
Weight Distribution and List-Decoding Size of Reed-Muller Codes

Tali Kaufman ∗

The Weizmann Institute of Science
kaufmant@mit.edu

Shachar Lovett †

The Weizmann Institute of Science
shachar.lovett@weizmann.ac.il

Ely Porat
Bar-Ilan University
porately@cs.biu.ac.il

May 28, 2010

Abstract

The weight distribution and list-decoding size of Reed-Muller codes are studied in this work.
Given a weight parameter, we are interested in bounding the number of Reed-Muller codewords
with a weight of up to the given parameter. Additionally, given a received word and a distance
parameter, we are interested in bounding the size of the list of Reed-Muller codewords that are
within that distance from the received word. In this work, we make a new connection between
computer science techniques used for studying low-degree polynomials and these coding theory
questions. Using this connection we progress significantly towards resolving both the weight
distribution and the list-decoding problems.

Obtaining tight bounds for the weight distribution of Reed-Muller codes has been a long
standing open problem in coding theory, dating back to 1976 and seemingly resistent to the
common coding theory tools. The best results to date are by Azumi, Kasami and Tokura
which provide bounds on the weight distribution that apply only up to 2.5 times the minimal
distance of the code. We provide asymptotically tight bounds for the weight distribution of the
Reed-Muller code that apply to all distances.

List-decoding has both theoretical and practical applications in various fields. To name
a few, hardness amplification in complexity, constructing hard-core predicates from one way
functions in cryptography and learning parities with noise in learning theory.

Many algorithms for list-decoding have the crux of their analysis lying in bounding the
list-decoding size. The case for Reed–Muller codes is similar, and Gopalan, Klivans and Zuck-
erman gave a list-decoding algorithm, whose complexity is determined by the list-decoding size.
Gopalan et. al provided bounds on the list-decoding size of Reed–Muller codes which apply
only up to the minimal distance of the code. We provide asymptotically tight bounds for the
list-decoding size of Reed–Muller codes which apply to all distances.

∗Research supported in part by a Koshland Fellowship.
†Research supported by the Israel Science Foundation (grant 1300/05) and by an ERC grant of Irit Dinur.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 111 (2008)

1 Introduction

The weight distribution of an error correcting code counts, for every given weight parameter, the
number of codewords with weight bounded by the given parameter. The weight distribution of
a code is the main characteristic of the code, and governs the behavior of the code, from both
theoretical and practical aspects.

Understanding the weight distribution of Reed-Muller codes is a 30-year-old standing open
question in coding theory. The last progress on this question was made by Kasami and Tokura [11]
that characterized the codewords of Reed-Muller codes of weight up to twice the minimal distance
of the code, and hence obtained bounds for the weight distribution that apply till twice the minimal
distance of the code. In this work we study the weight distribution of Reed Muller codes and provide
asymptotically tight bounds that apply to all distances.

The problem of list-decoding an error correcting code is the following: given a received word
and a distance parameter find all codewords of the code that are within the given distance from the
received word. List-decoding is a generalization of the more common notion of unique decoding in
which the given distance parameter ensures that there can be at most one codeword of the code
that is within the given distance from the received word. The notion of list-decoding has numerous
practical and theoretical implications. The breakthrough results in this field are due to Goldreich
and Levin [4] and Sudan [13] who gave efficient list decoding algorithms for the Hadamard code
and the Reed-Solomon code. See surveys by Guruswami [8] and Sudan [14] for further details.
In complexity, list-decodable codes are used to perform hardness amplification of functions [15].
In cryptography, list-decodable codes are used to construct hard-core predicates from one way
functions [4]. In learning theory, list decoding of Hadamard codes implies learning parities with
noise [10].

In this work we study the question of list-decoding Reed-Muller codes. Specifically, we are
interested in bounding the list sizes obtained for different distance parameters for the list-decoding
problem. Our work provides asymptotically tight bounds that apply to all distances. The improved
bounds, imply improved algorithms for list-decoding Reed-Muller codes.

Our results are obtained by making a new connection between computer science techniques used
for studying low-degree polynomials and the discussed coding theory questions. Using this connec-
tion we manage to progress significantly towards resolving these two important open problems.

