
LIST DECODING TENSOR PRODUCTS AND INTERLEAVED CODES

PARIKSHIT GOPALAN, VENKATESAN GURUSWAMI, AND PRASAD RAGHAVENDRA

Abstract. We design the first efficient algorithms and prove new combinatorial bounds for
list decoding tensor products of codes and interleaved codes.

• We show that for every code, the ratio of its list decoding radius to its minimum distance
stays unchanged under the tensor product operation (rather than squaring, as one might
expect). This gives the first efficient list decoders and new combinatorial bounds for
some natural codes including multivariate polynomials where the degree in each variable
is bounded.

• We show that for every code, its list decoding radius remains unchanged under m-wise
interleaving for an integer m. This generalizes a recent result of Dinur et al. [6], who
proved such a result for interleaved Hadamard codes (equivalently, linear transforma-
tions).

• Using the notion of generalized Hamming weights, we give better list size bounds for both
tensoring and interleaving of binary linear codes. By analyzing the weight distribution
of these codes, we reduce the task of bounding the list size to bounding the number of
close-by low-rank codewords. For decoding linear transformations, using rank-reduction
together with other ideas, we obtain list size bounds that are tight over small fields.

Our results give better bounds on the list decoding radius than what is obtained from
the Johnson bound, and yield rather general families of codes decodable beyond the Johnson
bound.

1. Introduction

The decoding problem for error-correcting codes consists of finding the original message given
a corrupted version of the codeword encoding it. When the number of errors in the codeword is
too large, and in particular could exceed half the minimum distance of the code, unambiguous
recovery of the original codeword is no longer always possible. The notion of list decoding
of error-correcting codes, introduced by Elias [10] and Wozencraft [35], provides one avenue
for error-correction in such high noise regimes. The goal of a list decoding algorithm is to
efficiently recover a list of all codewords within a specified Hamming radius of an input string.
The central problem of list decoding is to identify the radius up to which this goal is tractable,
both combinatorially (in terms of the output list being guaranteed to be small, regardless of
the input) and algorithmically (in terms of being able to find the list efficiently).

The classical Johnson bound shows that at least combinatorially, list decoding always allows
one to correct errors beyond half the minimum distance. It states that every code of distance
δ over Fq is list-decodable up to the Johnson radius Jq(δ) which lies in the range (δ/2, δ].
However, the Johnson bound is oblivious to the structure of the code; it only depends on its
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minimum distance. Potentially, a code might be list-decodable at larger error-radii than what
is guaranteed by the Johnson bound. The question of identifying the precise radius up to
which list decoding is tractable for a family of codes is a challenging problem. Despite much
progress in designing list decoding algorithms over the last decade, this problem is still open
even for well-studied codes such as Reed-Solomon and Reed-Muller codes.

On the algorithmic side, following the breakthrough results of Goldreich-Levin [11] and Sudan
[28] which gave list decoders for Hadamard codes and Reed-Solomon codes respectively, there
has been tremendous progress in devising list decoders for various codes (see the surveys
[15, 16, 29]). This study has had substantial impact on other areas such as complexity theory
[30, 32], cryptography [11, 1] and computational learning [19, 21]. Examples of codes which
are known to be list-decodable beyond the Johnson bound have been rare: Extractor codes
[31, 14], folded Reed-Solomon codes [24, 17], group homomorphisms [6] and Reed-Muller codes
over small fields [12] are the few examples known to us.

A natural way to design new error-correcting codes from old ones is via various product op-
erations on these codes. In this work, we study the effect of two basic product operations,
tensoring and interleaving, on list-decodability. In what follows, [q] stands for an alphabet of
size q, for example {0, 1, . . . , q − 1}.
Definition 1.1. (Tensor Product) Given two linear codes C1 ⊆ [q]n1 and C2 ⊆ [q]n2 , their
tensor product C2⊗C1 consists of all matrices in [q]n2×n1 whose rows belong to C1 and columns
belong to C2. For a code C ⊆ [q]n, its m-wise tensor product for m > 1 is a code of length nm

defined inductively as C⊗1 = C and C⊗m = C⊗(m−1) ⊗ C for m > 1.

For example, Reed-Muller codes in m variables where the degree in each variable is restricted
to d can be viewed as the m-wise tensor of Reed-Solomon codes. Our algorithm does not
require the Cis to be linear, but we make the assumption since the tensor of two non-linear
codes might be empty. Using δ(C) and R(C) to denote the normalized distance and rate
of C respectively, it follows that δ(C⊗m) = δ(C)m and R(C⊗m) = R(C)m. Hence for tensor
products, we are primarily interested in the setting where m is either constant or a slowly
growing function of the block length.

Definition 1.2. (Interleaved Codes) The m-wise Interleaving (or interleaved product) C�m

of the code C ⊆ [q]n consists of n ×m matrices over [q] whose columns are codewords in C.
Each row is treated as a single symbol, thus C�m ⊆ [qm]n.

In other words, under m-wise interleaving, m independent messages are encoded using C, and
the m symbols in each position are juxtaposed together into a single symbol over a larger
alphabet. For instance, linear transformations from F

n
2 → F

m
2 can be viewed as interleaved

Hadamard codes. It is easy to see that δ(C�m) = δ(C), R(C�m) = R(C) but the alphabet
grows from [q] to m-dimensional vectors over [q]. So unlike for tensors, for interleaving m
could be as large as polynomial in the block length; indeed our results hold for any m.

1.1. Tensor products and interleaved codes: Prior work and motivation.

1.1.1. Tensoring. Tensor products occupy a central place in coding theory, so much so that
tensor product codes are typically referred to as just product codes. Product codes provide
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a convenient way to construct longer codes from shorter component codes. Elias [9] used
tensor product of Hamming codes to construct the first explicit codes with positive rate for
communication over a binary symmetric channel. The structure of product codes enables de-
coding them along columns and rows, and the column decoder can provide valuable reliability
information to the row decoder [26]. Product codes find many uses in practice; for example,
the product of two Reed-Solomon codes is used for encoding data on DVDs.

More recently, tensor products have found applications in several areas of theoretical CS such
as hardness of approximation [8, 20] and constructions of locally testable codes [22]. The
effect of tensoring on on local testability of codes has been extensively studied [2, 7, 34, 4].
Tensor products admit a natural tester (which checks a random row/column) that has a
certain “robustness” property [2]. Exploiting this, by recursive tensoring one can obtain
simple constructions of locally testable codes with non-trivial parameters, starting from any
reasonable constant-sized code. But to our knowledge, there seems to no prior work focusing
on the effect of tensoring on the list decoding radius. In particular, the best combinatorial
bound known for the list decoding radius seems to have been the Johnson bound, and we are
unaware of an efficient algorithm that decodes C2 ⊗ C1 up to the Johnson bound, assuming
that such algorithms exists for each Ci. A sufficiently strong result on list decoding tensor
products could lead to a simple, recursive construction of list-decodable codes starting from
any small code of good distance. Our results are optimal in terms of the radius to which we
decode, but not strong enough in terms of output list-size guarantee to obtain such a result.

1.1.2. Interleaving. At a high level, interleaving is a way to arrange data in a non-contiguous
way in order to increase performance. Interleaving is used in practical coding systems to group
together the symbols of several codewords as a way to guard against burst errors. A burst
error could cause too many errors within one codeword, making it unrecoverable. However,
with interleaving, the errors get distributed into a small, correctable number of errors in each
of the interleaved codewords. This is quite important in practice; for example the data in a CD
is protected using cross-interleaved Reed-Solomon coding (CIRC). Though code interleaving
has been implicitly studied for its practical importance, our work appears to be the first to
study it in generality as a formal product operation. We describe some recent theoretical work
on interleaved codes which set the stage for our investigation.

The problem of decoding interleaved Reed-Solomon codes from a large number of random
errors was tackled in [5, 3]. The folded Reed-Solomon codes constructed by Guruswami
and Rudra [17] (which achieve list decoding capacity), and their precursor Parvaresh-Vardy
codes [24], are both sub codes of interleaved Reed-Solomon codes, where the m interleaved
codewords are carefully chosen to have dependencies on each other. Dinur et al. in their
work on list decoding group homomorphisms studied interleaved Hadamard codes, which are
essentially all linear transformations from F

n
q → F

m
q [6]. Their work raised the question of how

the interleaving operation affects the list decoding radius of arbitrary codes, and motivated
our results.

1.2. Brief high-level description of key results. We start with some terminology.
The distance dist(C) of a code C ⊆ [q]n is the minimum Hamming distance between two
distinct codewords in C, and its relative distance is defined as dist(C)/n. For a code C of block
length n and 0 < η < 1, the list-size for radius η, denoted `(C, η), is defined as the maximum
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number of codewords in a Hamming ball of radius ηn. Informally, the list decoding radius
(LDR) of C is the largest η such that for every constant ε > 0, the list size for radius (η − ε)
is bounded by some function f(q, ε) independent of the block length n.1

Our main result on tensor products is the following: if C has relative distance δ and LDR η,
then the list decoding radius of the m-wise product C⊗m is ηδm−1. In other words, the ratio
of LDR to relative distance is preserved under tensoring.

For interleaved codes, we prove that the LDR remains unchanged irrespective of the number
of interleaves. In particular, if C has relative distance δ, and C�m is its m-wise interleaving,
then for every η < δ one has `(C�m, η) 6 A · `(C, η)B where A,B are constants depending only
on δ, η and independent of m.

Organization. Formal statement of all the results of this work appear in Section 2. These
include the results described above which apply to arbitrary codes, along with improved list
size bounds for special cases like binary linear codes and transformations. We present our
bounds for interleaved codes in Section 3, and our decoding algorithm for tensor products
together with a sketch of its analysis in Section 4. The formal analysis of the tensor decoding
algorithm appears in Section 5. In Section 6, we use the notion of generalized Hamming
weights to derive improved list-size bounds for tensor products and interleavings of binary
linear codes . Finally, in Section 7, we show list size bounds for linear transformations that
are tight over small fields.

2. Our Results

2.1. List decoding tensor products. Given two codes C1 ⊆ [q]n1 and C2 ⊆ [q]n2 , their
tensor product C2⊗C1 consists of all matrices in [q]n2×n1 whose rows belong to C1 and columns
belong to C2.

We design a generic algorithm that list decodes C2 ⊗ C1 using list decoders for C1 and C2 as
subroutines, and bound the list-decoding radius by analyzing its performance. Further, if we
have efficient list decoders for C1 and C2, then we get an efficient algorithm for list decoding
C2 ⊗ C1. A brief overview of this algorithm is given below in Section 2.1.2. Our main result
on list decoding tensor products is the following.

Theorem 2.1. Let C1 ⊆ [q]n1 and C2 ⊆ [q]n2 be codes of relative distance δ1 and δ2 respectively,
and 0 < η1, η2 < 1. Define η∗ = min(δ1η2, δ2η1). Then

`(C2 ⊗ C1, η∗ − ε) 6 qOε,δ1,δ2
(log `(C1,η1) log `(C2,η2)) .

