Electronic Colloguium on Computational Complexity, Report No. 102 (2008) e TaTs

Finding Significant Fourier Transform Coefficients
Deterministically and Locally

Adi Akavia*

November 9, 2008

Abstract

Computing the Fourier transform is a basic building blockdigy numerous applications. For data
intensive applications, even t@NlogN) running time of the Fast Fourier Transform (FFT) algo-
rithm may be too slow, andub-linearrunning time is necessary. Clearly, outputting the entoarker
transform in sub-linear time is infeasible, neverthel@ssnany applications it suffices to find only the
T-significant Fourier transform coefficientdat is, the Fourier coefficients whose magnitude is at leas
1-fraction (say, 1%) of the energy.€., the sum of squared Fourier coefficients). We call algorghm
achieving the latteBFT algorithms

In this paper we presentdeterministicalgorithm that finds the-significant Fourier coefficients of
functions f overany finite abelian group Gn time polynomial in logG|, 1/t andLy(f) (for L1(f)
denoting the sum of absolute values of the Fourier coeffisienf). Our algorithm is robust to random
noise.

Our algorithm is the first deterministic and efficieng(, polynomial in logG|) SFT algorithm to
handle functions over any finite abelian groups, as well aditht such algorithm to handle functions
overZy that are neither compressible nor Fourier-sparse. Ouysigas the first to show robustness to
noise in the context of deterministic SFT algorithms.

Using our SFT algorithm we obtain (1) deterministic (ungadrand explicit) algorithms for sparse
Fourier approximation, compressed sensing and sketc{#hgn algorithm solving the Hidden Number
Problem with advice, with cryptographic bit security ingaltions; and (3) an efficient decoding algo-
rithm in the random noise model for polynomial rate variasftélomomorphism codes and any other
concentrated & recoverable codes.

*Institute for Advanced Study, Princeton NJ 08540 and DIMA®S8tgers University, Piscataway, NJ 08854. This research
was supported in part by NSF grant CCF-0514167, by NSF gr&m-@832797, and by Israel Science Foundation 700/08. Email
akavia@ias.edu

A preliminary version of this work appears in authors Phbeliation [2].

0

ISSN 1433-8092

1 Introduction

Computing the Fourier transform is a basic building blooédis numerous algorithms arising in the context
of a wide variety of applications. The best known algoritton domputing the entire Fourier transform is
the Fast Fourier Transform (FFT) algorithm [14] that congsuthe Fourier transform in tin@(NlogN) for

N the input size.

For data intensive applications, even the running time efRRT algorithm may be too slow, aisdb-
linear running time is necessary. Clearly, achieving sub-lineaning time is infeasible when computing
the entire Fourier transform, because the output itself isrmgth N. Nevertheless, in many applications
it is not necessary to compute the entire Fourier transfimstead it suffices to find only thesignificant
Fourier transform coefficientghat is, the indices and approximate values of the Foudefficients whose
magnitude is at leastfraction (say, 1%) of the sum of squared Fourier coeffigent

In a sequence of works [4, 23, 24, 27, 34-36, 38, 39] startiity the seminal work of Goldreich and
Levin [27], it was shown that finding the significant Fourieartisform coefficients (ak&FT algorithm$
can be done in time polynomial in ldgand /1, that is, much much faster than computing the entire Fourier
transform® We use the terrefficient to address SFT algorithms with running time polynomial ighband
1/t.

The above algorithms differ on tldmainof the considered input functions (varying from the boolean
cubeF? in [27] to any finite abelian group given by its generators #relr orders in [4]), as well as on
whether they areandomized algorithm$4, 23, 24, 27, 39] odeterministic one$34—-36, 38]. Domains
addressed by the deterministic algorithms are direct mtoduigroupsZy for small modulus k= poly(n)
in [38] andZy in [34-36].

The deterministic algorithms [34—36, 38] aueiversal, that is, they read theameset of entries in
all input functions over the same domam(provided the same input parameters are given). In addition
they areexplicit, that is, they choose the set of read entries efficiently aterchinistically. In contrast, the
randomized algorithms [4,23,24,27,39] are not only nopliei but also non-universal, that is, they choose
fresh entries to be read for each given input function.

Being universal necessitates some sort of restriction enrjut function: It is impossible to find the
significant Fourier coefficients @il functions when reading the same féwedset of entries, because for
any functionf, changing the few read values to zero has very little affadhe Fourier transform, and yet,
clearly the algorithms cannot find the significant Fourieeficients from reading only those zero values.
This issue is addressed in [34—36, 38] by givedficientalgorithms only for functiond s.t.:

e Li(f) < polylogN for Li(f) = 54

N the domain size in [38].

fA(a)‘ the sum of Fourier coefficient of the input functidrand

e fis p-compressibléor p>1+Q(1),i.e,Vb=1,...,N theb-th largest Fourier coefficient df is of
magnitude at mosd(b~P), in [34, 35].

e f is m-Fourier sparsdor m < polylogN, i.e., f has at mosin non-zero Fourier coefficients, in [36].

Iwe remark that [39] only implicitly gives an SFT algorithmhereas explicitly it addresses interpolation of sparsgmhials.
The interpolation algorithm requires evaluating polynalsion increasing powers of 2, resulting with an (implici§TSalgorithm
which is applicable only to functions over groupg for N a power of2 (or direct products of such groups). Alon-Mansour [5] de-
randomized the interpolation algorithm [39] for the caspalf/nomials ove#Zy for prime N This does not result in a deterministic
SFT algorithm as it holds for primBl rather than powers of 2. We suspect nevertheless that [3§l cmiextended to give a
deterministic SFT algorithm for functions ov&g, whereN is a power of 2.

We point out that the besté., weakest) of the above restrictions is the first one (whenssarae w.l.o.g.
2
that f is normalized to havg 4 f(a)‘ =1). In general, [34-36, 38] achieve the following comphexit

~ ~

terms ofL1(f), pandm: running time polynomial in lod), 1/t andL4(f) in [38]; running time polynomial
in logN and(1/1)(P*1/(P-1) in [34, 35]; and running time polynomial in ldgandmin [36].

We use the terrfocal to address algorithms with running time polynomial in kgl/t andLl(fA). The
algorithm of [38] is local, whereas the algorithms of [34}86 not local.

1.1 New Results

Our main result in this paper isdeterministi¢ local androbustSFT algorithm for functions oveany finite
abelian group G

Main result: deterministic local SFT algorithm. There is a deterministic (universal and

explicit) algorithm that, given any finite abelian gro@by its generators and their orders), a

significance parameterc (0, 1], a bound > 0, and oracle access to a complex-valued function

f:G—Cs.t. Ll(fA) <t, outputs alft-significant Fourier coefficients df in running time and

query complexity polynomial in lof§5|, 1/1 andt.
In particular fort = L1 (f) the complexity of our algorithm is polynomial in 66|, 1/t andL ().

RobustnesOur SFT algorithm succeeds also in the presence of randase.nbhat is, with probability

at least @9 over the noise, the algorithm outputs the significant ifowoefficients off even when given
oracle access only to a corrupted versfor= f +n for n random noise of parametéx1) sufficiently small;
where we say thaj random noise of parameterif entries ofn are drawn independently at random from
distributions of expected absolute values at ngode remark that clearly the SFT algorithm also handles
adversarial noises.t. L(f) <t.?

Our result improves on other deterministic SFT algorith8%-36, 38] in giving:

1. The first efficient deterministic SFT algorithm for furtris overarbitrary finite abelian groups Gin
comparison, other deterministic algorithms apply to fiore overZ, for small modulusk = poly(n)
[38], or overZy [34—36] where the latter is further restricted to handleya@mpressible or Fourier
sparse functions.

Handling functions oveany finite abelian groujis motivated by the wide range of domains arising in
applications, such as: 1-dimensional functions for audaz@ssing, 2- and 3-dimensional functions
for image and video processing and multi-dimensional fionstfor processing feature spaces arising
in machine learning applicationise., domainsZy, x ... x Zy, with k=1,2,3 and largek.

2. The firstlocal deterministic SFT algorithm for functions ové&iy that handlesany function f in

~

running time polynomial in lody, 1/t andL;(f). In particular, our algorithnefficientlyhandles the

~

class of all functionsf s.t. Li(f) < polylogN. This class of functions is strictly larger than the

~

previously handled functions, &g(f) = O(1) for the (1+ Q(1))-compressible functions in [34, 35]),

~

andL;(f) < polylogN for the polylogN-Fourier sparse functions in [36]) (where we assume w.l.0.g
2
that functions are normalized to have unit enezM f(a)‘ =1).

2| ooking ahead, in Section 7 we present Bebust SFRIgorithm that handles adversarial noigs.t. HnH% = O(1) in query

~

complexity polynomial in logG|, 1/t andL(f), and in running timesub-linearin the domain size.

2

Handling this wider class of functions is motivated both bg tomplexity theoretic goal of deter-
mining the limits of de-randomization, as well as by nat(eahilies of functions arising in data

intensive applications having; (f) = poly(log|G|), e.g, poly-log depth decision trees and decision
lists (c.f. [38]).

3. The first analysis showing robustness to noise in the gbafainiversal SFT algorithms.

We point out that when it comes to handling noise there is adifisrence between randomized and
universal algorithms: For theandomizedalgorithms [4, 23, 24, 27, 39], being robust to noise (even
adversarial noise) is fairly straightforward: when runhmitarameter’ = (1 — €) instead oft, the
randomized algorithms find all the significant Fourier caifits of f even when given access only
to its corrupted versiori’ = f +n s.t. |n||3 < €. In contrast, for thainiversalalgorithms [34—36, 38]
even random noise is out of scope, as the corrupted fundtiea f + n typically has very large
L1(f) ~ v/N even ifL1(f) was bounded, ané is typically not Fourier sparse evenfifwas Fourier
sparse.

Using our SFT algorithm we obtain: (1) deterministic algfumis for sparse approximation, compressed
sensing and sketching; (2) an algorithm solving the Hiddember Problems (HNP) with advice with
cryptographic bit security implications; and (3) an algfam for decoding polynomial rate variants of ho-
momorphism and concentrated & recoverable codes (detditsv). The determinism/universality of our
SFT algorithm is essential for all those results.

