimum distanca; (£(B)) < ¢, and1 < d < ¢/~. LetA = L(B).
The reduction runs the following procedure some large numbe- poly(n) times.

1. Choose a point uniformly at random from the ball’ - B,, whered’ = d - \/n/(4logn), and let

x = w mod B.

2. Invoke the reductioi® from Propositiori 3.2 oA andx with parameter

g V2n

T ’yd

Y

where the required oracle for sampling frain -, is implemented by the algorithm from Proposi-
tion[2.8 on the reversed dual ba$sof B. Letv be R’s output.

If v # x —w in any of theN iterations, theraccept Otherwiseyeject
We now analyze the reduction. First recall thatx;||d;|| = 1/ min,||b;|| < 1, and the parameter

P LV VR S flogn)
v-d ¢
by hypothesis orl andgq, so the algorithm from Propositidn 2.8 correctly samplesnfra distribution that
is within negligible statistical distance @+ .
Now consider the case whéB, d) is a NO instance, i.eA;(A) > - d. Then by Lemma2]7, we have

o o VN
€ A < —
ne(A7) < ~d
for e(n) = 27" = negl(n). Thereforer > /2¢ - n.(A*) as required by Propositidn 3.2. Now because
x — w € A, the distance fromx to A is at most

n a-y-d g
4logn = aAn  V2r

by hypothesis ony and the definition of-. Moreover,A\;(A) > ~ - d > 2d’, therefore the reduction from
Propositior_3.2 must retum = x — w in each of the iterations (with overwhelming probabilitghd the
reduction rejects as desired.

Finally, consider the case wheiB, d) is a YES instance, i.e);(A) < d. Letz € A have norm
|lz|| = A1(A). Consider an alternate experiment in whichwois replaced byw’ = z + w for w chosen
uniformly fromd’ - B,,, sox’ = w’ mod B and R is invoked onx’. Then by Lemma&a2]1 and the fact that
statistical distance cannot increase under any randorfietion, we have

d=d

Pr[R(x) = x — w] 1 —1/poly(n) + Pr[R(X") = x' — W]

2 — 1/poly(n) — Pr[R(x') = x' — w].

IA A

But now notice thak’ = z+w = w mod B, sox’ is distributed identically te in the real experiment, and
can replacex in the above expression. Rearranging, it follows RgtR(x) = x — w] < 1 — 1/ poly(n).
Then for a sufficiently largeV = poly(n), we havev # x — w in at least one iteration and the reduction
accepts, as desired. O
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3.2 Hard-Core Predicate

Here we demonstrate a particular hard-core predicaté/id (assuming the worst-case hardnes&giSVP),
namely, theparity of the first entrys, of the secret € Zj. (By symmetry, it follows that the parity any
single entrys; is hard-core).

Our strategy is similar to the one used above in the proof afofém[3.]1, but is more technically
involved. Given a latticed, the reduction perturbs a point € A (this time using a sufficiently wide
Gaussian), uses the perturbed point to simulatié/éia distribution to an oraclé that predicts the predicate,
and checks whethé?’s output matches a corresponding predicate owhen\; (A) is large, the simulation
is faithful to anLWE distribution andP’s prediction is correct (with non-negligible advantageol/2) by
hypothesis. When;(A) is small, the predicate onis (almost) uniform conditioned oR’s input, henceP
has essentially no advantage ov¢®.

For technical reasons, we need to impose two extra conditartheLlWE,, , problem in order to make
the proof work. The first is that must be areveninteger; otherwise, the notion of parity #, is ill-defined.
The second is that the noise distribution= ¥ 3 isitself is a random variable; more precisely, the parameter
0 is chosen from a certain distribution and kept secret (aratljixThis condition is an artifact of the main
proof technique in the context of hard-core predicates; laleczate below.