In particular, if the LDR of C1, C2 are η1, η2 respectively, then the LDR of C2 ⊗ C1 is at least
η∗.

The decoding radius achieved in Theorem 2.1 is in fact tight: it is easily shown that assum-
ing that C cannot be list decoded beyond radius η, C⊗2 cannot be list decoded beyond δη
(Lemma 4.1). As a corollary, the ratio of the list decoding radius to the relative distance stays
unchanged under repeated tensoring.

1Here it is implicitly implied that the codes C belong to an infinite family of codes of increasing block length.
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Corollary 2.2. If C has relative distance δ and list decoding radius η, then the list decoding
of the m-wise tensor product C⊗m is ηδm−1.

The bounds that we get on list-size for C⊗m are doubly exponential in m. Improving this
bound to singly exponential in m, say exp(O(m)), could have interesting applications, such as
a simple construction of list-decodable codes by repeated tensoring, with parameters strong
enough for the many complexity-theoretic applications which currently rely crucially on Reed-
Solomon list decoding. We are able to obtain some improvements for the case of tensoring
binary linear codes; this is described in Theorem 2.8.

Comparison to Johnson bound. Even assuming that each of C1 and C2 are decodable only
up to the Johnson bound, Theorem 2.1 gives a bound that is significantly better than the
Johnson bound, since by convexity Jq(δ1δ2) < min(δ1Jq(δ2), δ2Jq(δ1)) 6 η∗.

2.1.1. Implications for natural codes. Theorem 2.1 gives new bounds on list decoding radius
for some natural families of codes, which we discuss below.

Reed-Solomon tensors. Let RS[n, k]q denote the Reed Solomon code consisting of evalua-
tions of degree k polynomials over a set S ⊆ Fq of size n, with distance δ = 1−k/n. Such codes

are list-decodable up to the Johnson radius J(δ) = 1 −
√

1− δ using the Guruswami-Sudan
algorithm [18]. The m-wise tensor product of such a RS code is a [nm, km]q code consisting
of evaluations on Sm ⊆ F

m
q , of multivariate polynomials in m variables with individual degree

of each variable being at most k. Parvaresh et al. considered the problem of decoding these
product codes, and extended the Reed-Solomon list decoder to this setting [23]. This yields
relatively weak bounds, and as they note, by reducing the problem to decoding Reed-Muller
codes of order mk, one can do better [25]. Still, these bounds are weaker than the Johnson
radius J(δm) of the m-wise product, and in fact become trivial when m > n/k. Our results
give much stronger bounds, and enable decoding beyond the Johnson bound.

Corollary 2.3. The m-wise tensor of the RS[n, k]q Reed-Solomon code is efficiently list-
decodable up to a radius δm−1J(δ)− ε, where δ = 1− k/n is the relative distance of RS[n, k]q,
and ε > 0 is arbitrary.

One can compare this with the Johnson bound J(δm) by noting that

δm−1J(δ) = δm

(

1

2
+

1

4
δ +

3

8
δ2 + · · ·

)

, J(δm) = δm

(

1

2
+

1

4
δm +

3

8
δ2m + · · ·

)

.

Hadamard tensors. Let Had be the [qk, k]q Hadamard code, where a ∈ F
k
q is encoded as

the vector {a · x}x∈Fk
q
. C is list-decodable up to its relative distance δ = 1− 1/q. The m-wise

tensor product C⊗m consists of all “block-linear” polynomials. Specifically, each codeword
in C⊗m is a polynomial P on m × k variables given by x = (x(1), x(2), . . . , x(m)) where each

x(i) = (x
(i)
1 , . . . , x

(i)
k ), such that for each i, P is a linear function in x(i) for each fixing of the

other variables.

Corollary 2.4. The m-wise tensor of [qk, k]q Hadamard codes has list decoding radius equal

to its relative distance
(

1− 1
q

)m
.
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This result is interesting in light of a conjecture by Gopalan et al. stating that Reed-Muller
codes of degree m over Fq are list-decodable up to the minimum distance (they proved this
result for q = 2) [12]. Our result shows m-wise Hadamard tensors which are a natural sub code
of order m Reed-Muller codes (with better distance but lower rate) are indeed list-decodable
up to the minimum distance.

2.1.2. Tensor decoder overview. Our algorithm for list decoding C2⊗C1 starts by picking small
random subsets S ⊂ [n2] and T ⊂ [n1] of the rows and columns respectively. We assume that
we are given the codeword restricted to S × T as advice. By alternately running the row and
column decoders, we improve the quality of the advice. We show that after four alternations,
one can recover the codeword correctly with high probability (over the choice of S and T ).
An obstacle in decoding tensor product codes is that some of the rows/columns could have
every high error-rates, and decoding those rows/columns of the received word gives incorrect
codewords. We show that the advice string allows us to identify such rows/columns with good
probability, thus reducing the problem to decoding from (few) errors and (many) erasures.
The scheme of starting with a small advice string and recovering the codeword via a series of
self-correction steps has been used for list decoding Hadamard codes and Reed-Muller codes.
Our work is the first (to our knowledge) that applies it outside the setting of algebraic codes
defined over a vector space.

2.2. Interleaved Codes. Armed with a list decoding algorithm for C, a naive attempt at
list decoding C�m would proceed as follows: List decode each column of the received word
separately to obtain m different lists {L1, . . . , Lm}, then iterate over all matrices with first
column from L1, second column from L2, etc., and output those close enough to the received
word. The naive algorithm described above yields the following simple product bound

(2.1) `(C, η) 6 `(C�m, η) 6 `(C, η)m

This upper bound is unsatisfactory since even if `(C, η) = 2, the upper bound on `(C�m, η) is
2m. Recent work of Dinur et al. [6] overcame this naive product bound when the codes being
interleaved arise from group homomorphisms. To this end, they extensively used properties
of certain set systems that arise in the context of group homomorphisms.

Surprisingly, we show that the product bound can be substantially improved for every code
C. In fact, the list size bound we obtain is independent of the number of interleavings m (as
in the above-mentioned results of Dinur et al. [6] ).

Theorem 2.5. Let C be a code of relative distance and let η < δ. Define b = d η
δ−η e and

r = dlog δ
δ−η e. Then, for all integers m > 1, we have

(2.2) `(C�m, η) 6

(

b + r

r

)

`(C, η)r .

The implies that if C is list-decodable up to radius η, then so is C�m. The condition η < δ in
Theorem 2.5 is necessary, as it is easily shown that `(C�m, δ) > 2m (unless C is trivial and has
only one codeword).
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2.2.1. Proof technique. The proof of Theorem 2.5 relies on a simple observation which we
outline below. Assume that we list decode the received word corresponding to the first column,
to get a list of candidate codewords for that column and pick one codeword from this list.
Rows where the first column of the received word differs from this codeword correspond to
errors, hence we can replace those rows by erasures. Thus for the second column, some of
the error locations are erased, which makes the decoding easier. Of course, if the codeword
is close to the received word, then there may be very few (or no) erasures introduced. But
we show there are only a few codewords in the list that are very close to the received word.
Extending this intuition, we construct a tree of possible codewords for each column and show
that the tree is either shallow or it does not branch too much.

2.3. Better list-size bounds using generalized Hamming weights. For the case of
binary linear codes, we are able to improve the list size upper bounds for both tensoring and
interleaving (Theorems 2.1 and 2.5 above) using a common technique. We now describe the
underlying idea and the results it yields.

2.3.1. Method overview. Codewords of both interleaved and 2-wise tensor products are natu-
rally viewed as matrices. We bring the rank of these matrices into play, and argue that if the
rank of a codeword is large, then its Hamming weight is substantially higher than the distance
of the code. It turns out that this phenomenon is captured exactly by a well-studied notion
in coding theory called generalized Hamming weights (see the survey [33]) that is also closely
related to list decoding from erasures [13]. The precise connection is that if a codeword of
C�m has rank r, then its relative Hamming weight is at least the rth generalized Hamming
weight δr(C) of C. Similarly, rank r codewords in C ⊗ C have weight at least δr(C)δ(C).

For binary codes, for r large enough, δr(C) approaches 2δ. The Johnson radius of 2δ exceeds
δ. Therefore, for r = r(δ, η) large enough, the number of codewords in a Hamming ball of
radius η < δ whose pairwise differences all have rank > r can be bounded from above using
the Johnson bound. Using the deletion argument from [12], the task of bounding the list-size
for radius η now reduces to bounding the number of rank 6 r codewords within radius η. We
accomplish this task, for both interleaved and product codes, using additional combinatorial
ideas. We remark that our use of the deletion argument is more sophisticated than in [12],
since most of the work goes into bounding the list-size for the low-rank case.

We note that the reason the above approach does not work for non-binary alphabets is that
the generalized Hamming weight δr(C) may not be larger than q

q−1δ for q-ary codes.

2.3.2. Results for interleaved codes. Theorem 2.5 showed that for any code C of distance δ and

for any η < δ, the list-size for the m-wise interleaved code C�m is bounded by `(C, η)dlog
δ

δ−η
e.

Note that for η → δ, the exponent grows without bounds. For binary linear codes, using the
above generalized Hamming weights based approach, we can improve this bound to a fixed
polynomial in `(C, η), removing the dependence on log(1/(δ − η)) in the exponent.

Theorem 2.6. For any binary linear code with distance δ, we have:

`(C�m, η) 6
4

δ4

(

2`(C, η)

δ2(δ − η)

)dlog 2
δ2

e

.(2.3)



8 P. GOPALAN, V. GURUSWAMI, AND P. RAGHAVENDRA

Given a binary linear error-correcting code C, the Johnson bound states that the list size at
radius J2(δ)− ε is bounded by O(ε−2). We can show that essentially the same list-size bound
holds for C�m, provided the distance δ is bounded away from 1

2 .

Theorem 2.7. For every δ < 1
2 , there exists a constant cδ such that for every binary linear

code C of relative distance δ,
`(C�m, J2(δ) − ε) 6 cδε

−2.

2.3.3. Result for tensor product. Applying the above approach to the tensor product of two
codes, we prove the following (Theorem 6.15). Note that the list size is at most a fixed
polynomial in the list sizes `(C1, η1) and `(C2, η2) of the original codes, instead of the quasi-
polynomial dependence in Theorem 2.1.

Theorem 2.8. Suppose C1 ⊆ F
n1
2 and C2 ⊆ F

n2
2 are binary linear codes of relative distance δ1

and δ2 respectively. Let η1 6 δ1 and η2 6 δ2. Define η∗ = min(δ1η2, δ2η1) and r = dlog( 2
δ1δ2

)e.
Then

`(C2 ⊗ C1, η∗ − ε) 6 2O(r2)`(C1, η1)
r`(C2, η2)

rε−2r .