1.1.1 New: Deterministic sparse approximation, compressesensing & sketching algorithms

We present deterministic (universal and explicit) aldoris for sparse approximation, compressed sensing
and sketching achieving:

1. The firstdeterministicalgorithm for finding a near optimah-sparse Fourier approximation for func-

tions overZy (and any finite abelia®) in time polynomial in lodN, m/e andL4(f) (for € the approx-
imation parameter). The input to the algorithmNism, €, L1 (f) and oracle access to

In comparison, other sparse Fourier approximation algaritare either randomized [4,23,24,27,39];
or deterministic but restricted to either functions o#grfor k = poly(n) [38], or to compressible
functions overZy [34, 35], or to Fourier sparse functions ov&g [36].

2. A deterministiccompressed sensing and sketching algorithms for vester®&N with number of
linear measurements and recovery time polynomial ifNlpgy/e andL1(x) = ZiNzl\Xi\ (for mthe
number of non-zero terms in the recovered representatidis tre approximation parameter).

Similar performance can be derived from the prior deterstimialgorithms for sparse Fourier approx-
imation [38] and for sparse interpolation of polynomialk [5

In comparison, other compressed sensing and sketchingthtgs either rely on a randomized choice
of measurements [4, 10, 13,15, 17, 21, 23, 24, 39]; or arestsaV but non-explicit [6, 11, 16, 18, 25,
26, 33, 42]; or are deterministic but with a number of measemts and a recovery time greater than
any polynomial in lodN [19, 28, 32] (and further restricted to handle only to spampats [32]); or are
deterministic and efficient but restricted only to compitdssnputs [16, 34, 35], sparse inputs [36], or
to specific input functionse(g, “bucket histograms”) [22]. Our algorithm falls short ofrse of the
aforementioned algorithms in having polynomial rathenthiaear dependence an?

3A few remarks. Compressed sensing algorithms are implidi¢5, 23, 24, 38, 39] as they preceded the introduction ef th

3

RobustnessThe above results holds even if the oracld tor the linear measurementsoéire corrupted
by noisen which is either (1) random noise of parame@e/m), or (2) adversarial noise of boundég
norm: L1(R}) < L1(f) for the sparse Fourier approximation algorithm, &ath) < L1 (x) for the compressed
sensing and sketching algorithm. In the random noise chsealgorithm succeeds withd® probability
over the noise. Furthermore, we present an extension obitnveaalgorithms to handle adversarial naise
s.t.|In||3 < O(e/m) in query complexity polynomial in loy, m/e andLl(fA), and in running timeub-linear
in the domain siz&.

In comparison prior works handling comparable amounts éenbave running time polynomial in
the domain sizeN (rather than in lody) [10, 17]. Prior works with sub-linear running time addresgy
limited amounts of noisenoise flippingO(1/logN) fraction of the read entries [17], noiges.t. L1(n) <
O(1/logm) [25], no noise [5, 38t.

1.1.2 New: Solving Hidden Number Problem with advice, and ltisecurity implications

The Hidden Number Problerwas formalized by Boneh and Venkatesan [8] in the contextresgnting
the best known result on the bit security of the Diffie-Helimfanction. A relaxation of this problem to
a Hidden Number Problemwith advicewas subsequently formalized in the context of a securitypfpiar
cryptographic functions such as Okamoto conference kayrnghacheme and a modified EIGamal’s public
key encryption scheme [9].

In the Hidden Number Problem (HNP) with advice, for large prime and a generator of the multi-
plicative groupZy, the goal is to find a hidden numbee Zj when given ahort advice stringhat depends
only on p andg and oracle access to the functiBg(a) = MSE(s- g* mod p)) mappinga € {1,...,p} to
the k most significant bits in the binary representatiors af® mod p.

Boneh and Venkatesan [9] gave an algorithm solving the HNR advice for anyk > O(loglogp) in
running time polynomial in log. They then use this algorithm to show that computing theevaluthe
k most significant bits is as hard as breaking the scheme fodDKaenoto conference key sharing scheme
and for a modified EIGamal’'s public key encryption schemegmeh'as hard” here means that there is a
polylog p time reduction from the latter to the former). This is intetied as evidence for the security of
thesek bits (assuming the underlying functions are secure).

In this paper, we give an algorithm solving the HNP with aévior anyk > 1, and even in the presence
of random noise. This improves on prior works [9] in (1) hangllk > 1 rather thark > O(loglogp), and
(2) being robust to random noise.

We then use this improved algorithm to strengthen the sgcresults of [9] for the Okamoto con-
ference key sharing scheme and their variant of EIGamaldipley encryption scheme: We show that
non-uniformly computing even thsingle most significant bit of the aforementioned cryptographiacfu
tions is as hard as breaking these schemes (where “norruhifohere means in the presence of advice
depending only oy andp).

compressed sensing paradigm [10, 21]. The algorithms [8%H8&are restricted to input lengtité that are powers of 2 [38, 39]
or primes [5]; nevertheless, they can handle any input fehgby padding the input with zeros to reach the nearest apepri
lengthN'’. [5] focus on sparse input polynomials; nevertheless ictipg their algorithm shows it also handles non-sparsetipu
with complexity depending on thelin norm.

4We remark that in some prior works a weaker notion of noise ewmssidered, where an input is called “noisy” if it is not
sparse. The notion considered here is stronger: we addogssparse inputs with the additional noise incurred by ¢oeate
measurements.

1.1.3 New: Decoding polynomial rate concentrated & recoveble codes

An error correcting code is a collection otodewords & encodingmessages in a redundant way to allow
decodingthat is, recovery of the message even in the presence @.ht@snomorphism codg$s, C)-Hom
encode messagesin a finite abelian grouf® by the truth table of the charactey,: G — C corresponding

to m (where the characters are all homomorphisms fdto the complex unit sphere, and they correspond
to elementsn € G according to an isomorphism betwe@mand the group of its characters). For example,
the well know Hadamard code is the homomorphism code ovdydbkean cub& = F3. In homomorphism
codes(G,C)-Hom, the codewords length j&| which isexponentiain the information rate log3| (i.e., in

the messages binary representation length).

We ask whether there are restrictions of the codeword&gE)-Hom to a small subset of their entries
yielding newefficiently decodableodes of codewords lengftolynomialin the information rate. For ho-
momorphism codes over sorsmall groupssuch restrictions are known; for example, the Sipser-8yaial
codes [44] can be viewed as a restriction of the Hadamardscadeieving linear codewords length and
efficient decoding in the adversarial noise model. In cabtfar homomorphism codes oviarge groups
say,G = Zy, such restrictions are not known.

In this paper we show thdbr everyhomomorphism cod¢G, C)-Hom with G a finite abelian group,
there is an explicit subs&of the entries of its codewords such that restricting alleseards to the entries in
Syields a new code that achieves: (1) codewords lepgtinomialin the information rate logs|, and (2)
efficient decodingn the random noise model. Furthermore, we show that the msthictions exist for all
codes in the class @oncentrated and recoverable cod€§he class of concentrated and recoverable codes
was introduced in [4] and includes in particular all homopiism code(G,C)-Hom as well as boolean-
ization of homomorphism codes called Multiplication Co¢igs)

Related prior worksLocal testing of homomorphism codes with constant querypierity was given in
[7]. Local list decoding of homomorphism codes in poly-latianic query and time complexity were given
for the Hadamard codes [27], for homomorphism cod&sC)-Hom [4], and for arbitrary homomorphism
codes [20].

1.1.4 Techniques

Our deterministic SFT algorithm builds on the randomizegbathm of [4] while using a new set of read
entries and providing a new analysis. To define the set ofesnire introduce a new combinatorial property
—small bias on intervals which is a strict generalization of small biased sets. Véa ttonstruct the set of
read entries from sets that are small biased on intervalize$ & for £ = 1,...,[(logN)|. We prove that
our set is universal for all input functions with bounded fA) relying on Fourier analysis of the constructed
set. This Fourier analysis does not extend to handling foimstcorrupted by random noise due to their large
L, values. Instead we prove universality for noisy functiogshowing the algorithm behaves similarly on
the noisy and non-noisy functioRsWe remark that the definition of small bias on intervals mayseful
beyond this work.

In comparison, other deterministic SFT or compressed sgradgorithms rely on combinatorial proper-
ties such as small biased sets [38]majority k-strongly selective sets [34,35], Restricted IsometrypErty
(RIP) [12, 19, 28], and extractor graphs [32].

5We remark that a preliminary version of our new proof appéatse authors PhD dissertation [2].

Paper Organization

The rest of this paper is organized as follows. Some prelinés are given in section 2. Our SFT algorithm
for functions overZy and its analysis are presented in section 3; see section tBdarase of functions
over arbitrary finite abelian groups. Our results on spapgeaximation/compressed sending/sketching, on
cryptographic bit security, and on decoding polynomiaé rebncentrated & recoverable codes appear in
sections 4-6. The extension of our algorithm to handlingeastrial noise is outlined in section 7.

2 Preliminaries

In this section we summarize some preliminary terminologyations and theorems.
Inner product, norms, convolution. Theinner productof complex valued function$, g over a domairG

is (f,g) &' 16 2xe F(X)9(x). We denote theormalized?, normand thet., normof f by || f |2 e S
and || f ||« def max{ |f(x)| |x € G}, and denote then-normalized k-normby Li(f) = S, |f(X)|. The
convolutionof f andg s the functionf xg: G — C defined byf x g(x) def ‘—é' Yyea F(Y)9(x—y).

Characters and Fourier transform. We denote byZy def Z/NZ the additive group of integers modulo
N. Thecharactersof Zy are the functiongXq: Zn — (C}aezN defined byxq(X) def w* for wy = e?M/N g
complexN-th root of unity. For arbitrary finite abelian grouf@s the characters are the set of all homomor-

phismy: G — C from G into the complex unit sphere. Tlreurier transformof a complex valued function

f overG is the functionf: G — C defined byfA(O() def (f,Xa)- A few useful propertiesParseval Identity

~ ~ ~

2 _—
says thaf| f||3 = 54 f(a)‘ . By theconvolution-multiplication dualityf «g(a) = f(a)- f(a). The Fourier

~

coefficients for the functiog = f - x_q, areg(a) = f(a — ap) (where subtraction is moduls).

Significant Fourier coefficients.For anya € Zy, valy € C andt,€ € [0, 1], we say thatx is at-significant
Fourier coefficientff ‘ f(a) ‘2 > 1|| f||3, and we say thatal, is ane-approximation forf (o) iff ‘vala - fA(a)‘ <
€. We denote the set afsignificant Fourier coefficients df by Heavy, ().