When reducing to theearchproblemLWE, y,, the main step in the reduction from Proposition] 3.2
above actually generates samples from a distributigg , for someunknown3 < «. The reduction then
emulates457q,ﬁ, for many different values of’ > 3 by adding different amounts of extra noise4gy ;. In
at least one of these instancgsis sufficiently close te that the oracle fotWE, v, is obliged to return the
correct solutiors. Because candidate solutions to tN€E problem can be checked efficiently, the reduction
can therefore recognize the corre@nd continue on.

When attempting to prove that a predicatés hard-corefor LWE, v, however, this kind of strategy
breaks down. Here we have an oracle that predi¢tg given A v, but it appears that the correct value
of 7(s) cannotbe recognized efficiently on its own. So even though the réaluenay emulate different
instances ofis v oy it has no way of checking/hichof the oracle’s predictions is correct (and the oracle may
intentionally give bad predictions under noise distribas other thanl,,). Our solution to this difficulty
is to strengthen the hypothesis by requiring the oracle ¢adlipt7(s) under error distribution¥ 3, where
0 itself is a random variable that emerges from the main réoludechnique. The distribution of is
somewhat unnatural, but presents no problems in usage.

Theorem 3.3.Leta = a(n) € (0,1) be a real number and = v(n) > w(nylogn/a). Let¢ = ((n) >~
andq = q(n) > (¢/\/n) - w(+/Iog n) be aneveninteger.

There is a classical probabilistic polynomial-time redoatfrom solvingGapSVP, ., in the worst case
(with overwhelming probability) to distinguishing!(s) from U ({0,1}) (with non- negllglble advantage)

givenAs v, for s € Z; chosen uniformly at random and (secret)= v a2/2 + 12, wherel is distributed

(n)
according toS"" Vo
In other words ! is hard-core forl WE, ¢, assuming thaGapSVP, . is hard in the worst case.

We start with a couple of elementary reductions that makeithef of Theorenh 3J3 simpler. First, define
a variant problenGapSVP;  whose input, just as fo6apSVP, ., is a pair(B, d) such that\;(£(B)) <

¢(n), ming|[b;|| > 1, and1 < d < ¢(n)/y(n). Itis a YES instance if there existszac Z" such thatz; is
oddand|Bz|| < d; itis a NO instance i\, (L(B)) > v(n) - d.

Lemma 3.4. For any {(n) > ~(n) > 1, there is a deterministic polynomial-time Cook reducticonf
GapSVP,. , to GapSVPg7
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Proof. Given an input instancéB, d) of GapSVP, ., the reduction generatesinstanceg B d) for i €
[n] as described below, and invokes l(EmoSVP’C,,Y oracle on each of them. If the oracle accepts any of the
instances, the reduction accepts, otherwise it rejects.

The instance$B(, d) are defined as follows: far = 1, let B() = B. Fori = 2,...,n, letb!” =
b; + by, and Ietbg.’) = b, for all j # i. Observe tha’(B(®)) = £(B) and that the Gram-Schmidt
orthogonalizations oB and B are identical, for every € [n]. Therefore, the instancé® (), d) satisfy
the requirements of th@apSVP’ problem.

If (B,d) is a NO instance oGapSVP, then by the first observations above, evéBf?, d) is a NO
instance ofGapSVP'.

If (B,d) is a YES instance oGapSVP, then there exists some € Z" such thatBz is a shortest
nonzero vector irC(B) (i.e., |Bz|| < d) and ani € [r] such thatz; is odd, for if not, thenz € (2Z)™ and
Bz/2 € £(B) is nonzero and shorter thdw, a contradiction. We claim thaB (¥, d) is a YES instance of
GapSVP'. If z; is odd, then we may take= 1 and the claim holds trivially. Now suppose thatis even.
Lettingz’ € Z" be such thaB()z' = Bz, we havez, = z; — z;, which is odd, and the claim follows. [J

Next, observe thatls , for anarbitrary s € Z; can be transformed intdy , for a uniformly random
s =s+t € Zy, simply by choosingt € Zj uniformly at random and mapping each péir; b) to
(a,b+ (a,t)/q) € Z x T. Moreover,h!(s') = h'(s) & h'(t) whenq is even. Therefore, if we have an
oracle D that distinguisheg!(s) from uniform with advantagé given A, for uniforms € Zy, then we
have an efficient predictaP that computed! (s) with probability 1/2 + & given As ,, for arbitrary s € Ly -

The final tool we need is a technical lemma relating to the gtioe of samples from abWE distribu-
tion.

