An Almost Optimal Rank Bound for Depth-3 IDENTITIES

Nitin Saxena * C. Seshadhri ${ }^{\dagger}$

Abstract

We show that the rank of a depth-3 circuit (over any field) that is simple, minimal and zero is at most $O\left(k^{3} \log d\right)$. The previous best rank bound known was $2^{O\left(k^{2}\right)}(\log d)^{k-2}$ by Dvir and Shpilka (STOC 2005). This almost resolves the rank question first posed by Dvir and Shpilka (as we also provide a simple and minimal identity of $\operatorname{rank} \Omega(k \log d)$).

Our rank bound significantly improves (dependence on k exponentially reduced) the best known deterministic black-box identity tests for depth-3 circuits by Karnin and Shpilka (CCC 2008). Our techniques also shed light on the factorization pattern of nonzero depth-3 circuits, most strikingly: the rank of linear factors of a simple, minimal and nonzero depth-3 circuit (over any field) is at most $O\left(k^{3} \log d\right)$.

The novel feature of this work is a new notion of maps between sets of linear forms, called ideal matchings, used to study depth-3 circuits. We prove interesting structural results about depth-3 identities using these techniques. We believe that these can lead to the goal of a deterministic polynomial time identity test for these circuits.

1 Introduction

Polynomial identity testing (PIT) ranks as one of the most important open problems in the intersection of algebra and computer science. We are provided an arithmetic circuit that computes a polynomial $p\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ over a field \mathbb{F}, and we wish to test if p is identically zero. In the black-box setting, the circuit is provided as a black-box and we are only allowed to evaluate the polynomial p at various domain points. The main goal is to devise a deterministic polynomial time algorithm for PIT. Kabanets and Impagliazzo [KI04] and Agrawal [Agr05] have shown connections between deterministic algorithms for identity testing and circuit lower bounds, emphasizing the importance of this problem.

The first randomized polynomial time PIT algorithm, which was a black-box algorithm, was given (independently) by Schwartz [Sch80] and Zippel [Zip79]. Randomized algorithms that use less randomness were given by Chen \& Kao [CK00], Lewin \& Vadhan [LV98], and Agrawal \& Biswas [AB03]. Klivans and Spielman [KS01] observed that even for depth-3 circuits for bounded top fanin, deterministic identity testing was open. Progress towards this was first made by Dvir and Shpilka [DS06], who gave a quasi-polynomial time algorithm, although with a doubly-exponential dependence on the top fanin. The problem was resolved by a polynomial time algorithm given by Kayal and Saxena [KS07],

[^0]with a running time exponential in the top fanin. For a special case of depth-4 circuits, Saxena [Sax08] has designed a deterministic polynomial time algorithm for PIT. Why is progress restricted to small depth circuits? Agrawal and Vinay [AV08] recently showed that an efficient black-box identity test for depth-4 circuits will actually give a quasipolynomial black-box test for circuits of all depths.

For deterministic black-box testing, the first results were given by Karnin and Shpilka [KS08]. Based on results in [DS06], they gave an algorithm for depth-3 circuits having a quasi-polynomial running time (with a doubly-exponential dependence on the top fanin) ${ }^{1}$. One of the consequences of our result will be a significant improvement in the running time of their deterministic black-box tester.

This work focuses on depth-3 circuits. A structural study of depth-3 identities was initiated in [DS06] by defining a notion of rank of simple and minimal identities. A depth-3 circuit C over a field \mathbb{F} is:

$$
C\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{k} T_{i}
$$

where, T_{i} (a multiplication term) is a product of d_{i} linear functions $\ell_{i, j}$ over \mathbb{F}. Note that for the purposes of studying identities we can assume wlog (by homogenization) that $\ell_{i, j}$'s are linear forms (i.e. linear polynomials with a zero constant coefficient) and that $d_{1}=\cdots=d_{k}=: d$. Such a circuit is referred to as a $\Sigma \Pi \Sigma(k, d)$ circuit, where k is the top fanin of C and d is the degree of C. We give a few definitions from [DS06].
Definition 1. [Simple Circuits] C is a simple circuit if there is no nonzero linear form dividing all the T_{i} 's.
[Minimal Circuits] C is a minimal circuit if for every proper subset $S \subset[k], \sum_{i \in S} T_{i}$ is nonzero.
[Rank of a circuit] The rank of the circuit, rank (C), is defined as the rank of the linear forms $\ell_{i, j}$'s viewed as n-dimensional vectors over \mathbb{F}.

Can all the forms $\ell_{i, j}$ be independent, or must there be relations between them? The rank can be interpreted as the minimum number of variables that are required to express C. There exists a linear transformation converting the n variables of the circuit into $\operatorname{rank}(C)$ independent variables. A trivial bound on the rank (for any $\Sigma \Pi \Sigma$-circuit) is $k d$, since that is the total number of linear forms involved in C. The rank is a fundamental property of a $\Sigma \Pi \Sigma(k, d)$ circuit and it is crucial to understand how large this can be for identities. A substantially smaller rank bound than $k d$ shows that identities do not have as many "degrees of freedom" as general circuits, and lead to deterministic identity tests ${ }^{2}$. Furthermore, the techniques used to prove rank bounds show us structural properties of identities that may suggest directions to resolve PIT for $\Sigma \Pi \Sigma(k, d)$ circuits.

Dvir and Shplika [DS06] proved that the rank is bounded by $2^{O\left(k^{2}\right)}(\log d)^{k-2}$, and this bound is translated to a $\operatorname{poly}(n) \exp \left(2^{O\left(k^{2}\right)}(\log d)^{k-1}\right)$ time black-box identity tester by Karnin and Shpilka [KS08]. Note that when k is larger than $\sqrt{\log d}$, these bounds are trivial.

Our present understanding of $\Sigma \Pi \Sigma(k, d)$ identities is very poor when k is larger than a constant. We present the first result in this direction.

[^1]Theorem 2 (Main Theorem). The rank of a simple and minimal $\Sigma \Pi \Sigma(k, d)$ identity is $O\left(k^{3} \log d\right)$.

This gives an exponential improvement on the previously known dependence on k, and is strictly better than the previous rank bound for every $k>3$. We also give a simple construction of identities with rank $\Omega(k \log d)$ in Section 2 , showing that the above theorem is almost optimal. As mentioned above, we can interpret this bound as saying that any simple and minimal $\Sigma \Pi \Sigma(k, d)$ identity can be expressed using $O\left(k^{3} \log d\right)$ independent variables. One of the most interesting features of this result is a novel technique developed to study depth-3 circuits. We introduce the concepts of ideal matchings and ordered matchings, that allow us to analyze the structure of depth-3 identities. These matchings are studied in detail to get the rank bound. Along the way we initiate a theory of matchings, viewing a matching as a fundamental map between sets of linear forms.

Why are the simplicity and minimality restrictions required? Take the non-simple $\Sigma \Pi \Sigma(2, d)$ identity $\left(x_{1} x_{2} \cdots x_{d}\right)-\left(x_{1} x_{2} \cdots x_{d}\right)$. This has rank d. Similarly, we can take the non-minimal $\Sigma \Pi \Sigma(4, d+1)$ identity $\left(y_{1} y_{2} \cdots y_{d}\right)\left(x_{1}-x_{1}\right)+\left(z_{1} z_{2} \cdots z_{d}\right)\left(x_{2}-x_{2}\right)$ that has rank ($2 d+2$). In some sense, these restrictions only ignore identities that are composed of smaller identities.

1.1 Consequences

Apart from being an interesting structural result about $\Sigma \Pi \Sigma$ identities, we can use the rank bound to get nice algorithmic results. Our rank bound immediately gives faster deterministic black-box identity testers for $\Sigma \Pi \Sigma(k, d)$ circuits. A direct application of Lemma 4.10 in [KS08] to our rank bound gives an exponential improvement in the dependence of k compared to previous black-box testers (that had a running time of $\left.\operatorname{poly}(n) \exp \left(2^{O\left(k^{2}\right)}(\log d)^{k-1}\right)\right)$.

Theorem 3. There is a deterministic black-box identity tester for $\Sigma \Pi \Sigma(k, d)$ circuits that runs in poly $\left(n, d^{k^{3} \log d}\right)$ time.

The above black-box tester is now much closer in complexity to the best non black-box tester known (poly $\left(n, d^{k}\right)$ time by $\left.[\mathrm{KSO} 0]\right)$.

Our result also applies to black-box identity testing of read-k $\Sigma \Pi \Sigma(k, d)$ circuits, where each variable occurs at most k times. We get a similar immediate improvement in the dependence of k (the previous running time was $n^{2^{O\left(k^{2}\right)}}$.)
Theorem 4. There is a deterministic black-box identity tester for read-k $\Sigma \Pi \Sigma(k, d)$ circuits that runs in $O\left(n^{k^{4} \log k}\right)$ time.

Although it is not immediate from Theorem 2, our technique also provides an interesting algebraic result about polynomials computed by simple, minimal, and nonzero $\Sigma \Pi \Sigma(k, d)$ circuits ${ }^{3}$. Consider such a circuit C that computes a polynomial $p\left(x_{1}, \cdots, x_{n}\right)$. Let us factorize p into $\prod_{i} q_{i}$, where each q_{i} is a nonconstant and irreducible polynomial. We denote by $L(p)$ the set of linear factors of p (that is, $q_{i} \in L(p)$ iff $q_{i} \mid p$ is linear).

Theorem 5. If p is computed by a simple, minimal, nonzero $\Sigma \Pi \Sigma(k, d)$ circuit then the rank of $L(p)$ is at most $k^{3} \log d$.

[^2]
1.2 Organization

We first give a simple construction of identities with rank $\Omega(k \log d)$ in Section 2. Section 3 contains the proof of our main theorem. We give some preliminary notation in Section 3.1 before explaining an intuitive picture of our ideas (Section 3.2). We then explain our main tool of ideal matchings (Section 3.3) and prove some useful lemmas about them. We move to Section 3.4 where the concepts of ordered matchings and simple parts of circuits are introduced. We motivate these definitions and then prove some easy facts about them. We are now ready to tackle the problem of bounding the rank. We describe our proof in terms of an iterative procedure in Section 3.5. Everything is put together in Section 3.6 to bound the rank. Finally (it should hopefully be obvious by then), we show how to apply our techniques to prove Theorem 5 .

2 High Rank Identities

The following identity was constructed in $[\mathrm{KS} 07]$: over \mathbb{F}_{2} (with $r \geqslant 2$),

$$
\begin{aligned}
C\left(x_{1}, \ldots, x_{r}\right):= & \prod_{\substack{b_{1}, \ldots, b_{r-1} \in \mathbb{F}_{2} \\
b_{1}+\cdots+b_{r-1} \equiv 1}}\left(b_{1} x_{1}+\cdots+b_{r-1} x_{r-1}\right) \\
& +\prod_{\substack{b_{1}, \ldots, b_{r-1} \in \mathbb{F}_{2} \\
b_{1}+\cdots+b_{r-1} \equiv 0}}\left(x_{r}+b_{1} x_{1}+\cdots+b_{r-1} x_{r-1}\right) \\
& +\prod_{\substack{b_{1}, \ldots, b_{r-1} \in \mathbb{F}_{2} \\
b_{1}+\cdots+b_{r-1} \equiv 1}}\left(x_{r}+b_{1} x_{1}+\cdots+b_{r-1} x_{r-1}\right)
\end{aligned}
$$

It was shown that, over \mathbb{F}_{2}, C is a simple and minimal $\Sigma \Pi \Sigma$ zero circuit of degree $d=2^{r-2}$ with $k=3$ multiplication terms and $\operatorname{rank}(C)=r=\log _{2} d+2$. For this section let $S_{1}(\bar{x})$, $S_{2}(\bar{x}), S_{3}(\bar{x})$ denote the three multiplication terms of C. We now build a high rank identity based on S_{1}, S_{2}, S_{3}. Our basic step is given by the following lemma that was used in [DS06] to construct identities of rank $(3 k-2)$.

Lemma 6. [DS06] Let $D_{i}\left(y_{i, 1}, \ldots, y_{i, r_{i}}\right):=\sum_{j=1}^{k_{i}} T_{j}$ be a simple, minimal and zero $\Sigma \Pi \Sigma$ circuit, over \mathbb{F}_{2}, with degree d_{i}, fanin k_{i} and rank r_{i}. Define a new circuit over \mathbb{F}_{2} using D_{i} and C :
$D_{i+1}\left(y_{i, 1}, \ldots, y_{i, r_{i}+r}\right):=\left(\sum_{j=1}^{k_{i}-1} T_{j}\right) \cdot S_{1}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)-T_{k_{i}} \cdot S_{2}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)$

$$
-T_{k_{i}} \cdot S_{3}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)
$$

Then D_{i+1} is a simple, minimal and zero $\Sigma \Pi \Sigma$ circuit with degree $d_{i+1}=\left(d_{i}+d\right)$, fanin $k_{i+1}=\left(k_{i}+1\right)$ and rank $r_{i+1}=\left(r_{i}+r\right)$.