2.4. List decoding linear transformations. Let Lin(Fq, k,m) denote the set all linear

transformations L : F
k
q → F

m
q . The code Lin(Fq, k,m) is nothing but the m-wise inter-

leaving Had�m(Fq, k) of the Hadamard code Had(Fq, k). Let `(Lin(Fq, k,m), η) denote the
maximum list size for the code Lin(Fq, k,m) at a distance η. Dinur et al. [6] show that

`(Lin(F2, k,m), 1/2 − ε) 6 O(ε−4) and `(Lin(Fq, k,m), 1 − 1/q − ε) 6 O(ε−C) for some con-
stant C for general q. The best lower-bound known for any field is Ω(ε−2).

Being a general result for all codes, Theorem 2.5 only gives a quasipolynomial bound for the
special case of linear transformations. By specializing the above generalized Hamming weights
approach to the case of linear transformations, and using more sophisticated arguments based
on decoding from erasures for the low-rank case, we prove the following stronger bounds for
list decoding linear transformations over F2.

Theorem 2.9. There is a constant C such that for all positive integers k,m,

`(Lin(F2, k,m),
1

2
− ε) 6 Cε−2 .

For arbitrary fields Fq, we prove the following bounds, the first is asymptotically tight for
small fields while the second is independent of q and improves on the bound of Dinur et al. .

Theorem 2.10. There is an absolute constant C ′ such that for every finite field Fq,

`(Lin(Fq, k,m), 1 − 1

q
− ε) 6 C ′ min(q6ε−2, ε−5) .

3. Interleaved Codes

In this section, C ⊂ [q]n will be an arbitrary code (possibly non-linear) over an alphabet [q].
We will use `(η) and `�m(η) for `(C, η) and `(C�m, η) respectively. Let dq(c1, c2) denote the
Hamming distance between strings in [q]n and ∆q(c1, c2) = dq(c1, c2)/n denote the normalized
Hamming distance. We drop the subscript q when the alphabet is clear from context. For
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r ∈ [q]n, B(r, η) ⊂ [q]n denotes the Hamming ball centered at r of radius ηn. We use C for
codewords of C�m and c for codewords of C. We will interchangeably view C as a matrix
in [q]n×m and a vector in [qm]n. For a k ×m matrix A, a1, . . . , am will denote its columns,
a[1], . . . , a[k] will denote the rows, and A6i will denote the k × i matrix(a1, . . . , ai).

Given an algorithm DecodeC that can list decode C up to radius η, it is easy to give an
algorithm DecodeC�m that uses DecodeC as a subroutine and runs in time polynomial
in the list-size and m; we present this algorithm in Section 3.1. Thus it suffices to bound
the list-size to prove Theorem 2.5. We do this by giving a (possibly inefficient) algorithm,
which identifies rows where errors have occurred and erases them. Erasing a set S ⊂ [n] of
co-ordinates is equivalent to puncturing the code by removing those indices. Given r ∈ [q]n,
we use r−S to denote its projection on to the co-ordinates in [n] \ S.

Definition 3.1. (Erasing a subset) Given a code C ⊆ [q]n, erasing the indices corresponding
to S ⊆ [n] gives the code C−S = {c−S : c ∈ C} ⊆ [q]n−|S|.

Let |S| = µn. We will only consider the case that µ < δ. It is easy to see that the resulting
code C−S has distance d(C−S) > (δ − µ)n. There is a 1-1 correspondence between codewords
in C and their projections in C−S . For the code C−S , it will be convenient to consider standard
Hamming distance, to avoid normalizing by 1−µ. For η < 1−µ, let `−S(η) be the maximum
number of codewords of C−S that lie in a Hamming ball of radius ηn in [qm]n(1−µ).

Lemma 3.2. For any η < 1− µ, `−S(η) 6 `(η + µ).

Proof. Take a received word r−S ∈ [q]n(1−µ) so that there are L codewords c−S
1 , . . . , c−S

L

satisfying d(r−S , c−S
i ) 6 ηn. Define r ∈ [q]n by fixing values at the set S arbitrarily. By the

triangle inequality, d(r, ci) 6 (η + µ)n, showing that `(η + µ) > L. �

Assume we have a procedure List-Decode that takes as inputs set S ⊆ [n], r ∈ [q]n, an
error parameter e and returns all codewords c ∈ C so that d(c−S , r−S) 6 e (it need not be
efficient). We use it to give an algorithm for list decoding C�m, which identifies rows where
errors have occurred and erases them. Assume we have fixed C6i = (c1, . . . , ci). We erase the
set of positions S where C6i 6= R6i and then run a list decoder for C−S on ri+1. The crucial
observation is that since the erased positions all correspond to errors, the number of errors
drops by |S|. The distance might also drop by |S|, but since η < δ to begin with, this tradeoff
works in our favor.

Algorithm 1. Erase-Decode

Input: R ∈ [qm]n, η.
Output: List L of all C ∈ C�m so that ∆qm(R,C) 6 η.

Set S1 = φ, µ1 = 0.
For i = 1, . . . ,m
1. Set Li = List-Decode(Si, ri, (η − µi)n).
2. Choose ci ← Li.

3. Set Si+1 = {j ∈ [n] s.t. C6i[j] 6= R6i[j]}; µi+1 = Si+1/n.
Return C = (c1, . . . , cm).
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In Step 2, we non-deterministically try all possible choices for ci; the list L is obtained by taking
all possible Cs that might be returned by this algorithm. Also, ci is a codeword in C−Si but
we can think of it as a codeword in C by the 1-1 correspondence. Different choices for ci lead
to different sets Si+1, and hence to different lists Li+1. So the execution of Erase-Decode

is best viewed as a tree, we formalize this below.

For a received word R, Tree(R) is a tree with m + 1 levels. The root is at level 0. A node v
at level i is labeled by C(v) = (c1, . . . , ci). It is associated with a set S(v) ⊆ [n] of erasures

accumulated so far which has size µ(v)n. The resulting code C−S(v) has minimum distance
δ(v)n > (δ − µ(v))n. We find all codewords in C−S(v) that are within distance (η − µ(v))n

of the received word r
−S(v)
i+1 , call this list L(v). By Lemma 3.2, L(v) contains at most `(η)

codewords. Each edge leaving v is labelled by a distinct codeword ci+1 from L(v); it is assigned

a weight w(ci+1) = d(c
−S(v)
i+1 , r

−S(v)
i+1 )/n. The weight w(c) ∈ [0, 1] of an edge indicates how many

new erasures that edge contributes. Thus µ(v) = w(c1) + · · · + w(ci). The leaves at level m
correspond to codewords in the list L. There might be no out-edges from v if the list L(v)
is empty. This could result in a leaf node at a level i < m which does not correspond to
codewords. Thus the number of leaves in Tree(R) is an upper bound on the list-size for R.

In order to bound the number of leaves, we assign colors to the various edges based on their
weights. Let c be an edge leaving the vertex v. We color it White if w(c) < δ − η, Blue if

w(c) > δ − η but w(c) < δ(v)
2 and Red if w(c) >

δ(v)
2 . White edges correspond to codewords

that are very close to the received word, Blue edges to codewords that are within the unique-
decoding radius, and Red edges to codewords beyond the unique decoding radius.

We begin by observing that White edges can only occur if the list is of size 1.

Lemma 3.3. If a vertex v has a White out-edge, then it has no other out-edges.

Proof. Assume that the edge labelled with c ∈ L(v) is colored White, so that d(c, r
−S(v)
i+1 ) <

(δ − η)n. Let c′ be another codeword in L(v), so that d(c′, r
−S(v)
i+1 ) 6 (η − µ(v))n. Then by

the triangle inequality,

d(c, c′) < (δ − η)n + (η − µ(v))n = (δ − µ(v))n 6 δ(v)n

But this is a contradiction since d(c, c′) > δ(v)n. �

We observe that Blue edges do not cause much branching and cannot result in very deep
paths.

Lemma 3.4. A vertex can have at most one Blue edge leaving it. A path from the root to a
leaf can have no more than d η

δ−η e Blue edges.

Proof. The first part holds as there can be at most one codeword within the unique decoding
radius. Each Blue edges results in at least (δ − η)n erasures. Therefore, after d η

δ−η e Blue

edges, all ηn errors have been identified, so all remaining edges have to be White. �

Lastly, we show that Red edges do not give deep paths either, although a vertex can have up
to `(η) Red edges leaving it.
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Lemma 3.5. A path from the root to a leaf can have no more than dlog( δ
δ−η )e Red edges.

Proof. We claim that every Red edge leaving vertex v has weight at least (δ−µ(v))/2. Indeed,

since c is beyond the unique-decoding radius of C−S(v), w(c) >
δ(v)
2 , and the relative distance

δ(v) of the code C−S(v) at node v satisfies δ(v) > (δ − µ(v))n.

Assume now for contradiction that some path from the root to a leaf contains k red edges for
k > dlog( δ

δ−η )e. Suppose that the edges have weights ρ1, . . . , ρk respectively. Contract the

Blue and White edges between successive Red edges into a single edge, whose weight is the
sum of weights of the contracted edges. We also do this for the edges before the first Red

edge and those after the last Red edge. This gives a path contains 2k + 1 edges, where the
even edges are Red, and the weight of the edges along the path are β1, ρ1, β2, . . . , ρk, βk+1

respectively. Let vi be the parent vertex of the ith Red edge for i ∈ [k]. Then we have
µ(v1) = β1 and µ(vi) = βi + ρi−1 + µ(vi−1) for j > 1. But since ρi−1 > (δ − µ(vi−1))/2 and
βi > 0, we get

µ(vi) >
δ + µ(vi−1)

2

Now a simple induction on i proves that µ(vi) > δ(1 − 21−i). If we take i = dlog( δ
δ−η )e + 1,

then

µ(vi) > δ

(

1− δ − η

δ

)

= η.

So when we decode at vertex vi, all the error locations have been identified and erased. Hence
we are now decoding from η < δ erasures and no errors, so the decoding is unique and error-
free. So vertex vi will have a single White edge leaving it and no Red edges, which is a
contradiction. �

Theorem 3.6. Assume η < δ and let b = d η
δ−η e, r = dlog δ

δ−η e. Then Tree(R) has at most
(b+r

r

)

`(η)r leaves (and hence `�m(η) 6
(b+r

r

)

`(η)r).

Proof. We first contract the White edges, since they are the only out-edges leaving their
parent nodes. This gives a tree with only Red and Blue edges. Let t(b, r) denote the
maximum number of leaves in a tree where each path has at most b Blue and r Red edges,
and each node have have at most one Blue edge and `(η) Red edges leaving it. So we have
the recursion

t(b, r) 6 t(b− 1, r) + `(η)t(b, r − 1)

with the base case t(b, 0) = 1. It is easy to check that t(b, r) 6
(b+r

r

)

`(η)r. �

We conclude this section by proving that the condition η < δ is necessary.

Lemma 3.7. If code C has relative distance exactly δ, then `�m(δ) > 2m.

Proof. Take c1, c2 ∈ C where ∆q(c1, c2) = δ. Now take the received word in C�m to be
R = (c1, . . . , c1). For every T ⊆ [m], let CT to be the codeword where the ith column equals
c1 if i ∈ T and c2 otherwise. It is easy to show that every such codeword is at distance at
most δ from R, showing that `�m(δ) > 2m. �
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3.1. A Efficient Decoding Algorithm for C�m. Given a received word R = (r1, . . . , rm),
for i 6 m let R6i = (r1, . . . , ri).

