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Abstract

In this work we study the list-decoding size of Reed-Muller codes. Given a received word
and a distance parameter, we are interested in bounding the size of the list of Reed-Muller
codewords that are within that distance from the received word. Previous bounds of Gopalan,
Klivans and Zuckerman [4] on the list size of Reed-Muller codes apply only up to the minimum
distance of the code. In this work we provide asymptotic bounds for the list-decoding size of
Reed-Muller codes that apply for all distances. Additionally, we study the weight distribution
of Reed-Muller codes. Prior results of Kasami and Tokura [8] on the structure of Reed-Muller
codewords up to twice the minimum distance, imply bounds on the weight distribution of the
code that apply only until twice the minimum distance. We provide accumulative bounds for
the weight distribution of Reed-Muller codes that apply to all distances.

1 Introduction

The problem of list-decoding an error correcting code is the following: given a received word and
a distance parameter find all codewords of the code that are within the given distance from the
received word. List-decoding is a generalization of the more common notion of unique decoding in
which the given distance parameter ensures that there can be at most one codeword of the code
that is within the given distance from the received word. The notion of list-decoding has numerous
practical and theoretical implications. The breakthrough results in this field are due to Goldreich
and Levin [3] and Sudan [10] who gave efficient list decoding algorithms for the Hadamard code
and the Reed-Solomon code. See surveys by Guruswami [5] and Sudan [11] for further details.
In complexity, list-decodable codes are used to perform hardness amplification of functions [12].
In cryptography, list-decodable codes are used to construct hard-core predicates from one way
functions [3]. In learning theory, list decoding of Hadamard codes implies learning parities with
noise [7].

In this paper we study the question of list-decoding Reed-Muller codes. Specifically, we are
interested in bounding the list sizes obtained for different distance parameters for the list-decoding
problem.
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Reed-Muller codes are very fundamental and well studied codes. RM(n, d) is a linear code,
whose codewords f ∈ RM(n, d) : F

n
2 → F2 are evaluations of polynomials in n variables of total

degree at most d over F2. In this work we study the code RM(n, d) when d � n, and are interested
in particular in the case of constant d.

The following facts regarding RM(n, d) are straight-forward: It has block length of 2n, dimen-

sion
∑

i≤d

(n
i

)

and minimum relative distance 2n−d

2n = 2−d. We define:

Definition 1 (Relative weight of a function). The relative weight of a function/codeword f : F
n
2 →

F2 is the fraction of non-zero elements,

wt(f) =
1

2n
|{x ∈ F

n
2 : f(x) = 1}|

A closely related definition is the distance between two functions

Definition 2 (Relative distance between two functions). The relative distance between two func-
tions f, g : F

n
2 → F2 is defined as

dist(f, g) = Px∈F
n
2
[f(x) 6= g(x)]

The main focus of this work is in understanding the asymptotic growth of the list size in
list-decoding of Reed-Muller codes, as a function of the distance parameter. Specifically we are
interested in obtaining bounds on the following.

Definition 3 (List-decoding size). For a function f : F
n
2 → F2 let the ball at relative distance α

around f be
B(f, α) = {p ∈ RM(n, d) : dist(p, f) ≤ α}

The list-decoding size of RM(n, d) at distance α, denoted by L(α), is the maximal size of
B(f, α) over all possible functions f , i.e.

L(α) = max
f :Fn

2→F2

|B(f, α)|

In a recent work Gopalan, Klivans and Zuckerman [4] prove that for distances up to the minimal
distance of the code, the list-decoding size of Reed-Muller codes remains constant.

Theorem 1 (Theorem 11 in [4]).

L(2−d − ε) ≤ O
(

(1/ε)8d
)

Their result of bounding the list-decoding size of Reed-Muller codes is inherently limited to
work up to the minimum distance of the code, since it uses a structural theorem of Kasami and
Takura on Reed-Muller codes [8], which implies a bound on the weight distribution of Reed-Muller
codes that works up to twice the minimum distance of the code.

Additionally, the work of [4] has developed a list-decoding algorithm for RM(n, d) whose running
time is polynomial in the worst list-decoding size and in the block length of the code.

Theorem 2 (Theorem 4 in [4]). Given a distance parameter α and a received word R : F
n
2 → F2,

there is an algorithm that runs in time poly(2n, L(α)) and produces a list of all p ∈ RM(n, d) such
that dist(p,R) ≤ α.