Proof. Since C is an identity, we get that $S_{2}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)+S_{3}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)=$

$$
\begin{aligned}
- & S_{1}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right) . \text { Therefore, } \\
& D_{i+1}\left(y_{i, 1}, \ldots, y_{i, r_{i}+r}\right) \\
= & \left(\sum_{j=1}^{k_{i}-1} T_{j}\right) S_{1}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)-T_{k_{i}}\left(S_{2}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)+S_{3}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)\right) \\
= & \left(\sum_{j=1}^{k_{i}-1} T_{j}\right) \cdot S_{1}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)+T_{k_{i}} S_{1}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right) \\
= & \left(\sum_{j=1}^{k_{i}} T_{j}\right) \cdot S_{1}\left(y_{i, r_{i}+1}, \ldots, y_{i, r_{i}+r}\right)=0
\end{aligned}
$$

The terms T_{j} do not share any variables with $S_{\ell}(\ell \in\{1,2,3\})$. Since D_{i} and C are simple, D_{i+1} is also simple. Suppose D_{i+1} is not minimal. We have some subset $P \subset\left[1, k_{i}-1\right]$ such that $C^{\prime}:=\left(\sum_{j \in P} T_{j}\right) S_{1}-\alpha_{2} T_{k_{i}} S_{2}-\alpha_{3} T_{k_{i}} S_{3}=0$, where $\alpha_{2}, \alpha_{3} \in\{0,1\}$. If both α_{2} and α_{3} are 1 , then we get $\left(\sum_{j \in P} T_{j}\right) S_{1}+T_{k_{i}} S_{1}=0$, now P must be the whole set $\left[1, k_{i}-1\right]$, because D_{i} is minimal. On the other hand, if both α_{2}, α_{3} are 0 , then $\left(\sum_{j \in P} T_{j}\right) S_{1}=0$ which is impossible as D_{i} is minimal. The only remaining possibility is (wlog) $\left(\sum_{j \in P} T_{j}\right) S_{1}-T_{k_{i}} S_{2}=0$. As S_{1} is coprime to S_{2} and $T_{k_{i}}$, this is impossible. Therefore, D_{i+1} is minimal.

It is easy to see the parameters of $D_{i+1}: k_{i+1}=\left(k_{i}+1\right)$ and $d_{i+1}=\left(d_{i}+1\right)$. Because the T_{j} 's do not share any variables with S_{ℓ} 's, the rank $r_{i+1}=\left(r_{i}+r\right)$.

Family of High Rank Identities: Now we will start with $D_{0}:=C\left(y_{0,1}, \ldots, y_{0, r}\right)$ and apply the above lemma iteratively. The i-th circuit we get is D_{i} with degree $d_{i}=$ $(i+1) d$, fanin $k_{i}=i+3$ and rank $r_{i}=(i+1) r=(i+1)\left(\log _{2} d+2\right)$. So r_{i} relates to k_{i}, d_{i} as:

$$
r_{i}=\left(k_{i}-2\right)\left(\log _{2} \frac{d_{i}}{k_{i}-2}+2\right) .
$$

Also it can be seen that if $d>i$ then $\frac{d_{i}}{k_{i}-2} \geq \sqrt{d_{i}}$. Thus after simplification, we have for any $3 \leq i<d, r_{i}>\frac{k_{i}}{3} \cdot \log _{2} d_{i}$. This gives us an infinite family of $\Sigma \Pi \Sigma(k, d)$ identities over \mathbb{F}_{2} with rank $\Omega(k \log d)$. A similar family can be obtained over \mathbb{F}_{3} as well.

3 Rank Bound

Our technique to bound the rank of $\Sigma \Pi \Sigma$ identities relies mainly on two notions - formideals and matchings by them - that occur naturally in studying a $\Sigma \Pi \Sigma$ circuit C. Using these tools we can do a surgery on the circuit C and extract out smaller circuits and smaller identities. Before explaining our basic idea we need to develop a small theory of matchings and define gcd and simple parts of a subcircuit in that framework.

We set down some preliminary definitions before giving an imprecise, yet intuitive explanation of our idea and an overall picture of how we bound the rank.

3.1 Preliminaries

We will denote the set $\{1, \ldots, n\}$ by $[n]$.

In this paper we will study identities over a field \mathbb{F}. So the circuits compute multivariate polynomials in the polynomial ring $R:=\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$. We will be studying $\Sigma \Pi \Sigma(k, d)$ circuits : such a circuit C is an expression in R given by a depth- 3 circuit, with the top gate being an addition gate, the second level having multiplication gates, the last level having addition gates, and the leaves being variables. The edges of the circuit have elements of \mathbb{F} (constants) associated with them (signifying multiplication by a constant). The top fanin is k and d is the degree of the polynomial computed by C. We will call C a $\Sigma \Pi \Sigma$-identity, if C is an identically zero $\Sigma \Pi \Sigma$-circuit.

A linear form is a linear polynomial in R. We will denote the set of all linear forms by $L(R)$:

$$
L(R):=\left\{\sum_{i=1}^{n} a_{i} x_{i} \mid a_{1}, \ldots, a_{n} \in \mathbb{F}\right\}
$$

Much of what we do shall deal with sets of linear forms, and various maps between them. A list L of linear forms is a multi-set of forms with an arbitrary order associated with them. The actual ordering is unimportant : we merely have it to distinguish between repeated forms in the list. One of the fundamental constructs we use are maps between lists, which could have many copies of the same form. The ordering allows us to define these maps unambiguously. All lists we consider will be finite.

Definition 7. [Multiplication term] A multiplication term f is an expression in R given as (the product may have repeated ℓ 's):

$$
f:=c \cdot \prod_{\ell \in S} \ell, \quad \text { where } c \in \mathbb{F}^{*} \text { and } S \text { is a list of linear forms. }
$$

The list of linear forms in $f, L(f)$, is just the list S of forms occurring in the product above. $\# L(f)$ is naturally called the degree of the multiplication term. For a list S of linear forms we define the multiplication term of $S, M(S)$, as $\prod_{\ell \in S} \ell$ or 1 if $S=\phi$.

Definition 8. [Forms in a Circuit] We will represent a $\Sigma \Pi \Sigma(k, d)$ circuit C as a sum of k multiplication terms of degree $d, C=\sum_{i=1}^{k} T_{i}$. The list of linear forms occurring in C is $L(C):=\bigcup_{i \in[k]} L\left(T_{i}\right)$. Note that $L(C)$ is a list of size exactly $k d$. The rank of C, $\operatorname{rank}(C)$, is just the number of linearly independent linear forms in $L(C)$.

3.2 Intuition

We set the scene, for proving the rank bound of a $\Sigma \Pi \Sigma(k, d)$ identity, by giving a combinatorial/graphical picture to keep in mind. Our circuits consist of k multiplication terms, and each term is a product of d linear forms. Think of there being k groups of d nodes, so each node corresponds to a form and each group represents a term ${ }^{4}$. We will incrementally construct a small basis for all these forms. This process will be described as some kind of a coloring procedure.

At any intermediate stage, we have a partial basis of forms. These are all linearly independent, and the corresponding nodes (we will use node and form interchangeably) are colored red. Forms not in the basis that are linear combinations of the basis forms (and are therefore in the span of the basis) are colored green. Once all the forms are

[^3]colored, either green or red, all the red forms form a basis of all forms. The number of red forms is the rank of the circuit. When we have a partial basis, we carefully choose some uncolored forms and color them red (add them to the basis). As a result, some other forms get "automatically" colored green (they get added to the span). We "pay" only for the red forms, and we would like to get many green forms for "free". Note that we are trying to prove that the rank is $k^{O(1)} \log d$, when the total number of forms is $k d$. Roughly speaking, for every $k^{O(1)}$ forms we color red, we need to show that the number of green forms will double.

So far nothing ingenious has been done. Nonetheless, this image of coloring forms is very useful to get an intuitive and clear idea of how the proof works. The main challenge comes in choosing the right forms to color red. Once that is done, how do we keep an accurate count on the forms that get colored green? One of the main conceptual contributions of this work is the idea of matchings, which aid us in these tasks. Let us start from a trivial example. Suppose we have two terms that sum to zero, i.e. $T_{1}+T_{2}=0$. By unique factorization of polynomials, for every form $\ell \in T_{1}$, there is a unique form $m \in T_{2}$ such that $\ell=c m$, where $c \in \mathbb{F}^{*}$ (we will denote this by $\ell \sim m$). By associating the forms in T_{1} to those in T_{2}, we create a matching between the forms in these two groups (or terms). This rather simple observation is the starting point for the construction of matchings.

Let us now move to $k=3$, so we have a simple circuit $C \equiv T_{1}+T_{2}+T_{3}=0$. Therefore, there are no common factors in the terms. To get matchings, we will look at C modulo some forms in T_{3}. By looking at C modulo various forms in T_{3}, we reduce the fanin of C and get many matchings. Then we can deduce structural results about C. Similar ideas were used by Dvir and Shpilka [DS06] for their rank bound. Taking a form $q \in T_{3}$, we look at $C(\bmod q)$ which gives $T_{1}+T_{2}=0(\bmod q)$. By unique factorization of polynomials modulo q, we get a q-matching. Suppose (ℓ, m) is an edge in this matching. In terms of the coloring procedure, this means that if q is colored and ℓ gets colored, then m must also be colored. At some intermediate stage of the coloring, let us choose an uncolored form $q \in T_{3}$. A key structural lemma that we will prove is that in the q-matching (between T_{1} and T_{2}) any neighbor of a colored form must be uncolored. This crucially requires the simplicity of C. We will color q red, and thus all neighbors of the colored forms in $T_{1} \cup T_{2}$ will be colored green. By coloring q red, we can double the number of colored forms. It is the various matchings (combined with the above property) that allow us to show an exponential growth in the colored forms as forms in T_{3} are colored red. By continuing this process, we can color all forms by coloring at most $O(\log d)$ forms. Quite surprisingly, the above verbal argument can be formalized easily to prove that rank of a minimal, simple circuit with top fanin 3 is at most $\left(\log _{2} d+2\right)$. For this case of $k=3$, the logarithmic rank bound was there in a lemma of Dvir and Shpilka [DS06], though they did not present the proof idea in this form, in particular, their rank bound grew to $(\log d)^{2}$ for $k=4$.

The major difficulty arises when we try to push these arguments for higher values of k. In essence, the ideas are the same, but there are many technical and conceptual issues that arise. Let us go to $k=4$. The first attempt is to take a form $q \in T_{4}$ and look at $C(\bmod q)$ as a fanin 3 circuit. Can we now simply apply the above argument recursively, and cover all the forms in $T_{1} \cup T_{2} \cup T_{3}$? No, the possible lack of simplicity in $C(\bmod q)$ blocks this simple idea. It may be the case that T_{1}, T_{2} and T_{3} have no common factors, but once we go modulo q, there could be many common factors! (For example, let $q=x_{1}$.

Modulo q, the forms $x_{1}+x_{2}$ and x_{2} would be common factors.)
Instead of doing things recursively (both [DS06] and [KS07] used recursive arguments), we look at generating matchings iteratively. By performing a careful iterative analysis that keeps track of many relations between the linear forms we achieve a stronger bound for $k>3$. We start with a form $\ell_{1} \in T_{1}$, and look at $C\left(\bmod \ell_{1}\right)$. From $C\left(\bmod \ell_{1}\right)$, we remove all common factors. This common factor part we shall refer to as the $g c d$ of $C\left(\bmod \ell_{1}\right)$, the removal of which leaves the simple part of $C\left(\bmod \ell_{1}\right)$. Now, we choose an appropriate form ℓ_{2} from the simple part, and look at $C\left(\bmod \ell_{1}, \ell_{2}\right)$. We now choose an ℓ_{3} and so on and so forth. For each ℓ that we choose, we decrease the top fanin by at least 1 , so we will end up with a matching modulo the ideal ($\left.\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right)$, where $r \leq(k-2)$. We call these special ideals form ideals (as they are generated by forms), and the main structures that we find are matchings modulo form ideals. The coloring procedure will color the forms in the form ideal red. Of course, it's not as simple as the case of $k=3$, since, for one thing, we have to deal with the simple and gcd parts. Many other problems arise, but we will explain them as and when we see them. For now, it suffices to understand the overall picture and the concept of matchings among the linear forms in C.

We now start by setting some notation and giving some key definitions.

3.3 Ideal Matchings

We will use the concept of ideal matchings to develop tools to prove Theorem 2. In this subsection, we provide the necessary definitions and prove some basic facts about these matchings.

First, we discuss similarity between forms and form ideals.
Definition 9. We give several definitions :

- [Similar forms] For any two polynomials $f, g \in R$ we call f similar to g if there is a $c \in \mathbb{F}^{*}$ such that $f=c g$. We say f is similar to $g \bmod I$, for some ideal I of R, if there is a $c \in \mathbb{F}^{*}$ such that $f=c g(\bmod I)$. We also denote this by $f \sim g(\bmod I)$ or f is I-similar to g.
- [Similar lists] Let $S_{1}=\left(a_{1}, \ldots, a_{d}\right)$ and $S_{2}=\left(b_{1}, \ldots, b_{d}\right)$ be two lists of linear forms with a bijection π between them. S_{1} and S_{2} are called similar under π if for all $i \in[d]$, a_{i} is similar to $\pi\left(a_{i}\right)$. Any two lists of linear forms are called similar if there exists such a π. Empty lists of linear forms are similar vacuously. For any $\ell \in L(R)$ we define the list of forms in S_{1} similar to ℓ as the following list (unique upto ordering):

$$
\operatorname{simi}\left(\ell, S_{1}\right):=\left(a \in S_{1} \mid a \text { is similar to } \ell\right)
$$

We call S_{1}, S_{2} coprime lists if $\forall \ell \in S_{1}$, $\# \operatorname{simi}\left(\ell, S_{2}\right)=0$.