Small biased sets [41]We say that a se& C Zy is y-biased inZy if [Exca[Xa(X)]| <y for every non trivial
characteryy of the groupZy, a # 0.

Fact 1 ([1,37,43]) There exists a deterministic algorithm that, given anygateN > 0 and realy > O,
outputs a set A- [0..N — 1] that isy-biased inZy. The sizdA| and the running time are po{logN,1/y).

New definition: (y,1)-bias in G. For any abelian grou@ and subsetB, | C G, we say thaBis (y, |)-biased
in G if for every charactey of the groupG, |Exegni [X(X)] — Exel [X(X)]| <.

Fact 2([3]). There exists a deterministic algorithm that, given anygats0 < M < N and realy > 0, out-
puts a set BC [0..M] that is(y, [0..M])-biased inZy. The sizeB| and the running time are pol{logN,1/y).

Remark.The constructionof [3] is simple given Fact 1, as [3] show that aylysmall biased sets ify for
sufficiently smally = poly(y,1/logN) is (y, [0..M])-biased inZy. Their proof is the main novelty in [3].

Tail inequality. Chernoff/Hoeffding theorem bounds the deviation of a surindépendent random vari-
ables from its expectation:

Theorem 3 (Chernoff/Hoeffding Bound [29]) Let X, ..., % be independent random variables of expecta-
tions 4, ..., iy and bounded valug;| <M. Thenyn >0, P[5t X — L5t [>n] < 2-exp<—2tM—”22>_

6

Characters average over intervals.Denote byS (a) = %Z;;%,xq (x) the average value of the charackgr
of Zy over an interva[l..t], t < N. ThenS (a) decrease fast with the growth ef(c.f.proof in [4]):

Proposition 4. Va € Zy, |S(0)] < \/g <at')\'s<;)) for abs(a) = min{a,N —a}.

3 Finding Significant Fourier Coefficients Deterministicaly and Locally

In this section we present our algorithm for finding significRourier coefficients and its analysis. We focus
here on the case of functions ov&y; see section 8 for the case of arbitrary finite abelian grdaips

Our algorithm is composed of two parts: (Queries generatingpart, where a set of entrieS =
S(G,1,t) C G is chosen, givers, T andt, and (2)Fixed queriespart, where the significant Fourier coef-
ficients of a functionf : G — C s.t. Ly(f) <t are found, giver, T and the restriction t&of f (or are found
with high probability given the restriction ®of a f’ a corruption off in random noise model).

3.1 Queries Generating

Our queries generating algorithm constructs the set ofesr#using sets that are small biased on intervals
[0..2f] for £=0,...,logN (c.f. Fact 2 and the preceding definition in section 2):

Algorithm 5. Queries Generating. Given any positive integer N and positive realand t, output a set
S= U}iﬁg'\'” (A—By) for A,By,...,B|ogn) €ach of size polynomial itogN and1/y for y = O(t/t?(1+
logN)) sufficiently small s.t.

e Alisy-biased inZy
e Byis (y,[0..2])-biased inZy for £ =1,...,| (logN)]

The sets ABy,...,N|(ogn)| are constructed deterministically in time polynomialagN and1/y using the
algorithms guaranteed in Facts 1-2, section 2. We remarkAhaB; is the difference sgta—b |ac A /b € B/}.

Remark 6. To obtain auniversal(albeit, non explicit) SFT algorithm it suffices to give a damized al-
gorithm generating a set of queries:’suéiigw (A—By) for A;By,...,Bjiogn) satisfying the properties
in Algorithm 5. A randomized algorithm that outputs such 8S$evith constant success probability is the
algorithm that chooses sets@Zy and B C [0..2] each of size QlogN)(loglogN)/y?) uniformly at ran-
dom, and outputs S UL"%™) (A—By). The size of the resulting set|i§ = O((logN)” - (t/1)4); and in
particular, |§ = O((log” N) /14) for compressible functions (as for such functions 1 (f) is a constant).
Verifying that a set S satisfies the properties from Algorithm 5 can Ime dio quasi-linear time QS - N).

3.2 Fixed Queries SFT

We give an overview of the fixed querie®¥ SFT) part of our algorithm. At a high level, tHeQ SFT is a
binary search algorithm that repeatedly:

1. Partitions the set of potentially significant Fourier coefficients itwm halves.

2. Testseach half to decide if it (potentially) contains a signific&wourier coefficient. This is done
by estimating whether the sum of squared Fourier coefficients in each Raexls the significance
thresholdr.

3. Continues recursivelyon any half found to (potentially) contain significant Faurcoefficients.

At each step of this search, the set of potentially signitidasurier coefficients is maintained as a
collections of intervals: At the first step of the search, all Fourier ficafnts are potentially significant, so
s contains the single intervdl= [1..N]. At each following search step, every interdat s is partitioned into
two sub-intervals); andJ, containing the lower and upper halveslaespectively, and the setis updated
to hold only the sub-intervals that pass the tést, those that (potentially) contain a significant Fourier
coefficient. After log\ steps this search terminates with a collectioof length one intervals revealing
the frequencies of the significant Fourier coefficients. &lbfrequenciesa of of the significant Fourier
coefficients, we then compute as@(r)-approximation forfA(a) the valuevaly, = |—/§‘ S xea—y F(X)Xa (X) for

some arbitrary € U}ﬂig'\'” By; to simplify notations in the following we assume w.l.o.gaty = 0.
The heart of the algorithm is the test deciding which intlryetentially contain a significant Fourier
coefficient (aka, distinguishing procedure). The distisging procedure we present, given an interval

~

2
J, answers YES if its Fourier weighteightJ) = 3 4¢3 ‘ f(a)‘ exceed the significance threshaldand

answers NO if the Fourier weight of a slightly larger intdrda> J is less thart/2. This is achieved by
estimating the/, norm (.e., sum of squared Fourier coefficients) of a filtered versiothefinput function
f, when using a filteh that passes Fourier coefficientslmand decays fast outside &f

The filtersh that we use for depthof the search are the (normalizgmriodic square functioof support
size Z or Fourier domain translations of this function:

N X-cly) ye0.2]
hec(y) =
0 otherwise

The filterh = h, ¢ passes all frequencies that lie within the lentytf2’ interval J centered around, and
decays fast outside af. The filtered version of is f xh, and we estimate ité, norm || f x h||3 by the

estimator:
1 1 ?
eSth,A7Bl(f) - |A| XEE < |B£| Y. gX—C(y) f (X_ y))

for A/By,...,B; C Zy as specified in the Queries Generating Algorithm 5.
A pseudo-code of theQ SFT algorithm follows; we denote b{a, b} the intervalja..b] and byCandidate
the collections as reached at search depth

Algorithm 7. FQ-SFT Algorithm

Input: N € N, T € (0,1], A By,...,Biogn C Zn and{(x, f (X))} s for S= A— U9 B,
Output: L C Zn

Steps:

1. Candidatg — {{O,N}}, v/ =1,... ,logN, Candidate= @
2. For¢=0,...,logpbN—1

(a) Foreach{d,b'} € Candidate
For each{a,b} € {{a’, #}7 {# +1,b’}}

i. Run Distinguishing Algorithm 8 on inpy&, b}, T f[|3, A Be1, and{(x, f(X))},.s denote
its output by “decision”

ii. If decision= 1, Candidate,; « Candidate,1|J{{a b}}

3. Output L= { a |{a,a} € Candidat@gn } and {vala = ‘%' S xea F(X)Xa (x)}]
ae

Algorithm 8. Distinguishing Algorithm.

Input: {a,b} € Zn X Zn, T€ RT, ABC Zn, {(X, (X)) } xen_B

Output: 1or0

Steps:

ab 1 1 2
1. Computeest™ «— 3 xen <\FI S yeB X—|(24)] (y)f(x—y)>
2. Ifest®P > 3§6T, decision= 1, else decision= 0

We remark that to ease the reading of the above pseudo-codedethe simplifying assumptions that
(& +b')/2 is an integer, thatf||3 is known, and thaf C S. When this is not the case mild changes are due:
When(d +b')/2 is not an integer, we partitiof®’, . .., b’} into two disjoint subinterval$a’, ..., c},{c+1,...,b'}
of roughly the same length. Whdif||3 is not known we estimate it with precisigd(t|| f||3) sufficiently
small by the estimato . f (x)2. WhenA s not contained ii§, we computevaly = ﬁ S xea F(X=Y)Xa (X—

y) for arbitraryy in U2} By.

3.3 Analysis

In this section we analyze our SFT algorithm proving our masult. Recall thaHeavy,(f) is the set of

~ ~

T-significant Fourier coefficients df, and thawval, is ane-approximation forf (a) iff ‘vala — f(a)‘ <E.
We first show that our SFT algorithm succeeds when there'sisen

Theorem 9. For every positive integer N, positive reald, and a complex valued function Zy — C s.t.

~

Li(f) <t, our SFT algorithm given Nt, t and oracle access to f, outputs a lisbLHeavy,(f) together

~

with O(t)-approximations forf (a) Yo € L in running time polynomial irogN, 1/t and t.

Proof. Combining lemmas 11 and 13 below shows that our SFT algorghoteeds in finding the-

-~

significant Fourier coefficients of all functiorfss.t. L1(f) <t. O

We next show that our SFT algorithm succeeds also in the mpeesef noise, that is, the algorithm
outputs the significant Fourier coefficients foEven when given only oracle access to a corrupted version
f’ = f +n. The noisen may be either (1Random noisef paramete = O(1) sufficiently small, that
is, entries ofn are drawn independently at random from a distribution ofeexpd absolute valug or (2)
Adversarial noises.t.L1(1) <t.

Theorem 10 (Robustness to rloise}:or every positive integer N, positive reals, and complex valued
functions fn: Zy — Cs.t. Ly(f) <t,
e Our SFT algorithm, given Nt, t and oracle access to’ & f +n for n random noise of parameter
O(1) sufficiently small, outputs a list D Heavy,(f) together with @t)-approximations forf(a)
Ya € L with probability at leastl — 1/N®® over the noisey.
e Our SFT algorithm, given N, t and oracle access td £ f +n for n adversarial noise s.t. 4(1) <t,

~

outputs a list LD Heavy,(f) together with @t)-approximations forf (a) Va € L.

9

The running time of the SFT algorithm polynomialagN, 1/t and t.