Since Gopalan et al. could obtain non-trivial bounds on the list-decoding size for distance
parameter α that is bounded by the minimum distance of the Reed-Muller code, their algorithm
yields meaningful running time only for α that is less than twice the minimum distance of the code.
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1.1 Weight distribution of Reed-Muller codes

A close notion to the list-decoding size of Reed-Muller code is the weight distribution of the code.

Definition 4 (Accumulative weight distribution). The accumulative weight distribution of RM(n, d)
at a relative weight α is the number of codewords up to this weight, i.e.

A(α) = |{p ∈ RM(n, d) : wt(p) ≤ α}|

where 0 ≤ α ≤ 1.

It is well-known that for any p ∈ RM(n, d) which is not identically zero, wt(p) ≥ 2−d. Thus,
A(2−d − ε) = 1 for any ε > 0. Kasami and Tokura [8] characterized the codewords in RM(n, d)
of weight up to twice the minimal distance of the code (i.e up to distance 21−d). Based on their
characterization one could conclude the following.

Corollary 3 (Corollary 10 in [4]).

A(21−d − ε) ≤ (1/ε)2(n+1)

Corollary 3 and simple lower bounds (which we show later, see Lemma 8) show that A(α) =
2Θ(n) for α ∈ [2−d, 21−d − ε] for any ε > 0 (and constant d).

1.2 Our Results

Gopalan et al. [4] left as an open problem the question of bounding the list-decoding size of Reed-
Muller codes beyond the minimal distance. In particular, they ask what is the maximal α s.t.
L(α) = 2O(n).

In this work we answer their question. Specifically we show bounds on the list-decoding size of
Reed-Muller code for distances passing the minimal distance. In fact, we show that the asymptotic
behavior of L(α), for all 0 ≤ α ≤ 1. Our first result shows that there exist ”cut-off distances”, at

which the list-decoding size changes from 2Θ(n`) to 2Θ(n`+1):

Theorem 4 (First main theorem - list-decoding size). Let 1 ≤ ` ≤ d − 1 be an integer, and let
ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

L(α) = 2Θ(n`)

and L(α) = 2Θ(nd) for any α ≥ 1/2.

Using Theorem 4, and Theorem 2 we obtain the following algorithmic result for list-decoding
Reed-Muller codes from an arbitrary distance.

Theorem 5 (List-decoding algorithm). Given a received word R : F
n
2 → F2 that is at distance α

from RM(n, d), for α ∈ [2`−d−1, 2`−d − ε]. where 1 ≤ ` ≤ d − 1 is an integer, and ε > 0. There

exists an algorithm that runs in time poly(2Θ(n`)) and produces a list of all p ∈ RM(n, d) such that
dist(p,R) ≤ α

The weight distribution of RM(n, d) codes beyond twice the minimum distance was widely
open prior to our work. See e.g. Research Problem (15.1) in [9] and the related discussion in that
Chapter.

In this work we provide asymptotic bounds for the weight distribution of RM(n, d) that applied
for all weights 2−d ≤ α ≤ 1/2. Specifically, our second main result gives exact boundaries on the

range of α for which A(α) = 2Θ(n`), for any ` = 1, 2, ..., d.
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Theorem 6 (Second main Theorem - accumulative weight distribution). Let 1 ≤ ` ≤ d − 1 be an
integer, and let ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

A(α) = 2Θ(n`)

and A(α) = 2Θ(nd) for any α ≥ 1/2.

Theorems 4 and 6 are asymptotically tight for constant ε > 0. For sub-constant ε, and α ∈
[2`−d−1, 2`−d − ε], our bound gives:

A(α) ≤ L(α) ≤ 2O(n`/ε2)

We conjecture this dependency on ε is not optimal, and the correct dependency should be
log(1/ε) instead of 1/ε2. We expand more on that in the body of the paper.

1.3 Techniques

The bounds on the accumulative weight distribution of the Reed-Muller code are obtained using
the following novel strategy. We show that a function f : Fn

2 → F2 whose weight is bounded by
wt(f) ≤ 2−k(1 − ε) can be computed as an expectation of its kth-derivatives multiplied by some
bounded coefficients (Lemma 10).