- [Form-ideal] A form-ideal I is the ideal (I) of R generated by some nonempty $I \subseteq L(R)$. Note that if $I=\{0\}$ then $a \equiv b(\bmod I)$ simply means that $a=b$ absolutely.
- [Span $\operatorname{sp}(S)]$ For any $S \subseteq L(R)$ we let $\operatorname{sp}(S) \subseteq L(R)$ be the linear span of the linear forms in S over the field \mathbb{F}.
- [Orthogonal sets of forms] Let S_{1}, \ldots, S_{m} be sets of linear forms for $m \geq 2$. We call S_{1}, \ldots, S_{m} orthogonal if for all $m^{\prime} \in[m-1]$:

$$
s p\left(\bigcup_{j \in\left[m^{\prime}\right]} S_{j}\right) \cap s p\left(S_{m^{\prime}+1}\right)=\{0\}
$$

Similarly, we can define orthogonality of form-ideals I_{1}, \ldots, I_{m}.
We give a few simple facts based on these definitions. It will be helpful to have these explicitly stated.

Fact 10. Let U, V be lists of linear forms and I be a form-ideal. If U, V are similar then their sublists $U^{\prime}:=(\ell \in U \mid \ell \in s p(I))$ and $V^{\prime}:=(\ell \in V \mid \ell \in s p(I))$ are also similar.

Proof. If U, V are similar then for some $c \in \mathbb{F}^{*}, M(V)=c M(U)$. This implies:

$$
M\left(V^{\prime}\right) \cdot M\left(V \backslash V^{\prime}\right)=c M\left(U^{\prime}\right) \cdot M\left(U \backslash U^{\prime}\right)
$$

Since elements of $U \backslash U^{\prime}$ are not in $s p(I)$, for any $\ell \in V^{\prime}, \ell$ does not divide $M\left(U \backslash U^{\prime}\right)$. In other words $M\left(V^{\prime}\right)$ divides $M\left(U^{\prime}\right)$, and vice versa. Thus, $M\left(U^{\prime}\right), M\left(V^{\prime}\right)$ are similar and hence by unique factorization in R, lists U^{\prime}, V^{\prime} are similar.

Fact 11. Let I_{1}, I_{2} be two orthogonal form-ideals of R and let D be a $\Sigma \Pi \Sigma(k, d)$ circuit such that $L(D)$ has all its linear forms in $s p\left(I_{1}\right)$. If $D \equiv 0\left(\bmod I_{2}\right)$ then $D=0$.

Proof. As I_{1}, I_{2} are orthogonal we can assume I_{1} to be $\left\{\ell_{1}, \ldots, \ell_{m}\right\}$ and I_{2} to be $\left\{\ell_{1}^{\prime}, \ldots, \ell_{m^{\prime}}^{\prime}\right\}$ where the ordered set $V:=\left\{\ell_{1}, \ldots, \ell_{m}, \ell_{1}^{\prime}, \ldots, \ell_{m^{\prime}}^{\prime}\right\}$ has $\left(m+m^{\prime}\right)$ linearly independent linear forms. Clearly, there exists an invertible linear transformation τ on $\operatorname{sp}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ that maps the elements of V bijectively, in that order, to $x_{1}, \ldots, x_{m+m^{\prime}}$. On applying τ to the equation $D \equiv 0\left(\bmod I_{2}\right)$ we get:

$$
\tau(D) \equiv 0\left(\bmod x_{m+1}, \ldots, x_{m+m^{\prime}}\right), \quad \text { where } \tau(D) \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]
$$

Obviously, this means that $\tau(D)=0$ which by the invertibility of τ implies $D=0$.
We now come to the most important definition of this section. We motivated the notion of ideal matchings in the intuition section. Thinking of two lists of linear forms as two sets of vertices, a matching between them signifies some linear relationship between the forms modulo a form-ideal.

Definition 12. [Ideal matchings] Let U, V be lists of linear forms and I be a form-ideal. An ideal matching π between U, V by I is a bijection π between lists U, V such that: for all $\ell \in U, \pi(\ell)=c \ell+v$ for some $c \in \mathbb{F}^{*}$ and $v \in \operatorname{sp}(I)$. The matching π is called trivial if U, V are similar.

Note that π being a bijection and c being nonzero together imply that π^{-1} can also be viewed as a matching between V, U by I. We will also use the terminology I-matching between U and V for the above. Similarly, an I-matching π between multiplication terms f, g is the one that matches $L(f), L(g)$. (For convenience, we will just say "matching" instead of "ideal matching".)

The following is an easy fact about matchings.

Fact 13. Let π be a matching between lists of linear forms U, V by I and let $U^{\prime} \subseteq U$, $V^{\prime} \subseteq V$ be similar sublists. Then there exists a matching π^{\prime} between U, V by I such that: U^{\prime}, V^{\prime} are similar under π^{\prime}.

Proof. Let $\ell^{\prime} \in U^{\prime}$ be such that $\pi\left(\ell^{\prime}\right)=d^{\prime} \ell^{\prime}+v^{\prime}$ (for some $d^{\prime} \in \mathbb{F}^{*}$ and $v^{\prime} \in \operatorname{sp}(I)$) is not in V^{\prime} or is not similar to ℓ^{\prime}. As V^{\prime} is similar to U^{\prime} there exists a form equal to $\alpha \ell^{\prime}$ in V^{\prime}, for some $\alpha \in \mathbb{F}^{*}$, and π being a matching must be mapping some $\ell \in U$ to $\alpha \ell^{\prime}$ in V^{\prime}. Also from the matching condition there must be some $d \in \mathbb{F}^{*}$ and $v \in \operatorname{sp}(I)$ such that $\pi(\ell)=$ $d \ell+v=\alpha \ell^{\prime}$.

Now we define a new matching $\widetilde{\pi}$ by flipping the images of ℓ and ℓ^{\prime} under π, i.e., define $\widetilde{\pi}$ to be the same as π on $U \backslash\left\{\ell, \ell^{\prime}\right\}$ and: $\widetilde{\pi}(\ell):=\pi\left(\ell^{\prime}\right)$ and $\widetilde{\pi}\left(\ell^{\prime}\right):=\pi(\ell)$. Note that $\widetilde{\pi}$ inherits the bijection property from π and it is an I-matching because: $\widetilde{\pi}\left(\ell^{\prime}\right)=\alpha \ell^{\prime}$ for $\alpha \in \mathbb{F}^{*}$ and more importantly,

$$
\widetilde{\pi}(\ell)=\pi\left(\ell^{\prime}\right)=d^{\prime} \ell^{\prime}+v^{\prime}=d^{\prime}\left(\frac{d \ell+v}{\alpha}\right)+v^{\prime}=\left(\frac{d d^{\prime}}{\alpha}\right) \ell+\left(\frac{d^{\prime} v}{\alpha}+v^{\prime}\right)
$$

The form $\left(\frac{d^{\prime} v}{\alpha}+v^{\prime}\right)$ is clearly in $\operatorname{sp}(I)$. Thus, we have obtained now a matching $\widetilde{\pi}$ between U, V by I such that the $\ell^{\prime} \in U^{\prime}$ is similar to $\widetilde{\pi}\left(\ell^{\prime}\right) \in V^{\prime}$.

Note that we increased the number of forms in U^{\prime} that are matched to similar forms in V^{\prime}. If we find another form in U^{\prime} that is not matched to a similar form in V^{\prime}, we can just repeat the above process. We will end up with the desired matching π^{\prime} in at most $\# U^{\prime}$ many iterations.

We are ready to present the most important lemma of this section. The following lemma shows that there cannot be too many matchings between two given nonsimilar lists of linear forms. It is at the heart of our rank bound proof and the reason for the logarithmic dependence of the rank on the degree. It can be considered as an algebraic generalization of the combinatorial result used by Dvir \& Shpilka (Corollary 2.9 of [DS06]).

Lemma 14. Let U, V be lists of linear forms each of size $d>0$ and I_{1}, \ldots, I_{r} be orthogonal form-ideals such that for all $i \in[r]$, there is a matching π_{i} between U, V by I_{i}. If $r>$ $\left(\log _{2} d+2\right)$ then U, V are similar lists.

Before giving the proof, let us first put it in the context of our overall approach. In the sketch that we gave for $k=3$, at each step, we were generating orthogonal matchings between two terms. For each orthogonal matchings we got, we colored one linear form red (added one form to our basis) and doubled the number of green forms (doubled the number of forms in the circuit that are in the span of the basis). This showed that there is a logarithmic-sized basis for all $L(C)$. If we take the contrapositive of this, we get that there cannot be too many orthogonal matchings between two (nonsimilar) lists of forms. For dealing with larger k, it will be convenient to state things in this way.

Proof. Let $U_{1} \subseteq U$ be a sublist such that: there exists a sublist $V_{1} \subseteq V$ similar to U_{1} for which $U^{\prime}:=U \backslash U_{1}$ and $V^{\prime}:=V \backslash V_{1}$ are coprime lists. Let U^{\prime}, V^{\prime} be of size d^{\prime}. If $d^{\prime}=0$ then U, V are indeed similar and we are done already. So assume that $d^{\prime}>0$. By the hypothesis and Fact 13 , for all $i \in[r]$, there exists a matching π_{i}^{\prime} between U, V by I_{i} such that: U_{1}, V_{1} are similar under π_{i}^{\prime} and π_{i}^{\prime} is a matching between U^{\prime}, V^{\prime} by I_{i}. Our subsequent argument will only consider the latter property of π_{i}^{\prime} for all $i \in[r]$.

Intuitively, it is best to think of the various $\pi_{i}^{\prime} \mathrm{s}$ as bipartite matchings. The graph $G=\left(U^{\prime}, V^{\prime}, E\right)$ has vertices labelled with the respective form. For each π_{i}^{\prime} and each $\ell \in U^{\prime}$, we add an (undirected) edge tagged with I_{i} between ℓ and $\pi_{i}^{\prime}(\ell)$. There may be many tagged edges between a pair of vertices ${ }^{5}$. We call $\pi_{i}^{\prime}(\ell)$ the I_{i}-neighbor of ℓ (and vice versa, since the edges are undirected). Abusing notation, we use vertex to refer to a form in $U^{\prime} \cup V^{\prime}$. We will denote $\bigcup_{j \leq i} I_{i}$ by J_{i}.

We will now show that there cannot be more than $\left(\log _{2} d+2\right)$ such perfect matchings in G. The proof is done by following an iterative process that has r phases, one for each I_{i}. This is essentially the coloring process that we described earlier. We maintain a partial basis for the forms in $U^{\prime} \cup V^{\prime}$ which will be updated iteratively. This basis is kept in the set B. Note that although we only want to span $U^{\prime} \cup V^{\prime}$, we will use forms in the various I_{i} 's for spanning.

We start with empty B and initialize by adding some $\ell \in U^{\prime}$ to B. In the i th round, we will add all forms in I_{i} to B. All forms of $U^{\prime} \cup V^{\prime}$ in $s p\left(\{\ell\} \cup J_{i}\right)$ are now spanned. We then proceed to the next round. To introduce some colorful terminology, a green vertex is one that is in the set $s p(B)$ (a form in $\left(U^{\prime} \cup V^{\prime}\right) \cap s p(B)$). Here is a nice fact : at the end of a round, the number of green vertices in U^{\prime} and V^{\prime} are the same. Why? All forms of I_{1} are in B, at the end of any round. Let vertex v be green, so $v \in \operatorname{sp}(B)$. The I_{1}-neighbor of v is a linear combination of v and I_{1}. Therefore, the neighbor is in $\operatorname{sp}(B)$ and is colored green. This shows that the number of green vertices in U is equal to the number of those in V.

Let $i_{0} \in[r]$ be the least index such that $\{\ell\}, I_{1}, \ldots, I_{i_{0}}$ are not orthogonal, if it does not exist then set $i_{0}:=r+1$. Now we have the following easy claim.

Claim 15. The sets $\{\ell\}, I_{1}, \ldots, I_{i_{0}-1}$ are orthogonal and the sets:

$$
\{\ell\} \cup J_{i_{0}}, I_{i_{0}+1}, \ldots, I_{r}
$$

are orthogonal.

Proof of Claim 15. The ideals $\{\ell\}, I_{1}, \ldots, I_{i_{0}-1}$ are orthogonal by the minimality of i_{0}.
As $I_{1}, \ldots, I_{i_{0}}$ are orthogonal but $\{\ell\}, I_{1}, \ldots, I_{i_{0}}$ are not orthogonal we deduce that $\{\ell\} \in \operatorname{sp}\left(J_{i_{0}}\right)$. Thus, $\{\ell\} \cup s p\left(J_{i_{0}}\right)=\operatorname{sp}\left(J_{i_{0}}\right)$ which is orthogonal to the sets $I_{i_{0}+1}, \ldots, I_{r}$ by the orthogonality of I_{1}, \ldots, I_{r}.

We now show that the green vertices double in at least $(r-2)$ many rounds.
Claim 16. For $i \notin\left\{1, i_{0}\right\}$, the number of green vertices doubles in the i th round.
Proof of Claim 16. Let ℓ^{\prime} be a green vertex, say in U^{\prime}, at the end of the $(i-1)$ th round $\left(B=\{\ell\} \cup J_{i-1}\right)$. Consider the I_{i}-neighbor of ℓ^{\prime}. This is in V^{\prime} and is equal to $\left(c \ell^{\prime}+v\right)$ where $c \in \mathbb{F}^{*}$ and v is a nonzero element in $\operatorname{sp}\left(I_{i}\right)$ (this is because U^{\prime}, V^{\prime} are coprime). If this neighbor is green, then v would be a linear combination of two green forms, implying $v \in \operatorname{sp}(B)$. But by Claim 15, I_{i} is orthogonal to B, implying $v \in \operatorname{sp}(B) \cap s p\left(I_{i}\right)=\{0\}$ which is a contradiction. Therefore, the I_{i}-neighbor of any green vertex is not green. On adding I_{i} to B, all these neighbors will become green. This completes the proof.

