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Abstract. We investigate the connection between optimal propositional
proof systems and complete languages for promise classes. We prove that
an optimal propositional proof system exists if and only if there exists
a propositional proof system in which every promise class with the test
set in co-NP is representable. Additionally, we prove that there exists a
complete language for UP if and only if there exists a propositional proof
system such that UP is representable in it. UP is the standard promise
class with the test set in co-NP.
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1 Introduction

Although there are many different formal systems for proving propositional tau-
tologies in logic textbooks, they all fall under the concept of an abstract propo-
sitional proof system (a proof system for TAUT ) introduced by S. Cook and
R. Reckhow [5]. In order to compare the relative strength of different proof
systems for TAUT we use the notion of simulation [10] and the notion of p-
simulation [5]. A proof system for TAUT is optimal (p-optimal) if and only if it
simulates (p-simulates) any other proof system for TAUT . The still unresolved
problem of the existence of an optimal (p-optimal) proof system for TAUT was
posed by J. Kraj́ıček and P. Pudlák [10] in 1989.

The notion of p-simulation between proof systems for TAUT is similar to the
notion of reducibility between languages. Analogously, the notion of a p-optimal
proof system for TAUT should correspond to the notion of a complete language.

Informally, a class of languages is a promise class if the languages in this
class are accepted by nondeterministic polynomial-time clocked Turing machines
which obey special conditions (promises). Common promise classes are UP,
NP ∩ co-NP, and BPP. It is still open whether there exist complete lan-
guages for these classes. The reason lies in the undecidability of the problem
of whether a given nondeterministic polynomial-time Turing machine indeed
obeys the promise of any of these classes. Moreover, there exist relativizations
for which these classes do not have complete languages (see [8]).

Recently, O. Beyersdorff [3] introduced the notion of a disjoint NP-pair rep-
resentable in a given propositional proof system f . The disjointness of such a
pair is expressible by a sequence of propositional tautologies with short f -proofs.
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He also considered the complexity class of all disjoint NP-pairs representable
in a proof system f . In this paper we extend these notions to any promise class
with a propositionally expressible promise. It results in the notion of a language
representable in a given proof system f and in the notion of a promise class rep-
resentable in f . O. Beyersdorff proved [2] that the class of all disjoint NP-pairs
has a complete pair if and only if there exists a proof system for TAUT in which
every disjoint NP-pair is representable. We prove the analogous theorem for the
class UP. Namely, UP has a complete language if and only if there exists a
proof system for TAUT such that UP is p-representable in it.

It turns out that there is a close connection between optimal proof systems
and complete languages for promise classes, namely, the existence of optimal
proof systems implies the existence of complete languages for various promise
classes (see [9]). Let us mention two exemplary results of this type. A. Razborov
[14] observed that the existence of an optimal proof system suffices to guarantee
the existence of complete disjoint NP-pairs. J. Messner and J. Torán showed
[12] that a complete language for UP exists in case there is a p-optimal proof
system for TAUT . The converses of these implications probably do not hold [6]
and in this paper we address the question of just why it is so.

It seems that the promise that a Turing machine computes a proof system
for TAUT , or more precisely it produces only propositional tautologies, is the
hardest one among those promises which are propositionally expressible. There-
fore, the sufficient condition for the existence of an optimal proof system should
be as strong as the existence of a complete language for every promise class
with a propositionally expressible promise. At present, this intuition is only
supported by the result of J. Messner [11] which states that a p-optimal proof
system for TAUT exists if and only if every promise function class with a test
set polynomial-time reducible to TAUT has a complete function (see also [9]).
The analogous theorem in the setting of promise language classes instead of
promise function classes is missing. The main result from this paper, that the
existence of an optimal proof system for TAUT is equivalent to the existence of
a proof system for TAUT in which any promise class with the test set in co-NP

is representable, may be treated as the first step in this direction.

2 Preliminaries

We assume some familiarity with basic complexity theory and refer the reader
to [1] and [13] for standard notions and for definitions of complexity classes
appearing in the paper. The class of all disjoint pairs (A, B) of NP-languages is
denoted by DisNP.

The symbol Σ denotes a certain fixed finite alphabet throughout the paper.
The set of all strings over Σ is denoted by Σ?. For a string x, |x| denotes the
length of x.