Proof. Combining lemmas 11 and 14 below shows that our SFT algossticneeds with probability at least
1- 1/N@(1) to output ther-significant Fourier coefficients of all functiorf$ = f +n s.t. Ll(fA) <tandnis
random noise and their approximations; where the prolpalidlitaken over the choice of the random noise
n. The proof for the case of adversarial noigs.t. L;() <t is analogous while replacing Lemma 14 with
Lemma 15. O

We give a sufficient condition for the success of B SFT algorithm on any particular input function.

Lemma 11. For every function f Zy — C and thresholds it > 0, the FQ SFT algorithm returns a list

~

L O Heavy,(f) together witht-approximations forf (a) Vo € L in running time polynomial ifogN, 1/t
and t if the following conditions hold:

(%) |estnag, () — || = hH%\ <ct V¢ € [|(logN)]],c € Zy and h= h, ¢ as defined above, and

1 -
erz\f(x)xa (x) — f(a)

<cr Ya € Zn

()

for c > 0 a sufficiently small absolute constant.

Proof. The lemma is established by showing that if condition (*)dsahen thé&Q SFT algorithm efficiently
returns allt-significant Fourier coefficients df. The fact that the outputted valuealy = 5 yca f(X)Xa (X)
areO(t)-approximations for thé (a) follows immediately from conditiorg').

Correctness. To establish the correctness of the algorithm it sufficeshtmwsthat the distinguishing
procedure answers YES whenever the considered int@rgahtains a significant Fourier coefficientg.,
esthap, (f) > Q(1) for the used filteth = hy¢ (with ¢, N/21 the center of) and its length). This is

true because whehcontains a-significant Fourier coefficient, then by Proposition 12ritél), || f * h||§ >
Q(S ges ‘ fA(a)‘z) > Q(1), implying by condition (*) that alsestn A g, (f) > Q(T), and thus the distinguishing
procedure decides YES.

Efficiency To establish the efficiency of the algorithm it suffices towtihat the distinguishing proce-
dure does not answer YES too often. If the distinguishing@dare answers YES on a considered interval
J, thenesty ag, (f) > Q(1) implying by condition (*) that|hx f||3 > Q(t). By Proposition 12 Item (2) the
latter implies that for a slightly larger intervdl 2 J, |J'| /|J| < O(1/y), its Fourier weight (that is, sum of
squared Fourier coefficients with frequencies’ins greater thaf2(t). This implies that the distinguishing
procedure cannot answer YES too often because there aresaOfigt) disjoint intervals whose Fourier

weight exceed®)(1) (by Parseval Identity), and thus at m@(t%%) (possibly, overlapping) intervald

whose Fourier weight excee@XT). O

For integers/,c > 0 and realy > 0, letJ;c = { a |abs(a —c) < 3 } be an interval if0..N — 1] and let
its extension be]AQy = {0(|abs(a—c) < \/32\, %} Then the following holds (see proof in section A):
2
f(a)‘ +y.

2
Proposition 12. (1) ||hc* (|3 > %Zae% f(a)‘ ,and (2)||hc* f]|3 < Sack,,

The following lemma shows that when using a set of queigenerated by algorithm 5, conditions (*)

~

and (*) hold for every functionf of bounded_;(f).

10

Lemma 13. Let S= U'OgN(A— By) be the output of the queries generating algorithm 5, thenefaary
function f: Zy — C s.t. Ll(f) <t, conditions (*) and (*) hold.

Proof. We first argue that condition (*) holds. FI, ¢ € [| (logN)]], A y-biased inZy, andB = By (y,I)-
biased inZy for | = [0..2°]. Denotegy(y) = X_c(y)f(x—y) for y € | andgy(y) = O otherwise. By the

definition ofesthag(f) and|hx f||3,
2
E(ng > (ngy)>
XeA \yeB erN yel

for: (i) = XIEA(yIEEng > (ylglgx)>2

W = |5 (zem) - 2 (Bew)

-~ ~

We show below thati) <y-Ly(f)?-O(logN) and(ii) <y-Lz(f)2. Combining these bounds we get that
lestnas(f) — [+ F[3] < yLa(P)2(O(logN) + 1)
Thus, fory = O(p g) Sufficiently small Jest(f) — [h« f||3] < O(T) for all f s.t.Ly(f) <t.

We next argue that conditior’) holds. Observe that when SW|tch|ng to the Fourier represient of f,
ﬁZXGA ()Xa() is equal tOf()+Z[37é0(f(B)ﬁ ZXEAXB—G (x). So, ‘|—i| Sxea F(X)Xa(X) — f(a)| is upper
bounded by pca | F(B)| | & ZxeaXp-a()
Finally, this implies condition (*') for the choice of < O(t/L4(f)) in our algorithm.

lestnas(f) — []3] < (i) + (i)

which is in turn upper bounded tyy; (f) for anyy-biased seA.

Bounding term (i). Rewrite(i) as‘ExeA [(EyeB gx(y))2 — (Eyel gx(y))z] ‘ and observe that the expectation
overA is upper bounded by the maximum overNamely, denoting(y) = gx,(y) for thexo € A where the

maximum is obtained, we have that
2 2
< E g(y)) - (E g(y)>
yeB yel

Using the identitya? — b? = (a— b)(a+b) and observing thaa+b < 2|/ || for a= Eycg gx(y) andb =
Eyel 9x(Y) (Where we use here the fact that_¢|l» < 1), we get that:

(i) <

(i) <2flle | E
yeB

gy — E g(y)'
yel

Switching to the Fourier representationggdnd using the triangle inequality we get that:

W < 2flle 3 BB X0~ EXal)| <2 flLs(@

AEZN

where the last inequality follows from the fact tHais y-biased orl. Observing that by switching to the
Fourier representation df, ||l = max | f(a1)Xa()‘ <Yqlf ‘ = L1 (), we conclude that

(i) < 2y-Li(F)-Li(9)

11

We next bound.1(Q). Observe thagi(y) = I (y) fy(x) for h'(y) = x_c(y) if y € | andh’(y) = 0 otherwise,
and fy(x) = f(x—y). By the convolution theorerg= H « fAy implying that

~

L1(@) < La(F)-La(F)
where the last inequality follows from the fact thgg I « f,(a) < Ly () - L1(F,), and thaq fAy(O()‘ = ‘ fA(O()‘

for all a. Finally, we compute_l(ﬁ’). By Proposition 4,

LAY

ﬁ’(a)‘ =

whereabs(a) denotes miga,N — a}. So,

La(F) = 3 1/abs(a - ¢) = O(logN)

We conclude that R
L1() < O(logN) - Ly(f)

Combining the above bound @i with the bound ori;(g) we conclude that:

~

(i) <y-L1(f)>-O(logN)

Bounding term (ii). Denotingg(X) = (Eye ax(Y))?, we rewrite(ii) as|Exca G(X) — Excz, §(X)|. Switching
to Fourier representation gfand using the triangle inequality we upper bound this exginesby:

(i) < 3 [G)]| X0~ E Xa00| < 1@

AEZN

where in the last inequality we use the fact tAas y-biased inZy.

We next bound.; (). Observe thag = (hx f)? (sincehx f = Eyez, %x_c(y) f(X—Y) =Eyar X—c(Y) T (X—V)).
Therefore,

L1(Q) < La(h=f)2

where we use the fact that for any functigr.;(s?) < L;(S). Observe further that

— ~

Ly(hx)% < Ly(F)?

becaus#rﬂ\f(a)‘ = ‘ﬂ(a)‘ : ‘f\(d)‘ < ‘f\(d)‘, where the last inequality follows sin#ﬁ(a)‘ <1 for all a.
Combining the above bounds together we conclude that
(it) < Wa(f)?

g

The following lemma addresses the random noise case, amésthat when using a set of queriSs
generated by algorithm 5, conditions (*) and (*') hold wittgh probability over the choice of noisgfor
every functionf’ = f +n s.t. f has bounded; (f).

12

Lemma 14. Let S= U2} (A—By) be as in algorithm 5, then with probability at leatst- 1/N®D, condi-
tions (*) and (*') hold for all functions f= f +ns.t. Ll(fA) <tandn: Zy — Cis random noise of expected
absolute value < O(1) sufficiently small (where the probability is taken over theice of the noisq).

Proof. We first argue that condition (*) holds. Observe that for= f + 1, |esthag, (') — || f*h|3| <
(i) + (i) + (iii) for:

() = lesthas,(f)—[If+h[3]

) 1 1 1

(i) = 2[A] 2 (w X—c(y) f(x —y)> <pr\ X- (y)n(X—y)>'
(iit) = lesthag, ()]

We bound each of these terms. Term (i) is upper bounde®(by by lemma 13 above. We show below
that for each? = 1,...,[(logN)|, terms (ii) and (iii) are upper bounded I6)(€), each with probability
at least 1- 1/N® (where the probability is over the choice of random nai$e By union bound, both
these bounds hold fall ¢ = 1,...,|(logN) | with probability at least - 2logN/N%® = 1 - 1/N?®, We
conclude that foe = O(1), & () — || xh||3| < O(1) with probability at least + 1/N%Y.

We next argue that condition (*') holds. Sinéé= f +n, then|—2i‘ Yxen f/(X)Xa (X) is equal to the sum

of two terms: T; = I_/lAIZXGAf(Xa(X) and T, = 0 LS caN(¥)Xa(X). By Lemma 13,‘T1— f(a)‘ < O(1).
To bound the second term observe tRa{T,| < E”[IA\ Y xea|N(X)|] = €, implying by Chernoff bound that

IT,| < 2¢ with probability at least - exp(Q(|A[€?)) > 1 — ﬁ (where the last inequality follows from
the choice ofA| used in our algorithm). Combining both these bounds andjaissj € < O(T) we obtain

that| & Sea f'(XXa (X) - fA(a)‘ < ‘Tl - fA(a)‘ + T3] < O(1) —i.e., condition (*) holds— with probability at
least 1— 1/N2(D)

2
Bounding (ii). By Cauchy-Schwarz inequalitgii)? < (a)- (b) for (a) = |—i| S xeA (ﬁ S ye, X—c(Y) f(x— y))

2
and(b) = & Yxea (ﬁ S yeB, X—cl (x—y)) . We show below thalt(a)| < O(1). To bound (b), observe that

(b) is equal to expression (jii) abovieg., (b) = estp a g, (1); and therefore from the bound on (jii) below we
get that(b) < O(g) with probability at least - exp(Q(]A|€?)). Combining both bounds we conclude that

(i) < O(e).
Bounding (a). Observe thé) = estpag, (f) for h=h, ¢, implying by Lemma 13 that(a) — ||hx f||3] <

~ 2 -
yL1(f)?(1+ O(logN)). Next observe thdth* f[|3 < 1 since||hx f||3 = T4 |h(a)f(a)‘ where‘h ‘ <1

for all a and f is normalized to havg, | f ‘ — 1. We conclude therefore thig)| < 1+ yL1(f)2(1+

O(logN)) = O(1) (where the last equality follows from the fact that ()2(1+ O(logN) < O(T) for they
used in our algorithm, and from the fact that 1).