Lemma 3.5([Reg05, Proof of Lemma 3.8])Lete = ¢(n) be a negligible functiong = ¢(n) > 2 be an
integer, andx = a(n) € (0, 1) be a real number. LaB be a basis for am-dimensional latticeA = £(B),
letr > 1/2q - ne(A), and letx € R" be at distance!’ from somev € A.

Consider the following experiment: lgtbe drawn fromD,- , and lete € R be drawn fromDi/ﬁ.

Then the distribution of
(a=B'ymodq, b= (y,x)/q+e) € Z} x T

is within negligible statistical distance of; v ,, wheres = B~ !vmod gandg = \/a?/2 + (d'r/q)2.
We are now ready to prove the theorem.

Proof of Theorerh 313By Lemmd 3.4, we can say that the input to our reduction is staite OGapSVPQW,
i.e., a pair(B, d) wheremin||bs|| > 1, the minimum distancé\;(£(B)) < ¢, and1 < d < (/v. Let
A = L(B).

By the discussion above, we may hypothesize a prediétiiat computes' (s) with probability 1 /246
for some non-negligibleé = d(n) given Ay, for arbitrary s € Zj, and 3 chosen as described in the
theorem statement.

The reduction runs the following procedure some large numbe- poly(n) times.

1. Choose a poiny € R™ from distributionD7;  for

w= % = w(y/logn),

letx = wmod B, and letv = x — w € A.
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2. Invoke the hypothesized predictéy, simulating each desired sample from WE distribution as
follows: using the algorithm from Propositién 2.8 on theaeed dual basis dB, sampley from

Dy, for
g V2n

T ’yd

Next, sample: € R from D; N and giveP the pair

/

(a=B'ymodgq, b= (y,x)/q+e)€ZyxT.

3. WhenP outputs a prediction, check whether the prediction eqli(s), wheres = B~'v mod gq.

If P’s prediction is correct in at lea$t /2 + §/2) N of the iterations, thereject otherwiseaccept

We now analyze the reduction. Just as in the proof of Thedordinf@ the definition ofr above, the
algorithm from Propositio_218 correctly samples from ardistion that is within negligible statistical
distance ofD+ ;.

Now consider the case whéiB, d) is a NO instance 06apSVP’, i.e., \;(A) > v - d. Just as in the
proof of Theoreni 311, we have> v/2¢ - . (A*) as required by Lemnia3.5. Now becanse x —w € A,

the distance betweenandv is d’ = ||w||, which means thaf'r/q is distributed according tst(”), where
t=d-w-r/qg=a/V2n.

By Lemma[3.5, it follows that the reduction simulatés g, (up to negligible statistical distance), where

s = B-'vmod ¢ and3 = /a2/2 + 12, and! is distributed according tcsg)\/%. By hypothesis,P

predictsh!(s) with probability negligibly close td /2 + §, so by a standard application of the Chernoff
bound (for sufficiently largeV = poly(n)), P predicts correctly in at leagti/2 + §/2)N iterations, and
the reduction rejects as desired.

Finally, consider the case whéB, d) is a YES instance dbapSVFP', i.e., there existsa € Z" such that
z1 is odd and|Bz|| < d. Observe that Stép 2, which provides all the input to theiptexdP, depends only
on the fixed value ok and additional randomness that is independemt.cAlso observe that conditioned on
the fixed value ok, the random variable = x—w € A is distributed according t®, 4., x. By LemmdZ2.9,
the parity of the first entry aB~'v is negligibly close to uniform, conditioned on the entiresfiinput toP.
Becausey is even, the predicati' (s) is also negligibly close to uniform, an@l's prediction is correct with
probability at mostl /2 + negl(n). By the Chernoff boundP predicts correctly in fewer thafi /2 + §) N
iterations, and the reduction accepts as desired. O