Using standard sampling methods we then show (Lemma 11) that a function f : Fn
2 → F2 whose

weight is bounded by wt(f) ≤ 2−k(1−ε) can be well approximated by a constant number c = c(k, ε)
of its kth-derivatives. This implies that every RM(n, d) codeword of weight up to 2−k(1 − ε) can
be well approximated by c = c(k, ε) of its kth-derivatives. Since the distance between every pair
of RM(n, d) codewords is at least 2−d, a good enough approximation of a RM(n, d) codeword
determines the Reed-Muller codeword uniquely. Hence, the number of RM(n, d) codewords up to
weight 2−k(1 − ε), is bounded by the number of kth-derivatives to the power of c = c(k, ε). As
RM(n, d) codewords are polynomials of degree at most d, their kth-derivatives are polynomials

of degree at most d − k. There can be at most Θ(2nd−k

) such derivatives. Thus, the number of

RM(n, d) codewords up to weight 2−k(1 − ε), can be bounded by O(2nd−k

)c = O(2c·nd−k

). We
complement these upper bound estimations with matching lower bounds.

A similar work in this line is the work of Viola and Bogdanov [2], which shows that a function
f : Fn

2 → F2 whose weight is bounded by wt(f) ≤ 1/2 − ε can be well approximated by c =
c(k, ε) of its 1st-derivatives. Note that approximation by 1st-derivatives does not imply in general
approximation by kth-derivatives which is crucial for obtaining our bounds here.

The bounds on the list-decoding size of Reed-Muller codes are obtained using similar techniques
to the ones used for bounding the accumulative weight distributions.

1.4 Generalized Reed-Muller Codes

The problems of bounding both the accumulative weight distribution and the list-decoding size
can be extended to Generalized Reed-Muller, the code of low-degree polynomials over larger fields.
However, our techniques fail to prove tight result in these cases. We provide some partial results
for this case and make a conjecture about the correct bounds in Appendix A.
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1.5 Organization

Although our goal is bounding the list-decoding size of Reed-Muller codes, we first study the
accumulative weight distribution of Reed-Muller codes. The techniques we develop are then easily
transferred to bounding also the list-decoding size.

The paper is organized as follows. In Section 2 we study the weight distribution of Reed-Muller
codes and we prove the Second Main Theorem (Theorem 6). In Section 3 study the list-decoding
size of Reed-Muller codes. We generalize the techniques of Section 2 to prove the First Main
Theorem (Theorem 4). In Section A we study similar questions for Generalized Reed-Muller code
and provide non-tight bounds for these codes.

2 Weight distribution of Reed-Muller codes

In this section we study the weight distribution of Reed-Muller codes, and we prove our Second Main
Theorem (Theorem 6). Let RM(n, d) stand for the code of multivariate polynomials p(x1, ..., xn)
over F2 of total degree at most d. In the following n and d will always stand for the number of
variables and the total degree. We will assume that d � n, and study in particular the case of
constant d.

Our Second Main Theorem (Theorem 6) is a direct corollary of Theorem 7, giving an upper
bound on the accumulative weight at distance 2`−d − ε, and Lemma 8, giving a simple lower bound
at distance 2`−d−1.

Theorem 7 (Upper bound on the accumulative weight). For any integer 1 ≤ k ≤ d − 1,

A(2−k(1 − ε)) ≤ c12
c2

nd−k

ε2

where c1 = (1/ε)O(d/ε2) and c2 = O(d/(d − k)!). Importantly, c1, c2 are independent of n, and c2 is
independent of ε. In particular for constant d we get that

A(2−k − ε) ≤ 2O(nd−k

ε2
)

Lemma 8 (Lower bound on the accumulative weight). For any integer 1 ≤ k ≤ d

A(2−k) ≥ 2
nd−k+1

(d−k+1)!
(1+o(1))

In the upper bound on A(α), while the dependence on n is tight, we believe the dependence on
ε can be improved. For k = d − 1 (and constant d), the characterization of [8] shows that

A(21−d − ε) = 2Θ(n log(1/ε))

We conjecture that this is the correct dependence on ε in all the range:

Conjecture 9. Let d be constant. For any integer 1 ≤ k ≤ d − 1,

A(2−k − ε) = 2Θ(nd−k log(1/ε))

We start by proving the lower bound.
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Proof of Lemma 8. Single out k variables x1, ..., xk, and let q be any degree d − k + 1 polynomials
on the remaining n − k variables. First, for any such q, the following degree d polynomial has
relative weight exactly 2−k:

q′(x1, ..., xn) = x1x2...xk−1(xk + q(xk+1, ..., xn))

The number of different polynomials q is

2(
n−k

d−k+1) = 2
nd−k+1

(d−k+1)!
(1+o(1))

We will prove Theorem 7 in the rest of the section. We start by defining discrete derivatives,
which will be our main tool in the proof.