2
Bounding (iii). Recall thatest(n) = ﬁngA (ﬁ zyeBéx_c(y)n(x—y)) which is upper bounded by

2
ﬁ S xeA (ﬁ Syes, IN(X— y)]) . In expectatiori[(ii)] < €2. By Chernoff bound, we gér[(iii) > Q(¢)] <
exp(Q(|Al€?)). O

13

The following lemma addresses the case of adversarial nasewing conditions (*) and (*’) hold for

~

every functionf’ = f +n s.t.Ly(f),L1(Q) <t.

Lemma 15. Let S= U';fll\' (A—By) be as in algorithm 5, then conditions (*) and (*') hold for dlinctions

~

f'=f+ns.t Ll(f),L]_(ﬁ) <t.

Proof. Proof is similar to the proof of Lemma 14 while proving an ative upper bound on (iii) showing
it is upper bounded byL1(17)?(1+logN). This bound follows from Lemma 13 with replacingf in the
analysis ofsthap, (). O

4 Deterministic Sparse Approximation, Compressed Sensing Sketching

4.1 Deterministic sparse Fourier approximation
We present a deterministic (universal and explicit) ancieifit algorithm for sparse Fourier approximation.

Theorem 16(sparse Fourier approximationyhere exists a deterministic (universal and explicit) aitm
that for every finite abelian group G, integer m0, reals t& > 0, and bounded complex-valued function

f: G— Cs.t. Ly(f) <t, given G (by its generators and their orders), ng &nd oracle access to f, outputs
a near optimal m-terms approximation R for f s.t.

If —RIZ < (1+€)||f — Roptll3

for Ropt the best m-terms approximation of f in the Fourier basis @ufirtite precision). The running time
and query complexity of this algorithm is polynomialag |G|, m/€ and t.

Proof Sketch Our sparse Fourier approximation algorithm follows froor &FT algorithm via known
techniques for converting SFT algorithms to algorithmsifigdsparse Fourier approximation [23, 38]f(
[23], Theorem 9). Applying these techniques on deterministicand efficient SFT algorithm results in
a deterministicand efficient algorithm for sparse Fourier approximatiotie Tomplexity analysis follows
by observing that in the proof of Theorem 9 in [23] the SFT &thm is run with significance parameters
T = poly(e/m) and on functionsf’ for which Ly (') < L1(f) for f the input functions (where the latter is
true asf’ = f — ¥ 41 valaXa for I' a subset of the significant Fourier coefficients of ipéy(log |G|, m/e,t)
andvaly’s are approximations of the Fourier coeﬁicierﬁA(s;x)’s). a

RobustnessThe above algorithm for sparse Fourier approximation issoto random noise of expected
absolute value at mo€)(e/m) with probability .99 over the noise; in addition it is robust to aayversarial
noisen s.t.L1(N) <t. Furthermore, using the extension of our SFT algorithm étweasarial noise settings,
we obtain an algorithm for sparse Fourier approximatiortfercase ofs = Zy that handles angdversarial
noisen s.t. |n||3 = O(g/m) in running timesub-linearin the domain sizeN and with query complexity
remains as in the above theorem,, poly-logarithmic inN.

4.2 Deterministic compressed sensing and sketching

Inrecent years there’s growing interest in algorithms figdiuccinct approximate representations of vectors
x € CN by shortsketches g CK (typically with k << N) such that givers one carrecovera near optimal
m-sparse approximatioR of x. Such sketches are useful for example in the contestremingalgorithms
[31, 40] where the data is too large to be represented ettplias well as incompressed sensifd0, 21]
where data acquisition already reads only the values regjfr computing the sketch.

14

Our sparse Fourier approximation algorithm gives sketghind recovery algorithms for vectoxsvith
sparse representation in thewurier basis The sketch is the (explicit) set of entries read by the algar.
The recovery algorithm is our algorithm finding sparse Femuaipproximation. The sketch length and the
running time of the recovery algorithm are polynomial ingn/€ andL; (X) (for L1(X) the sum of absolute
values of the entries of the Fourier transformxpf

Furthermore, by a change-of-basis we obtain sketchingeaaVery algorithms for vectosswith sparse
representation in thetandard basis {(x) = zi’\‘:1|xi| < polylogN with sketch length and the running time
of the recovery algorithm polynomial in I&g, m/€ andL;(x). This is because as noted in [32] (see footnote
2 there), any algorithm for sparse Fourier approximaticaditeg k entries gives an algorithm for sparse
approximation in the standard basis makininear measurementsomputing inner product of with ap-
propriate rows of the (inverse) Fourier matrix. The runriinge of the recovery algorithm is not affected by
this change of basis.

Theorem 17 (Sparse recovery for compressed sensing and sketchiiggre exists two deterministic (ex-
plicit and universal) algorithms: (1) A measurement getiagalgorithm that, given integers xh > 0 and
reals t € > 0, outputs a measurement matrixgACPOMIOGN.-Me)xN- and (2) A recovery algorithm, given
integers Nm > 0, reals t € > 0 and the measurements Ax for any every vectarGN s.t. ZN:1|Xi| <t,
outputs an m-terms approximationeRCN s.t.

Ix—RIZ < (1+&)[Ix— Ropll2

for Ropt the best m-terms approximation of x in the standard basise rlinning time of the both these
algorithms is polynomial inrogN, m/e and t. The recovery algorithm is robust to random nois®f
parameter Qs/m) and to adversarial noisg of Ly(n) <t.

5 Solving Hidden Number Problem with Advice & Bit Security

We give an algorithm solving the HNP with advice for dny 1, and even in the presence of random noise.

Definition 18 (Hidden Number Problem (HNP) with advice [9]for p a prime and g a generator of the
multiplicative groupZy, the goal is to find a hidden numbeksZ;, when given ahort advice stringhat
depends only on p and g and an oracle access to the function

Ps(a) = MSB(s-g* mod p))
mapping a {1,..., p} to the k most significant bits in the binary representatios-@f mod p

Theorem 19. For any prime p and a generator g, there is an algorithm sajvime Hidden Number Problem
with advice for any k> 1. Furthermore, with probability at least— 1/p®(, the algorithm succeeds even in
the presence of random noise flipping each entry of the oRdledependently at random with probability
€ = O(1) sufficiently small.

Proof. To prove the theorem we show that there is an advice stihgce, of lengthpolylog p s.t. for every
secrets € Zy, given Advicg g and oracle access ®(a) = MSBy(s- g%), the algorithm finds in running

time polynomial in logp. Furthermore, we show the algorithm succeeds in findimgth probability at
least 1— 1/p®(® even if the oracle answers are corrupted by random noisérftigach bit with sufficiently
small constant probability.

15

Fix a primep and a generatag of the multiplicative grouZy,. Let fs: Zp — {0, 1} be the function

fs(X) = MSBy(s- X)

Denotet = maxal#o‘f;(a)‘z andt = Ly(fs). Fourier analysis ofs shows that = ©(1); t = O(log p); the
most significant Fourier coefficient df is located on the frequenciessand —s, and furthermore, the latter
is true with high probability even in the presence of randaise €.f. [2]).

The advicewe use is discrete logs in the bagef elements irSfor SC Zy the output of the Queries
Generating Algorithm 5 on inpWd, T, t:

Advicg,g = {DLpg(X) },cs

whereDL 4(x) is the elemena € Z,_1 s.t. x=0* modp. Note that by the bounds ant, the advice string
is indeed of lengttpolylog p

The algorithm for findings is as follows: (1) Run our SFT algorithm on input domain sgethe
significance parameter the bound on Ll(fAs) and with oracle access to the restrictionfgfo S (that is, to
the valueg{ fs(x) }<); denote the outputted list of frequency by(2) Output thex € L s.t. MSB;(a - x) has
highest agreement with the restrictionfgto S.

We show that the output is indeed the hidden nunsb&irst observe that the SFT algorithm succeeds in
outputting the significant Fourier coefficients faf because due to its universality it can answer all queries
to fs as the only queried entries are thos&iNext, since thenostsignificant Fourier coefficients df are
located on the frequenciessand —s (and furthermore this holds with high probability even ie fresence
of random noise), thes, —s € L, which in turn implies thas is outputted by the algorithm (with high
probability over the random noise).

The running time of this algorithm is dominated by the rugntime of the SFT algorithm which is
polynomial in logp, 1/t = O(1) andt = O(log p). O

As a corollary we obtain a strengthening of the security Itesaf [9] for the Okamoto conference key
sharing scheme and their variant of EIGamal’s public keyngstion scheme: We show that non-uniformly
computing even theinglemost significant bit of the aforementioned cryptographicctions is as hard as
breaking these schemes (where “non-uniformly” here meatise presence of advice dependinggp).

For completeness, we write here the definitions of the Okamonference key sharing scheme and the
ElGamal public key encryption scheme as given in [9]:
Okamoto conference key sharing schemeBob picksr at random and sends to Alice= g'. Alice picks
a randons and sendy = x° back. Bob compute;zfl = ¢g® which is the conference key they use. Since the
conference key is determined by Alice’s bits alone she catridite the same key to all members of the
conference. Cracking this scheme needs computing theidar©oKgy(g"™, 9", mg"’) = m.
Modified EIGamal public key encryption scheme.Bob picks a random and publishey = g* as his public
key. To send a messageto Bob, Alice picks a random and sendg, my. Bob can decode the message
by computingmy /(g")*. To break the scheme one has to compute the funé&igig*,g*,md) =m.