4 Public-Key Cryptosystems

Here we construct public-key cryptosystems (for multifhéssages) that are based on the search version of
LWE. We start in Section 411 by showing how to extend the pasichibrd-core predicate f&WWE (shown

in Sectior 3.R) into many simultaneously hard bits. Thendnt®n[4.2 we construct a semantically secure
cryptosystem, followed in Sectién 4.3 by an extension thaiyes chosen-ciphertext security.
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4.1 Simultaneous Hard-Core Bits forLWE

Lemma 4.1. Let¢ = poly(n), ¢ = q(n) > 2 be even, and be a distribution (itself possibly a random
variable) onT. If k! is hard-core forLWE, , in n dimensions, theh’ is hard-core folWE, 4 inn + ¢ — 1
dimensions.

More precisely, there is an efficient reduction from distiishing ~'(s) from U ({0,1}) (with non-
negligible advantage) givers s for uniformly randoms € Zj to distinguishingh!(s") from U ({0,1}%)
(with non-negligible advantage) givety , for uniformly randoms’ € Z;‘“—l.

Proof. We proceed by a hybrid argument. If somedistinguishes betweeh’(s’) and U, given Ag b
(for uniforms’ € Zg“—l) with non-negligible advantagé = d(n), then there is somg € [¢] such that
D distinguishes betweeh/~1(s’) o Ui—j4+1 and hi(s') o U,—; given Ay , with non-negligible advantage
8 (n) =d(n)/tL.

We describe a reduction that, givehy , for uniformly randoms € Z; and an input bit:, usesD to
distinguish whetheh is h'(s) or U;. The reduction chooses € Z{fl ands, € Zf[j uniformly at random,
and letsh’ = hi=Y(s;) o ho U,_; € {0,1}*. ItinvokesD on k', simulating Ay, in the manner described
below, and copie®’s output.

Lettings’ = s; o s o s,., we see that’ is distributed uniformly ove%g“—l. It is also apparent that if
the reduction’s input bif: is uniform, then®’ is distributed ag’=!(s’) o U,_;11, Whereas ifh = h'(s),
thenr' is distributed as’(s") o U,_;. Therefore the reduction distinguishes between these asescwith
non-negligible advantagg.

The reduction simulatedy 4 using 4 4 as follows. Given a paifa, b = (a,s)/q + ) € Z; x T from

As.4, it choosesy, € Z)~ ! anda, € Zj 7 uniformly at random and outputs the pair
(ayoaoca,, (a;s)/q+b+ (a,,s.)/q) = (@, V' = (a',¢) Jq+z) € Z} T x T.

It is apparent thaa’ is distributed uniformly ove%g*f—l, thus, the simulation is faithful tdg . O

4.2 Trapdoor Functions and Basic Cryptosystem

Here we recall the collection afWE-based injective trapdoor functions given|in [GPV08], whiwild on
ideas due to Goldreich, Goldwasser, and Halevi [GGH97].cBarpleteness, and due to some modifications
and enhancements, we present a full description of thedatigfe along with proofs of correctness and
security. We then design a semantically secure cryptasyateund these trapdoor functions.

For consistency and simplicity of notation, we continue us&s the main parameter and hypothesize
¢ > 1 simultaneous parity bits fAWE in n dimensions, with the understanding that this is based omgesi
parity predicate for th€WE problem inn — ¢ + 1 dimensions by Lemnia4.1.

4.2.1 Generation

The first component is a special algorithm for generatingeaiy) uniform matrixA. € Zj*™ that serves
as the index of the public functioga , together with a trapdodl’ made up of vectors whose lengths are
bounded by some relatively smallq Ajtai [Ajt99] gave the first such generation algorithm fmid ¢, which
yielded a bound. = m??; recently, Alwen and Peikert [AP0O8] improved the algorithonyield a tighter

2As described in more detail if TAjt99, GPVOST; can be seen as a full-rank set of short vectors in a certaindatefined by
A; however, that interpretation is not too important for thisrk.
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boundL = m for arbitrary ¢ (recall that we use an everin Theoreni 3.B and Lemnia 4.1 for our particular
choice of hard-core functions).