[^4]We started off with one green vertex ℓ, and U^{\prime}, V^{\prime} each of size d^{\prime}. This doubling can happen at most $\log _{2} d^{\prime}$ times, implying that $(r-2) \leq \log _{2} d^{\prime}$.

Remark 17. The bound of $r=\log _{2} d+2$ is achievable by lists of linear forms inspired by Section 2. Fix an odd s and define:

$$
\begin{aligned}
U & :=\left\{\left(b_{1} x_{1}+\cdots+b_{s-1} x_{s-1}+x_{s}\right) \mid b_{1}, \ldots, b_{s-1} \in\{0,1\} \text { s.t. } b_{1}+\cdots+b_{s-1} \text { is even }\right\} \\
V & :=\left\{\left(b_{1} x_{1}+\cdots+b_{s-1} x_{s-1}+x_{s}\right) \mid b_{1}, \ldots, b_{s-1} \in\{0,1\} \text { s.t. } b_{1}+\cdots+b_{s-1} \text { is odd }\right\}
\end{aligned}
$$

It is easy to see that over rationals, $\# U=\# V=2^{s-2}$ and for all $i \in[s-1]$, there is a matching between U, V by $\left(x_{i}\right)$, furthermore, there is a matching by $\left(x_{1}+\cdots+x_{s-1}+2 x_{s}\right)$. Thus there are $\left(\log _{2}|U|+2\right)$ many orthogonal matchings between these nonsimilar U, V; showing that our Lemma is tight.

3.4 Ordered Matchings and Simple Parts of Circuits

Before we delve into the definitions and proofs, let us motivate them by an intuitive explanation.

3.4.1 Intuition

Our main goal is to deal with the case $k>3$. The overall picture is still the same. We keep updating a partial basis S for $L(C)$. This process goes through various rounds, each round consisting of iterations. At the end of each round, we obtain a form-ideal I that is orthogonal to S. In the first iteration of a round, we start by choosing a form ℓ_{1} in $L\left(T_{1}\right)$ that is not in $s p(S)$, and adding it to I. We look at $C\left(\bmod \ell_{1}\right)$ in the next iteration, which is obviously an identity, and try to repeat this step. The top fan-in has gone down by at least one, or in other words, some multiplication terms have become identically zero $\left(\bmod \ell_{1}\right)$. We will say that the other terms have survived. The major obstacle to proceeding is that our circuit is not simple any more, because there can be common factors among multiplication terms modulo ℓ_{1}. Note how this seems to be a difficulty, since it appears that our matchings will not give us a proper handle on these common factors. Suppose that form v is now a common factor. That means, in every surviving term, there is a form that is v modulo ℓ_{1}. So these forms can be ℓ_{1}-matched to each other! We have converted the obstacle into some kind of a partial matching, which we can hopefully exploit.

Let us go back to $C\left(\bmod \ell_{1}\right)$. Let us remove all common factors from this circuit. This stripped down identity circuit is the simple part, denoted by $\operatorname{sim}\left(C \bmod \ell_{1}\right)$. The removed portion, called the $g c d$ part, is referred to as $\operatorname{gcd}\left(C \bmod \ell_{1}\right)$. By the above observation, the $g c d$ part has ℓ_{1}-matchings. A key observation is that all the forms in the $g c d$ part are not similar to ℓ_{1}. This is because we were only looking at nonzero terms in $C\left(\bmod \ell_{1}\right)$. Having (somewhat) dealt with $\operatorname{gcd}\left(C \bmod \ell_{1}\right)$ by finding I-matchings, let us focus on the smaller circuit $\operatorname{sim}\left(C \bmod \ell_{1}\right)$

We try to find an $\ell_{2} \in L\left(\operatorname{sim}\left(C \bmod \ell_{1}\right)\right)$ that is not in $\operatorname{sp}\left(S \cup\left\{\ell_{1}\right\}\right)$. Suppose we can find such an ℓ_{2}. Then, we add ℓ_{2} to I and proceed to the next iteration. In a given iteration, we start with a form-ideal I, and a circuit $\operatorname{sim}(C \bmod I)$. We find a form
$\ell \in L(\operatorname{sim}(C \bmod I)) \backslash \operatorname{sp}(S \cup I)$. We add ℓ to $I\left(\right.$ for convenience, let us set $\left.I^{\prime}=I \cup\{\ell\}\right)$ and look at the $C\left(\bmod I^{\prime}\right)$. We now have new terms in the $g c d$ part, which we can match through I^{\prime}-matchings. As we observed earlier, all the terms that have forms in I^{\prime} are removed, so the terms we match here are all nonzero modulo I^{\prime}. We remove the $g c d$ part to get $\operatorname{sim}\left(C \bmod I^{\prime}\right)$, and go to the next iteration with I^{\prime} as the new I. When does this stop? If there is no ℓ in $L(\operatorname{sim}(C \bmod I)) \backslash s p(S \cup I)$, then this means that all of $L(\operatorname{sim}(C \bmod I))$ is in our current span. So we happily stop here with all the matchings obtained from the $g c d$ parts. Also, if the fan-in reaches 2 , then we can imagine that the whole circuit is itself in the $g c d$ portion. At each iteration, the fan-in goes down by at least one, so we can have at most $(k-2)$ iterations in a round, hence the I in any round is generated by at most $(k-2)$ forms. When we finish a round obtaining an ideal I, there are some multiplication terms in C that are nonzero modulo I after the $g c d$ parts in the various iterations are removed from these terms. These we shall refer to as constituting the blocking subset of $[k]$, for that round.

The way we prove rank bounds is by invoking Lemma 14. Each round constructs a new orthogonal form ideal. At the end of a round, we have a set S, which is a partial basis. If S does not cover all of $L(C)$, then we use the above process (of iterations) to generate a form-ideal I orthogonal to S. Consider two terms T_{a} and T_{b} that survive this process $(\bmod I)$. At each stage, when we add a form to I, we remove forms from T_{a} and T_{b}, I-matching them. When we stop with our form-ideal I, we can think of T_{a} and T_{b} as split into two parts : one having forms from $\operatorname{sp}(S \cup I)$, and the other which is I-matched. For each orthogonal form-ideal we generate, we match subsets of terms. We use Lemma 14 to tell us that we cannot have too many such form-ideals, which leads to the rank bound.

3.4.2 Definitions

We start with looking at the particular kind of matchings that we get. Take two terms T_{a} and T_{b} that survive a round, where we find the form-ideal I generated by $\left\{\ell_{1}, \ell_{2}, \cdots, \ell_{r}\right\}$. At the end of the first iteration, we add ℓ_{1} to I. No form in $L\left(T_{a}\right) \cup L\left(T_{b}\right)$ can be $0\left(\bmod \ell_{1}\right)$. We match some forms in T_{a} to T_{b} via ℓ_{1}-matchings. They are removed, and then we proceed to the next iteration. We now match some forms via $\operatorname{sp}\left(\left\{\ell_{1}, \ell_{2}\right\}\right)$ matchings and none of these forms are in this span. So in each iteration, the forms that are matched (and then removed) are non-zero mod the partial I obtained by that iteration. We formalize this as an ordered matching.
Definition 18. [Ordered matching] Let U, V be lists of linear forms and an ordered set $I=\left\{v_{1}, \ldots, v_{i}\right\}$ be a form-ideal having $i \geq 1$ linearly independent linear forms. A matching π between U, V by I is called an ordered I-matching if :

Let v_{0} be zero. For all $\ell \in U, \pi(\ell)=(c \ell+w)$ where $c \in \mathbb{F}^{*}$, and $w \in \operatorname{sp}\left(v_{0}, \ldots, v_{j}\right)$ for some j satisfying $\ell \notin s p\left(v_{0}, \ldots, v_{j}\right)$.

We add the zero element v_{0}, just to deal with similar forms in U and V. Note that the inverse bijection π^{-1} is also an ordered matching between V, U by I. It is also easy to see that if π_{1} and π_{2} are ordered matchings between lists U_{1}, V_{1} and lists U_{2}, V_{2} respectively by the same ordered form-ideal I then their disjoint union, $\pi_{1} \sqcup \pi_{2}$, is an ordered matching between lists $U_{1} \cup U_{2}, V_{1} \cup V_{2}$ by I.

We will stick to the notation in Definition 18. For convenience, let $s p_{j}:=s p\left(v_{0}, \cdots, v_{j}\right)$. Let $\pi(\ell)=d \ell+w$, where $w \in s p_{j}$ but $\ell \notin s p_{j}$ then the constant d is unique. If there were
two such different constants, say d and d^{\prime}, then both $(\pi(\ell)-d \ell)$ and $\left(\pi(\ell)-d^{\prime} \ell\right)$ would be in $s p_{j}$ implying that $\left(d-d^{\prime}\right) \ell \in s p_{j}$. That contradicts $\ell \notin s p_{j}$. Thus for a fixed ℓ and an ordered matching π, d is uniquely determined. Keeping the notation above, we can well define :

Definition 19. [Scaling factor] The scaling factor of an ordered matching π between U and V is denoted by $s c(\pi)$. For each $\ell \in U$, let d_{ℓ} be the unique constant such that $\pi(\ell)=d_{\ell} \ell+w$, where $w \in s p_{j}$ but $\ell \notin s p_{j}$. Then $s c(\pi):=\prod_{\ell \in U} d_{\ell}$. For empty U, sc (π) is set to be 1 .

Definition 20. [Subcircuits and regular circuits] For non-empty $Q \subseteq[k]$, the subcircuit C_{Q} of a $\Sigma \Pi \Sigma(k, d)$ circuit C is the sum $\sum_{j \in Q} T_{j}$. For a form-ideal I we call C_{Q} regular $\bmod I$ if $\forall q \in Q, T_{q} \not \equiv 0(\bmod I)$. We will denote the constant factor in the multiplication term T_{q} by $\alpha_{q} \in \mathbb{F}^{*}$, thus $T_{q}=\alpha_{q} M\left(L\left(T_{q}\right)\right)$.

We are now ready to define the $g c d$ and sim parts of a subcircuit. Although the ideas are quite simple and intuitive, we have to be careful in dealing with constant factors. Much of this notation has been introduced for rigorous definitions. Take a subcircuit C_{Q} that is regular $\bmod I$ as well as an identity $\bmod I$. A maximal list of forms, say U, that divides T_{q}, for all $q \in Q$, is called the $g c d$ of $C_{Q}(\bmod I)$. In every T_{q}, there is a list U_{q} of forms that are I-similar to U. Therefore, we have I-matchings between U and U_{q}. This is the gcd data of C_{Q} modulo I, and represents that various matchings that we will later exploit. If we remove U_{q} from each T_{q}, then (by accounting for constants carefully) we get a simple $(\bmod I)$ identity, the sim part of $C_{Q}(\bmod I)$. We formalize this below.

Let C_{Q} be regular modulo I. Fix a q_{1} in Q. Let U be a maximal sublist of $L\left(T_{q_{1}}\right)$ such that $M(U)$ divides T_{q} modulo I for all $q \in Q$. Since R / I is isomorphic to a polynomial ring, the nonconstant polynomials in R / I satisfy unique factorization property, i.e. any polynomial in R that is nonconstant modulo I uniquely factors modulo the ideal (I) into polynomials irreducible modulo I. Since C_{Q} is regular modulo I and $U \subseteq L\left(T_{q_{1}}\right)$ is a maximal list such that $\forall q \in Q, M(U) \mid T_{q}(\bmod I)$:

- $M(U)$ is a gcd of the polynomials $\left\{T_{q} \mid q \in Q\right\}$ modulo the ideal (I).
- For all $q \in Q$, there exists a sublist $U_{q} \subseteq L\left(T_{q}\right)$ and a $c_{q} \in \mathbb{F}^{*}$ such that $M\left(U_{q}\right) \equiv$ $c_{q} \cdot M(U)(\bmod I)$. By unique factorization in R / I and regularity of $C_{Q} \bmod I$ this gives an ordered matching π_{q} between U, U_{q} by I. Also, by the definition of scaling factor of a matching, π_{q} satisfies: $\forall q \in Q, M\left(U_{q}\right) \equiv s c\left(\pi_{q}\right) \cdot M(U)(\bmod I)$.

Note that given C_{Q} and I there are many possibilities to choose the lists U and $\left\{U_{q} \mid q \in Q\right\}$ but they are all uniquely determined upto similarity modulo the ideal (I) and that will be good enough for our purposes. So we choose them in some way, say the lexicographically smallest one unless specified otherwise, and define the gcd data. Using the gcd data of $C_{Q} \bmod I$ we can extract out a smaller circuit from C_{Q} which we call the simple part.