Definition 5. Let f : F
n
2 → F2 by a function. We define the discrete derivative of f in direction

a ∈ F
n
2 to be

fa(x) = f(x + a) + f(x)

We define the iterated discrete derivative of f in directions a1, ..., ak ∈ F
n
2 to be

fa1,...,ak
(x) = (...((fa1)a2)...)ak

(x) =
∑

S⊆[k]

f(x +
∑

i∈S

ai)

We note that usually derivatives are defined as fa(x) = f(x+a)−f(x), but since we are working
over F2, we can ignore the signs.

We define another notion which is central to our proof, namely the bias of a function.

Definition 6. The bias of a function f : F
n
2 → F2 is

bias(f) = Ex∈Fn
2
[(−1)f(x)] = P[f = 0] − P[f = 1] = 1 − 2wt(f)

The following lemma will be the heart of our proof. It shows that if a function f has weight
less than 2−k, then it can be computed by a its iterated k-derivatives.

Lemma 10 (Main technical lemma). Let f : F
n
2 → F2 be a function s.t. wt(f) < 2−k(1− ε). Then

the function (−1)f(x) : F
n
2 → {−1, 1} can be written as

(−1)f(x) = Ea1,...,ak∈F
n
2
[αa1,...,ak

(−1)fa1,...,ak
(x)]

where αa1,...,ak
are real numbers, of absolute value of at most 10

ε

We will first prove Theorem 7 given Lemma 10, and then turn to prove Lemma 10. We will
also need the following well-known technical lemma, which shows how to transform calculation by
averaging many functions, to approximation by averaging few functions.

Lemma 11 (Approximation by sampling). Let f : F
n
2 → F2 be a function, H = {h1, ..., ht} a set

of functions from F
n
2 to F2, s.t. there exist constants ch1 , ..., cht

of absolute value at most C, s.t.

(−1)f(x) = Ei∈[t][chi
(−1)hi(x)] (∀x ∈ F

n
2 )
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Then f can be approximated by a small number of the functions h1, ..., ht. For any δ > 0, there
exist functions h1, ..., h` ∈ H for ` = O(C2 log 1/δ), and a function F : F

`
2 → F2, s.t. the relative

distance between f(x) and F (h1(x), ..., h`(x)) is at most δ, i.e.

Px∈Fn
2
[f(x) 6= F (h1(x), ..., h`(x))] ≤ δ

The function F is a weighted majority, i.e. it is of the form:

F (h1(x), ..., h`(x)) = sign(

∑`
i=1 si(−1)hi(x)

`
)

where sign(x) is defined by sign(x) = 1 if x ≥ 0 and sign(x) = −1 if x < 0. Moreover, we can
have s1, ..., s` to be integers of absolute value at most C + 1.

Using Lemmas 10 and 11 we now prove Theorem 7.

Proof of Theorem 7. Fix 1 ≤ k ≤ d − 1. We will bound the number of polynomials p ∈ RM(n, d)
s.t. wt(p) ≤ 2−k(1 − ε). Let p be any such polynomial. We apply Lemma 10 to p. We can write
(−1)p(x) as

(−1)p(x) = Ea1,...,ak∈Fn
2
[αa1,...,ak

(−1)pa1,...,ak
(x)]

such that |αa1,...,ak
| ≤ 10

ε .
We now apply Lemma 11 to the set of polynomials {pa1,...,ak

(x) : a1, ..., ak ∈ F
n
2} with δ =

2−(d+2). We get that there are ` = O( d
ε2 ) derivatives {pai

1,...,ai
k

: i ∈ [`]} s.t. the distance between

p(x) and F (x) is at most δ, where

F (x) = sign(

∑`
i=1 si(−1)

p
ai
1,...,ai

k
(x)

`
)

and s1, ..., s` are integers of absolute value at most O(1
ε ).