Proposition 4.2 ([Ajt99| AP08]). For any positive integers andq > 3, anyé > 0 andm > (2 + d)nlgq,

there is a probabilistic polynomial-time algorithm thattputs a pair(T € Z™*™, A € Zy*™) such that:
the distribution ofA is within negligible statistical distance of uniform ov&f =™, T is nonsingular (over
the rationals),||t;|| < L = O(mlogm) for everyi € [m], and AT = 0 mod q.

4.2.2 Evaluation

On indexA and inputss € Z, x € T™, compute
b=A's/qg+x¢c T

Round each entry db to the nearest multiple of /¢’ modulo1, i.e., letb’ = |¢' - b]/q¢ € T™. Output
ga(s,x) = b’, which may alternately be representedjasb’ € Z}.

Lemma 4.3. Letr : Z? — {0,1}" be a function (e.gx = h’) and ¢ be a distribution (itself possibly a
random variable) ovefl. If 7 is hard-core forLWE, 4, thenr is hard-core for the collectioqga } under
the input distribution whers € Z; is uniformly random anck is drawn from¢™.

Proof. The proof follows immediately from the fact th& is negligibly close to uniform, and that an
adversary given samplés;, b;) from Ag , can round off eacly; € T to the nearest multiple of /¢’ to
simulate the outpub’ of ga (s, x). O

4.2.3 Inversion

A standard counting argument reveals that a uniformly remdwatrix A € Zy*™ is full-rank (i.e., its rows
are linearly independent modulg except with probability at most™ /2™, which is negligible inn when
m > (14 §)nlgq. For the remainder of the paper we implicitly assume thalh surcA is full-rank.

Observe thah ™ = A(AAY) ! ¢ Zy;*" is theright inverseof A modulog, becausA A™ =1, the
n-dimensional identity matrix modulg. (Note that the Gram matriA A’ is invertible modulog because
A is full-rank.) Therefore, gively € T™ wherey = (A'!s)/q mod 1 for somes € Z*, we can recoves
by computing

(AT (q-y) = (AA™)’'s = s mod ¢.

Toinvertb’ = ga (s, x) € T™ given the trapdoofT, treatb’ as an element &8™ and compute
y=T"" |T' b mod 1,

and recoves from y as described above. (The exact valueafannot always be recovered frdshdue to
rounding, but it is not needed in our applications.)

Lemma 4.4. Letq' = ¢'(n) > 2Ly/m anda = a(n) < 1/(L - w(v/logn)). Then for anys € Z7 and
for x chosen fromI/g” for any 8 < «, the inversion algorithm o’ = ga (s, x) correctly outputss with
overwhelming probability over the choice xof
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Proof. We start with a few facts that we later use to analyze the rognstep. First, letwv € R™ be such
that|w;| < 1/(2¢') for all i € [m]. Then for alli € [m], we have

(i, w)] < [ltal - wll < L-v/m/(2¢") < 1/4

by the Cauchy-Schwarz inequality and by hypothesi§tgfiandq’. Second, supposé € R™ is distributed
according toDj;' for someg < . Then for alli € [m], the inner productt;, x’) is distributed according
to D, for r = ||t;]| - B < 1/w(y/logn) by hypothesis orlt;||, «, and3. By the tail bound on Gaussian
distributions,|(t;, x')| < 1/4 except with probabilityexp(—(1/72)) = negl(n).