Definition 21. [gcd and sim parts] The gcd data of C_{Q} modulo I is the following set of $\# Q$ matchings:

$$
\begin{equation*}
\overline{\operatorname{gcd}\left(C_{Q} \bmod I\right):=\left\{\left(\pi_{q}, U, U_{q}\right) \mid q \in Q\right\}, ~} \tag{1}
\end{equation*}
$$

The gcd of $C_{Q}(\bmod I)$ is just $\operatorname{gcd}\left(C_{Q} \bmod I\right):=M(U)$. The simple part of $C_{Q} \bmod I$ is the circuit:

$$
\operatorname{sim}\left(C_{Q} \bmod I\right):=\sum_{q \in Q} s c\left(\pi_{q}\right) \alpha_{q} \cdot M\left(L\left(T_{q}\right) \backslash U_{q}\right)
$$

Before a round, we have a partial basis S. At the end of a round, we produce a form-ideal I that is orthogonal to S. We call this a useful ideal. Let $Q \subset[k]$ be such that all $T_{q}, q \in Q$ survive $(\bmod I)$. This is called the blocking subset. For each such q, there are a list of forms $V_{q} \subset L\left(T_{q}\right)$ that are mutually matched via ordered I-matchings (these are really a collection of $g c d$ datas). This is called the matching data. Even after we remove V_{q} from each term T_{q} (carefully accounting for constants, as explained above), we still have an identity $\bmod I$. All forms of this identity are in $s p(S \cup I) \backslash s p(I)$, since we assume that the round has ended. Furthermore by rearranging linear forms, all V_{q} 's can be made disjoint to $s p(S \cup I) \backslash s p(I)$. Therefore this round partitions the $L\left(T_{q}\right)$ into V_{q} and $L\left(T_{q}\right) \cap(s p(S \cup I) \backslash s p(I))$ (for all $q \in Q$). These end-of-a-round properties are formalized by the following definition.

Definition 22. [Useful ideals, blocking subsets, and matching data] Let $C=$ $\sum_{j \leq k} T_{j}, T_{j}=\alpha_{j} M\left(L\left(T_{j}\right)\right)$. The set $S \subseteq L(R)$ and I is an ordered form-ideal orthogonal to S. We call I useful in C wrt S if $\exists Q \subset[k], 1<\# Q<k$ with the following properties :

For all $q \in Q$, let V_{q} be $L\left(T_{q}\right) \backslash(s p(S \cup I) \backslash s p(I))$. (Therefore, $L\left(T_{q}\right) \backslash V_{q} \subset s p(S \cup I) \backslash$ $s p(I)$.)

- There exists a list of linear forms V such that for all $q \in Q$, there is an ordered I-matching τ_{q} between V, V_{q}.
- The circuit $\sum_{q \in Q} s c\left(\tau_{q}\right) \alpha_{q} \cdot M\left(L\left(T_{q}\right) \backslash V_{q}\right)$ is a regular identity modulo I.

Such a Q we call a blocking subset of C, S, I. By matching data of C, S, I, Q we will mean the set:

$$
\operatorname{mdata}(C, S, I, Q):=\left\{\left(\tau_{q}, V, V_{q}\right) \mid q \in Q\right\}
$$

We will call mdata (C, S, I, Q) trivial if the lists $V_{q}, q \in Q$, are all mutually similar.
From the matching data, we will exploit the fact that for each pair $q_{1}, q_{2} \in Q$, there is an ordered I-matching between $V_{q_{1}}$ and $V_{q_{2}}$. Nonetheless, we will represent these $\# Q$ matchings via V because it will be more convenient to deal with the intermediate $g c d$ parts while we are building I.

3.4.3 Basic facts

In this subsection, we prove some basic facts about ordered matchings, scaling factors and $g c d$ and sim parts of a circuit. These facts are not difficult to prove, but it will be helpful later to have them.

The following two properties are immediate from the definition of scaling factor.
Fact 23. Let π_{1} and π_{2} be ordered I-matchings between lists U_{1}, V_{1} and lists U_{2}, V_{2} respectively. Then $s c\left(\pi_{1}^{-1}\right)=s c\left(\pi_{1}\right)^{-1}$ and $s c\left(\pi_{1} \sqcup \pi_{2}\right)=s c\left(\pi_{1}\right) \cdot s c\left(\pi_{2}\right)$.

Thus, ordered matchings have inverses, have a union and the following fact shows that they can also be composed.

Fact 24. Let π_{1} and π_{2} be ordered matchings between U_{1}, V and V, U_{2} respectively by the same ordered form-ideal $I=\left\{v_{1}, \ldots, v_{i}\right\}$. Then the naturally defined composite matching $\pi_{2} \pi_{1}$ is also an ordered matching between U_{1}, U_{2} by I. Furthermore, $s c\left(\pi_{2} \pi_{1}\right)=s c\left(\pi_{1}\right)$. $s c\left(\pi_{2}\right)$.

Proof. Consider a linear form $\ell \in U_{1}$. There exists $c_{1} \in \mathbb{F}^{*}$ and $\alpha_{1} \in s p_{j_{1}}, \ell \notin s p_{j_{1}}$ such that $\pi_{1}(\ell)=c_{1} \ell+\alpha_{1}$. Also, there exists $c_{2} \in \mathbb{F}^{*}$ and $\alpha_{2} \in s p_{j_{2}}, \pi_{1}(\ell) \notin s p_{j_{2}}$ such that $\pi_{2}\left(\pi_{1}(\ell)\right)=c_{2}\left(c_{1} \ell+\alpha_{1}\right)+\alpha_{2}$. Let $j=\max \left\{j_{1}, j_{2}\right\}$. Obviously, $\left(c_{2} \alpha_{1}+\alpha_{2}\right) \in s p_{j}$. If $\ell \in s p_{j}$ then as $\ell \notin s p_{j_{1}}$ we deduce that $j=j_{2}>j_{1}$, thus $\ell \in s p_{j_{2}}$, implying $\pi_{1}(\ell)=c_{1} \ell+\alpha_{1} \in s p_{j_{2}}$, which is a contradiction. Therefore, $\ell \notin s p_{j}$. This proves that the composite bijection $\pi_{2} \pi_{1}$ is an ordered matching.

The contribution from the image of $\ell \in U_{1}$ to $s c\left(\pi_{2} \pi_{1}\right)$ is $c_{1} c_{2}$ while the corresponding contributions of $\ell \in U_{1}$ to $s c\left(\pi_{1}\right)$ is c_{1} and of $\pi_{1}(\ell) \in V$ to $s c\left(\pi_{2}\right)$ was c_{2}. Thus, $s c\left(\pi_{2} \pi_{1}\right)=$ $s c\left(\pi_{1}\right) \cdot s c\left(\pi_{2}\right)$.

The scaling factor nicely characterizes the ratio of $M(U)$ and $M(V)$ when U, V are similar.

Fact 25. Let π be an ordered matching between lists U, V of linear forms, by an ordered form-ideal $I=\left\{v_{1}, \ldots, v_{i}\right\}$. If π is trivial then $M(V)=s c(\pi) \cdot M(U)$. Thus all the ordered matchings, between a given pair of similar lists, have the same scaling factor.

Proof. The proof idea is identical to the one seen in Fact 13.
Let $\ell \in U$ be such that $\pi(\ell)=d \ell+v$ is not similar to ℓ, where $d \in \mathbb{F}^{*}, v \in s p_{j}$ and $\ell \notin s p_{j}$. Since V is similar to U there exists a form equal to $c \ell$ in V, for some $c \in \mathbb{F}^{*}$. As π is an ordered matching, it must be mapping some $\ell^{\prime} \in U$ to $c \ell$ in V, satisfying: $\pi\left(\ell^{\prime}\right)=$ $d^{\prime} \ell^{\prime}+v^{\prime}=c \ell$, where $d^{\prime} \in \mathbb{F}^{*}, v^{\prime} \in s p_{j^{\prime}}$, and $\ell^{\prime} \notin s p_{j^{\prime}}$.

Now we define a new matching $\widetilde{\pi}$ by flipping the images of ℓ and ℓ^{\prime} under π, i.e., define $\widetilde{\pi}$ to be the same as π on $U \backslash\left\{\ell, \ell^{\prime}\right\}$ and: $\widetilde{\pi}(\ell):=\pi\left(\ell^{\prime}\right)$ and $\widetilde{\pi}\left(\ell^{\prime}\right):=\pi(\ell)$. The matching $\widetilde{\pi}$ is an ordered matching because: $\widetilde{\pi}(\ell)=c \ell$ for $c \in \mathbb{F}^{*}$ and more importantly $\widetilde{\pi}\left(\ell^{\prime}\right)=d \ell+v=$ $d\left(\frac{d^{\prime} \ell^{\prime}+v^{\prime}}{c}\right)+v=\left(\frac{d d^{\prime}}{c}\right) \ell^{\prime}+\left(\frac{d v^{\prime}}{c}+v\right)$. Let $j^{*}:=\max \left\{j, j^{\prime}\right\}$. Obviously, $\left(\frac{d v^{\prime}}{c}+v\right) \in s p_{j^{*}}$. If $j^{*}=j^{\prime}$, we are done, because we already know that $\ell^{\prime} \notin s p_{j^{\prime}}$. If $j^{*}=j$ and $\ell^{\prime} \in s p_{j}$, then $c \ell=d^{\prime} \ell^{\prime}+v^{\prime}$ is in $s p_{j}$ (contradiction).

We have obtained now an ordered matching $\widetilde{\pi}$ between U, V by I where the number of forms mapped to a similar form has strictly increased. Observe that $s c(\pi)$ had a unique contribution of d, d^{\prime} from the images of ℓ, ℓ^{\prime} respectively while $s c(\widetilde{\pi})$ has a corresponding contribution of $c,\left(\frac{d d^{\prime}}{c}\right)$. On all the other elements of $U, \widetilde{\pi}$ is the same as π. Thus, we have that $s c(\widetilde{\pi})=s c(\pi)$.

The above process will yield an ordered matching π^{\prime} in at most \#U many iterations, such that U, V are similar under π^{\prime} and $s c\left(\pi^{\prime}\right)=s c(\pi)$. But this means that, for all $\ell \in U$, $\pi^{\prime}(\ell)=\lambda \ell$, for some $\lambda \in \mathbb{F}^{*}$. By definition the contribution by ℓ to $s c\left(\pi^{\prime}\right)$ would be then λ. This clearly implies that $M(V)=s c\left(\pi^{\prime}\right) \cdot M(U)$ and finally $M(V)=s c(\pi) \cdot M(U)$.

We move on to facts about the $g c d$ and sim parts of a circuit.
Fact 26. If C_{Q} is a regular mod I subcircuit of C then:

$$
C_{Q} \equiv \operatorname{gcd}\left(C_{Q} \bmod I\right) \cdot \operatorname{sim}\left(C_{Q} \bmod I\right)(\bmod I)
$$

Additionally, if C_{Q} is an identity modulo I then $\operatorname{sim}\left(C_{Q} \bmod I\right)$ is a simple identity modulo I.

Proof. Recall that $C_{Q}=\sum_{q \in Q} T_{q}$ and the $g c d$ data $\overline{g c d}\left(C_{Q} \bmod I\right)$ is $\left\{\left(\pi_{q}, U, U_{q}\right) \mid q \in Q\right\}$. Now $T_{q}=\alpha_{q} M\left(U_{q}\right) \cdot M\left(L\left(T_{q}\right) \backslash U_{q}\right)$ and $M\left(U_{q}\right) \equiv s c\left(\pi_{q}\right) \cdot M(U)(\bmod I)$, where $M(U)$ is $\operatorname{gcd}\left(C_{Q} \bmod I\right)$. Thus,

$$
\begin{aligned}
C_{Q} & \equiv \sum_{q \in Q} \alpha_{q} s c\left(\pi_{q}\right) M(U) \cdot M\left(L\left(T_{q}\right) \backslash U_{q}\right)(\bmod I) \\
& \equiv g c d\left(C_{Q} \bmod I\right) \cdot \operatorname{sim}\left(C_{Q} \bmod I\right)(\bmod I)
\end{aligned}
$$

This proves the first part. Assume now that $C_{Q} \equiv 0(\bmod I)$ which means $\operatorname{sim}\left(C_{Q} \bmod I\right) \equiv$ $0(\bmod I)$. If it is not a simple identity $\bmod I$, then there is an $\ell^{\prime} \in L\left(\operatorname{sim}\left(C_{Q} \bmod I\right)\right)$ such that, $\forall q \in Q, \ell^{\prime} \mid M\left(L\left(T_{q}\right) \backslash U_{q}\right) \bmod I$. Then, $M(U)$ cannot be the gcd of the polynomials $\left\{T_{q} \mid q \in Q\right\}$ modulo the ideal (I) (contradiction).

When $I=\{0\}$ we write $\overline{\operatorname{gcd}}\left(C_{Q}\right), \operatorname{gcd}\left(C_{Q}\right)$ and $\operatorname{sim}\left(C_{Q}\right)$ instead of $\overline{g c d}\left(C_{Q} \bmod I\right)$, $\operatorname{gcd}\left(C_{Q} \bmod I\right)$ and $\operatorname{sim}\left(C_{Q} \bmod I\right)$ respectively. We collect here some properties of $\operatorname{sim}\left(C_{Q}\right)$ that would be directly useful in our rank bound proof.

Fact 27. Let $\ell \in L(R)^{*}$ and C_{Q} be a subcircuit of C. Then $\# \operatorname{simi}\left(\ell, L\left(\operatorname{sim}\left(C_{Q}\right)\right)\right)>0$ iff $\exists q_{1}, q_{2} \in Q$ such that $\# \operatorname{simi}\left(\ell, L\left(T_{q_{1}}\right)\right) \neq \# \operatorname{simi}\left(\ell, L\left(T_{q_{2}}\right)\right)$.