Given two languages L1 and L2 (L1, L2 ⊆ Σ?), we say that L1 is polynomial-
time many-one reducible to L2 if and only if there exists a polynomial-time
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computable function f : Σ? −→ Σ? such that x ∈ L1 if and only if f(x) ∈ L2

holds for any x ∈ Σ?.
We use Turing machines (acceptors and transducers) as our basic compu-

tational model. We will not distinguish between a machine and its code. For a
Turing machine M the symbol L(M) denotes the language accepted by M .

We consider deterministic and nondeterministic polynomial-time clocked Tur-
ing machines (PTM and NPTM for short) with uniformly attached standard
clocks that stop their computations in polynomial time (see [1]). We impose
some restrictions on our encoding of these machines. From the code of any
polynomial-time clocked Turing machine we can easily detect (in polynomial
time) the polynomial pN which is its polynomial-time bound.

Let D1, D2, D3, ... and N1, N2, N3, ... be respectively standard enumer-
ations of all deterministic and nondeterministic polynomial-time clocked Tur-
ing machines. For any class of languages C, we say that C has an uniform
enumeration if and only if there exists a recursively enumerable list of nonde-
terministic polynomial-time clocked Turing machines Ni1 , Ni2 , Ni3 , ... such that
{L(Nik

): k ≥ 1 } = C.
We consider only languages over the alphabet Σ (this means that, for exam-

ple, boolean formulas have to be suitably encoded). The symbol TAUT denotes
the set (of encodings) of all propositional tautologies over a fixed adequate set
of connectives. Finally, 〈., . . . , .〉 denotes some standard polynomial-time com-
putable tupling function.

3 Propositional proof systems

The concept of an abstract propositional proof system, subsuming all proposi-
tional proof systems used in practice, was introduced by S. Cook and R. Reckhow
[5] in the following way:

Definition 1. A proof system for TAUT is a polynomial-time computable func-

tion f : Σ? onto
−→ TAUT .

A string w such that f(w) = α we call an f -proof of a formula α. We write
f `∗ αn if and only if {αn: n ≥ 1} is a sequence of tautologies with polynomial-
size f -proofs. A polynomially bounded proof system for TAUT (which allows
short proofs to all tautologies) exists if and only if NP=co-NP (see [5]).

Proof systems are compared according to their strength using the notion of
simulation and the presumably stronger notion of p-simulation.

Definition 2. (Kraj́ıček, Pudlák) Let h, h′ be two proof systems for TAUT .
We say that h simulates h′ if there exists a polynomial p such that for any
x ∈ TAUT , if x has a proof of length n in h′, then x has a proof of length
≤ p(n) in h.

Definition 3. (Cook, Reckhow) Let h, h′ be two proof systems for TAUT . We
say that h p-simulates h′ if there exists a polynomial-time computable function
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γ : Σ? −→ Σ? such that for every x ∈ TAUT and every w ∈ Σ?, if w is a proof
of x in h′, then γ(w) is a proof of x in h.

In other words, γ translates h′-proofs into h-proofs of the same formula.
The notions of an optimal proof system for TAUT and a p-optimal proof

system for TAUT were introduced by J. Kraj́ıček and P. Pudlák [10].

Definition 4. A proof system for TAUT is optimal (p-optimal) if and only if
it simulates (p-simulates) any proof system for TAUT .

We will study the problem of the existence of an optimal proof system and
the problem of the existence of a p-optimal proof system from computational-
complexity perspective.

4 Promise classes representable in a proof system

A nondeterministic polynomial-time clocked Turing machine which is the com-
putational model of a given promise (semantic) class should obey the special
condition, called the promise of the class. It can be illustrated by an example
of the class UP. We call a nondeterministic Turing machine categorical or un-
ambiguous if it has the following property: for any input x there is at most one
accepting computation. We define UP={L(Ni): Ni is categorical}.