Now consider the inversion algorithm éh= ga (s, x) wherex is chosen from%”. By the definition
of ga, there existw € R™ with |w;| < 1/(2¢) for all i € [m] and anx’ distributed according t&7' such
that

b’ = (A's)/q +x' +w mod Z™.
Thus,
T - b’ = (AT/q)" - s + T - (x' + w) mod L(T").
Observe thafAT/q) is an integer matrix by hypothesis @n and £(T?) C Z™ becaus€l is an integer
matrix. Therefore,

|IT"-b'] = (AT/q)" s + |T" - (x' + w)] = T"(A’s/q) mod L(T?),

where the second inequality is with overwhelming probabdier the choice ok’ by the bounds established
above. Finally, we see thgt=T~! . |T! - b'] = (Als/q) mod Z™, and the inversion algorithm recovers
s fromy. O

We remark that the inversion algorithm presented above svioriarallel by rounding each entry of
T? . b’ independently. Aiiterative rounding scheme akin to the “nearest-plane” algorithm dfd3#8ab86]
can also be used, and succeeds (with overwhelming prolybifienevern (n) < 1/(L-w(v/Iogn)), where
L = max; |t;|| is the norm of the longest vector in tlram-Schmidt orthogonalizationf T. (The proof is
virtually identical to the one given above.)

4.2.4 Cryptosystem and Analysis

Using the above collection of trapdoor functions, a pukky-cryptosystem based dsepSVP, ., (for v
determined below) is conceptually straightforward: torgpt; evaluatgya on a suitably random input, and
mask the message by a hard-core function applied to the.iffputlecrypt, inveriga to recover the input
and remove the mask.

In detail, set the parameters as follows. et ((/\/n) - w(y/logn) be even, letn = (2 + d)nlgq
for somes > 0, let ¢’ = 2L/m = poly(n), and leta = 1/(L - w(y/Togn)). Recall thatGapSVP} is
equivalent taGapSVP, when((n) = 2"/2, which implieslog ¢ = O(n). The other most interesting case is
when((n) = poly(n), which implieslog ¢ = O(log n).

e To generate a key pair, sample a function indexthe public key) with its trapdoof (the secret
key).

* To encrypt, choose € Z uniformly at random ane according tol'y' for 3 = \/a?/2 + 12, where
is distributed according t§" "

a/y/2(n—0+1)
(b = ga(s,x), c= he(s) D ).

The encryption of messagec {0,1}* is
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e To decrypt a ciphertextb’, c) usingT, invertb’ to finds and outputh’(s) & c.

The size of the public ke is O(mn log q) = O(n?log? q) bits, and the trapdodF has size) (m? log m).
The size of the ciphertext is dominated vy which requiresD (m log ¢') = O(n log qlog n) bits. By taking
(say)¢ = n/2, the ciphertext is therefore @n(log g log n) factor larger than the plaintext.

Proposition 4.5. The cryptosystem described above is complete and senignteaure, assuming that
GapSVP, . is hard in the worst case for somén) = O(n*log q).

Proof. Correctness of decryption (with overwhelming probabitityer the encryption randomness) is im-
mediate by the fact that < « with overwhelming probability, and by Lemnia 4.4. Semangcusity
(assuming the worst-case hardnes&apSVP, ) follows directly from the fact thak! is hard-core foga
under the input distribution used for encryption, whicHdals by the sequence of Lemial4.3, Lenima 4.1,
and Theorerh_3]3. We may therefore take the underlying voarsg- approximation facterto be

v(n) = O(n/a) = O(L - n) = O(n?log q). O

Note that an improved bount (or its Gram-Schmidt counte[paitas described in Sectién 4.2.3 above)
yields a tighter approximation facter. For example, ifL (or L) were improved to the asymptotically
optimal O(y/m), the factory could be reduced t@(n!-5y/log q).

4.3 Chosen-Ciphertext Security

To construct a cryptosystem that enjoys security underasirogphertext attacks, we use a paradigm recently
proposed by Peikert and Waters [PW08], and additional petsgs due to Rosen and Segev [RS08]. We
discuss all the important technical ideas here, but defengptete description and proof to the full version.