We now make an important yet simple observation, that will let us bound the number of low
weight polynomials by bounding the number of functions F (x). Given any F (x), there can be at
most one p ∈ RM(n, d) s.t. dist(F, p) ≤ δ. Assume otherwise that there are two polynomials
p′, p′′ ∈ RM(n, d) s.t. dist(p′, F ) ≤ δ and dist(p′′, F ) ≤ δ. By the triangle inequality dist(p′, p′′) ≤
2δ < 2−d, but this cannot hold if p′, p′′ are two different polynomials, since the minimum relative
distance of RM(n, d) is 2−d.

So, if we bound the number of different functions F (x) of the above form, we will also bound
the number of polynomials p of relative weight at most 2−k(1 − ε). Consider the terms appearing
in F :

• We need ` = O( d
ε2

) derivatives and coefficients to describe F completely.

• Any derivative pai
1,...,ai

k
(x) is a a polynomial of degree at most d − k, and so has at most

2(
n

≤d−k) possibilities.

• Any coefficient si has O(1
ε ) possibilities.
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Thus, the total the number of different F ’s is at most

(

2(
n

≤d−k) · (1/ε)
)O( d

ε2
)
≤ c12

c2
nd−k

ε2

where c1 = (1/ε)O(d/ε2) and c2 = O(d/(d − k)!).

We now turn to prove the Lemmas required for the proof of Theorem 7. We prove Lemma 10
in Subsection 2.1 and Lemma 11 in Subsection 2.2.

2.1 Proof of the main technical lemma: Lemma 10

Before proving Lemma 10, we need some claims regarding derivatives. The first claim shows that
if a function has non-zero bias, it can be computed by an average of its derivatives.

Claim 12. Let g : F
n
2 → F2 be a function s.t. bias(g) 6= 0. Then:

(−1)g(x) =
1

bias(g)
Ea∈F

n
2
[(−1)ga(x)]

where the identity holds for any x ∈ F
n
2 .

Proof. Fix x. We have:

(−1)g(x)
Ea∈F

n
2
[(−1)ga(x)] = Ea∈F

n
2
[(−1)g(x)−ga(x)] = Ea∈F

n
2
[(−1)g(x+a)] = bias(g)

The following claim shows that if a function has low weight, then derivatives of it will also have
low weight, and thus large bias.

Claim 13. Let f : F
n
2 → F2 be a function s.t. wt(f) < 2−k(1 − ε). Let a1, ..., as ∈ F

n
2 for

1 ≤ s ≤ k−1 be any derivatives, and consider bias(fa1,...,as). Then bias(fa1,...,as) ≥ 1−2s+1−k(1−ε).
In particular:

1. If s < k − 1 then bias(fa1,...,as) ≥ 1 − 2s+1−k

2. If s = k − 1 then bias(fa1,...,as) ≥ ε

Proof. Consider fa1,...,as

fa1,...,as =
∑

I⊆[s]

f(x +
∑

i∈I

ai)

For random x, the probability that f(x +
∑

i∈I ai) = 1 is wt(f), which is at most 2−k(1 − ε).
Thus by union bound,

Px∈F
n
2
[∃I ⊆ [s], f(x +

∑

i∈I

ai) = 1] ≤ 2s−k(1 − ε)

In particular it implies that

wt(fa1,...,as) = Px∈F
n
2
[fa1,...,as(x) = 1] ≤ 2s−k(1 − ε)

and we get the bound since bias(fa1,...,as) = 1 − 2wt(fa1,...,as).
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We now can prove Lemma 10 using Claims 12 and 13.

Proof of Lemma 10. Let f : F
n
2 → F2 be a function s.t. wt(f) ≤ 2−k(1 − ε). Thus bias(f) =

1 − 2wt(f) > 0 and by Claim 12 we can write:

(−1)f(x) =
1

bias(f)
Ea1∈Fn

2
[(−1)fa1 (x)]

If k = 1 we are done. Otherwise by Claim 13, fa1 also has positive bias,

bias(fa1) ≥ 1 − 2s+1−k(1 − ε) > 0

and so again by Claim 12 we can write

(−1)fa1 (x) =
1

bias(fa1)
Ea2∈Fn

2
[(−1)fa1,a2(x)]

Thus we have:

(−1)f(x) =
1

bias(f)
Ea1∈Fn

2
[

1

bias(fa1)
Ea2∈Fn

2
[(−1)fa1,a2(x)]]

We can continue this process as long as we can guarantee that fa1,...,as has non-zero bias for all
a1, ..., as ∈ F

n
2 . By Claim 13 we know this happens for s ≤ k − 1, and thus we have:

(−1)f(x) = Ea1,...,ak∈F
n
2
[αa1,...,ak

(−1)fa1,...,ak
(x)]

where

αa1,...,ak
=

1

bias(f)

1

bias(fa1)

1

bias(fa1,a2)
...