Let T be any formal theory whose language contains the language of arith-
metic. We say that T is ”reasonable” if and only if T is sound (that is, in T

we can prove only true theorems) and the set of all theorems of T is recursively
enumerable. Let N be any NPTM . The notation T ` ”N is categorical” means
that the first order formula expressing the categoricity of N is provable in T . We
say that UP is representable in T if and only if for any A ∈ UP there exists an
NPTM N such that T ` ”N is categorical”. J. Hartmanis and L. Hemachandra
[8] proved that UP has a complete language if and only if it has an uniform
enumeration (see also [4]). It follows from Naming Lemma [7] that, the existence
of a uniform enumeration of UP is equivalent to the existence of a ”reasonable”
theory T such that UP is representable in T (see also [8]). Therefore, the prob-
lem of the existence of a complete language for UP can be characterized in terms
of a uniform representability of UP in a first order arithmetic theory T .

In this section we show that this problem can be also characterized in terms of
a nonuniform representability of UP in a propositional proof system. In this case
the promise of the class is expressed as the sequence of propositional tautologies
with short proofs. We begin with the introduction of the necessary machinery.

Following J. Messner’s approach [11], we define promise classes in a very
general way. A promise R is described as a binary predicate on the Cartesian
product of the set of all NPTMs and the set of all strings, i. e. , R(N, x) means
that N obeys a promise R on input x. An NPTM N is called an R-machine if
and only if N obeys R on any input x ∈ Σ?. For a given promise predicate R

we define the class of languages CR = {L(N): N is an R-machine} and call it
the promise class generated by R.
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Definition 5. (Messner) A class of languages C is called a promise class if and
only if C = CR for some promise predicate R.

The following notion of the test set for a promise class CR serves as a tool
for estimating the complexity of the promise R of this class.

Definition 6. By the test set for a promise class CR we mean the set
TR = {〈N, 0n, 0pN (n)〉: n is a natural number, N is an NPTM such that R(N, x)
holds for any x such that |x| = n}

The notion of the test set for CR corresponds to the notion of the generic
and length-only dependent test set from [9].

We are especially interested in the situation when the fact that a given
NPTM is an R-machine can be expressed propositionally, as a sequence of
propositional tautologies. It can be done only when the promise R has an ap-
propriate complexity.

To any NPTM N we will assign the set DN
R = { αN

1 , αN
2 , αN

3 ,... } of proposi-
tional formulas such that αN

n is a propositional tautology if and only if R(N, x)
holds for any x such that |x| = n. So, for any NPTM N it holds: N is an
R-machine if and only if DN

R ⊂ TAUT .
It should be possible to construct the formulas αN

n for different sets DN
R ,

corresponding to different NPTMs, easily and in an uniform manner. This leads
to the following definitions:

Definition 7. By a propositional description of a promise R we mean a set
DR = {αN

n : N is an NPTM , n is a natural number} of propositional formulas
fulfilling conditions (1) – (3):

(1) Adequacy:
αN

n is a propositional tautology if and only if R(N, x) holds for any x such
that |x| = n.

(2) Uniform constructibility:
There exists a polynomial time computable function f such that for any
NPTM N and for any n natural

f(〈N, 0n, 0pN (n)〉) = αN
n

(3) Local recognizability:
For any fixed NPTM N , the set DN

R = {αN
1 , αN

2 , αN
3 , ...} is in P.

Definition 8. We say that a promise R is propositionally expressible if and only
if there exists a propositional description of R.

The next lemma will be needed in Section 5 in the proof of the main result
of the paper.

Lemma 1. Any promise R such that the class CR possesses the test set TR in
co-NP is propositionally expressible.
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Proof. (See also [12]) Since TAUT is co-NP complete and paddable, there exists
a polynomial-time and length-increasing function f : Σ? −→ Σ?, reducing TR

to TAUT .
Let Form denotes the set of all propositional formulas. Since Form ∈ P,

there exists a polynomial-time and length-increasing function f̃ : Σ? −→ Form

such that for any x ∈ Σ? it holds: x ∈ TR if and only if f̃(x) ∈ TAUT . Using
the function f̃ we can define αN

n to be the formula f̃(〈N, 0n, 0pN (n)〉), for any
NPTM N and any n natural. Clearly, the adequacy and uniform constructibility
conditions are fulfilled.

We claim that DN
R ∈ P. Indeed, in order to test whether a given formula α

belongs to DN
R we generate the strings from the set TR up to a given length and

check whether the image of one of these strings after applying f̃ , coincides with
α. Thus, the local recognizability condition is fulfilled.

ut

Let R be a propositionally expressible promise and let DR = {αN
n : N is an

NPTM , n is a natural number} be its propositional description. Let h be a
proof system for TAUT .