Algorithm 2. DecodeC�m

Input: R ∈ [qm]n, η.
Output: List of all C ∈ C�m so that ∆qm(R,C) 6 η.

1. For i = 1, . . . ,m
Set Li = DecodeC(ri, η).
2. Set L61 = L1.

3. For i = 2, . . . ,m
For C ∈ L6i−1 × Li,

Add C to L6i if ∆qm(C,R6i) 6 η.
4. Return L6m.

Claim 3.8. Assume that DecodeC(r, η) runs in time T . Then DecodeC�m(R, η) returns
a list of codewords within distance η of R in time O(mT + m2n`(η)`�m(η)).

Proof. For any C such that ∆(C,R) 6 η, it must hold that for every i, ∆qi(C6i, R6i) 6 η.
An easy induction on i shows that C6i ∈ L6i, which proves the correctness of the algorithm.

It is clear that Step 1 takes time O(mT ). To bound Step 3, we use the following simple
observation for all i 6 m:

|L6i| 6 `�i(η) 6 `�m(η).

Thus each iteration of the loop in Step 3 requires computing the distance between R and at
most `(η)`�m(η) candidates for C. �

4. Decoding Tensor Products

In this section and the next, C1 ⊂ F
n1
q and C2 ⊂ F

n2
q will be linear codes over Fq. Given a

matrix A ∈ [q]n2×n1 , and two subsets S ⊆ [n2] and T ⊆ [n1], we shall use A[S, T ] to denote
the submatrix indexed by rows in S and columns in T . Further, we will write A[S, ∗] instead
of A[S, [n1]]. Thus the symbol “∗” when used as an index, denotes the sets [n1] or [n2].

Fix a received word R ∈ [q]n2×n1 and a codeword C ∈ C2 ⊗ C1 so that δ(R,C) 6 η∗ − 3ε.
The advice/guess A[S, T ] to the algorithm TensorDecode consists of the values of C on a
random submatrix S × T . Given the advice A, the TensorDecode algorithm works in four
phases, described informally below. This is followed by a formal description of the algorithm.
The reader might find Figure 1 helpful to develop intuition about the operation of the various
phases.

Phase 1: We run the list decoder on each row s ∈ S to get a new advice string B[S, ?]. If
there is a codeword in the list that agrees with the advice A[s, T ], we set B[s, ?] to be that
codeword (ties are broken arbitrarily; or we could declare an erasure if there isn’t a unique
choice). If there is no such codeword, we set every symbol in B[s, ?] to ⊥ (which denotes an
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erasure). Note that the list for row s might contain some codeword other than C[s, ?] that
agrees with C[s, ?] on the positions in T . In such a case B[s, ?] could be incorrect. As a result,
some rows in B[S, ?] agree with the codeword C, some of them could be wrong, and the rest
are erasures. Claim 5.3 show that with high probability, (1− δ2 +ε)|S| of the rows are correct,
and no more than ε|S| are incorrect.

Phase 2: Viewed columnwise, B[S, ?] gives us advice strings for the co-ordinates S of every
column codeword. However, the advice is noisy: it is correct on (1 − δ2 + ε) fraction of co-
ordinates within S, wrong on an ε fraction, and ⊥ on the rest. But since any two codewords in
the column code C2 are distance δ2 apart, in expectation the advice string has more agreement
with the correct codeword than any other; thus it is likely to identify the correct codeword
from a small list of candidates. We create a new advice string D[?, ?] by list decoding every
column t ∈ [n1], and selecting from the list a codeword that disagrees with B[S, t] in less
than ε fraction of co-ordinates. If no such codeword exists we set the column to ⊥. Claim 5.4
shows that at least (1−δ1 +2ε) fraction of columns are correctly decoded to the corresponding
columns of C and no more than ε fraction are incorrectly decoded.

Phase 3: Viewed row-wise, D gives an advice string for every row that is correct on at
least (1 − δ1 + ε)n1 co-ordinates, wrong on at most εn1 and blank on the rest. The advice
though noisy is sound: since the code C1 has distance δ1n1, a simple application of the triangle
inequality shows that there is a unique codeword which disagrees with D[s, ?] on fewer than
εn1 co-ordinates, and that is the row codeword C[S, ?]. Thus the advice uniquely identifies the
correct row codeword. We create a new received word E by list decoding each row and using
D to identify the correct codeword in the list, and setting the row to ⊥ if no such codeword
exists. Claim 5.5 shows this step will find the correct codeword on (1 − δ2 + 3ε) fraction of
the rows.

Phase 4: When viewed column-wise, E gives the correct value of C on 1 − δ2 + 3ε fraction
of co-ordinates, and is blank on the rest. Crucially, it does not have any incorrect symbols.
So now we can recover C by decoding each column from erasures (note that one can uniquely
decode C2 from less than a fraction δ2 of erasures).

It is easy to show that the list decoding radius reached by TensorDecode is the correct one.

Lemma 4.1. For a linear code C, `(C⊗2, δη) > `(η).

Proof. Let r ∈ [q]n be a received word with codewords c1, . . . , c` ∈ C within radius η. Take c0

to be a codeword of minimum weight δ. Define the received word r′ = c0⊗ r. It is easy to see
that the codewords c′i = c0 ⊗ ci for i ∈ [`] are all within distance δη from r′, which proves the
claim. �

Thus, if list decoding C beyond radius η is combinatorially intractable, then so is decoding
C⊗2 beyond radius δη.
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Algorithm 3. TensorDecode

Setup : Let Decode1, Decode2 denote list decoding algorithms for C1 and C2, up to error
rates η1 and η2 respectively. Let `1(η1) and `2(η2) be the upper bounds on list size output
by Decode1 and Decode2 respectively. Fix η∗ = min(δ1η2, δ2η1). Let ε > 0 be a parameter
to the algorithm.
Input : A received word R such that δ(R, C2 ⊗ C1) 6 η∗ − 3ε.
Output : A list L of all codewords C ∈ C2 ⊗ C1 with δ(C,R) 6 η∗ − 3ε.

• Pick subsets S ⊆ [n2] and T ⊆ [n1] uniformly at random among all

subsets of size m1 and m2 respectively.

• For each assignment A : S × T → [q]

-- Phase 1 (Computing B : S × [n1]→ [q])
For each s ∈ S,
∗ List decode the row R[s, ∗]: Ls = Decode1(R[s, ∗]).

∗ Set B[s, ∗] to be an arbitrary codeword c in the list Ls

satisfying c[T ] = A[s, T ] and B[s, ∗] =⊥ if no such codeword

exists.

Define Sfail = {s ∈ S|B[s, ∗] =⊥} and Ssuccess = S − Sfail.

-- Phase 2 (Computing D : [n2]× [n1]→ [q])
For each t ∈ [n1],
∗ List decode the column R[∗, t]: Lt = Decode2(R[∗, t])

∗ Set D[∗, t] to be any codeword c in the list Lt satisfying

∆(c[Ssuccess], B[Ssuccess, t]) < ε|S|. Fix D[∗, t] =⊥ if no such

codeword exists.

Define Tfail = {t ∈ [n1]|D[∗, t] =⊥} and Tsuccess = [n1]− Tfail.

-- Phase 3 (Computing E : [n2]× [n1]→ [q])
For each s ∈ {n2},
∗ List decode the row R[s, ∗]: Ls = Decode1(R[s, ∗]).

∗ Set E[s, ∗] to be any codeword c in the list Ls satisfying

∆(c[Tsuccess],D[s, Tsuccess]) < εn1. Set E[s, ∗] =⊥ if no such

codeword exists.

Define Ufail = {s ∈ [n2]|E[∗, t] =⊥} and Usuccess = [n2]− Ufail.

-- Phase 4 (Computing C : [n2]× [n1]→ [q])
For each t ∈ {n1}, Unique decode the column E[∗, t] under erasures:

C[∗, t] = UniqueDecodeErasures2(E[∗, t])

-- Output C if δ(C,R) 6 η∗ − 3ε.
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C2(n2, δ2, η2)

E[∗, ∗]

Phase III

C2(n2, δ2, η2)
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Guess A[S,T ]

C1(n1, δ1, η1)

C2(n2, δ2, η2)

T
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C1(n1, δ1, η1)
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D[∗, ∗]
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C1(n1, δ1, η1)

Sr
Sw

Sfail

Figure 1. Phases of the TensorDecode Algorithm

5. Analysis of the Tensor Product Decoder

In this section, we will prove the correctness, analyze the list size output and compute running
time of the TensorDecode algorithm. Towards this goal, we first present a concentration
bound concerning sums of samples chosen without replacement.

Lemma 5.1. Let z1, z2, . . . , zn be real numbers bounded in [0, 1]. Let S ⊆ [n] be a uniformly
random subset of size m. Then,

Pr
[
∣

∣

∣

1

|S|
∑

s∈S

zs −
1

n

∑

i∈[n]

zi

∣

∣

∣
> γ

]

6 p(γ, |S|) = 2e−2γ2m

The above concentration bound essentially a restatement of Corollary 1.1 in Serfling’s work
[27] on sums in sampling without replacement. Henceforth, for the sake of succinctness, we

shall use the notation p(γ,m) to denote the upper bound (2e−2γ2m) in the above lemma.

Firstly, we will show that for every codeword C close enough to the received word, the
algorithm TensorDecode returns C with probability 1/4, given the right advice string
A = C[S, T ].
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Theorem 5.2. For a codeword C ∈ C2⊗C1 within distance η∗−3ε of the received word R, the
algorithm TensorDecode with input R, and guess A = C[S, T ] returns C with probability at
least 1− p(ε,m2)− `1(η1)p(δ1,m1)/ε− `2(η2)p(ε,m2)/ε.

Proof. The argument is broken up into four parts (Claims 5.3, 5.4, 5.5, 5.6) each concerning
a phase of the TensorDecode algorithm. �

5.1. Phase 1. In this phase, the algorithm constructed the advice string B[S, ∗] starting with
the guess A[S, T ] and list decoding each row in S. Of the set of rows Ssuccess on which the
decoding succeeded, some of them are decoded correctly to the corresponding row in C, while
some are incorrect. Define sets Sr, Sw ⊆ Ssuccess to be the sets of rows that are decoded
correctly and incorrectly respectively. Formally,

Sr = {s ∈ S|B[s, ∗] = C[s, ∗]} Sw = Ssuccess − Sr

We make the following claim regarding the fraction of rows decoded correctly.

Claim 5.3. With probability at least 1 − p(ε,m2) − `1(η1)p(δ1,m1)/ε over the choice of the
sets S , T

|Ssuccess| > (1− δ2 + 2ε)|S| |Sr| > (1− δ2 + ε)|S| |Sw| 6 ε|S| .

Proof. Let S1 denote the set of rows in S with fewer than average number of errors. Specifically,
S1 is defined as

S1 = {s ∈ S|δ(C[s, ∗], R[s, ∗]) 6 η1} .