Our proofs are technically relatively simple. We view this as evidence to the importance of
this new connection, since these were considered as open problems, resistent to the more common
coding theory tools. We view this as the main innovation of our work.

1.1 Reed–Muller codes

Reed-Muller codes are a very fundamental and well studied family of codes. RM(n, d) is a linear
code, whose codewords f ∈ RM(n, d) : Fn2 → F2 are evaluations of polynomials in n variables of
total degree at most d over F2. In this work we study the code RM(n, d) when d � n, and are
interested in particular in the case of constant d.

The following facts regarding RM(n, d) are straight-forward: It has block length of 2n, dimension∑
i≤d
(
n
i

)
and minimum relative distance 2n−d

2n = 2−d.

1.2 Weight distribution of Reed-Muller codes

We now formally define the weight distribution of a code, and discuss previous known bounds for
the weight distribution of Reed-Muller codes.

2

Definition 1 (Relative weight). The relative weight of a function/codeword f : Fn2 → F2 is the
fraction of non-zero elements,

wt(f) =
1
2n
|{x ∈ Fn2 : f(x) = 1}|

Definition 2 (Accumulative weight distribution). The accumulative weight distribution of
RM(n, d) at a relative weight α is the number of codewords up to this weight, i.e.

A(α) = |{p ∈ RM(n, d) : wt(p) ≤ α}|

where 0 ≤ α ≤ 1.

It is well-known that for any p ∈ RM(n, d) which is not identically zero, wt(p) ≥ 2−d. Thus,
A(2−d − ε) = 1 for any ε > 0. Kasami and Tokura [11] characterized the codewords in RM(n, d)
of weight up to twice the minimal distance of the code (i.e up to distance 21−d). Based on their
characterization one could conclude the following.

Corollary 1 (Corollary 10 in [7]).

A(21−d − ε) ≤ (1/ε)2(n+1)

Corollary 1 and simple lower bounds (which we show later, see Lemma 15) show that A(α) =
2Θ(n) for α ∈ [2−d, 21−d − ε] for any ε > 0 (and constant d).

1.3 List-decoding size of Reed-Muller codes

We now formally define the list-decoding size of a code, and discuss previous known bounds for the
list-decoding size of Reed-Muller codes. Moreover we discuss known list-decoding algorithms for
Reed-Muller codes. We start with the following definition.

Definition 3 (Relative distance between two functions). The relative distance between two func-
tions f, g : Fn2 → F2 is defined as

dist(f, g) = Px∈Fn
2
[f(x) 6= g(x)]

Our work focuses on understanding the asymptotic growth of the list size in list-decoding
of Reed-Muller codes, as a function of the distance parameter. Specifically we are interested in
obtaining bounds on the following.

Definition 4 (List-decoding size). For a function f : Fn2 → F2 let the ball at relative distance α
around f be

B(f, α) = {p ∈ RM(n, d) : dist(p, f) ≤ α}

The list-decoding size of RM(n, d) at distance α, denoted by L(α), is the maximal size of B(f, α)
over all possible functions f , i.e.

L(α) = max
f :Fn

2→F2

|B(f, α)|

In a recent work, Gopalan, Klivans and Zuckerman [7] proved that for distances up to the
minimal distance of the code, the list-decoding size of Reed-Muller codes remains constant.

3

Theorem 2 (Theorem 11 in [7]).

L(2−d − ε) ≤ O
(

(1/ε)8d
)

Their result of bounding the list-decoding size of Reed-Muller codes is inherently limited to
work up to the minimum distance of the code, since it uses the structural theorem of Kasami and
Takura on Reed-Muller codes [11], which implies a bound on the weight distribution of Reed-Muller
codes that works up to twice the minimum distance of the code.

Additionally, the work of [7] has developed a list-decoding algorithm for RM(n, d) whose running
time is polynomial in the worst list-decoding size and in the block length of the code.

Theorem 3 (Theorem 4 in [7]). Given a distance parameter α and a received word R : Fn2 → F2,
there is an algorithm that runs in time poly(2n, L(α)) and produces a list of all p ∈ RM(n, d) such
that dist(p,R) ≤ α.