Definition 9. A language A is weakly DR-representable in h if and only if there
exists an NPTM K such that conditions (1) – (2) are fulfilled:

(1) L(K) = A

(2) h `∗ αK
n

Definition 10. A language A is strongly DR-representable in h if and only if
there exists an NPTM K such that conditions (1) – (2) are fulfilled:

(1) L(K) = A

(2) There exists a polynomial time algorithm that on input 0n produces an h-
proof of αK

n , for any n natural.

Finally, we have the following definitions:

Definition 11. A promise class CR is representable in h if and only if there
exists a propositional description DR of R such that any language A ∈ CR is
weakly DR-representable in h.

Definition 12. A promise class CR is p-representable in h if and only if there
exists a propositional description DR of R such that any language A ∈ CR is
strongly DR-representable in h.

Now we present the above mentioned characterization of the problem of the
existence of a complete language for UP.

Theorem 1. There exists a complete language for UP if and only if there exists
a propositional proof system h such that UP is p-representable in h.
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Proof. (i) → (ii) Let us notice that UP has the test set in co-NP. Therefore,
the promise R of UP is propositionally expressible. Let DR = {αN

n : N is an
NPTM , n is a natural number} be a propositional description of this promise.
It follows from J. Hartmanis and L. Hemachandra’s result [8], that UP has a
uniform enumeration. Let G be a Turing machine generating the codes of the
machines from the sequence Ni1 , Ni2 , Ni3 ,... forming a uniform enumeration of
the class UP.

Now we can define a propositional proof system h in which UP is p-representable.
We say that a string v ∈ Σ? is in good form if

v = 〈Comp − G, 0n, 0
pNij

(n)
〉

where n is a natural number, Comp−G is a computation of the machine G. This
computation produces a certain machine Nij

from the uniform enumeration of
the class UP. The polynomial pNij

bounds the running time of Nij
.

Let α0 be a certain fixed propositional tautology. Let f be the function exist-
ing on the ground of the uniform constructibility condition from the definition

of DR. We define g : Σ? −→ Σ? in the following way: g(v) = α
Nij

n if v is in

good form (v = 〈Comp − G, 0n, 0
pNij

(n)
〉) Nij

is the machine produced by the

computation Comp − G, and f(〈Nij
, 0n, 0

pNij 〉) = α
Nij

n ; otherwise g(v) = α0.
It follows from the uniform constructibility condition from the definition of

DR that g is polynomial-time computable. It follows from the adequacy condition
that g : Σ? −→ TAUT . Let f ′ be any standard Frege propositional proof system.

Combining g with f ′ we obtain a propositional proof system h : Σ? onto
−→ TAUT .

h(y) =











g(v) if y=0v and v is in good form

f ′(v) if y=1v

α0 otherwise

Let A be any language from UP. There exists a machine Nik
from the uniform

enumeration of the class UP such that L(Nik
) = A, and pNik

is its polynomial-
time bound. Let Comp − G be the computation of G producing the code of

the machine Nik
. The function λ(0n) = 0〈Comp − G, 0n, 0

pNik
(n)

〉 produces an

h-proof of α
Nik
n in polynomial time in n.

(ii) → (i) Assume that there exists a propositional proof system h such that
UP is p-representable in it.

There exists a propositional description DR = {αN
n : N is an NPTM , n is

a natural number} of the promise R of UP such that any language A ∈ UP is
strongly DR-representable in h.

Let us consider the language

L = {〈N, x, Proof − αN
|x|, 0

pN (|x|)〉 : x ∈ L(N)}

where N is an NPTM , pN is the polynomial that bounds the running time of
N , x is a string, Proof −αN

|x| is an h-proof of αN
|x|, where αN

|x| is a propositional
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formula from the propositional description of the promise of UP, 0pN (|x|) is the
sequence of zeros (padding).

We claim that L is the desired UP complete language.

(a) L ∈ UP.
It is assured by the following nondeterministic Turing machine K working
in polynomial time.
1. On input w the machine deterministically checks whether w is in the form

〈N, x, Proof − αN
|x|, 0

pN(|x|)〉. If so then K comes to point 2, otherwise
K rejects w.