6 Decoding Polynomial Rate Concentrated & Recoverable Code
We show that for every concentrated and recoverable codeitha restriction of the codewords to a sulizet

of their entries yielding a new code pblynomial codeword lengtiwhich isefficiently decodable in random
noise model

16

A code isconcentrated and recoverabj4] if (1) messages and codeword entries can be identifidal wit
elements in a finite abelian gro@ and when identifying codewords with functions o@mapping entries
to values the following holds: (2) for every codewdzd Ll(é) < polylog|G|, and (3) there is @ecovery
algorithm that given a frequencg € G and a significance threshotd outputs all codeword€ whosea
Fourier coefficient ig-significant in running time polynomial in lg&| and /1.

Examples of concentrated and recoverable codes in¢hateomorphism codgss, C)-Hom andMul-
tiplication (MPC) codes ¢ s.t. L1(P) < poly(log|G|). Where theMPC codesc £ are boolean-ization of

(G,C)-Hom by the boolean predicat®sthat is, their codewords encodinge G are

Cm = (P(Xm(91)),P(Xm(92)),---,P(Xm(9ig|)))

for gy, ..., gy the elements o& andxm the character o& corresponding ton by the isomorphism between
G and its group of characters. (The definition of MPC given lyeneeralizes the definition of [4] to arbitrary
finite abelian groups.)

Therandom noise model of parameteoutputs corrupted codewor@® = C + n for C the uncorrupted
codeword and) a random function whose entries are drawn independentgnaiom from distributions of
expectation absolute valge

The Binary Symmetric Channel (B§ds an example of this random noise model, wh@ra binary
codeword accepting-1 values, and is a function accepting values {r-2,0,2} whose value on each entry
i is chosen independently at random to hé) = —2C(i) with probability e, andn (i) = 0 otherwise.
Notation. Let G a finite abelian grous C G. Denote by g a code with codewords identified with functions
C: G — C. Denote byc S the code whose codewords are the restrictionS o6 the codeword€ € ¢ to
functions overS, that is, the codewords a@: S— C is defined byCS(x) = C(x) Vx€ S

Theorem 20. For everyt > 0 and every concentrated and recoverable code there is a subset S G
such that the restriction code® is a code opolynomial codeword lengtivhich isefficiently decodablén
the random noise model of paramete(tQ) specifically, the codeword length and the running time ef th
decoding algorithm are polynomial ing|G| and1/T.

Proof. Let Sbe the output of our Queries Generating algorithm when g®&dhy its generators and their

-~

orders),T and an upper boundon maxc. L1(C). We point out that it suffices to take= 1 for the case of

~

Homomorphism codes, 45(C) = 1 for all their codewords.

Given a corrupted codewomd: S— C, we think ofw as a restriction of a corrupted codewavdof the
codeC. The decoding algorithm is as follows: (1) Apply our SFT altfon to find a listL of the significant
Fourier coefficients ofV; (2) Apply the recovery algorithm on each frequency L to obtain a list, of
all codewords for whichu is a significant Fourier coefficient; (3) Return the codew@rd (Jy¢, Lo With
highest agreement with the given corrupted codewoah the entries irs.

The success of this algorithm follows from our analysis af 8HT algorithm together with the analysis
of [4] of concentrated and recoverable codes: By the praggedf our SFT algorithm, with high probabil-
ity step (1) of the above algorithm returns the significantifier coefficients ofv’ even in the presence of
random noise. This proves the success of our algorithm sirveas shown in [4] that to decode concen-
trated and recoverable codes it suffices to (1) find the Saarit Fourier coefficients of the given corrupted
codewordw’ and then continue as in steps (2)-(3) of the above algorithm.

The efficiency of this algorithm follows from the efficienc{tbe SFT and the recovery algorithms]

17

7 Robust SFT: Handling Adversarial Noise in Sub-Linear Time

We present a deterministic (universal and explicit) SFDathm that handleadversarial noisef bounded
In|3 in sub-lineartime. We focus here on the case of functions degr the algorithm extends to functions
over arbitrary finite abelian groups, details omitted.

Theorem 21. There is a deterministic algorithm that for every positinteger N, reals,t > 0, and functions
f,f': Zy — C s.t. L(f) <t, and|/f’ — f||3 = O(1), given N,T and oracle access to’,foutputs a list

L O Heavy,(f) together with @t)-approximations forf(a) Ya € L in query complexity polynomial in
logN, 1/t and t and in running time R0 . 0O(|g /T19).

Our robust algorithm is composed of two parts: (1) queriesegaing and (2) fixed queries SFT. The
gueries generating part is identical to Algorithm 5. We dibscthe fixed queries parRgbust - SFT) and
sketch its analysis.

Overview of theRobust - SFT algorithm. The high level of thé&obust - SFT algorithm is similar to that of
theFQ SFT algorithm: Both algorithms are binary search algorithna grogress via a sequence of adaptive
tests, where tests at deptlin the search tree are designed to decide whether givernidh@’ intervals
potentially contain significant Fourier coefficients of thput function. These tests are essentially achieved
by estimating the Fourier weight of the given interval (tlsathe sum of squared Fourier coefficients of the
input function over this interval) and checking whetherxteeds a threshol®(t). Since the lengths of
the considered intervals decrease exponentially Withe algorithm zooms into the exact location of the
significant Fourier coefficients in Idg search depth.

The Robust - SFT algorithm differ from theFQ SFT algorithm on how each of these tests is executed.
In the FQ SFT algorithm, tests at search tree depthse only the input function valuegx) on entriesx in
the small seA — B, out of all entriesS= U'(?:gl'\' (A—By), namely, on only a AlogN-fraction of the entries.
This is not robust against adversarial noise, because amsaty corrupting even only thig lbgN-fraction
of the entries can diverge the entire search away from finthiegsignificant Fourier coefficient (say, by
setting the values on these few entries to 0, thus convintiaglgorithm thatf has no significant Fourier
coefficients).

To overcome this weakness of th@ SFT algorithm, in theRobust - SFT algorithm, tests at each search
tree depthy (test/, in short) are executed relying on many more entries of tpatifunction. Specifically,
each test is composed oD(g/1)logN sub-testenumerated by = ¢, ..., + O(g/1)logN, where each
sub-test is executed using entries &— B;. The outcome of testis determined by thenajority vote over
all sub-test/.

Each of those sub-testsoperates as follows. In sub-te5tentriesA — B; are used for estimating the
Fourier weight of lengtiN /2 > N /2 intervals as follows: The given lengti/2 interval is divided into
sub-intervalsof length N/2‘ and the Fourier weight of each of these intervals is estichatngA — B;
(where the latter is achieved in the same manner as it is dofeFQ SFT algorithm). The Fourier weight
of the entire interval is the sum of the Fourier weights ofitalparts. (More precisely, instead of taking the
sum of Fourier weights, we decide that an interval potdgtiedntains a significant Fourier coefficient if
any of the sub-intervals exceeds the appropriate thresb@alil)

Overview of the analysis of theRobust - SFT algorithm. Correctness. The tests of theRobust - SFT
algorithm are robust, because an adversary flipping at eafsattion of the entries its cannot change the

18

majority vote over alD(g/1) logN sub-tests. Thus, despite the noise, each test ¢thest - SFT algorithm
returns the correct outcome. This implies the success dritiee algorithm similarly to the analysis of the
FQ SFT algorithm.

Complexity. The running time of theobust - SFT is dominated byN°(#/7). This is because the num-
ber of sub-intervals in each sub-tesiof test ¢ is (N/2)/(N/2) = 2=, which is N/ when ¢ =
¢+ 0(g/1)logN.

We remark that while this running time is far worse than gaylogN running time of theFQ SFT
algorithm, yet, it is far better than thé- poly(logN) running time of the trivial exhaustive search algorithm.

8 Finding Significant Fourier Coefficients over Finite Abelian Groups

In this section we describe our SFT algorithm for the caseiotions over arbitrarfinite abelian groups
Our algorithm is composed of two parts: (1) queries genagaéind (2) fixed queries SFT; described in
sections 8.1-8.2 below. Analysis overview is given in set8.3.

Theorem 22. There is a deterministic algorithm that for every finite a@elgroup G, positive reals,t, and

~

a complex-valued function: fG — C s.t. Ly(f) <t, given G (by its generators and thAeir orders),t and

oracle access to f, outputs a list Heavy,(f) together with @t)-approximations forf (a) Vo € L. The
running time is polynomial itogN, 1/t and t.

Furthermore, the above holds with probability at least IyN®) over the random noise even if the
algorithm is given oracle access notftdut to a noisy versiodf’ = f +n for n: Zy — C whose entries are
drawn independently at random from a distribution of expeebsolute valu®(t) sufficiently small.

8.1 Queries Generating

The queries generating algorithm constructs the se® eéentries using sets that are small biased on (sets
isomorphic to) rectangleR ; , = Zn, x ... x Zy, x {0,...,2°} x {0} x ... x {0} in G,

Algorithm 23. Queries Generating. Given generatorsq...,gk € G, their orders N,, ..., Nk, and pos-
itive realst,t, output a set S Uye(|(ogn) JJ el (A— Br¢) for A and B ’s each of size spoljog|G|,1/y) for
y= poly(1/log|G|,T,1/t) sufficiently small s.t.

e Ais ay-biased setin G

e Bi/is(Y,R1,)-biased in Gforeach+1,... k,/=1,...,logN, where R, 1, is the set in G isomor-
phictoR,; ,=Zn, X ... X Zn X {0,...,2°} x {0} x...x{0},i.e., Ry1s = { ﬂ‘leg)j(j (X,...,%) € RH’Z}.

The sets A andB’s are deterministically constructed in time polynomialag |G| and1/y using the explicit
algorithms guaranteed in Fact 1 in section 2 and in coroll@#d/below.

The following is a corollary from Facts 1 and 2.

Corollary 24. For every finite abelian group G isomorphic#y, x ... x Zy,, realy > 0, and subset I G
isomorphic to J=Zp, x ... x Zy, x| x {0} x ... x {0} for an interval = [0..M] for M < N1, there exists
explicit construction (i.e., by a deterministic algorithwith running time polylog|G|,1/y)) constructing a
set BC G of size polylog|G|,1/y) which is(y,J)-biased in G.

19

8.2 Fixed Queries SFT
8.2.1 The Casec=7Zn, X ... X Z,

We next describe the SFT algorithm for functions o@e= Zy, x ... X Zy,. The input in this case is a
description of the group bi;, ..., Nk, a threshold and query access to a functidn G — C. The output

2
is a short list containing ail-significant Fourier coefficients, that is, alle G s.t. ‘ f(a)‘ > 1.