Observe that for each s ∈ S1, the codeword C[s, ∗] will be part of the list Ls, obtained by de-
coding the row s. Consequently, for each s ∈ S1, B[s, ∗] 6=⊥ ,i.e., S1 ⊆ Ssuccess. We shall lower
bound the size of Ssuccess by the size of S1. Apply Lemma 5.1 with {zi = δ(C[i, ∗], R[i, ∗])}
and the set S. Since δ(C,R) 6 δ2η1−3ε, the average of the zi is less than or equal to δ2η1−3ε.
Thus we get

Pr
S

[

δ(C[S, ∗], R[S, ∗]) > δ2η1 − 2ε
]

6 p(ε,m2) .

Let us suppose δ(C[S, ∗], R[S, ∗]) 6 δ2η1 − 2ε. By an averaging argument, for at most δ2 − 2ε
fraction of the rows {C[s, ∗]|s ∈ S}, the distance δ(C[s, ∗], R[s, ∗]) > η1, i.e., |S1| > (1 − δ2 +
2ε)|S|. This immediately implies the lower bound on size of Ssuccess.

Now we shall upper bound the probability that a row s ∈ S is decoded to an incorrect
codeword c 6= C[s, ∗]. Fix an s ∈ S and a codeword c ∈ Ls other than C[s, ∗]. The codeword
c is chosen, if and only if it agrees with the advice A[S, T ] = C[S, T ] on the columns in T , i.e.,

C[s, T ] = c[T ]. Applying Lemma 5.1 on the set of real numbers
{

zi = 1
{

C[s, i] 6= c[i]
}

}

and

the choice of the set T , we can conclude

Pr
T

[

C[s, T ] = c[T ]
]

6 p(δ1,m1) .

By a union bound over all codewords c ∈ Ls, for any row s ∈ S, the probability of decoding
an incorrect codeword is upper bounded by

Pr
T

[

C[s, ∗] 6= B[s, ∗] ∧B[s, ∗] 6=⊥
]

6 `1(η1)p(δ1,m1) .
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Hence in expectation, at most `1(η1)p(δ1,m1) fraction of rows in S are decoded incorrectly,
i.e E[|Sw|] 6 `1(η1)p(δ1,m1)|S|. Applying Markov’s inequality, we get

Pr
T

[

∣

∣Sw

∣

∣ > ε|S|
]

6 `1(η1)p(δ1,m1)/ε .

Suppose |Sw| 6 ε|S|, then observe that

|Sr| = |Ssuccess − Sw| > (1− δ2 + ε)|S| .
Thus with probability at least 1 − p(ε,m2) − `1(η1)p(δ1,m1)/ε both of the assertions of the
claim hold. �

5.2. Phase 2. In Phase 2, the algorithm uses the advice B[S, ∗] generated in the first phase in
order to decode the columns of the matrix. Among the columns Tsuccess that are decoded suc-
cessfully, let Tr, Tw ⊆ Tsuccess denote the set of rows that are decoded correctly and incorrectly
respectively. Formally, define sets Tr, Tw as follows:

Tr = {t ∈ [n1]|D[∗, t] = C[∗, t]} Tw = Tsuccess − Tr

Given that the advice B[S, ∗] generated in the first phase is correct on sufficiently many rows,
the following claim suggests that at least 1−δ1 fraction of the columns are decoded successfully,
of which most columns agree with codeword C. In other words, the advice D[∗, ∗] generated
by this phase is a near-sound advice string with almost all columns having either the correct
value or a failure symbol ⊥.

Claim 5.4. Conditioned on the event that the assertions of Claim 5.3 hold, With probability
at least 1− `2(η2)p(ε,m2)/ε over the choice of the sets S , T

|Tsuccess| > (1− δ1 + 3ε)n1 |Tr| > (1− δ1 + 2ε)n1 |Tw| 6 εn1

Proof. Along the lines of the proof of Claim 5.3, let T1 be the set of columns with fewer than
average fraction of errors. Define the set T1 as follows:

T1 = {t ∈ [n1]|δ(C[∗, t], R[∗, t]) 6 η2}
By an averaging argument, for at most δ1 − 3ε fraction of the columns {C[∗, t]|t ∈ [n1]}, the
distance δ(C[∗, t], R[∗, t]) > η2, i.e., |T1| > (1− δ1 + 3ε)n1.

Observe that for each column t ∈ T1, the codeword C[∗, t] belongs to the list Lt. By Claim
5.3, in Phase 1, at most ε|S| rows in S were decoded incorrectly, i.e, |Sw| 6 ε|S|. Hence
the codeword C[∗, t] satisfies ∆(C[Ssuccess, t], B[Ssuccess, t]) 6 ε|S|. Consequently, for each
t ∈ T1, D[∗, t] 6=⊥, i.e. T1 ⊆ Tsuccess. Thus a lower bound on the size of Tsuccess is given by
|T1| > (1− δ1 + 3ε)n1.

Fix a t ∈ [n1]. Let us suppose D[∗, t] is neither equal to ⊥ or C[∗, t]. Thus D[∗, t] is a codeword
in C2 such that

∆(D[Ssuccess, t], C[Ssuccess, t]) 6 ε|S|
By assertion of 5.3,

|Sfail| 6 |S| − |Ssuccess| 6 (δ2 − 2ε)|S| .
From the above inequalities, we can conclude

δ(D[S, t], C[S, t]) 6 δ2 − ε .



18 P. GOPALAN, V. GURUSWAMI, AND P. RAGHAVENDRA

Fix a codeword c ∈ Lt. By the distance property of the code, we have δ(c, C[∗, t]) > δ2.

Applying Lemma 5.1 on the set of real numbers
{

zi = 1
[

c[i] 6= C[i, t]
]

}

and the set S, we get

Pr
S

[

δ(C[S, t], c[S]) 6 δ2 − ε
]

6 p(ε,m2) .

By a union bound over all codewords c ∈ Lt, for a column t ∈ T ,

Pr
S

[

C[∗, t] 6= D[∗, t] ∧D[∗, t] 6=⊥
]

6 `2(η2)p(ε,m2) .

In other words, the expected size of Tw is at most `2(η2)p(ε,m2)|T |. Applying Markov’s
inequality, we get:

Pr
S

[

∣

∣Tw

∣

∣ > εn1

]

6 `2(η2)p(ε,m2)/ε .

To finish the argument, observe that

|Tr| = |Tsuccess − Tw| > (1− δ1 + 2ε)n1 .

Thus with probability 1− `2(η2)p(ε,m2)/ε both of the assertions of the claim hold. �

5.3. Phase 3. This phase converts a near sound advice D[∗, ∗] into a perfectly sound advice
E[∗, ∗] all of whose rows are either the correct codewords or the fail symbol ⊥. The following
claim is a formal statement of this fact.

Claim 5.5. Conditioned on the event that the assertions of Claim 5.4 hold, for each s ∈
Usuccess, E[s, ∗] = C[s, ∗] and |Usuccess| > (1− δ2 + 3ε)n2.

Proof. For each s ∈ [n2], we claim that C[s, ∗] is the unique codeword satisfying

∆(c[Tsuccess],D[s, Tsuccess]) 6 εn1.

Clearly, this implies that for each row s ∈ Usuccess, we decode the correct codeword, i.e.,
E[s, ∗] = C[s, ∗]. For the sake of contradiction, let us suppose there exists c 6= C[s, ∗] satisfying

∆(c[Tsuccess],D[s, Tsuccess]) 6 εn1.

By triangle inequality, we can conclude

∆(c[Tsuccess], C[s, Tsuccess]) 6 2εn1.

Further from claim 5.4, |Tfail| 6 [n1]− |Tsuccess| 6 (δ1 − 3ε)n1. This implies

∆(c, C[s, ∗]) 6 2εn1 + (δ1 − 3ε)n1 < δ1n1.

This is a contradiction since c and C[s, ∗] are two distinct codewords of C1 that are less than
δ1 apart.

Let U1 denote the set of rows with less than average fraction of errors; formally,

U1 =
{

s ∈ [n2]
∣

∣

∣
δ(C[s, ∗], R[s, ∗]) 6 η1

}

.

By an averaging argument, for at most δ2 − 3ε fraction of the rows of C, the distance
δ(C[s, ∗], R[s, ∗]) > η1, i.e., |U1| > (1− δ2 + 3ε)n2. For each row s ∈ U1, we have C[s, ∗] ∈ Ls.
From Claim 5.4, for at most εn1 columns in Tsuccess, C[∗, t] 6= D[∗, t]. Consequently, for each
row s ∈ U1, E[s, ∗] 6=⊥, i.e., U1 ⊆ Usuccess. Hence we get |Usuccess| > |U1| > (1−δ2+3ε)n2. �
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5.4. Phase 4. This is a fairly simple phase where a perfectly sound advice E[∗, ∗] is used to
completely retrieve the codeword C. Specifically, we make the following claim :

Claim 5.6. Conditioned on the event that the assertions of Claim 5.5 hold, the algorithm
TensorDecode outputs the codeword C.

Proof. By Claim 5.5, we know E[s, ∗] = C[s, ∗] for at least (1−δ2 +3ε)n2 rows and E[s, ∗] =⊥
for the remaining rows. Hence for each column t ∈ [n1], the UniqueDecodeErasures2 algorithm
returns the codeword C[∗, t]. Thus the algorithm TensorDecode returns the codeword
C. �

Theorem 5.7. Given two codes C1, C2, for every ε > 0, the number of codewords of C2 ⊗ C1
within distance η∗ = min(δ1η2, δ2η1)− 3ε of any received word is bounded by

`(C2 ⊗ C1, η∗) 6 4q
1

4δ21ε2
ln

8`1(η1)
ε

ln
8`2(η2)

ε
.

Further, if C1 and C2 can be efficiently list decoded up to error rates η1, η2 and C2 is a linear
code, then C2⊗C1 can be list decoded efficiently up to error rate η∗. Specifically, if T denotes the
time complexity of list decoding C1 and C2, then the running time of the list decoding algorithm

for C2 ⊗ C1 is O(4q
1

4δ2
1

ε2
ln

8`1(η1)
ε

ln
8`2(η2)

ε × Tn1n2)

Proof. Rewriting the expression for the probability in Theorem 5.2 using Lemma 5.1,

1− p(ε,m2)−
`1(η1)p(δ1,m1)

ε
− `2(η2)p(ε,m2)

ε
= 1− 2e−2ε2m2 −

2

ε

(

`1(η1)e
−2δ2

1m1 + `2(η2)e
−2ε2m2

)

.

Set m1 = 1
2δ2

1
ln 8`1(η1)

ε and m2 = 1
2ε2 ln 8`2(η2)

ε . It is easy to see that the probability of success

is at least 1
4 with this choice of parameters. In other words, with this choice of parameters,

any codeword C within distance η∗ − 3ε is output with probability at least 1
4 if the initial

guess A is consistent with C. Hence, the number of codewords within distance η∗ − 3ε from
the received word R is

`(C2 ⊗ C1, η∗ − 3ε) 6 4qm1m2 = 4q
1

4δ2
1

ε2
ln

8`1(η1)
ε

ln
8`2(η2)

ε
.