Proof. Note that $\# \operatorname{simi}\left(\ell, L\left(T_{q}\right)\right)$ is the highest power of ℓ that divides T_{q}. Thus, if $\# \operatorname{simi}\left(\ell, L\left(T_{q}\right)\right)$ is the same, say r, for all $q \in Q$ then the highest power of ℓ dividing $\operatorname{gcd}\left(C_{Q}\right)$ is also r implying that for all $q \in Q$, the polynomial $\frac{T_{q}}{\operatorname{gcd}\left(C_{Q}\right)}$ is coprime to ℓ. By definition of the simple part of C_{Q} this means that $\# \operatorname{simi}\left(\ell, L\left(\operatorname{sim}\left(C_{Q}\right)\right)\right)=0$.

Conversely, if for an $\ell \in L(R)^{*}, \exists q_{1}, q_{2} \in Q$ such that $\# \operatorname{simi}\left(\ell, L\left(T_{q_{1}}\right)\right)>\# \operatorname{simi}(\ell$, $\left.L\left(T_{q_{2}}\right)\right)$ then it is easy to see that $\frac{T_{q_{1}}}{\operatorname{gcd}\left(C_{Q}\right)}$ cannot be coprime to ℓ. This implies that $\# \operatorname{simi}\left(\ell, L\left(\operatorname{sim}\left(C_{Q}\right)\right)\right)>0$.

Fact 28. Let $S \subseteq L(R)$ and $Q_{2} \subseteq Q_{1} \subseteq[k]$. If $L\left(\operatorname{sim}\left(C_{Q_{1}}\right)\right)$ has all its linear forms in $s p(S)$, then all the linear forms in $L\left(\operatorname{sim}\left(C_{Q_{2}}\right)\right)$ are also in $s p(S)$.
Proof. For an arbitrary $\ell \in L\left(\operatorname{sim}\left(C_{Q_{2}}\right)\right)$, by Fact 27, there are $q_{1}, q_{2} \in Q_{2}$ such that $\# \operatorname{simi}\left(\ell, L\left(T_{q_{1}}\right)\right) \neq \# \operatorname{simi}\left(\ell, L\left(T_{q_{2}}\right)\right)$. As $q_{1}, q_{2} \in Q_{1}$, we can again apply Fact 27 to deduce that $\# \operatorname{simi}\left(\ell, L\left(\operatorname{sim}\left(C_{Q_{1}}\right)\right)\right)>0$. Therefore $\ell \in \operatorname{sp}(S)$.

Fact 29. Let $S \subseteq L(R)$ and $Q_{1}, Q_{2} \subseteq[k]$ such that $Q_{1} \cap Q_{2} \neq \phi$. If $L\left(\operatorname{sim}\left(C_{Q_{1}}\right)\right)$ and $L\left(\operatorname{sim}\left(C_{Q_{2}}\right)\right)$ have all their linear forms in $\operatorname{sp}(S)$ then all the linear forms in $L\left(\operatorname{sim}\left(C_{Q_{1} \cup Q_{2}}\right)\right)$ are also in $\operatorname{sp}(S)$.

Proof. Take $q_{0} \in Q_{1} \cap Q_{2}$ and an arbitrary $\ell \in L\left(\operatorname{sim}\left(C_{Q_{1} \cup Q_{2}}\right)\right)$. By Fact 27 , there are $q_{1}, q_{2} \in Q_{1} \cup Q_{2}$ such that $\# \operatorname{simi}\left(\ell, L\left(T_{q_{1}}\right)\right) \neq \# \operatorname{simi}\left(\ell, L\left(T_{q_{2}}\right)\right)$.

If q_{1}, q_{2} are in the same set (wlog, in Q_{1}), then Fact 27 tells us that $\#$ simi $(\ell$, $\left.L\left(\operatorname{sim}\left(C_{Q_{1}}\right)\right)\right)>0$, trivially implying that $\ell \in \operatorname{sp}(S)$. Now assume wlog that $q_{1} \in Q_{1}, q_{2} \in$ Q_{2}. For some $i \in\{1,2\}$, $\# \operatorname{simi}\left(\ell, L\left(T_{q_{0}}\right)\right) \neq \# \operatorname{simi}\left(\ell, L\left(T_{q_{i}}\right)\right)$. Therefore, by Fact 27 , $\ell \in \operatorname{sp}(S)$.

3.5 Getting Useful Form-ideals

Given a set S that does not span all of $L(C)$, we can find a form-ideal that is useful wrt S. As we mentioned earlier, in a round we start with S, and end up with a useful I through various iterations. We will formally describe this process below.

An iteration starts with a partial I, and a simple regular identity E in the ring R / I, which has multiplication terms with indices in $[k]$. At least one of the forms in E is not in $\operatorname{sp}(S \cup I)$. At the beginning of the first iteration, E is set to C and I is $\{0\}$.

A SINGLE ITERATION

1. Let ℓ be a form in E that is not in $s p(S \cup I)$.
2. Add ℓ to I.
3. Consider E modulo I and let Q be the subset of indices of nonzero multiplication terms.
4. Let U be the $g c d$ of $E(\bmod I)$, and let the gcd data be $\overline{g c d}=\left\{\left(\pi_{q}, U, U_{q}\right) \mid q \in Q\right\}$.
5. If the fanin, $|Q|$, of $E(\bmod I)$ is 2 , stop the round.
6. If all forms in $\operatorname{sim}(E(\bmod I))$ are contained in $s p(S \cup I)$, stop the round. Otherwise, set E to be $\operatorname{sim}(E(\bmod I))$ and go to the next iteration.

Lemma 30. Let C be a simple $\Sigma \Pi \Sigma(k, d)$ identity in R. Suppose $S \subseteq L(R)$ and $L(C) \backslash \operatorname{sp}(S)$ is non-empty. Then there is a form-ideal I useful in C wrt S.

Proof. As discussed before in the intuition, we generate I in one round and the proof will be done by induction on the number of iterations in this round. For convenience, we set the end of the zero iteration to be the beginning of the round. We will prove the following claim:

Claim 31. Consider the end of some iteration. There exists a list V of forms such that : for all q in the current Q, there is a list $V_{q} \subseteq L\left(T_{q}\right)$ that has an ordered I-matching to V. Furthermore, $M\left(L\left(T_{q}\right) \backslash V_{q}\right)$ is similar to the term indexed by q in $\operatorname{sim}(E(\bmod I))$.

Proof of Claim 31. This is proven by induction on the iterations. At the end of the zero iteration, E is just C and $I=\{0\}$. By the simplicity of $C, \operatorname{sim}(E(\bmod I))$ is just C, and $Q=[k]$. So all the V_{q} 's can be taken just empty.

Now, suppose that at the end of the i th iteration, we have an ordered I-matching from V_{q} to V for all q in the current Q. In the $(i+1)$ th iteration we will denote by I^{\prime} the set $I \cup\{\ell\}, E^{\prime}=\operatorname{sim}(E(\bmod I))$, and $Q^{\prime} \subset Q$ the subset of indices of non-zero terms in E^{\prime} modulo I^{\prime}. For a $q \in Q^{\prime}$, we have a list $V_{q} \subseteq L\left(T_{q}\right)$ and an ordered I-matching τ_{q} between V, V_{q}. All forms of T_{q} not in V_{q} are in E^{\prime}. Now consider the I^{\prime}-matching π_{q} between U, U_{q} obtained in this iteration. No forms in these can be in $s p\left(I^{\prime}\right)$, since U is $\operatorname{gcd}\left(E^{\prime}\left(\bmod I^{\prime}\right)\right)$ and $q \in Q^{\prime}$. Therefore, π_{q} is an ordered matching. We can take the disjoint union of these matchings to get an ordered I^{\prime}-matching $\tau_{q} \sqcup \pi_{q}$ between $V \cup U$ and $V_{q} \cup U_{q}$. All forms in $L\left(T_{q}\right) \backslash\left(V_{q} \cup U_{q}\right)$ are in the q th term of $\operatorname{sim}\left(E^{\prime}\left(\bmod I^{\prime}\right)\right)$. This completes the proof of the claim.

The number of iterations in a round is at most $(k-2)$. This is because after each iteration, the fanin of the circuit E goes down by at least 1 . Therefore, there must be a last iteration (signifying the end of the round). Consider the end of the last iteration. If the fanin $|Q|$ of $E(\bmod I)$ is 2 , then by unique factorization, $\operatorname{sim}(E(\bmod I))$ is empty. So, all the forms in $\operatorname{sim}(E(\bmod I))$ are in $\operatorname{sp}(S \cup I)$, at the end of a round. By the previous claim, there is a list V such that for every surviving $q \in Q$, there is a sublist $V_{q} \subseteq L\left(T_{q}\right)$ and an ordered I-matching τ_{q} between V and V_{q}. By Fact 26 , we have that $E(\bmod I)$ is $\sum_{q \in Q} s c\left(\tau_{q}\right) \alpha_{q} \cdot M\left(L\left(T_{q}\right) \backslash V_{q}\right)$ and is an identity (in $\left.R / I\right)$.

Let $V_{q}^{\prime}:=V_{q} \backslash(s p(S \cup I) \backslash s p(I))$ (similarly, define $\left.V^{\prime}\right)$. Note that τ_{q} induces a matching τ_{q}^{\prime} between V^{\prime} and V_{q}^{\prime}. Furthermore, $\sum_{q \in Q} s c\left(\tau_{q}^{\prime}\right) \alpha_{q} \cdot M\left(L\left(T_{q}\right) \backslash V_{q}^{\prime}\right)$ is a multiple of $E(\bmod I)$ and is regular (each term in the above sum is non-zero $\bmod I)$. Thus, formideal I is useful in C wrt S.

To prove a rank bound for minimal and simple $\Sigma \Pi \Sigma(k, d)$ identity C, our plan is to start with $S=\phi$ and expand it round-by-round by adding the forms of a form-ideal, useful in C wrt S, to the current S. Trivially, such a process has to stop in at most $k d$ iterations (over all rounds) but we intend to show that it actually ends up, covering all the forms in $L(C)$, in a much faster way. To formalize this process we need the notion of a chain of form-ideals. This is just a concise representation of the matchings that we get from the various rounds.

Definition 32. [Chain of form-ideals] Let C be a $\Sigma \Pi \Sigma(k, d)$ circuit. We define a chain of form-ideals for C to be the ordered set $\mathcal{T}:=\left\{\left(C, S_{1}, I_{1}, Q_{1}\right), \ldots,\left(C, S_{m}, I_{m}, Q_{m}\right)\right\}$ where,

- For all $i \in[m], S_{i} \subseteq L(R), I_{i}$ is a form-ideal orthogonal to S_{i} and $Q_{i} \subseteq[k]$.
- $S_{1}=\phi$ and for all $2 \leq i \leq m, S_{i}=S_{i-1} \cup I_{i-1}$.
- For all $i \in[m], I_{i}$ is useful in C wrt S_{i}.
- For all $i \in[m], Q_{i}$ is a blocking subset of C, S_{i}, I_{i}.

We will use $\operatorname{sp}(\mathcal{T})$ to mean $\operatorname{sp}\left(S_{m} \cup I_{m}\right)$ and $\# \mathcal{T}$ to denote m, the length of \mathcal{T}. The chain \mathcal{T} is maximal if $L(C) \subseteq s p(\mathcal{T})$.

Note that by Lemma 30, if a chain \mathcal{T} of length m is not maximal, then we can find a form-ideal I_{m+1} that is useful wrt $S_{m} \cup I_{m}$. This allows us to add a new (C, S_{m+1}, I_{m+1}, Q_{m+1}) to this chain. It is easy to construct a maximal chain for C, and the length of this can be used to bound the rank:

Fact 33. Let C be a simple $\Sigma \Pi \Sigma(k, d)$ identity. Then there exists a maximal chain of form-ideals \mathcal{T} for C. The rank of C is at most $(k-2)(\# \mathcal{T})$.

Proof. We start with $S_{1}=\phi$ and an $\ell \in L(C)$. By Lemma 30 there is a form-ideal I_{1} (containing ℓ) useful in C wrt S_{1} with blocking subset, say, Q_{1}. So we have a chain of form-ideals $\left\{\left(C, S_{1}, I_{1}, Q_{1}\right)\right\}$ to start with. Now if $L(C)$ has all its elements in $\operatorname{sp}\left(S_{1} \cup I_{1}\right)$ then the chain cannot be extended any further and we are done. Otherwise, we can again apply Lemma 30 to get a form-ideal I_{2} useful in C wrt $S_{2}:=S_{1} \cup I_{1}$ with blocking subset,
say, Q_{2}. Thus, we have a longer chain of form-ideals $\left\{\left(C, S_{1}, I_{1}, J_{1}\right),\left(C, S_{2}, I_{2}, J_{2}\right)\right\}$ now. We keep repeating till we have a chain of length m where $L(C) \subseteq s p\left(S_{m} \cup I_{m}\right)$.

Note that $S_{m} \cup I_{m}=\bigcup_{i \leq m} I_{m}$. Each I_{i} is generated by at most $(k-2)$ forms, so there is a basis for $L(C)$ having at most $(k-2) m$ forms.

We come to a stronger version of the main theorem of this paper.

Theorem 34. If C is a simple and minimal $\Sigma \Pi \Sigma(k, d)$ identity then the length of any maximal chain of form-ideals for C is at most $\binom{k}{2}\left(\log _{2} d+3\right)+(k-1)$.

This theorem with Fact 33 imply the main result, Theorem 2. We prove this theorem in the next section.