Since Gopalan et al. could obtain non-trivial bounds on the list-decoding size for distance
parameter α that is bounded by the minimum distance of the Reed-Muller code, their algorithm
running time could be analyzed only for α that is less than the minimum distance of the code.
This supports our earlier statement, that the crux of the analysis of list-decoding algorithms is in
bounding the list-decoding size.

1.4 Our Results

The weight distribution of RM(n, d) codes beyond twice the minimum distance was widely open
prior to our work. See e.g. Research Problem (15.1) in [12] and the related discussion in that
chapter. In this work we provide asymptotic bounds for the weight distribution of RM(n, d) that
applied for all weights 2−d ≤ α ≤ 1/2. We state now our results for constant d, where the notation
O(·),Ω(·),Θ(·) hides constants depending only on d. Our first main result gives exact boundaries on
the range of α for which A(α) = 2Θ(n`), for any ` = 1, 2, ..., d, showing there are ”cut-off distances”,
at which the accumulative weight distribution jumps from 2Θ(n`) to 2Θ(n`+1).

Theorem 4 (First main theorem - accumulative weight distribution). Let 1 ≤ ` ≤ d − 1 be an
integer, and let ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

2Ω(n`) ≤ A(α) ≤ (1/ε)O(n`)

and A(α) = 2Θ(nd) for any α ≥ 1/2.

We also address the more general problem of bounding the list-decoding size. Gopalan et al. [7]
left as an open problem the question of bounding the list-decoding size of Reed-Muller codes beyond
the minimal distance. We give tight bounds on the list-decoding size of Reed–Muller codes that
apply to all distances. In fact, we show that the behavior of the list-decoding size is asymptotically
identical to that of the accumulative weight distribution.

Theorem 5 (Second main theorem - list-decoding size). Let 1 ≤ ` ≤ d − 1 be an integer, and let
ε > 0. For any α ∈ [2`−d−1, 2`−d − ε]

2Ω(n`) ≤ L(α) ≤ (1/ε)O(n`)

and L(α) = 2Θ(nd) for any α ≥ 1/2.

4

Using Theorem 5 and Theorem 3, we obtain the following algorithmic result for list-decoding
Reed-Muller codes.

Theorem 6 (List-decoding algorithm). Let R : Fn2 → F2 be a received word. Let α ∈ [2`−d−1, 2`−d−
ε] be a required distance parameter, where 1 ≤ ` ≤ d − 1 is integer and ε > 0. There exists an
algorithm that runs in time (1/ε)O(n`) and produces a list of all p ∈ RM(n, d) such that dist(p,R) ≤
α.

Observe that Theorems 4 and 5 are asymptotically tight even for sub-constant values of ε. The
smallest possible value is ε = 2−n, and indeed for α = 2`−d− ε we get that both A(α) and L(α) are
upper bounded by (1/ε)O(n`) = 2O(n`+1), while for α = 2`−d they are lower bounded by 2O(n`+1).

1.5 Techniques

Our results are obtained by making a new connection between computer science techniques used
for studying low-degree polynomials and weight distribution and list-decoding size of Reed-Muller
codes. Evidence of the importance of this new connection is the technical simplicity of our proofs
that solve these well-known open problems. Following is a detailed discussion of our techniques.

The bounds on the accumulative weight distribution of the Reed-Muller code are obtained using
the following novel strategy. We study the structure of functions f : Fn2 → F2 based on their discrete
derivatives. The discrete derivative of f in direction y ∈ Fn2 is given by

fy(x) = f(x+ y) + f(x).

The k-iterated derivative of f in directions y1, . . . , yk ∈ Fn2 is given by

fy1,...,yk
(x) = (fy1,...,yk−1

)yk
(x) =

∑
I⊆{1,...,k}

f(x+
∑
i∈I

yi).

Note that if f is an n-variate polynomial over F2 of total degree d, then any derivative of it is a
polynomial of total degree at most d−1, and any k-iterated derivative of it is a polynomial of total
degree at most d− k. This is an important property that is crucial to our proof.