2. K runs N on input x. If N accepts x then K accepts w.
Let us notice that if w is in the form 〈N, x, Proof −αN

|x|, 0
pN (|x|)〉 then αN

|x|,
as a formula possessing an h-proof is a propositional tautology. From this it
follows that for any input of length |x| (and in particular for x), N has at
most one accepting computation. This clearly forces K to be a categorical
Turing machine.

(b) L is a complete language for UP.
Let L′ be any language in UP. Since L′ is strongly DR-representable in h,
there exists an NPTM K such that L(K) = A, and there exists a deter-
ministic polynomial-time Turing machine M that on input 0n produces an
h-proof of αK

n , for any n natural. The function f : Σ? −→ Σ? defined by

f(x) = 〈K, x, Proof − αK
|x|, 0

pK(|x|)〉

is the polynomial time many-one reduction of L′ to L. The string Proof−αK
|x|

from the definition of f is the h-proof of the formula αK
|x| produced by the

deterministic Turing machine M .
ut

5 Main results

J. Messner [11] considered the family of all proof systems for TAUT as a promise
function class. He proved that a p-optimal proof system exists if and only if any
promise function class with a test set polynomial-time reducible to TAUT pos-
sesses a complete function. Our intention was to find an analogous theorem
in the setting of promise language classes. In our results from this section we
characterize the existence of optimal proof systems in terms of a nonuniform
presentability of promise classes in a proof system. For most promise classes,
having a complete language and a uniform enumeration (a uniform representa-
tion in an arithmetic theory) are equivalent. Similarly, it seems that for promise
classes a nonuniform p-presentability in a proof system is close to the possession
of a complete language.

In our chracterization of the problem of the existence of optimal and p-
optimal proof systems the families of all easy and all NP-easy subsets of TAUT

play a very important role.
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Definition 13. By an easy subset of TAUT we mean a set A such that A ⊂
TAUT and A ∈ P.

Definition 14. By an NP-easy subset of TAUT we mean a set A such that
A ⊂ TAUT and A ∈ NP.

The next lemma shows that for every easy subset of TAUT there exists
a proof system in which tautologies from this set have short and easily con-
structible proofs.

Lemma 2. (Messner, Torán [12]) If A is an easy subset of TAUT then there

exists a proof system f : Σ? onto
−→ TAUT and a polynomial-time computable

function t that on input α produces f -proof of α, for any tautology α in A. That
is for every α ∈ A, f(t(α)) = α.

For any transducer N we will denote by fN the function computed by N .

Definition 15. (see [15]) A Turing transducer N is called sound if fN maps
Σ? into TAUT (fN : Σ?−→TAUT ).

To any polynomial-time clocked transducer M we will assign the set AM =
{Sound1

M , Sound2
M , Sound3

M ,...} of propositional formulas such that: Soundn
M

is a propositional tautology if and only if for every input of length n, the machine
M outputs a propositional tautology (see [15]).

So, for any polynomial-time clocked transducer M , it holds: M is sound if
and only if AM ⊂ TAUT .

Moreover, the formulas describing the soundness of Turing machines possess
the following global uniformity property: There exists a polynomial-time com-
putable function f such that for any polynomial-time clocked transducer M

with time bound pM and for any w ∈ Σ?

f(〈M, w, 0pM (|w|)〉) = Sound
|w|
M

Let us proceed to the main results of the paper.

Theorem 2. Statements (i) - (iii) are equivalent:

(i) There exists an optimal propositional proof system.
(ii) There exists a propositional proof system in which any promise class with

the test set in co-NP is representable.
(iii) There exists a propositional prof system in which the class of all NP-easy

subsets of TAUT is representable.

Proof. (i) → (ii) Let Opt be an optimal propositional proof system and let C be
any promise class defined by a promise R and possessing the test set TR in co-
NP. It follows from Lemma 1 that there exists a propositional description DR =
{αN

n : N is an NPTM , n is a natural number} of R. Let A be any language from
C and let K be an NPTM such that L(K) = A. By the adequacy condition
and by the local recognizability condition from Definition 7, the set DK

R = {αK
1 ,
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αK
2 , αK

3 , ...} is an easy subset of TAUT . By Lemma 2 and by the definition of
an optimal proof system we have Opt `∗ αK

n . As A was chosen arbitrarily, the
class C is representable in Opt. The same reasoning applies to any other promise
class with the test set in co-NP, so any such promise class is representable in
Opt.