It is easy to check that the running time of the algorithm is as claimed above. �

Theorem 5.8. Let C be a linear code with distance δ, list decodable up to an error rate η.
For every ε > 0, the m-wise tensor product code C⊗m can be list decoded up to an error rate

δm−1η − ε with a list size exp

(

(

O( ln `(η)/ε
ε2 )

)m
)

.

Proof. Applying Theorem 5.7 with C1 = C2 = C, we get list size bound at error rate δη−3ε for
C⊗C. Applying theorem again on C⊗2, we get list size bounds at error rate δ2×(δη−3ε)−3ε =

δ3η − 3δ2ε − 3ε. In general, for C⊗2k
let η2k denote the error rate at which we obtain a list

size bound. Then,

η2k = δ2k−1η − 3ε

k
∑

i=0

δ2k

> δ2k−1η − 3ε

1− δ2
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For brevity, let us denote by Sk the list size `(C⊗2k
, η2k). Then from Theorem 5.7, we have

the following recursive inequality:

ln Sk+1 6
ln q

4δ2ε2
ln2 4Sk

ε
+ ln 4

Rewriting the above inequality,

ln
4Sk+1

ε
6

ln q

4δ2ε2
ln2 4Sk

ε
+ ln 4 + ln

4

ε
6

ln q

2δ2ε2
ln2 4Sk

ε

Set sk = ln 4Sk/ε and a = ln q
2δ2ε2 . Then we have the recurrence relation :

sk+1 6 a · s2
k s0 = ln

4`(η)

ε

Thus we get sk 6 (ln 4`(η)/ε)2
k
a2k−1 < (a ln 4`(η)/ε)2

k
. Hence we obtain the following list

size bound for m = 2k.

`

(

C⊗m, δm−1η − 3ε

1− δ2

)

6 exp

(

( ln q ln 4`(η)/ε

2δ2ε2

)m
)

Rewriting the above expression with ε in place of 3ε
1−δ2 ,

`(C⊗m, δm−1η − ε) 6 exp

(

(9 ln q ln 12`(η)/ε(1 − δ2)

2δ2(1− δ2)2ε2

)m
)

.

�

6. Improved List-size Bounds via Generalized Hamming Weights

In this section, we prove improved list-size bounds on tensor products and interleavings of
binary linear codes. This is done by making a connection between the weight-distributions of
such codes and the classical coding theoretic notion of Generalized Hamming Weights. This
allows us to use the Deletion technique of [12] to reduce the problem of bounding list-sizes to
the low-rank case.

We start by introducing the version of the Deletion Lemma that we need. It is a mildly
stronger version of the deletion lemma from [12], the graph theoretic view was proposed by
Impagliazzo.

Lemma 6.1 (Deletion lemma). [12] Let C ⊂ F
n
q be a linear code over Fq. Let C′ ⊆ C be

a (possibly non-linear) subset of codewords so that c′ ∈ C′ iff −c′ ∈ C′, and every codeword
c ∈ C \ C′ has wt(c) > µ. Let η = Jq(µ)− γ for γ > 0. Then

`(C, η) 6 γ−2`(C′, η).

Proof. Let r ∈ F
n
q denote a received word, and let L = {c1, . . . , ct} be the list of all codewords

in C so that ∆(r, ci) 6 η. Construct an (undirected) graph G where V (G) = {c1, . . . , ct} and
(i, j) is an edge if ci − cj ∈ C′. Our goal is to bound |V (G)|.

We claim G does not have large independent sets. Let I = {c1, . . . , cs} be an independent set.
This means that for every i 6= j ∈ [s], ci − cj 6∈ C′ so ∆(ci, cj) > µ. But every codeword in I
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lies within distance η of r. We now invoke the Johnson bound which states that in a code of
distance µ, the list-size at radius Jq(µ)− γ is bounded by γ−2. This shows that α(G) 6 γ−2.

We claim that the degree of G is bounded by `(C′, η). Suppose that a vertex c has d neighbors
{c1, . . . , cd}. They can be written as c + c′1, . . . , c + c′d where c′ ∈ C′. Since

∆(c + c′i, r) = ∆(c′i, r − c) 6 η

the codewords c′1, . . . , c
′
d give us a list of codewords in C′ at distance η from the received word

r − c. Hence d 6 `(C′, η).

Thus G has degree d(G) 6 `(C′, η) and the max independent set size α(G) 6 γ−2. Thus

|G| 6 α(G)d(G) 6 γ−2`(C′, η).

�

The Deletion lemma of [12] corresponds to taking C′ to be all codewords for weight less than
µ, and using `(C′, η) 6 |C′|. However, in our applications |C′| will be too large for this to be a
useful bound, thus we essentially use the Deletion lemma as a reduction to the low-rank case.

Generalized Hamming Weights (GHWs) arise naturally in the context of list-decoding from
erasures. For a vector v of length n, Supp(v) ⊆ [n] denotes the co-ordinates where vi 6= 0. For
a vector space V , Supp(V ) = ∪v∈V Supp(v).

Definition 6.2. The rth generalized Hamming weight of a linear code C ⊆ F
n
2 denoted by

δr(C) is defined to be |Supp(Vk)|/n over all k-dimensional subspaces Vk of the code C.

Clearly, δ1(C) = δ(C) is just the minimum distance. The following lower bound on δr(C) which
is folklore [15, 33], says that as we consider larger values of r, δr(C) approaches q

q−1δ. Thus

for binary linear codes, δr(C) approaches 2δ(C) as r grows.

Lemma 6.3. For any linear code C ⊆ F
n
q with minimum distance δ(C) and any r > 1,

δr(C) >
q

q − 1
δ(C)

(

1− 1

qr

)

.

Given a matrix C ∈ F
n×m
q , let Rank(C) denote its rank, let RowSpan(C) be the space spanned

by its rows and ColSpan(C) be the space spanned by its columns. We use the following
standard fact from linear algebra:

Fact 6.4. Given C ∈ F
n×m
q such that Rank(C) = r, let 〈v1, . . . , vr〉 be a basis for RowSpan(C).

Then we can write

C =

r
∑

s=1

us ⊗ vs

for some vectors {u1, . . . , ur} which form a basis for ColSpan(C).

6.1. Interleaved Codes. In this subsection C is a binary linear code. We `�m(η) to denote
`(C�m, η). We use C�m

r to denote the sub-code of C�m consisting of codewords of rank at most
r, and `�m

r (η) for `(C�m
r , η). The following lemma relates the rank of a codeword to GHWs.

Lemma 6.5. Given C ∈ C�m such that Rank(C) = r, wt(C) > δr(C).
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The lemma holds since dim(ColSpan(C)) = r hence its support is at least δr(C). We now
apply the deletion argument to reduce the problem of bounding the list-size to the low-rank
case.

Lemma 6.6. Let C be a binary linear code and let r = dlog 2
δ2 e. Then for any η 6 δ, we have

`�m(η) 6
4

δ4
`�m
r (η).

Proof. It is easy to check that

δr > 2δ(1 − 2−r) > 2δ − δ3,

J(δr) = 1−
√

1− δr > δ +
δ2

2
.

The bound on J(δr) may be verified by observing that

J−1(δ +
δ2

2
) = 2δ − δ3 − δ4

4
< δr.

Let C′ consist of all codewords C where Rank(C) 6 r so that we can take µ = δr. Since
J(µ) > δ + δ2/2 whereas η 6 δ, we have

γ = J(µ)− η = (δ − η) +
δ2

2
>

δ2

2
.

Applying the Deletion Lemma 6.1, we obtain the desired conclusion `�m(η) 6 4
δ4 `�m

r (η). �

An immediate corollary of Fact 6.4 is

Corollary 6.7. Given a codeword C ∈ C�m of rank r, let {b[1], . . . , b[r]} be basis for RowSpan(C).
Then C can be written as C =

∑r
s=1 cs ⊗ b[s] where cs ∈ C for s ∈ [r].

Our goal is to reduce the low-rank problem for interleaved codes to the case when m = r,
by fixing a basis for the row-space. The following lemma narrows the choices for the basis
elements to rows that have reasonably large weight.

Lemma 6.8. Let ε > 0 and let η = δ − ε. Let C ∈ C�m be a rank r codeword and R be a
received word such that ∆(R,C) 6 η. There is a basis {b[1], . . . , b[r]} for RowSpan(C) where
wt(C, b[s]) > ε21−r for all s ∈ [r].

Proof. Let
S = {b ∈ Span(C) | wt(R, b) > ε21−r, b 6= 0m}.

We claim that S contains a basis for RowSpan(C), or equivalently dim(S) = r. Assume for
contradiction that dim(S) = r − 1, and that b[1], . . . , b[r − 1] is a basis for it. Complete it
to a basis for Span(C) by adding b[r], and let S′ = b[r] + 〈b[1], . . . , b[r − 1]〉. Note that S′ is
disjoint from S.

By Corollary 6.7, we can write C =
∑r

t=1 ct ⊗ b[t]. If cr[i] 6= 0, then C[i] ∈ S′. Since
wt(cr) > δn, it follows that δn of the rows of C lie in S′; that is wt(C,S′) > δ. Since
∆(C,R) 6 η, we have wt(R,S′) > ε. But since |S′| = 2r−1, there must exist b ∈ S′ so that
wt(R, b) > ε21−r. Since S′ is disjoint from S, this contradicts the definition of the set S. �
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Lemma 6.9. Let ε > 0 and let η = δ − ε. Set r = dlog 2
δ2 e. We have

`�m(η) 6
2r2+2

δ4εr
`�r(η).

Proof. By Lemma 6.6, it suffices to bound `�m
r (δ − ε) where r = d 2

δ2 e. We fix the choice of

basis {b[1], . . . , b[r]} for RowSpan(C). Lemma 6.8 shows that there are at most 2r2
ε−r choices

for the basis. We then map R : F
k
2 → F

m
2 to a received word R′ : F

k
2 → {Fr

2 ∪ ?} as follows:

R′(x) =

{

(λ1, . . . , λr) if R(x) =
∑

i λib[i]

? if R(x) 6∈ Span(C)

Every C ′ satisfying ∆(R′, C ′) 6 η is in on-to-one correspondence with C so that ∆(R,C) 6 η
and Span(C) = 〈b[1], . . . , b[r]〉. So the number of such codewords is bounded by `�r(η). �

Clearly, `�r(η) 6 `(η)r. Plugging this into Lemma 6.9 gives Theorem 2.6. Further improve-
ments on this bound are possible using the analysis of Theorem 3.6 combined with better
list-size bounds for decoding binary codes from erasures; we present them is Section 6.3.

The only step which needs q = 2 is Lemma 6.6, where we choose r large enough so that
J2(δr) > δ. This does not have an analogue over Fq since δr may only increase by a factor
q/(q − 1), hence there may not be an r such that Jq(δr) > δ. But the step of bounding the
number of small-rank codewords works for any field.