1

bias(fa1,...,ak−1
)

We now bound αa1,...,ak
. By Claim 13 we get that:

αa1,...,ak
≤

1

ε

k−2
∏

s=1

1

1 − 2s−k+1
≤

1

ε

∏

r≥1

1

1 − 2−r
≤

10

ε

2.2 Proof of Approximation by sampling Lemma: Lemma 11

Proof of Lemma 11. Choose h1, ..., h` uniformly and independently from H. Fix x ∈ F
n
2 , and let

Zi be the random variable
Zi = chi

(−1)hi(x)

and let S = Z1+...+Z`

` . We will use the fact that if |S − (−1)f(x)| < 1 then sign(S) = (−1)f(x).
We first bound the probability that

|S − (−1)f(x)| > 1/4

By regular Chernoff arguments for bounded independent variables, since E[S] = (−1)f(x) and
each Zi is of absolute value of at most C, we get that

Ph1,...,h`∈H [|S − (−1)f(x)| > 1/4] ≤ e−
`

32C2
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(see for example Theorem A.1.16 in [1]).
In particular for ` = O(C2 log 1/δ) we get that

Ph1,...,h`∈H [|S − (−1)f(x)| > 1/4] ≤ δ

Thus by averaging arguments, there exists h1, ..., h` s.t.

Px∈F
n
2
[|
ch1(−1)h1(x) + ... + ch`

(−1)h`(x)

`
− (−1)f(x)| ≥ 1/4] ≤ δ

We now round each coefficient to a close rational, without damaging the approximation error.
The coefficient of (−1)hi(x) is αi =

chi

` . If we round chi
to the closest integer [chi

], we get that the

coefficient of each (−1)hi(x) is changed by at most 1
2` , and thus the total approximation is changed

by at most 1/2. Hence we have:

Px∈Fn
2
[|
[ch1 ](−1)h1(x) + ... + [ch`

](−1)h`(x)

`
) − (−1)f(x)| ≥ 3/4] ≤ δ

Thus we got that

Px∈F
n
2
[sign(

[ch1 ](−1)h1(x) + ... + [ch`
](−1)h`(x)

`
) 6= (−1)f(x)] ≤ δ

3 List-decoding size of Reed-Muller codes

In this section we turn to the problem of bounding the list-decoding size of Reed-Muller codes, and
we prove the First Main Theorem (Theorem 4). We will see that the same techniques we used in
Section 2 to bound the weight distribution, can be applied with minor variants to also bound the
list-decoding size.

The list-decoding size of a code is at least the accumulative weight distribution, i.e. L(α) ≥
A(α). However, the list-decoding size can sometimes be much larger than the accumulative weight
distribution.

Theorem 4 is a direct corollary of Theorem 14, giving an upper bound on the list-decoding
size at distance 2`−d − ε, and the same lower bound we used to bound the accumulative weight
distribution, obtained in Lemma 8.

Theorem 14 (Upper bound on the list-decoding size). For any integer 1 ≤ k ≤ d − 1,

L(2−k(1 − ε)) ≤ c12
c2

nd−k

ε2
+c3

n

ε2

where c1 = (1/ε)O(d/ε2), c2 = O(d/(d− k)!) and c3 = O(dk). Importantly, c1, c2, c3 are independent
of n, and c2, c3 are independent of ε. In particular for constant d we get that

L(2−k − ε) ≤ 2O(nd−k

ε2
)
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Proof of Theorem 14. The proof will be similar to the proof of Theorem 7. Fix f : F
n
2 → F2 to be

any function. We will bound the number of polynomials p of degree at most d s.t. dist(p, f) ≤
2−k(1 − ε). Let p ∈ RM(n, d) be such a polynomial, i.e. dist(p, f) ≤ 2−k(1 − ε). Let g(x) =
p(x)− f(x), then wt(g) ≤ 2−k(1 − ε). As in the proof of Theorem 7, we use the derivatives of g to
approximate g. Set δ = 2−(d+2). By Lemma 10 there are ` = O( d