(ii) → (iii) Let h be a propositional proof system in which any promise class
with the test set in co-NP is representable. Let R denote the promise of the
class of all NP-easy subsets of TAUT . Thus, R(N, x) holds if and only if on
input x, if N accepts then x is in TAUT . The test set of the class of all NP-easy
subsets of TAUT is in co-NP. Hence, this class is representable in h.

(iii) → (i) Let h be a propositional proof system in which the class of all
NP-easy subsets of TAUT is representable. It follows from the existence of h

that there exists the propositional description DR = {αL
n : L is an NPTM , n is

a natural number} of the promise of this class.
We say that a string v ∈ Σ? is in good form if

v = 〈M, w, N, Proof − αN
l , Comp − Sound

|w|
M , 0pM(|w|)+pN (l)〉

where M is a polynomial-time clocked transducer with pM time bound, w ∈ Σ?,

N is an NPTM with pN time bound, l = |Sound
|w|
M |, Proof −αN

l is an h-proof
of the formula αN

l from the propositional description of the promise of the class

of all NP-easy subsets of TAUT , Comp − Sound
|w|
M is a computation of the

machine N accepting the formula Sound
|w|
M , 0pM(|w|)+pN (l) is the sequence of

zeros (padding).
We call a Turing transducer n-sound if and only if on any input of length n

it produces a propositional tautology.
Let us notice that if v is in good form, then M on input w produces a

propositional tautology. It can be proved in the following way. If v is in good
form then αN

l , as a formula possessing an h-proof, is a propositional tautology.
By the adequacy condition from Definition 7, the machine N obeys, for any
input of the length l, the promise of the class of all NP-easy subsets of TAUT .

In consequence, Sound
|w|
M is a propositional tautology. This clearly forces M to

be n-sound, where n = |w|, so M on input w produces a propositional tautology.
Let α0 be a certain fixed propositional tautology. We define Opt : Σ? −→ Σ?

in the following way: Opt(v) = α if v is in good form and α is a propositional

tautology produced by M on input w, otherwise h(v) = α0. Clearly, Opt : Σ? onto
−→

TAUT .
Using the global uniformity property for the formulas expressing the sound-

ness of Turing transducers, and using the uniform constructibility condition for
the formulas from the propositional description of the promise under considera-
tion, we can check in polynomial time whether v is in good form. From this it
follows that Opt is polynomial time computable and, in consequence, Opt is a
propositional proof system.

It remains to prove that Opt simulates any propositional proof system. Let
g be a propositional proof system computed by the polynomial time clocked
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transducer K with time bound pK . The set AK = {Sound1
K , Sound2

K , Sound3
K ,

...} is an NP-easy subset of TAUT . Since this set is weakly DR-representable in
h, there exists an NPTM N such that L(N) = AK and h `∗ αN

n . Let α be any
propositional tautology and let x be its g-proof. Then α possesses an Opt-proof
of the form:

v = 〈K, x, N, Proof − αN
l , Comp − Sound

|x|
K , 0pK(|x|)+pN(l)〉

The word Comp − Sound
|x|
K is a computation of N accepting Sound

|x|
K , l

= |Sound
|x|
K |, the word Proof − αN

l is an h-proof of the formula αN
l from the

propositional description of the promise of the class of all NP-easy subsets of
TAUT.

Let us notice that by the global uniformity property there exists a polynomial

q1, such that l = |Sound
|x|
K | ≤ q1(|x|). Because N is polynomial-time clocked

there exists a polynomial q2 such that Comp−Sound
|x|
K ≤ q2(|x|). By the uniform

constructibility condition there exists a polynomial q3 such that |αN
l | ≤ q3(l) and

because h `∗ αN
l there exists a polynomial q4 such that |Proof − αN

l | ≤ q4(l).
Finally, since l is polynomially related to |x|, there exists a polynomial q5 such
that |Proof − αN

l | ≤ q5(|x|). This proves that Opt simulates g. ut

The previous result can be translated to the deterministic case in the follow-
ing way:

Theorem 3. Statements (i) - (iii) are equivalent:

(i) There exists a p-optimal propositional proof system.
(ii) There exists a propositional proof system in which any promise class with

the test set in co-NP is p-representable.
(iii) There exists a propositional prof system in which the class of all easy subsets

of TAUT is p-representable.