Algorithm overview. The SFT algorithm finds the-significant Fourier coefficient&y,...,ax) € Zy, x
... X Zn, by gradually revealing its coordinates one after the oti#drthe first step, the algorithm finds
the first coordinates of all the-significant Fourier coefficients, that is, it finds length refixes of the
T-significant Fourier coefficients. At the second step, tlgo@hm extends each length 1 prefix to all
its continuation into length 2 prefixes of thesignificant Fourier coefficients. The algorithm continues
in extending prefixes of the-significant Fourier coefficients one coordinate at a timdte®k step, the
algorithm holds length prefixes, which are the list atsignificant Fourier coefficients.

To extend a length— 1 prefix (ay,...,a;_1) of at-significant Fourier coefficient to a prefix of length
t, the algorithm searches for all valuas of thet-th coordinate such that,...,a;_1,0;) is a lengtht
prefixes of ar-significant Fourier coefficient. This search is done in abjrsearch fashion, similarly to the
SFT algorithm for functions ovefy,. Namely, the search proceeds by gradually refining thealnitterval
{0,...,Ni} into smaller and smaller subintervals, each time applyiniisénguishing procedure to decide
whether to keep or discard a subinterval.

The distinguishing procedure we use here is different thamnhe used for the case of functions d¥gr
Ideally we'd like the distinguishing procedure to keep aetival iff it containso; such tha{ay, ..., 0¢_1,0¢)
is a lengtht prefix of a at-significant Fourier coefficient. It is not known how to eféoily compute such
a distinguishing procedure. Nevertheless, we presenttiaglisshing procedure with similar guarantee: it
keeps all intervals that containtasignificant Fourier coefficient, yet keeping only few inals. Specifi-
cally, the distinguishing procedure, given a lengthl prefixa = (ay,...,0;_1) and an intervala, ..., b},
computes (an approximation of) a weighted sum of squareddraroefficients

2

estr~ Y G-) ‘fA(GC(tG/)

G[GZNl U/EZNI+1X...XZNk

such that the weights,, are high {.e., close to 1) foi; in the interval, and the weightg, are fast decreasing
asa gets farther and farther away from the interval. The distisiging procedure keeps the interval iff this
(approximate) weighted sum is sufficiently large. To coregain approximation of) this weighted sum, we

2
define a “filter function’h whose (squared) Fourier coeﬁicieHrtE{B)‘ are equal to the above coefficients

Cq, When the length prefix of B is the given prefia, and they are zero otherwise. With this filter function
we express the above weighted sum as the norm of the coralith and f, which we in turn approximate
by taking an average over randomly chosen values

The filter function that we use is

(Mt aND) Xapoo s (V1o Ye-1) e () 0 (a0 i) = 0K
hG,T,f,C(yla oo 7yk) =
0 otherwise
for hny rc(%t) = 5 Xn, () if Y& € [0.2°] andhi, c(yt) = O otherwiseiXn,,. N yau,..ap 1 (V1> Y1) =

20

) on _
|‘|tj;1lez'“imjyJ a character in the groupy, x ... x Zy, ,; andyn,_c(yt) = €& 9" a character in the group
Zn,- WhenG andNy, ..., N are clear from the context, we often omit their indices.

Algorithm 25. Fixed Queries SFT Algorithm
Input: A description{(1, Ni)}!‘:l of the group G=Zn, X ... X Zn,, T € RT, A, {Bt!}te[k],ee[logm and

{(a, f(q))}qu forQ=A— Ute[k],fe[log Nt Bt
Output: L CZn, X ... X Zn,
Steps:

1. Let Prefixeg = {the empty string, Prefixes,...,Prefixeg = @
2. Fort=1,...,k

(@) For eacha' = (ay,...,0q_1) € Prefixes 1
i. Candidatg: o < {{O,N}}, V/=1,...,logN,, Candidatg: ; = ¢
ii. For ¢=0,...,logo,N; —1
A. For each{d,b'} € Candidatg
For each{a,b} € {{a’, h e }, {% +1, b’}}
e Runthe Distinguishing Algorithm 26 on inpuft, {a, b}, T, A B /41 and{(q, ()} genxr s
denote its outputs be “decision”

e If decision= 1, Candidatg: 1 < Candidategt ¢1(J{{a b}}

iii. Foreach{a,a} € Candidatgt ogn, denotea‘a= (ay,...,0_1,a). Let

Li(a') = {a'a|{a a} € Candidateg ogn, }
(b) Let Prefixes— Uqteprefives , L(OY)
3. Output Prefixes
Algorithm 26. Distinguishing Algorithm.
Input: a' € Z, X ... X Zn_,, {&,b} € Zn x Zn, T€RT, ABC G and{(q, f(d))} gen_s-
Output: 1or0
Steps:

1. Compute
2
est@® — 25 [LSy K an () - Fx—y)
PPRAEPRERSEIY Y

an evaluation of thea! character of the grouy, x ... x 7y, ,, and
)% an evaluation of the[(%’)J character of the grouy, .

for xat(y) = [1i4e N M
X_ () () =€ R

t
2. Ifest® @ > 21, decision= 1, else decision- 0

21

8.2.2 The Casds is Arbitrary Finite Abelian Group

The SFT Algorithm for arbitrary finite abelian grou@sis defined by utilizing the isomorphism betwe@n
and a direct product groupas follows.

Givena descriptior{ (9j,Nj) }lj(:]- of the groupG, a threshold and query access to a functiéon G — C,

we simulate query access to a functitinover a direct product group isomorphic® and apply the SFT
algorithm on input a description of the direct product grotine threshold and query access t. Output

L= { ﬂ'j‘zlg)j(j ‘ (X1,...,X) € L’} for L’ the output of the SFT algorithm.

To complete the description of the algorithm we define thection f and explain how to efficiently
simulate query access i when given query access fo The functionf’ is defined byf’(xy,...,x) =
f(ﬂ‘j(:lg}(j). The functionf’ is computable in time polynomial in IdG|.

8.3 Analysis Overview

Theorem 27. For every finite abelian group G, positive realg, and a complex valued functions 6 — C

~

s.t. Li(f) <t, our SFT algorithm given G (by its generators and thgir @8)et, t and oracle access to f,

outputs a list LD Heavy.(f) together with @t)-approximations forf(a) Yo € L. The running time is
polynomial inlog|G|, 1/t and t.

Proof. Combining lemmas 29 and 30 below shows that when using th& agbutputted by th€ueri es
Gener ati ng Algorithm 23, ourFQ SFT algorithm succeeds in finding thesignificant Fourier coefficients
of all functionsf s.t.L(f) <t. O

Theorem 28 (Robustness to random noiséjor every finite abelian group G, positive realst, and a
complex valued functions: iG — C s.t. Ll(fA) <t, our SFT algorithm given G (by its generators and their
orders), T, t and oracle access to’ &= f +n, for n: G — C whose entries are drawn independently at
random from a distribution of expected absolute valye)Qufficiently small, outputs a list D Heavy,(f)
together with Qt)-approximations forf (o) Yo € L with probability at leastl — 1/ \G]e(l) over the random
noise. The running time is polynomiallivg |G|, 1/1 and t.

In addition, our SFT algorithm is robust to amglversariahoisen s.t. () <t.

Proof. Combining lemmas 29 and 31 below shows that when using arett®aitputted by thé&ueri es
CGener at i ng Algorithm 23, theFQ SFT algorithm succeeds with high probability in finding theignificant
Fourier coefficients of all function$’ = f +n s.t. Ll(fA) <t andn is random noise; where the probability
is taken over the choice of the random nais€The proof for the case of adversarial noigs.t. L1() <t

is analogous while replacing Lemma 31 with Lemma 32. O

We give statements of lemmas 29-32 below. Proofs are sirdlgroofs of lemmas 11-15; details
omitted (see author’s dissertation [2], Chapter 3, for podd.emma 29).

Lemma 29. Denote by N, ..., Nk the generators orders in the given generating set for G. Fergfunction
f: G — C and thresholds.tt > 0, theFQ SFT algorithm returns all ther-significant Fourier coefficients of

6Recall that ifG a finite abelian group generated by, ..., g of ordersNy, ..., Ny, respectively, thei® is isomorphic to the
direct product groufn, x ... x Zy, by mapping(Xy, . ..,Xx) € Zn, X ... X Zn, t0 |‘|'j‘:1 g);J €G.

22

f in time polynomial inog|G|, 1/t and t if the following condition holds:

(%) lestnag,(f)—||f«h|5| < ct
Ve e [[(logNi11)]],t € [k—1],c € Zn,,, and h= hg ¢ as defined above, and

1 -~
mxéf(x)xa (x) — f(a)

< Ct VaeG

()

for c > 0 a sufficiently small absolute constant.

The following lemma shows that when using a set of queSigenerated by algorithm 5, conditions (**)

~

and (**') hold for every functionf of bounded_;(f).

Lemma 30. Let S be the output of the queries generating algorithm) tenditions (**) and (**’) hold

~

for every function f s.t. {(f) <t.

The following lemma addresses the random noise case, amésghat when using a set of queriSs
generated by algorithm 5, conditions (**) and (**') hold wihigh probability over the choice of noisgfor
every functionf’ = f +n s.t. f has bounded; (f).

Lemma 31. Let S be as in algorithm 5, then with probability at least 1/N®®, conditions (**) and (**')

hold for all functions f=f +n s.t. 4(f) <tandn: G — C is random noise of expected absolute value
€ < O(1) sufficiently small (where the probability is taken over theice of the noisq).

The following lemma addresses the case of adversarial mosewing condition (*) holds for every
function f’ = f +n s.t. Ly(f),L1(N) <t.

Lemma 32. Let S= U'gle (A—By) be as in algorithm 5, then condition (**) holds for all funatis f = f +n

~

s.t. Lu(f),La(N) <t.

Acknowledgments.

The author is grateful to Shafi Goldwasser, Piotr Indyk, dinikuntanathan, and Avi Wigderson for
helpful comments and discussions.

References

[1] M. Ajtai, H. Iwaniec, J. Komlos, J. Pintz, and E. Szemere@onstructions of a this set with small
fourier coefficients Bull. London Math. So¢22:583-590, 1990.

[2] A. Akavia. Learning Noisy Characters, Multiplication Codes and Cographic Hardcore Predicates
PhD dissertation; defended Aug 2007, MIT, EECS, Feb 2008.