ε2
) derivatives {gai

1,...,ai
k

: i ∈ [`]}

s.t. the distance between g(x) and F (x) is at most δ, where

F (x) = sign(

∑`
i=1 si(−1)

g
ai
1

,...,ai
k
(x)

`
)

Thus we have that F + f approximates p, since:

dist(p, F + f) = dist(p − f, F ) ≤ δ

As in the proof of Theorem 7, given F (and f) there can be at most a single p ∈ RM(n, d) s.t.
dist(p, F + f) ≤ δ, and so if we will bound the number of functions F we will bound the number
of codewords close to f .

Consider the derivative gai
1,...,ai

k
(x) used in the expression for F . By linearity of derivation it

can be decomposed as
gai

1,...,ai
k
(x) = pai

1,...,ai
k
(x) − fai

1,...,ai
k
(x)

Each pai
1,...,ai

k
(x) is a degree d − k polynomial, and so has at most 2(

n

≤d−k) possibilities. Each

fai
1,...,ai

k
(x) =

∑

S⊆[k] f(x+
∑

j∈S ai
j) can be described by the values of ai

1, ..., a
i
k ∈ F

n
2 , since we have

access to f , and so has at most 2kn possibilities. Each coefficient si has O(1/ε) possibilities. Thus,
in total the number of different F ’s is at most

(

2(
n

≤d−k)+kn
· (1/ε)

)O( d

ε2
)
≤ c12

c2
nd−k

ε2
+c3

n

ε2

where c1 = (1/ε)O(d/ε2), c2 = O(d/(d − k)!) and c3 = O(kd).
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A Generalized Reed-Muller codes

The problems of bounding both the accumulative weight distribution and the list-decoding size
can be extended to Generalized Reed-Muller, the code of low-degree polynomials over larger fields.
However, our techniques fail to prove tight result in these cases. We briefly describe the reasons
below, and give some partial results.

We start by making some basic definitions. Let q be a prime, and let GRMq(n, d) denote the
code of multivariate polynomials p(x1, ..., xn) over the field Fq, of total degree at most d.

Definition 7. The relative weight of a function f : F
n
q → Fq is the fraction of non-zero elements,

wt(f) =
1

qn
|{x ∈ F

n
q : f(x) 6= 0}|

Definition 8. The relative distance between two functions f, g : F
n
q → Fq is defined as

dist(f, g) = Px∈Fn
q
[f(x) 6= g(x)]

The accumulative weight distribution and the list-decoding size are defined analogously for
GRMq(n, d), using the appropriate definitions for relative weight and relative distance. We denote
them by Aq and Lq. For each 1 ≤ k ≤ d, we define a distance rk:

1. For k = 1, let d = (q − 1)a + b, where 1 ≤ b ≤ q − 1. Define r1 = q−a(1 − b/q).

2. For 2 ≤ k ≤ d−1, let d−k = (q−1)a+b, where 1 ≤ b ≤ q−1. Define rk = q−a(1−b/q)(1−1/q).

3. For k = d, define rd = 1 − 1/q.

12



We conjecture that both for the accumulative weight distribution and the list-decoding size, the
distances rk are the thresholds for the exponential dependency in n:

Conjecture 15. Let ε > 0 be constant, and consider GRMq(n, d) for constant d. Then:

• For α ≤ r1 − ε both Aq(α) and Lq(α) are constants.

• For rk ≤ α ≤ rk+1 − ε both Aq(α) and Lq(α) are 2Θ(nk).

• For α ≥ rd both Aq(α) and Lq(α) are 2Θ(nd).

Proving lower bounds for Aq(rk) is similar to the case of RM(n, d).

Lemma 16 (Lower bound for Aq). For any integer 1 ≤ k ≤ d,

Aq(rk) ≥ 2Ω(nk)

The problem is proving matching upper bounds. Using directly the derivatives method we used
to give upper bounds for RM(n, d) gives the same bounds for GRMq(n, d), alas they are not tight
for q > 2:

Aq(2
−k − ε) ≤ 2O(nd−k)

If we would like to get upper bounds closer to the lower bounds, a natural approach would be
to generalize Lemma 10 to taking several derivatives in the same direction (which is possible over
larger fields). This would give us tight results for some values of k, if we could also generalize
Claim 12 to the case of taking a multiple derivative in the same direction. However, we didn’t find
a way of doing so.