Proof. (i) → (ii) This follows by the same arguments as in the proof of (i) → (ii)
from Theorem 2. Let Opt be a p-optimal propositional proof system. Let C =
CR be any promise class with the test set TR in co-NP. Let DR = {αN

n : N is
an NPTM , n is a natural number} be a propositional description of R. Let A

be any language such that A ∈ C and let K be an NPTM such that L(K) =
A. For the same reasons as before the set {αK

1 , αK
2 , αK

3 , ...} is an easy subset
of TAUT . By the uniform constructibility condition, any formula αK

n can be
constructed in polynomial time in n. From Lemma 2 it follows that there exists
a polynomial-time deterministic Turing machine M that on input 0n produces
an Opt-proof of αK

n . As A was chosen arbitrarily, the class C is p-representable
in Opt. The rest of the proof runs as before.

(ii) → (iii) Let h be a propositional proof system in which any promise class
with the test set in co-NP is p-representable. Let R denotes the promise of the
class of all easy subsets of TAUT. Thus R(N, x) holds if and only if on input x,
N only makes deterministic moves and if N accepts then x is in TAUT . Clearly,
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the test set of the class of all easy subsets of TAUT is in co-NP. Hence, this
class is p-representable in h.

(iii) → (i) Let h be a propositional proof system in which the class of all
easy subsets of TAUT is p-representable. Let DR = {αK

n : K is any NPTM , n is
a natural number } be the propositional description of the promise of this class.
We say that a string v ∈ Σ? is in good form if

v = 〈M, w, N, Proof − αN
l , Comp − Sound

|w|
M , 0pM(|w|)+pN (l)〉

where the appropriate symbols mean the same as before. We define Opt : Σ? onto
−→

TAUT analogously as in the proof of Theorem 2: Opt(v) = α if v is in good
form and α is a propositional tautology produced by M on input w, otherwise
h(v) = α0, where α0 is a certain fixed propositional tautology.

It remains to prove that Opt p-simulates any propositional proof system.
Let g be a propositional proof system computed by the polynomial-time clocked
transducer K with time bound pK . The set AK = {Sound1

K , Sound2
K , Sound3

K ,
...} is an easy subset of TAUT . This set is strongly DR-representable in h, so
there exists an NPTM N such that L(N) = AK and there exists a deterministic
polynomial-time Turing machine M that on input 0n produces an h-proof of αN

n ,
for any n natural. Since the formulas from the set {αN

1 , αN
2 , αN

3 ,...} are proposi-
tional tautologies and since these formulas fulfill the adequacy condition, N is a
deterministic Turing machine and N accepts only propositional tautologies. The
function t : Σ? −→ Σ? defined by

t(x) = 〈K, x, N, Proof − αN
l , Comp − Sound

|x|
K , 0pK(|x|)+pN (l)〉

translates g-proofs into Opt-proofs.

The word Comp − Sound
|x|
K in the definition of t is the computation of the

machine N accepting the formula Sound
|x|
K , l = |Sound

|x|
K |, Proof − αN

l is an
h-proof of the formula αN

l .
From the global uniformity property and from the fact that N is deterministic

and polynomial-time clocked it follows that Comp−Sound
|x|
K can be constructed

in polynomial time in |x|. Similarly, from the global uniformity property and
from the fact that the set AK is strongly DR-representable in h, it follows that
Proof − αN

l can be constructed in polynomial time in |x|. This proves that t is
polynomial time computable. ut

We proved [15] that there exists a p-optimal proof system for TAUT if and
only if the class of all easy subsets of TAUT is uniformly enumerable. It can be
otherwise stated thus: there exists a p-optimal proof system for TAUT if and
only if there exists a ”reasonable” arithmetic theory T such that the class of all
easy subsets of TAUT is representable in it (see [7]). In this paper we replaced
representability in an arithmetic theory by representability in a proof system, in
the characterization of the existence of a p-optimal proof system in terms of easy
subsets of TAUT . It is typical for proof complexity that an arithmetic theory
coincides with a proof system for TAUT and the latter is a nonuniform version
of the former.
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