3.6 Counting all Matchings: Proof of Theorem 34

Let a maximal chain of form-ideals \mathcal{T} for C be $\left\{\left(C, S_{1}, I_{1}, J_{1}\right), \ldots,\left(C, S_{m}, I_{m}, J_{m}\right)\right\}$. We will partition the elements of the chain into three types according to properties of the matchings that they represent. Each of these types will be counted separately.

We first set some notation before explaining the different types. Let the m matchings data be:

$$
\operatorname{mdata}\left(C, S_{i}, I_{i}, Q_{i}\right)=:\left\{\left(\tau_{i, q}, V_{i}, V_{i, q}\right) \mid q \in Q_{i}\right\}
$$

We will use $m_{\text {data }}^{i}$ as shorthand for the above. For all $q \in Q_{i}, V_{i, q}$ is a sublist of $L\left(T_{q}\right)$ and $\tau_{i, q}$ is an ordered matching between $V_{i}, V_{i, q}$ by I_{i}. By the definition of useful-ness of form-ideal I_{i} we have that $V_{i, q}$ is disjoint to $s p\left(S_{i} \cup I_{i}\right) \backslash s p\left(I_{i}\right)$. Thus, $V_{i, q}$ can be partitioned into two sublists:

$$
\begin{aligned}
V_{i, q, 0} & :=\left(\ell \in V_{i, q} \mid \ell \in \operatorname{sp}\left(I_{i}\right)\right), \quad \text { and } \\
V_{i, q, 1} & :=\left(\ell \in V_{i, q} \mid \ell \notin \operatorname{sp}\left(S_{i} \cup I_{i}\right)\right) .
\end{aligned}
$$

and analogously V_{i} can be partitioned into two sublists $V_{i, 0}$ and $V_{i, 1}$. It is easy to see that these partitions induce a corresponding partition of $\tau_{i, q}$ as $\tau_{i, q, 0} \sqcup \tau_{i, q, 1}$, where $\tau_{i, q, 0}$ (and $\left.\tau_{i, q, 1}\right)$ is an ordered matching between $V_{i, 0}, V_{i, q, 0}\left(\right.$ and $\left.V_{i, 1}, V_{i, q, 1}\right)$ by I_{i}.

Here are the three types of mdata 's:

1. [Type 1] There exist $q_{1}, q_{2} \in Q_{i}$ such that $V_{i, q_{1}, 1}$ is not similar to $V_{i, q_{2}, 1}$.
2. [Type 2] There exist $q_{1}, q_{2} \in Q_{i}$ such that $V_{i, q_{1}}$ is not similar to $V_{i, q_{2}}$, but for all $r_{1}, r_{2} \in Q_{i}, V_{i, r_{1}, 1}$ and $V_{i, r_{2}, 1}$ are similar.
3. [Type 3] For all $q_{1}, q_{2} \in Q_{i}, V_{i, q_{1}}$ is similar to $V_{i, q_{2}}$. In other words, mdata a_{i} is trivial.

We partition $\left[m\right.$] into sets N_{1}, N_{2}, N_{3}, which are the index sets for the mdata of types $1,2,3$ respectively.

3.6.1 Bounding $\# N_{1}$ and $\# N_{2}$

The dominant term in Theorem 34 comes from $\# N_{1}$. If $\# N_{1}$ is large, then by an averaging argument, for some pair (a, b), we find many matchings between forms in T_{a} and T_{b}. These are all orthogonal matchings, but are defined on different sublists of $L\left(T_{a}\right)$ and $L\left(T_{b}\right)$. Nonetheless, we can find two dissimilar lists that are matched too many times. Invoking Lemma 14 gives us the required bound.

Lemma 35. $\# N_{1} \leq\binom{ k}{2}\left(\log _{2} d+2\right)$.
Proof. For the sake of contradiction, let us assume $\# N_{1}>\binom{k}{2}\left(\log _{2} d+2\right)$. For each mdata a_{i} $\left(i \in N_{1}\right)$, choose an unordered pair of indices $P_{i}=\left\{q_{1}, q_{2}\right\}$ such that $V_{i, q_{1}, 1}$ and $V_{i, q_{2}, 1}$ are not similar. As there can be only $\binom{k}{2}$ distinct pairs, we get by an averaging argument that, $s>\left(\log _{2} d+2\right)$ of the P_{i} 's are equal. Let $P_{i_{1}}=\cdots=P_{i_{s}}=\{a, b\}$ for $i_{1}<\cdots<i_{s} \in N_{1}$. Now we will focus our attention solely on the ordered matchings $\mu_{i}:=\tau_{i, b, 1} \tau_{i, a, 1}^{-1}$ between $V_{i, a, 1}, V_{i, b, 1}$ by I_{i}, for all $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. The source of contradiction is the fact that all these matchings are also well defined on the 'last' pair of sublists $V_{i_{s}, a, 1}, V_{i_{s}, b, 1}$:

Claim 36. For all $i \in\left\{i_{1}, \ldots, i_{s}\right\}$, μ_{i} induces an ordered matching between $V_{i_{s}, a, 1}, V_{i_{s}, b, 1}$ by I_{i}.
Proof of Claim 36. The claim is true for $i=i_{s}$ so let $i<i_{s}$. The matching μ_{i} is an ordered I_{i}-matching between $V_{i, a, 1}, V_{i, b, 1}$. For $\ell \in V_{i_{s}, a, 1}, \ell \notin \operatorname{sp}\left(S_{i_{s}} \cup I_{i_{s}}\right)$. Since $i<i_{s}$ and $L\left(T_{a}\right) \backslash V_{i, a, 1} \subset \operatorname{sp}\left(S_{i} \cup I_{i}\right), \ell$ cannot be in $L\left(T_{a}\right) \backslash V_{i, a, 1}$. Therefore, ℓ is in $V_{i, a, 1}$. So μ_{i} maps ℓ to some element in $V_{i, b, 1}$, showing μ_{i} is defined on the domain $V_{i_{s}, a, 1}$.

So we know μ_{i} maps $\ell \in V_{i_{s}, a, 1}$ to an element $\mu_{i}(\ell) \in V_{i, b, 1}$. As μ_{i} is an I_{i}-matching, $\mu_{i}(\ell)=(c \ell+\alpha)$ for some $c \in \mathbb{F}^{*}$ and $\alpha \in \operatorname{sp}\left(I_{i}\right) \subseteq s p\left(I_{i_{s}}\right)$, thus $\mu_{i}(\ell) \notin s p\left(S_{i_{s}} \cup I_{i_{s}}\right)$ (recall $\ell \notin \operatorname{sp}\left(S_{i_{s}} \cup I_{i_{s}}\right)$). Thus $\mu_{i}(\ell)$ cannot be in $L\left(T_{b}\right) \backslash V_{i_{s}, b, 1}$ (which has all its elements in $\left.\operatorname{sp}\left(S_{i_{s}} \cup I_{i_{s}}\right)\right)$. As to begin with $\mu_{i}(\ell) \in L\left(T_{b}\right)$ we get that $\mu_{i}(\ell) \in V_{i_{s}, b, 1}$.

Thus, μ_{i} maps an arbitrary $\ell \in V_{i_{s}, a, 1}$ to $\mu_{i}(\ell) \in V_{i_{s}, b, 1}$. In other words, μ_{i} induces an ordered matching between $V_{i_{s}, a, 1}, V_{i_{s}, b, 1}$ by I_{i}.

This claim means that there are $s>\left(\log _{2} d+2\right)$ bipartite matchings between $V_{i_{s}, a, 1}$, $V_{i_{s}, b, 1}$ by orthogonal form-ideals $I_{i_{1}}, \ldots, I_{i_{s}}$ respectively. Lemma 14 implies that the lists $V_{i_{s}, a, 1}, V_{i_{s}, b, 1}$ are similar. This contradicts the definition of $P_{i_{s}}$. Thus, $\# N_{1} \leq\binom{ k}{2}\left(\log _{2} d+\right.$ $2)$.

For dealing with $\# N_{2}$, we use a slightly different argument to get a better bound. We show that a Type 2 matching can involve a pair of terms at most once.

Lemma 37. $\# N_{2} \leq\binom{ k}{2}$.
Proof. For the sake of contradiction, assume $\# N_{2}>\binom{k}{2}$. For each mdata $\left(i \in N_{2}\right)$, let P_{i} be an unordered pair $\left(q_{1}, q_{2}\right)$ such that $V_{i, q_{1}}$ is not similar to $V_{i, q_{2}}$. Note that because $V_{i, q_{1}, 1}$ is similar to $V_{i, q_{2}, 1}$, it must be that $V_{i, q_{1}, 0}$ is not similar to $V_{i, q_{2}, 0}$. By the pigeon-hole principle, at least two P_{i} 's are the same. Suppose $P_{i_{1}}=P_{i_{2}}=\{a, b\}$ for $i_{1}<i_{2} \in N_{2}$.

Let $\ell \in V_{i_{2}, a, 0}$ then by the definition of $V_{i_{2}, a, 0}$ we have that $\ell \in \operatorname{sp}\left(I_{i_{2}}\right)$. This coupled with $i_{1}<i_{2}$ means that ℓ cannot be in $L\left(T_{a}\right) \backslash V_{i_{1}, a, 1}$ (which has all its elements in $\left.\operatorname{sp}\left(S_{i_{1}} \cup I_{i_{1}}\right)\right)$. As to begin with $\ell \in L\left(T_{a}\right)$ we get that $\ell \in V_{i_{1}, a, 1}$. Thus, $V_{i_{2}, a, 0}\left(V_{i_{2}, b, 0}\right)$ is
a sublist of $V_{i_{1}, a, 1}\left(V_{i_{1}, b, 1}\right)$. From the useful-ness of $I_{i_{2}}$, the sublist $V_{i_{2}, a, 0}\left(V_{i_{2}, b, 0}\right)$ collects all the linear forms in $L\left(T_{a}\right)\left(L\left(T_{b}\right)\right)$ that are in $\operatorname{sp}\left(I_{i_{2}}\right)$ while from the useful-ness of $I_{i_{1}}$ the sublist $L\left(T_{a}\right) \backslash V_{i_{1}, a, 1}\left(L\left(T_{b}\right) \backslash V_{i_{1}, b, 1}\right)$ is disjoint from $s p\left(I_{i_{2}}\right)$. Thus, the sublist $V_{i_{2}, a, 0}$ $\left(V_{i_{2}, b, 0}\right)$ collects all the linear forms in $V_{i_{1}, a, 1}\left(V_{i_{1}, b, 1}\right)$ that are in $\operatorname{sp}\left(I_{i_{2}}\right)$. This together with the similarity of $V_{i_{1}, a, 1}$ and $V_{i_{1}, b, 1}$ gives us (by Fact 10) that $V_{i_{2}, a, 0}$ and $V_{i_{2}, b, 0}$ are similar, which contradicts the way $P_{i_{2}}=\{a, b\}$ was defined. Thus, $\# N_{2} \leq\binom{ k}{2}$.

3.6.2 Bounding $\# N_{3}$

This requires a different argument than the pigeon-hole ideas used for $\# N_{1}$ and $\# N_{2}$. We divide these type 3 matchings further into internal and external ones. Our final aim is to prove :

Lemma 38. $\# N_{3} \leq(k-1)$
We shall use a combinatorial picture of how the chain of form-ideals connects the various multiplication terms through matchings. We will describe an evolving forest \mathcal{F} and only deal with Type 3 mdata $_{i}$.

Initially, the forest \mathcal{F} consists of k isolated vertices, each representing the k terms T_{1}, \cdots, T_{k}. We process each mdata in increasing order of the i 's, and update the forest \mathcal{F} accordingly. We will refer to this as adding mdatai to \mathcal{F}. At any intermediate state, the forest \mathcal{F} will be a collection of rooted trees with a total of k leaves.

Definition 39. Consider \mathcal{F} when mdata a_{i} is processed. If all of Q_{i} belongs to a single tree in \mathcal{F}, then mdata $_{i}$ is called internal. Otherwise, it is called external.

If mdata $_{i}$ is internal, \mathcal{F} remains unchanged. While each time we encounter an external mdata $_{i}$, we update the forest \mathcal{F} as follows. We create a new root node labelled with mdata a_{i} (abusing notation, we refer to $m d a t a_{i}$ as a node), and for any tree of \mathcal{F} that contains a $T_{q}, q \in Q_{i}$, we make the root of this tree a child of mdata a_{i}.

Fact 40. The total number of external matchings is at most $(k-1)$.
Proof. Note that each external mdata a_{i} reduces the number of trees in the forest \mathcal{F} by at least one. As initially \mathcal{F} has k trees and at every point of the process it will have at least one tree, we get the claim.

It remains to count the number of internal matchings. Whenever we encounter an internal mdata a_{i}, we can always associate it with some root mdata $a_{i^{\prime}}$ of \mathcal{F} such that $i^{\prime}<i$ and all of Q_{i} is in the tree rooted at mdata $a_{i^{\prime}}$.

Lemma 41. If mdata i_{i} is internal, then the subcircuit $C_{Q_{i}}$ is identically zero in R. Therefore, by the minimality of C, no mdata a_{i} can be internal.