Instead, we give partial results for Conjecture 15 in the two ends of the scale: when α ≤ r1 − ε,
and when rd−1 ≤ α ≤ rd − ε (when α ≥ rd Lemma 16 gives Lq(α) and Aq(α) are both exponential
in nd).

First, the minimal distance of GRMq(n, d) is known to be r1. Thus, for any ε > 0, Aq(r1−ε) = 1.
Gopalan, Klivans and Zuckerman [4] prove that Lq(r1 − ε) is constant when q − 1 divides d:

Theorem 17 (Corollary 18 in [4]). Assume q − 1 divides d. Then:

Lq(r1 − ε) ≤ c(q, d, ε)

Moving to the case of rd−1 ≤ α ≤ rd − ε, we prove:

Lemma 18. Let ε > 0 be constant. then:

Aq(rd − ε) ≤ 2O(nd−1)

We now move on to prove Lemmas 16 and 18. We start with Lemma 16:

Proof of Lemma 16. We start by proving for 2 ≤ k ≤ d − 1. Let d − k = (q − 1)a + b, where
1 ≤ b ≤ q − 1. Single out a + 2 variables x1, ..., xa+2, and let g be any degree k polynomial on the
remaining variables. The following polynomial has degree d and weight exactly q−a(1−b/q)(1−1/q):

g′(x1, ..., xn) =





a
∏

i=1

q−1
∏

j=1

(xi − j)









b
∏

j=1

(xa+1 − j)



 (xa+2 + g(xa+3, ..., xn))
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The number of distinct polynomial g is 2Ω(nd).
The proofs for k = 1 and k = d are similar: for k = 1, let d = (q − 1)a + b. Let l1(x), ..., la+1(x)

be any independent linear functions, and consider

g′(x1, ..., xn) =





a
∏

i=1

q−1
∏

j=1

(li(x) − j)









b
∏

j=1

(la+1(x) − j)





For k = d, let g be any degree d polynomial on variables x2, ..., xn, and consider g′(x1, ..., xn) =
x1 + g(x2, ..., xn).

We now continue to prove Lemma 18. We first make some necessary definitions.

Definition 9. The bias of a polynomial p(x1, ..., xn) over Fq is defined to be

bias(p) = Ex∈Fn
q
[ωp(x)]

where ω = e2πi/q is a primitive q-th root of unity.

Kaufman and Lovett [6] prove that biased low-degree polynomials can be decomposed into a
function of a constant number of lower degree polynomials:

Theorem 19 (Theorem 2 in [6]). Let p(x1, ..., xn) be a degree d polynomial, s.t. |bias(p)| ≥ ε.
Then p can be decomposed as a function of a constant number of lower degree polynomials:

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d − 1, and c = c(q, d, ε).

We will use Theorem 19 to bound A(rd − ε) for any constant ε > 0.

Proof of Lemma 18. We will show that any polynomial p ∈ GRMq(n, d) s.t. wt(p) ≤ 1 − 1/p − ε
can be decomposed as

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d − 1, and c depends only on q, d and ε. Thus the number of such polynomials
is bounded by the number of possibilities to choose c degree d − 1 polynomials, and a function
F : F

c
q → Fq. The number of such possibilities is at most 2O(nd−1). Let p be s.t. wt(p) ≤ 1−1/p− ε.

We will show there exists α ∈ Fq, α 6= 0 s.t. bias(αp) ≥ ε. We will then finish by using Theorem 19
on the polynomial αp.

Consider the bias of αp for random α ∈ Fq:

Eα∈Fq [bias(αp)] = Eα∈Fq,x∈Fn
q
[ωαp(x)] = 1 − wt(p)

since for x’s for which p(x) = 0, Eα∈Fq [ω
αp(x)] = 1, and for x s.t. p(x) 6= 0, Eα∈Fq [ω

αp(x)] = 0. We
thus get that:

Eα∈Fq\{0}[bias(αp)] = 1 −
q

q − 1
wt(p) ≥

q

q − 1
ε

So, there must exist α 6= 0 s.t. bias(αp) ≥ ε.
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