[3] A. Akavia, N. Alon, V. Guruswami, and A. Wigderson. Exgli Constructions of Sets Fooling Negli-
gible Size Arithmetic Progressions. In preparation. 2008.

[4] A. Akavia, S. Goldwasser, and S. Safra. Proving HardeJ@redicates using List Decoding. Pmoc.
of 44th IEEE Annual Symposium on Foundations of Computemgei(FOCS’'03)pages 146-157.
IEEE Computer Society, 2003.

23

[5] N. Alon and Y. Mansour.e-discrepancy sets and their application for interpolatibsparse polyno-
mials. IPL: Information Processing Letter§4, 1995.

[6] R. Berinde, A. C. Gilbert, P. Indyk, H. J. Karloff, and M. Strauss. Combining geometry and combi-
natorics: A unified approach to sparse signal recovenRR abs/0804.4666, 2008.

[7] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/cortewy with applications to numerical problems.
Journal of Computer and System Sciene43):549-595, 1993.

[8] D.Boneh and R. Venkatesan. Hardness of computing thé smpsificant bits of secret keys in diffie-
hellman and related schemeasecture Notes in Computer Sciendd.09:129-142, 1996.

[9] D. Boneh and R. Venkatesan. Rounding in lattices andytgstographic applications. IBODA: ACM-
SIAM Symposium on Discrete Algorithms (A Conference onrétieal and Experimental Analysis of
Discrete Algorithms)1997.

[10] E. J. Candes, J. K. Romberg, and T. Tao. Robust uncgrtpiinciples: exact signal reconstruction
from highly incomplete frequency informatiolEEE Transactions on Information Theg®?2(2):489—
509, 2006.

[11] E. J. Candes, J. K. Romberg, and T. Tao. Stable signalvesg from incomplete and inaccurate
measurementsCommunications on Pure and Applied Mathemat&%(8):1207-1223, 2006.

[12] E. J. Candes and T. Tao. Decoding by linear programn@a@RR abs/math/0502327, 2005.

[13] M. Charikar, K. Chen, and M. Farach-Colton. Findingofuent items in data streamBheor. Comput.
Sci, 312(1):3-15, 2004.

[14] J.W. Cooley and J.W. Tukey. An algorithm for machineca¢dtion of complex fourier serieddathe-
matics of Computatiqril9:297-301, Apr 1965.

[15] G. Cormode and S. Muthukrishnan. An improved data streammary: the count-min sketch and its
applications.J. Algorithms 55(1):58-75, 2005.

[16] G. Cormode and S. Muthukrishnan. Towards an algorithiiméory of compressed sensing. 2005.

[17] G. Cormode and S. Muthukrishnan. Combinatorial alfpons for compressed sensing. In Paola Floc-
chini and Leszek Gasieniec, edito®ROCCQ volume 4056 olecture Notes in Computer Science
pages 280-294. Springer, 2006.

[18] W. Dai and O. Milenkovic. Subspace pursuit for comprgssensing: Closing the gap between per-
formance and complexityCoRR abs/0803.0811, 2008.

[19] R. A. DeVore. Deterministic constructions of compessensing matrices. Complex.23(4-6):918—
925, 2007.

[20] I. Dinur, E. Grigorescu, S. Kopparty, and M. Sudan. Deadality of group homomorphisms beyond
the johnson bound. ISTOC '08: Proceedings of the 40th annual ACM symposium oworyhef
computing pages 275-284, New York, NY, USA, 2008. ACM.

[21] D. Donoho. Compressed sensidlBEE Trans. on Information Theord2(4):1289-1306, April, 2005.

24

[22] Sumit Ganguly and Anirban Majumder. Cr-precise: A deti@istic summary structure for update data
streams.CoRR abs/cs/0609032, 2006.

[23] A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and3t#tauss. Near-optimal sparse fourier repre-
sentations via sampling. Broc. of 34 ACM Annual Symposium on Theory of Computing (ST2)C
pages 152-161. ACM Press, 2002.

[24] A.C. Gilbert, S. Muthukrishnan, and M. Strauss. Imgrdtime bounds for near-optimal sparse fourier
representation via sampling. imProc. SPIE Wavelets X2005.

[25] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. VersiyrAlgorithmic linear dimension reduction in
thel1 norm for sparse vector€CoRR abs/cs/0608079, 2006.

[26] A. C. Gilbert, M. J. Strauss, J. A. Tropp, and R. VersimynOne sketch for all: fast algorithms for
compressed sensing. 8TOC '07: Proceedings of the thirty-ninth annual ACM syniyooson Theory
of computing pages 237-246, New York, NY, USA, 2007. ACM.

[27] O. Goldreich and L. Levin. A hard-core predicate foraike-way functions. IiProc. 27th ACM Annual
Symposium on Theory of Computing (STOC @)ges 25-32, 1989.

[28] V. Guruswami, J. R. Lee, and A. Razborov. Almost eudidesubspaces df via expander codes.
In SODA '08: Proceedings of the nineteenth annual ACM-SIAMpsginm on Discrete algorithms
pages 353-362, Philadelphia, PA, USA, 2008. Society fandtrial and Applied Mathematics.

[29] W. Hoeffding. Probability inequalities for sums of bmled random variables]. Amer. Stat. Assoc
58:13-30, 1963.

[30] Shang-Teng Huang, editdProceedings of the Nineteenth Annual ACM-SIAM SymposiuDismnete
Algorithms, SODA 2008, San Francisco, California, USA uiag 20-22, 2008SIAM, 2008.

[31] P. Indyk. Sketching, streaming and sub-linear spagerithms. graduate course notes, available at
http://stellar.mit.edu/s/course/6/fa07/6,895/, 2007.

[32] P.Indyk. Explicit constructions for compressed segsif sparse signals. In Huang [30], pages 30-33.

[33] P. Indyk and M. Ruzic. Near-optimal sparse recoveryhalt norm. volume 49th Annual IEEE
Symposium on Foundations of Computer Science, 2008.

[34] M. A. lwen. A deterministic sub-linear time sparse faauralgorithm via non-adaptive compressed
sensing method<CoRR abs/0708.1211, 2007.

[35] M. A. lwen. A deterministic sub-linear time sparse firanralgorithm via non-adaptive compressed
sensing methods. In Huang [30], pages 20-29.

[36] M. A. lwen and C. V. Spencer. Improved bounds for a deteistic sublinear-time sparse fourier
algorithm. InConference on Information Sciences and Systems (CIS&ge®on, N,J2008.

[37] M. Katz. An estimate for characters suth.AMS 2(2):197-200, 1989.

[38] E. Kushilevitz and Y. Mansour. Learning decision treesng the Fourier spectrum.SICOMP,
22(6):1331-1348, 1993.

25

[39] Y. Mansour. Randomized interpolation and approximatdf sparse polynomialsSIAM J. on Com-
puting, 24(2):357—-368, 1995.

[40] S. Muthukrishnan. Data streams: Algorithm and appiices (invited talk at soda’03). available at
http://athos.rutgers.edu/ muthu/stream-1-1.ps, 2003.

[41] J. Naor and M. Naor. Small biased probability spaceficieht constructions and applications. volume
22nd ACM Symposium on the Theory of Computing, pages 213-2290.

[42] D.Needelland J. A. Tropp. Cosamp: Iterative signabreey from incomplete and inaccurate samples.
Appl. Comp. Harmonic AnaglJune 2008.

[43] A. Razborov, A. Wigderson, and E. Szemeredi. Condgimgcmall sets that are uniform in arithmetic
progressionsCombinatorics, Probability and Computing:513-518, 1993.

[44] M. Sipser and D. Spielman. Expander cod€<E Trans. Inform. Theory2:1710-1722, 1996.

A Proof of Proposition 12

Proof of Proposition 12. Leth=hy, J;¢, Jicy be as in Proposition 12.
We first give some properties &fderived using Fourier analysis. Den@ga) = %Z;L%Xa (y), and

observe thaﬁ(a) = Sy(a —c). By Proposition 33 below this implies the following propest of h: (i)

~ 2 -~ 2 2
va, ‘h(a)‘ <1, (i) Va € Jyc, h(a)‘ > Q(1), and (iii) Ya¢y,, h(a)‘ <y. Recall also that we assumed

~

~ 2
w.l.0.g thatf is normalized to have (ij, |f(a)| =1, which in particular implies that (Wa, f(a)‘ <1
Item (1) of Proposition 12 follows from (i), because by Reval Identity and the convolution-multiplication

-~ 2| ~ 2
duality, [l (13 = 5o ()| | ()] > Q1) Sacs,.
—~ 2 ~ 2
Item (2) of Proposition 12 follows from (i), iii)-(v), beesel|h f |2 < max, ‘h(a)‘ zaejircrv‘f(a)(+

~ 2
h(d)‘ S Z(xe\]é‘c‘y

2
f(a)‘ (where the last inequality follows from (ii)).

2
f(a)‘ + Yy (where the last inequality follows from (iii)-(v)). O

2
maXy ‘f(a)(S atdcy
Proposition 33. Lette 1,... N, and $as in the above definition, then the following propertiesihol

1—cog Tt
L [S(0) = o

2. Pass Bandva € Zy andy € [0,1], if abs(a) <y, then|S (o) > 1— 2

2
3. Fast decreasingva € Zy, |S(a)[* < 2 (al’:i/(:])>

4. Fourier boundedva € Zy, |S(a)* < 1

Proof. Proof of Item 1. Recall thatyy(x) = w® for w = ¥ a primitive root of unity of ordeN. By the
formula for geometric sum

Clw%-1

Ttwo-—1

S(a)

26

Implying that
» 1—cog%at)

~ 1—cog %)

S (a)]

Proof of Item 2. For alla € Zy with abs(a) < y%, we can utilizing Taylor approximation of the cosine
function (namely, - 3—? <cog0) <1- g—f + 3—?) to have:

S@P>1-1 <2tab§(“)>2 21 Ty

12 12

and this is greater than-12y? sincer? < 10.
Proof of Item 3. As cosh = cog—0) and sinceabs(a) < % we can, again, utilize Taylor approximation

to have:
N/t

S(@)F < (abS(G)>2n2 (1_ M) - :_23 (%{;)f

12

(where in the last inequality we used the bouabls(a) < N/2 and 9< 1@ < 10).
Proof of Item 4. By triangle inequality)S (a)| < %z;;% IXa (X)] which is in turn equal to 1. O

27

ECCC ISSN 1433-809
http://eccc.hpi-web.de/