6.2. Tensor Products. In this subsection, C1 and C2 are binary linear codes. We use δi,r

to denote the rth generalized weight of Ci. We use `i(η) for `(Ci, η) and `⊗(η) for `(C2⊗ C1, η)
and `⊗r (η) for the list-size when we restrict ourselves to codewords of rank at most r.

The following lemma relates the weight-distribution of tensor product codes to the generalized
Hamming weights of C1 and C2. While the lemma is straightforward, we have not found an
explicit statement in the literature.

Lemma 6.10. Given C ∈ C2 ⊗ C1 such that Rank(C) = r, wt(C) > 2δ1δ2(1− 2−r).

Proof. The column rank of C is r, thus |Supp(ColSpan(C))| > δ2,rn2. Each of these indices
corresponds to a row from C1 with weight δ1n1, thus overall the codeword has weight at least
δ2,rδ1n2n1 > δ1δ2(1− 2−r)n1n2. �

If we let wtr denote the minimum weight of a rank r codeword, we have wtr > 2δ1δ2(1−2−r).
We now show a reduction to the low-rank case for tensor products.

Lemma 6.11. Set r = log( 2
δ1δ2

). Then for any η 6 δ1δ2,

`⊗(η) 6
4

δ2
1δ

2
2

`⊗r (η).

Proof. We claim that for any δ 6 1
2 , J2(2δ − δ2) > δ + δ2/2. To prove this, observe that

J−1
2 (δ) = 2δ(1 − δ). Hence

J−1
2 (δ + δ2/2) = 2δ + δ2 − 2δ2(1 + δ/2)2 < 2δ − δ2.
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Lemma 6.10 shows that for r = log( 2
δ1δ2

) any codeword C with Rank(C) = r has weight at
least

wtr = 2δ1δ2(1− 2−r) > 2δ1δ2 − δ2
1δ

2
2 .

We apply the Deletion lemma taking C′ to be all codewords of rank at most r, with µ =
2δ1δ2 − δ2

1δ
2
2 . Since J(µ) > δ1δ2 + δ2

1δ2
2/2, whereas η 6 δ1δ2, we can take γ = δ2

1δ
2
2/2, which

gives the desired bound. �

A corollary of Fact 6.4 for tensor product codes is:

Corollary 6.12. Let C ∈ C2⊗C1 be a codeword of rank r, and let 〈v1, . . . , vr〉 = RowSpan(C).
Then C can be written as C =

∑r
s=1 us ⊗ vs where 〈u1, . . . , ur〉 = ColSpan(C).

Fix a received word R, which we wish to decode from η? − ε fraction of error where η? =
min(η1δ2, η2δ1) and ε > 0. By decoding each row up to radius η1, we get lists L1, . . . ,Ln2 of
codewords from C1 each of size at most `1(η1). By decoding each column up to radius η2, we
get lists L′1, . . . ,L′n1 of codewords from C2 each of size at most `2(η2). The following lemma
gives an analogue of Lemma 6.8, restricting the choice of basis vectors to those that occurs
relatively frequently among the lists.

Lemma 6.13. Let C ∈ C2 ⊗ C1 be a rank r codeword such that ∆(R,C) 6 η? − ε. There is
a basis V = {v1, . . . , vr} for RowSpan(C) where each vi occurs in at least ε21−rn2 of the lists
Li.

Proof. Consider the set of codewords S = {v ∈ C1} which occur in the row lists at least
ε21−rn2 times. We claim that S contains a basis for RowSpan(C). Assume for contradiction
that it only spans an r − 1 dimensional subspace. Choose {v1, . . . , vr−1} which form a basis
for it and complete it to a basis by adding vr. Define the set S′ = vr + 〈v1, . . . , vr−1〉. Now by
Corollary 6.12, we can write C in the form C =

∑r
s=1 us ⊗ vs for some u1, . . . , ur ∈ S which

span ColSpan(C).

Note that wt(ur) > δ2, hence at least δ2n2 rows (corresponding to indices in the support of
ur) come from the set S′, call this set A ⊂ [n2]. Since the error rate is η? − ε 6 δ2η1 − ε,
it must be the case that for some subset B ⊆ A of rows where |B| > εn2, the error rate on
those rows is less than η1; else the overall error rate is at least (δ2 − ε)η1 > δ2η1 − ε > η? − ε.
List decoding rows in B up to radius η1 recovers the corresponding row vector from C. So a
vector from S′ occurs in all lists for rows in B. Hence one of these vectors has to occur with
frequency at least ε21−rn2, but this contradicts the fact that S and S′ are disjoint. �

Similarly, let T denote the set of vector u ∈ C2 which occur in in at least ε21−rn1 of the lists
L′i. One can show that T contains a basis U = {u1, . . . , ur} for ColSpan(C).

Lemma 6.14. We have

`⊗r (η? − ε) 6 24r2
ε−2r`1(η1)

r`2(η2)
r.

Proof. Note that |S| 6 2r−1`1(η1)ε
−1, and |T | 6 2r−1`2(η2)ε

−1. We choose r basis vectors
from S and T respectively as bases for RowSpan(C) and ColSpan(C), for which there are
at most |S|r|T |r choices. We then choose r row vectors {v1, . . . , vr} from RowSpan(C) and

r column vectors {u1, . . . , ur} from ColSpan(C) so that C =
∑r

s=1 ui ⊗ vi. This gives 22r2
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additional choices. Thus `⊗2 (η? − ε) can be bounded by 22r2 |S|r|T |r, which gives the desired
bound. �

Putting together Lemmas 6.14 and 6.11, we have proved the following theorem.

Theorem 6.15. Let r = dlog( 2
δ1δ2

)e, η2 6 δ1, η2 6 δ2 and η? = min(η1δ2, η2δ1). Then there
exist constants c1, c2 so that for any ε > 0.

`⊗(η? − ε) 6 c12
c2r2

`1(η1)
r`2(η2)

rε−2r.

6.3. Further Improvements for Interleaved Codes. Theorem 2.6 was proved by first
reducing to the rank r case for constant r, then reducing to m = r by fixing a basis, and
using the trivial upper bound `�r(η) 6 `(η)r. One can improve on this last bound using the
analysis of Theorem 3.6 combined with better list-size bounds for decoding binary codes from
erasures.

Theorem 6.16. For any binary linear code C of relative distance δ, let r = dlog 2
δ2 e. For any

η < δ

`�m(η) 6
22r2

δ4(δ − η)r

r−1
∏

k=0

`

(

η − δ(1 − 2−k)

2

)

(6.1)

For a binary error correcting code with relative distance δ and µ 6 η < δ, we let `′(µ, η − µ)
denote the list-size for C with µ erasures and η − µ errors.

Lemma 6.17. For any µ 6 η, we have

`′(µ, η − µ) 6 2 · `(η − µ/2).

Proof. Let r ∈ {0, 1, ?}n be a received word where wt(r, ?) > µ. Let L = {c1, · · · , ck} denote
all codewords of C that satisfy ∆(ci, r) 6 η. Set the erased positions of r at random in {0, 1},
call this received word r′. Then Pr[∆(r′, ci) 6 η − µ/2] > 1

2 . Thus, in expectation over the
settings of the erased bits, k/2 of the codewords from L satisfy ∆(r′, ci) 6 η − µ/2. Fixing
one such choice of r:

`′(µ, η − µ)

2
6 `(η − µ/2).

�

The following lemma completes the proof of Theorem 6.16.

Lemma 6.18. Let C be a binary code with distance δ. Then for any η < δ we have

`�r(η) 6 r2r
r−1
∏

k=0

`

(

η − δ(1 − 2−k)

2

)

.(6.2)

Proof. We run Algorithm 1 on the received word R and build a tree. We mark each edge
leaving v Blue if it lies within the unique-decoding radius (for the code being decoded at
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v) and Red otherwise. A simple induction shows that after k Red edges, we have at least
δ(1− 2−k) erasures. Thus, after k Red edges, the degree of the tree drops to

`′(η, δ(1 − 2−k)) 6 2`

(

η − δ(1 − 2−k)

2

)

.

Solving the recursion for the number of leaves shows that

`�r(η) 6 r2r
r−1
∏

k=0

`

(

η − δ(1 − 2−k)

2

)

.

�

Equation 6.2 allows us to replace `(η)r term in Equation 2.3 with the product `(η)`(η −
δ/4)`(η − 3δ/8) · · · . This advantage is pronounced if the list size decreases rapidly as the
radius shrinks; which happens if we use the Johnson bound to bound the list-size. We finish
the proof of Theorem 2.7.

Proof of Theorem 2.7.
Set η = J2(δ) − ε. Note that δ − η > δ − J2(δ). Since δ < 1

2 , δ − J2(δ) is lower bounded by

some function of δ. Let r = dlog 2
δ2 e. Thus we have

`�m(J2(δ) − ε) 6
4

δ4

2r2

(δ − J2(δ))r
`�r(J2(δ) − ε) = cδ`

�r(J2(δ)− ε)(6.3)

Applying Lemma 6.18, we conclude that

`�r(J2(δ) − ε) 6 r2r
r−1
∏

k=0

`
(

J2(δ) − γk

)

,

where γk = δ(1−2−k)
2 + ε. The Johnson bound states that `(J2(δ) − γ) 6 γ−2. For k > 1, we

can lower bound γk by δ(1−2−k)
2 . Hence we have

`�r(J2(δ) − ε) 6 r2rε−2
r−1
∏

k=1

4

δ2(1− 2−k)2
6 c′δε

−2.(6.4)

Combining Equations 6.3 and 6.4 gives the desired result. �

7. List Decoding Linear Transformations

In the previous sections, we have developed techniques for decoding generic interleaved codes
based on generalized Hamming weights and decoding from erasures. These can be applied
to get sharper bounds for specific families of codes. We illustrate this in the case of linear
transformations.

The problem of list decoding linear transformations is equivalent to list decoding interleaved
Hadamard codes. Equivalently, one can think of the message as a matrix M over Fq of

dimension k×m, encoded by the values xtM for every x ∈ F
k
q . Thus the encoding is a matrix
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C of dimension qk ×m where each column is a codeword in the Hadamard code. Recall the
well known list size bound `(1

q − ε) 6 O(ε−2) for Hadamard codes over Fq.

Consider the space Lin(Fq, k,m) of all linear transformations L : F
k
q → F

m
q . We use `�m(Hadq, η)

instead of to denote the denote the list-size for Lin(Fq, k,m) at distance η. We let Linr(Fq, k,m)
denote the space of all linear transformations of rank at most r in Lin(Fq, k,m) and let
`�m
r (Hadq, η) denote the list-size for Linr(Fq, k,m).

7.1. Linear Transformations over F2. We first use the Deletion lemma to reduce the
task of proving list-size bounds for Lin(F2, k,m) to that of proving bounds for Lin2(F2, k,m).
In this subsection, we use `�m(η) to denote `�m(Had2, η) and `�m

r (η) to denote `�m
r (Had2, η).