This lemma with the previous fact immediately imply that $\# N_{3} \leq(k-1)$. We now set the stage to prove this lemma. Take any Type $3 m^{m} d a t a_{i}$. By the triviality of $m d a t a_{i}$, the lists in $\left\{V_{i, q} \mid q \in Q_{i}\right\}$ are mutually similar. By the useful-ness of I_{i} the lists in $\left\{L\left(T_{q}\right) \backslash\right.$ $\left.V_{i, q} \mid q \in Q_{i}\right\}$ have all their forms in $\operatorname{sp}\left(S_{i} \cup I_{i}\right) \backslash s p\left(I_{i}\right)$. Furthermore, $D_{i}:=\sum_{q \in Q_{i}}$ $s c\left(\tau_{i, q}\right) \alpha_{q} M\left(L\left(T_{q}\right) \backslash V_{i, q}\right)$ is a regular identity modulo I_{i}. Our aim is to remove the forms in D_{i} which are common factors $\left(\right.$ not $\bmod I_{i}$, but mod 0$)$. This gives us a new circuit
(quite naturally, that will turn out to be $\left.\operatorname{sim}\left(C_{Q_{i}}\right)\right)$ that is still an identity $\left(\bmod I_{i}\right)$. In other words, start with the subcircuit $C_{Q_{i}}$, and remove all common factors from this subcircuit. This is expected to be both $\operatorname{sim}\left(C_{Q_{i}}\right)$ and an identity $\bmod I_{i}$.

Using this we will actually show that if $m_{d a t} a_{i}$ is internal then $\operatorname{sim}\left(C_{Q_{i}}\right)$ is an identity $(\bmod 0)$. Then we can multiply the common factors back, and $C_{Q_{i}}$ would be an absolute identity (violating minimality of C). We proceed to show this rigorously. We have to carefully deal with field constants to ensure that $\operatorname{sim}\left(C_{Q_{i}}\right)$ is indeed a factor of D_{i}.

Claim 42. For Type 3 mdata $_{i}$, the circuit $\operatorname{sim}\left(C_{Q_{i}}\right)$ is an identity mod I_{i} and has all its forms in $\operatorname{sp}\left(S_{i} \cup I_{i}\right)$.

Proof. Let the gcd data of D_{i} be:

$$
\overline{g c d}\left(D_{i}\right):=\left\{\left(\pi_{i, q}, U_{i}, U_{i, q}\right) \mid q \in Q_{i}\right\}
$$

where $U_{i, q}$ is a sublist of $L\left(T_{q}\right) \backslash V_{i, q}$ and $\pi_{i, q}$ is an ordered matching between $U_{i}, U_{i, q}$ by $\{0\}$. Note that this is not $\bmod I_{i}$, even though D_{i} is an identity only $\bmod I_{i}$.

By Facts 23 and 26 we can 'stitch' U 's and V 's to get:

- $\tau_{i, q}^{\prime}:=\tau_{i, q} \sqcup \pi_{i, q}$ is an ordered matching between $V_{i}^{\prime}:=V_{i} \cup U_{i}, V_{i, q}^{\prime}:=V_{i, q} \cup U_{i, q}$ by I_{i}.
- $D_{i}^{\prime}:=\sum_{q \in Q_{i}} s c\left(\tau_{i, q}^{\prime}\right) \alpha_{q} M\left(L\left(T_{q}\right) \backslash V_{i, q}^{\prime}\right)$, is a regular identity modulo I_{i}.

Let q_{m} be the minimum element in Q_{i}. We have that $\tau_{i, q}^{\prime} \tau_{i, q_{m}}^{\prime-1}$ is an ordered I_{i}-matching between the similar lists $V_{i, q_{m}}^{\prime}, V_{i, q}^{\prime}$. By Fact 25 , we can construct an ordered matching $\mu_{i, q}$ between $V_{i, q_{m}}^{\prime}, V_{i, q}^{\prime}$ by $\{0\}$, with scaling factor equal to $s c\left(\tau_{i, q}^{\prime} \tau_{i, q_{m}}^{\prime-1}\right)=\operatorname{sc}\left(\tau_{i, q}^{\prime}\right) / \operatorname{sc}\left(\tau_{i, q_{m}}^{\prime}\right)$.

The way D_{i}^{\prime} is constructed it is clear that D_{i}^{\prime} is a simple circuit. This combined with the similarity of $V_{i, q_{m}}^{\prime}, V_{i, q}^{\prime}$ under $\mu_{i, q}$ implies that the following set of $\# Q_{i}$ matchings:

$$
\left\{\left(\mu_{i, q}, V_{i, q_{m}}^{\prime}, V_{i, q}^{\prime}\right) \mid q \in Q_{i}\right\}
$$

is a gcd data of $C_{Q_{i}}$ modulo (0) and the corresponding simple part is:

$$
\begin{aligned}
\operatorname{sim}\left(C_{Q_{i}}\right) & =\sum_{q \in Q_{i}} s c\left(\mu_{i, q}\right) \alpha_{q} M\left(L\left(T_{q}\right) \backslash V_{i, q}^{\prime}\right) \\
& =\sum_{q \in Q_{i}} \frac{s c\left(\tau_{i, q}^{\prime}\right)}{s c\left(\tau_{i, q_{m}}^{\prime}\right)} \alpha_{q} M\left(L\left(T_{q}\right) \backslash V_{i, q}^{\prime}\right) \\
& =\frac{1}{s c\left(\tau_{i, q_{m}}^{\prime}\right)} \cdot D_{i}^{\prime}
\end{aligned}
$$

Thus, $\operatorname{sim}\left(C_{Q_{i}}\right)$ is a regular identity $\bmod I_{i}$ as well. Also, by the useful-ness of I_{i}, $\operatorname{sim}\left(C_{Q_{i}}\right)$ has all its forms in $\operatorname{sp}\left(S_{i} \cup I_{i}\right)$. This completes the proof.

We now use the structure of \mathcal{F} to show relationships between the various connected terms.

Claim 43. At some stage, let mdata a_{i} be a root node of \mathcal{F}. Let X be a subset of the leaves of m data a_{i}. Then $L\left(\operatorname{sim}\left(C_{X}\right)\right)$ is a subset of $\operatorname{sp}\left(S_{i} \cup I_{i}\right)$.

Proof. Let the indices of all the external Type 3 mdata be (in order) i_{1}, i_{2}, \cdots. We prove the claim by induction on the order in which \mathcal{F} is processed. For the base case, let $i:=i_{1}$. Consider \mathcal{F} just after $m_{\text {data }}^{i}$ is added. The leaves of $m d a t a_{i}$ are all in Q_{i}. By Claim 42, $L\left(\operatorname{sim}\left(C_{Q_{i}}\right)\right) \subset \operatorname{sp}\left(S_{i} \cup I_{i}\right)$. Any X is a subset of Q_{i}. By Fact $28, L\left(\operatorname{sim}\left(C_{X}\right)\right) \subset \operatorname{sp}\left(S_{i} \cup I_{i}\right)$.

For the induction step, consider an external mdata a_{i}. When this is processed, a series of trees rooted at $m d a t a_{j_{1}}$, mdata $_{j_{2}}, \cdots$ will be made children of $m d a t a_{i}$. Every j_{r} is less than i. Let Y_{r} denote the leaves of the tree mdata $_{j_{r}}$. Note that $Y_{r} \cap Q_{i} \neq \phi$. By the induction hypothesis, $L\left(\operatorname{sim}\left(C_{Y_{r}}\right)\right)$ is a subset of $\operatorname{sp}\left(S_{j_{r}} \cup I_{j_{r}}\right)\left(\subset \operatorname{sp}\left(S_{i} \cup I_{i}\right)\right)$. Let Z_{1} be $Q_{i} \cup Y_{1}$. By Fact 29 applied to $\operatorname{sim}\left(C_{Y_{1}}\right)$ and $\operatorname{sim}\left(C_{Q_{i}}\right)$, we have that $L\left(\operatorname{sim}\left(C_{Z_{1}}\right)\right)$ is in $\left.\operatorname{sp}\left(S_{i} \cup I_{i}\right)\right)$. Let Z_{2} be $Z_{1} \cup Y_{2}$. We can apply the same argument to show that $L\left(\operatorname{sim}\left(C_{Z_{2}}\right)\right)$ is in $\left.s p\left(S_{i} \cup I_{i}\right)\right)$. With repeated applications, we get that for $Z=\bigcup_{r} Y_{r}$, $\left.L\left(\operatorname{sim}\left(C_{Z}\right)\right) \subset \operatorname{sp}\left(S_{i} \cup I_{i}\right)\right)$. Note that Z is the set of all leaves of the tree rooted at mdata ${ }_{i}$. By Fact $28, L\left(C_{X}\right) \subset s p\left(S_{i} \cup I_{i}\right)$, completing the proof.

We are finally armed with all the tools to prove Lemma 41.
Proof. (of Lemma 41) Consider some internal mdata a_{i}. All the elements of Q_{i} are leaves in the tree rooted at some $m d a t a_{j}$, for $j<i$. By Claim 43, $L\left(\operatorname{sim}\left(C_{Q_{i}}\right)\right) \subset s p\left(S_{j} \cup I_{j}\right)$. But by Claim $42, \operatorname{sim}\left(C_{Q_{i}}\right) \equiv 0\left(\bmod I_{i}\right)$. Since I_{i} is orthogonal to $\operatorname{sp}\left(S_{j} \cup I_{j}\right)$, Fact 11 tells us that $\operatorname{sim}\left(C_{Q_{i}}\right)$ is an identity $(\bmod 0)$. Therefore, $C_{Q_{i}}$ is an identity.

3.7 Factors of a $\Sigma \Pi \Sigma(k, d)$ Circuit: Proof of Theorem 5

The ideal matching technique is quite robust and can be used to prove Theorem 5 . Let C be a simple, minimal, nonzero circuit with top fanin k and degree d (so the different terms may have different degrees) that computes a polynomial $p\left(x_{1}, \cdots, x_{n}\right)$. We remind the reader of the definition of $L(p)$. Let us factorize p into $\prod_{i} q_{i}$, where each q_{i} is irreducible. Then $L(p)$ denotes the set of linear factors of p (that is, $q_{i} \in L(p)$ if q_{i} is linear).

For any $q \in L(p), C \equiv 0(\bmod q)$, therefore we can generate a form-ideal useful in C involving q. Using these we can create a chain of form-ideals whose span contains $L(p)$, and all our counting lemmas for the matchings of types $1,2,3$ will follow. As a result, we get a bound of $\left(k^{3} \log d\right)$ on the rank of $L(p)$.

4 Concluding Remarks

It would be very interesting to leverage the matching technique to design identity testing algorithms. By unique factorization, matchings can be easily detected in polynomial time, and it is also not hard to search for I-matchings involving a specific set of forms in I. We prove that depth-3 identities exhibit structural properties described by the ideal matchings. Can we reverse these theorems? In other words, can we show that certain collections of matchings are present iff C is an identity? This would lead to a polynomial time identity tester for all depth- 3 circuits.

There is still a gap between our upper bound for the rank of $O\left(k^{3} \log d\right)$ and the lower bound of $\Omega(k \log d)$. We feel that $k \log d$ is the right answer and a more careful analysis of the matchings could prove this. More interestingly, it is conjectured that when the characteristic of the base field is 0 , the rank is $O(k)$, independent of d. We believe that an adapation of our matching techniques to characteristic 0 fields could lead to such a bound.

References

[AB03] M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering. JACM, 50(4):429-443, 2003.
[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of the 25th Annual Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 92-105, 2005.
[AV08] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of the 49 th Annual Foundation of Computer Science (FOCS), 2008.
[CK00] Z. Chen and M. Kao. Reducing randomness via irrational numbers. SIAM J. on Computing, 29(4):1247-1256, 2000.
[DS06] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404-1434, 2006.
[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving circuit lower bounds. Computational Complexity, 13(1):1-46, 2004.
[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate polynomials. In Proceedings of the 33rd Annual Symposium on the Theory of Computing (STOC), pages 216-223, 2001.
[KS07] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational Complexity, 16(2):115-138, 2007.
[KS08] Z. Karnin and A. Shpilka. Deterministic black box polynomial identity testing of depth-3 arithmetic circuits with bounded top fan-in. In Proceedings of the 23rd Annual Conference on Computational Complexity (CCC), pages 280-291, 2008.
[LV98] D. Lewin and S. Vadhan. Checking polynomial identities over any field: Towards a derandomization? In Proceedings of the 30th Annual Symposium on the Theory of Computing (STOC), pages 428-437, 1998.
[Sax08] N. Saxena. Diagonal circuit identity testing and lower bounds. In Proceedings of the 35th Annual International Colloquium on Automata, Languages and Programming (ICALP), pages 60-71, 2008.
[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. JACM, 27(4):701-717, 1980.
[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. Symbolic and algebraic computation, pages 216-226, 1979.

[^0]: *Hausdorff Center for Mathematics, Bonn 53115, Germany. E-mail: ns@hcm.uni-bonn.de
 ${ }^{\dagger}$ IBM Almaden Research Center, San Jose - 95123, USA. E-mail: csesha@us.ibm. com

[^1]: ${ }^{1}$ [KS08] had a better running time for read- k depth- 3 circuits, where each variable appears at most k times. But even there the dependence on k is doubly-exponential.
 ${ }^{2}$ We usually do not get a polynomial time algorithm.

[^2]: ${ }^{3}$ Here we can also consider circuits where the different terms in C have different degrees. The parameter d is then an upper bound on the degree of C.

[^3]: ${ }^{4} \mathrm{~A}$ form that appears many times corresponds to that many nodes.

[^4]: ${ }^{5}$ It can be shown, using the orthogonality of the I_{i} 's, that an edge can have at most two distinct tags.