The main observation is that ay= poly(n) independently chosen functiong ,, ..., ga, remain
one-way (assuminggWE is hard) even when evaluated on tb@meinput s and independenk, ..., xy
(respectively) from the appropriate error distributionThis is because the indicés, ..., A; and outputs
b} = ga(s,x1),...,b}, = ga(s,x;) can be assembled simply by drawihgm samples from4s ,,. Simi-
larly, the function (s) remains hard-core given all these values, if it was haré-tar WE in the first place.
(We remark that these facts were also observed indepepdantoldwasser and Vaikuntanathan [GV08],
who construct similar chosen ciphertext-secure cryptesys.) Essentially, the properties described above
constitute security under “correlated inputs,” as defimeflRIS08

There is a simple (and black-box) chosen ciphertext-seciyjgtosystem based on any collection of
injective trapdoor functions that is secure under a sugtdbtm of input correlation (including the one
described above). Crucially, the proof of security reciitiee functions to bénjective More precisely,
the following properties must hold with overwhelming prbbity over the choice of functiory from the
collection:

1. Each valugy in the range haat most ondegal preimage: underg.

2. Given anyy and any candidate preimagdand the description gf), one can efficiently check whether
x is the legal preimage af (without knowledge of the trapdoor).

3. Given anyy and the trapdoor fog, the inverteralwaysfinds the legal preimage of y (if it exists).

3These observations can also be used to construct a relax@dfiall-but-one” function as defined ih [PWO08], but we firrdt
terminology of correlated inputs to be more natural in tlustext.
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These properties ensure that for anypossibly constructed adversarially), the following twgaithms
behaveidentically: (1) on inputz, y, accept ifx is the preimage ofj; (2) on inputy and the trapdoor, run
the inverter to get some, and accept if: is indeed the preimage gf This identical behavior is the crux of
the security proof.

Making our functions injective. Note that in the above description of the trapdoor functiggs any
values € Zj is a potential preimage df € T™, under the (possibly very unlikely) error vector= b’ —
(A's)/q € T™. Therefore, we need to restrict the notion of a legal preenagd prove that it satisfies the
three properties listed above. In particular, must caefigal with the behavior of the inversion algorithm
on arbitrary (possibly adversarial) valuds € T™, as opposed to those generated honestly. We stress that
in our context, the error componextof the input need not be considered as part of the preimagapube
it is not needed to check validity, nor is it used in the entioyp

We now define the notion of legal preimages for a functian which depends on the parameter=
a(n) € (0,1) associated with the collection, and some arbittagyt(n) = w(/logn). Define the absolute
value|-|onT = [0, 1) as|z| = min{z, 1 — =}, and extend it coordinate-wise T".

Definition 4.6. We say thas < Zj is a legal preimage db’ € T™ underg, if and only if every entry of
b’ — (A's)/q| is strictly less thar - ¢.

Letq > 1/(a - t). First, we observe thatis indeed a legal preimage of an honestly-generalec
ga (s, x), with overwhelming probability over the choice ®ffrom any 7} whereg < « (this is required
for completeness of the cryptosystem). Indeed, for everym|, we havelz;| < a-t/2 with overwhelming
probability by the Gaussian tail bound, and after the roogditep,

| —bi| <1/(2¢) < a-t/2.
Proposition 4.7. The three properties listed above are satisfied under Difiri#.6.

Proof. Property 2 holds trivially by definition. Property 1 folloviny a simple fact that holds with all but
q"/2™ = negl(n) probability over the choice oA: for every nonzers € Z", (A's)/q mod 1 has at least
one entry with absolute value greater thai. (This can be seen by analyzing the probability for any fixed
nonzeros, then invoking the union bound.) Then far< 1/(8t), everyb’ has at most one legal preimage
by the triangle inequality.

For Property B, we observe that for ahythat has a legal preimagg there is a vectow € R™ such
that|w|| < v/m-«-tand

b’ = (A's)/q + w mod Z™.

Then by following the proof of Lemnia 4.4 (without the randaed component’), we see that the inversion
algorithmalwayscorrectly recovers as long asy < 1/(L - y/m -t) = 1/(L - /m - w(y/logn)). Note
that the parameter here is smaller than the one in Lemmal4.4 by a factoy/of, due to the “worst-case”
inversion requirement. This allows for an underlying warase approximation factor

7(n) = O(n/a) = O(L-n - im) = O(n**log"® q). O
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