Lemma 7.1. For any η < 1/2, we have `�m(η) 6 C`�m
2 (η) where C is an absolute constant.

Proof. We take C′ to consist of all linear transformations of rank at most 2. Thus for any
codeword L 6∈ C′, Rank(L) > 3, hence wt(L) > 7

8 , so we take µ = 7
8 . Since J(7/8) > 0.65

and η < 1
2 , we can apply the Deletion lemma with γ = 0.15 to conclude that `�m(η) 6

C`�m
2 (η). �

To bound `�m
2 (η), we start by bounding `�m

1 (η), which is the maximum number of rank 1
linear transformations within distance η of the received word R. We need some facts about the
structure of L(x) when L is a linear transformation of rank r. Recall that we use l[1], . . . , l[k] ∈
F

m
2 for the rows of L, thought of as vectors from F

m
2 . Let RowSpan(L) ⊆ F

m
2 denote the r-

dimensional space spanned by these vectors. We write RowSpan(L) = 〈l′[1], . . . , l′[r]〉 to
denote the fact that l′[1], . . . , l′[r] form a basis for RowSpan(L). For a function r : F

k
2 → F

m
2

and a vector v ∈ F
m
2 , we define wt(R, v) = Prx[R(x) = v].

Lemma 7.2. For L ∈ Linr(F2, k,m) and any v ∈ RowSpan(L), wt(L, v) = 2−r.

Proof. The jth column of L defines a linear function lj(x) = xtlj from F
k
2 → F2. We

have L(x) = (l1(x), . . . , lt(x)). Let us pick a basis for the columns, assume that this ba-
sis is l1, . . . , lr. Let v6r denote the projection of v onto the first r co-ordinates. We have
Prx[(l1(x), . . . , lr(x)) = v6r] = 2−r, which implies the claim. �

7.1.1. Bounding rank 1 linear transformations. The above lemma implies, in particular, that
if Rank(L) = 1 and RowSpan(L) = 〈l′[1]〉, then wt(L, l′[1]) = wt(L, 0k) = 1

2 .

Corollary 7.3. Let L ∈ Lin1(F2, k,m) and R : F
k
2 → F

m
2 be such that ∆(R,L) 6 1

2 − ε. If
RowSpan(L) = 〈l′[1]〉, then wt(R, l′[1]) > ε.

This narrows the choice of basis vectors for RowSpan(L) to at most 1
ε vectors where wt(L, l′[1]) >

ε. Once we fix l′[1], the problem reduces to Hadamard decoding (or rather m = 1). Given
R : F

k
2 → F

m
2 , we define r : F

k
2 → {F2 ∪ ?} as follows:

r(x) =











0 if R(x) = 0m,

1 if R(x) = l′[1],

? otherwise.
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Setting r(x) = ? denotes an erasure; since R(x) 6∈ RowSpan(L), we know there is an error at
index x. Given a Hadamard codeword l : F

k
2 → F2, if we define L ∈ Lin1(F2, k,m) by reversing

the substitution:

L(x) =

{

l′[1] if l(x) = 1,

0m if l(x) = 0

then it follows that ∆(R,L) = ∆(r, l). This proves the following claim.

Lemma 7.4. The linear transformations L ∈ Lin1(F2, k,m) so that ∆(R,L) < 1
2 − ε and

RowSpan(L) = 〈l′[1]〉 are in one-to-one correspondence with Hadamard codewords l so that
∆(r, l) < 1

2 − ε.

Since there can be at most O( 1
ε2 ) codewords of the Hadamard code within distance 1

2 − ε,

and at most 1
ε choices for l′[1], this suffices to prove a bound of O( 1

ε3 ). We can improve this

to O( 1
ε2 ) by observing that if there are many choices for l′[1], then each of them is likely to

result in fewer codewords. This relies on the following Lemma about Hadamard decoding with
erasures.

Lemma 7.5. Given r : F
k
2 → {F2 ∪ ?} so that wt(R, ?) > η, the number of codewords l such

that ∆(r, l) < ε is bounded by 2
(η+2ε)2

.

Proof. We use the well known fact that the number of codewords so that ∆(r, l) < 1
2 − ε is

bounded by 1
4ε2 . So assume there are s codewords l1, . . . , ls. Consider setting each erasure to

a random value in F2. For any l, with probability 1
2 we have ∆(r, l) 6 1

2 −
η
2 − ε. Thus in

expectation, s
2 of the codewords will now satisfy ∆(l, r) < 1

2 −
η
2 − ε. Fix one such setting of

the erasures. But now we have
s

2
6

1

(η + 2ε)2
⇒ s 6

2

(η + 2ε)2
.

�

We can now show an O(ε−2) bound on rank 1 transformations.

Lemma 7.6. For any ε > 0, we have

`�m
1 (

1

2
− ε) 6

1

2ε2
.

Proof. Assume that the condition wt(R, l′) > ε holds for t non-zero row vectors l′ ∈ F
m
2 . Fix

one such choice of l′. We then erase η > (t − 1)ε positions, so by Lemma 7.5 the number of
candidates is no more than 2

(t+1)2ε2 . Thus overall the list-size is bounded by 2t
(t+1)2ε2 6 1

2ε2 . �

7.1.2. Bounding rank 2 linear transformations. We now proceed to analyzing the list-size for
rank 2 linear transformations. We begin with the analog of Corollary 7.3 for the rank two
case.

Corollary 7.7. Let L ∈ Lin2(F2, k,m) and R : F
k
2 → F

m
2 be such that ∆(R,L) 6 1

2 −ε. There
is a basis {u, v} for RowSpan(L) such that wt(R,u) and wt(R, v) are both at least ε

2 .
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Proof. Note that wt(L, l[1]),wt(L, l[2]) and wt(L, l[1] + l[2]) are all exactly 1
4 . If two of the

symbols {l[1], l[2], l[1]+l[2]} have weight less than ε
2 in R, then ∆(R,L) > 2(1

4− ε
2 ) = 1

2−ε. �

In fact, we can assume that wt(R,u) > 1
12 and wt(R, v) > ε

2 , but we will not use this claim.

Once we pick u and v we reduce to the case m = 2 by defining r : F
k
2 → {F2

2 ∪ ?} as follows:

r(x) =

{

(λ, µ) if R(x) = λu + µv,

? otherwise.

We have the following analogue of Lemma 7.4.

Lemma 7.8. The linear transformations L ∈ Lin2(F2, k,m) so that ∆(L,R) < 1
2 − ε are in

one-to-one correspondence with linear transformations l ∈ Lin2(F2, k, 2) so that ∆(l, r) < 1
2−ε.

Lemma 7.9. Let r : F
k
2 → {F2

2 ∪ ?} be such that wt(r, ?) > η. The number of linear transfor-
mations l ∈ Lin2(F2, k, 2) so that ∆(l, r) < 1

2 − ε is bounded by 100
(η+2ε)2

.

Proof. Let l = (l1, l2) where each li : F
k
2 → F2. We proceed as in Theorem 2.5, erasing errors

whenever they are located. We run Hadamard decoding on the first column which gives a list
L1 of 2

(η+2ε)2
candidates for `1. We then choose c ∈ L1, erase the positions where it differs

from R and list decode the resulting word to get candidates for l2.

At most one codeword c ∈ L1 can have error rate less than 1
4 . If we choose l1 = c, we have

no more than 2
(η+2ε)2

choices for the second column. The other codewords in L1 which are

beyond distance 1
4 result in η > 1

4 erasures, hence a list-size of C 6 32 for the second column.
So the overall list size is bounded by

1 · 2

(η + 2ε)2
+

2

(η + 2ε)2
· 32 6

100

(η + 2ε)2
.

�

We are now ready to bound the number of rank 2 transformations.

Lemma 7.10. There is a constant C ′ so that for any ε > 0, we have

`�m
2 (

1

2
− ε) 6

C ′

ε2
.

Proof. Assume there are t > 2 non-zero vectors v ∈ F
m
2 so that wt(v) > ε

2 . By Corollary 7.7,
each there is a basis {u, v} of L where wt(R,u) and wt(R, v) are both at least ε

2 . Once we fix
this basis, we erase all positions containing vectors other than u, v and u + v. This results in
η > (t − 3)ε erasures. Thus by Lemma 7.9, the number of L such that RowSpan(L) = 〈u, v〉
is bounded by

100

(η + 2ε)2
6

100

(t− 1)2ε2
.

Since there are
(t
2

)

choices for {u, v}, we get an overall bound of
(

t

2

)

· 100

(t− 1)2ε2
=

t

2(t− 1)

100

ε2
6

100

ε2
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If there are t < 2 nonzero vectors v ∈ F
m
2 with wt(v) > ε

2 , then it corresponds to the rank one

case. Thus, adding bounds for rank 1 and rank 2 cases, we have `�m
2 (1

2 − ε) 6 100
ε2 + 1

2ε2 =
C′

ε2 . �

7.1.3. Final list-size bound. Combining Lemma 7.10 with Lemma 7.1, we conclude that for
some absolute constant C > 0,

`�m(
1

2
− ε) 6

C

ε2
,

thus completing the proof of Theorem 2.9.

7.2. Linear Transformations over Fq. In this subsection, we use `�m(η) to denote
`�m(Hadq, η) and `�m

r (η) to denote `�m
r (Hadq, η). One can repeat the above proof of Theorem

2.9 from the previous subsection for any Fq, and show that for some absolute constant c,

`�m(Hadq, 1− 1/q − ε) 6
cq6

ε2
.

This gives an asymptotically tight bound for constant q. In this subsection, our goal will be
to remove the dependence on q. We will do so at the expense of a worse dependence (of ε−5)
of the bound on ε.

We begin with a deletion argument analogous to Lemma 7.1. The difference is that we only
delete rank 1 transformations, and the multiplicative overhead is O(ε−2) as opposed to an
absolute constant.

Lemma 7.11. For η = q−1
q − ε, we have `�m(η) 6 C

ε2 `�m
1 (η).

Proof. We take C′ to consist of all linear transformations of rank at most 1. So we can take
µ = 1− 1

q2 and J(µ) = 1− 1
q . Thus we can apply the Deletion lemma with η = ε to conclude

that `�m(η) 6 1
ε2 `�m

1 (η). �

Given v ∈ F
m
q we now define wt(R, v) =

∑

µ∈F?
q
Prx∈Fm

q
[R(x) = µv]. We have the following

q-ary analogue of Corollary 7.7.

Corollary 7.12. Let L ∈ Lin1(Fq, k,m) and R : F
k
q → F

m
q be such that ∆(R,L) 6 1− 1

q − ε.

If RowSpan(L) = 〈v〉 then wt(R, v) > ε.

Fixing the vector v (from amongst t 6 1
ε choices), reduces the problem to Hadamard decoding

over Fq. The Johnson bound states that at radius 1 − 1
q − ε, the list-size is bounded by 1

ε2 .

This gives the following bound.

Lemma 7.13. For any ε > 0 we have `�m
1

(

1− 1
q − ε

)

6 1
ε3 .

Plugging this into Lemma 7.11 completes the proof of Theorem 2.10.
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