As a first step to bounding the weight distribution of Reed-Muller codes we establish the
following general result. We show that a function f : Fn2 → F2 whose weight is bounded by
wt(f) ≤ 2−k(1 − ε) can be approximated by a universal function A of a small number of the k-
iterated derivatives of f (Lemma 7). That is, for any approximation parameter δ > 0, there exist
c = c(k, ε, δ) sets of k-iterated derivatives {yi,1, . . . , yi,k}1≤i≤c, such that

Pr
x∈Fn

2

[f(x) 6= A({yi,j}, fy1,1,...,y1,k
(x), . . . , fyc,1,...,yc,k

(x))] < δ.

We accomplish this in three steps. It will be useful to represent functions f : Fn2 → F2 as (−1)f :
Fn2 → {−1, 1}. First, we show that the function (−1)f(x) can be computed as an expectation of its
(k − 1)-iterated derivatives (−1)fy1,...,yk−1

(x) multiplied by some bounded coefficients (Lemma 8).
Moreover, we show that each of the (k−1)-iterated derivatives is biased (a function g : Fn2 → {−1, 1}
is biased if E[g] 6= 0). Using standard sampling methods we convert this to approximation using only
a few biased (k − 1)-iterated derivatives (Lemma 10). The final step is approximating each biased
(k − 1)-iterated derivative by a small number of its derivatives (which are k-iterated derivatives of
f). To this end we prove a general lemma showing that any biased function can be approximated

5

in a concise manner by an algorithm having oracle access to a small number of its derivatives
(Lemma 9).

We now apply the approximation by iterative derivative result we just described to bound the
weight distribution of Reed-Muller codes. Fix δ = δ(d) to be specified later. The approximation
lemma implies that every RM(n, d) codeword of weight up to 2−k(1− ε) can be well approximated
by a function of c = c(k, ε, δ) of its k-iterated derivatives. Now we use the minimal distance of
Reed-Muller codes. Any two distinct codewords f ′, f ′′ ∈ RM(n, d) have distance at least 2−d. Thus,
if we have a good enough approximation of f ′ (that is, for δ < 2−(d+1)), then such an approximation
determines f ′ uniquely. Hence, to upper bound the number of Reed-Muller codewords it is enough
to upper bound the number of δ-approximations for these codewords.

Using the approximation result we obtained, we get that the number of RM(n, d) code-
words up to weight 2−k(1 − ε), is bounded by the number of possible distinct inputs for the
approximation function A: the set of directions {yi,j} and the directional derivatives functions
fy1,1,...,y1,k

(x), . . . , fyc,1,...,yc,k
(x). Each direction yi,j is an element of Fn2 , hence has 2n possible val-

ues; each k-iterated derivative is an n-variate polynomial of total degree at most d−k, hence has at
most 2O(nd−k) possible values. Thus, we get that the number of Reed-Muller codewords of weight
up to 2−k(1− ε) can be bounded by

A(2−k(1− ε)) ≤ 2n·kc+O(nd−k)·c.

Combining these with the estimates we get for c we get the required upper bound. We complement
these upper bound estimations with matching lower bounds. The bounds on the list-decoding size
of Reed-Muller codes are obtained using similar techniques.

A similar work along the same lines is the work of Bogdanov and Viola [3], which shows that
a function f : Fn2 → F2 whose weight is bounded by wt(f) ≤ 1/2 − ε can be well approximated
by c = c(k, ε) of its 1st-derivatives. Note that approximation by 1st-derivatives does not imply in
general approximation by k-iterated derivatives which is crucial for obtaining our bounds here.

1.6 Generalized Reed-Muller Codes

The problems of bounding both the accumulative weight distribution and the list-decoding size can
be extended to Generalized Reed-Muller codes, the family of low-degree polynomials over larger
fields. However, our techniques fail to prove tight results in these cases, as they do for Reed–Muller
codes. We provide in Section 4 some partial results for this case and make a conjecture about the
correct bounds.

1.7 Organization

The paper is organized as follows. In Section 2 we prove the main technical lemma, showing that
a low-weight function can be approximated by its iterated derivatives. We then apply this lemma
to bounding the weight distribution and list-decoding size of Reed-Muller codes in Section 3. We
study the extension of our techniques for Generalized Reed-Muller codes in Section 4, where we
provide some (non tight) bounds for these codes.

2 Approximation of biased functions by derivatives

We prove in this section the main technical lemma we use for bounding the weight distribution and
list-decoding size of Reed–Muller codes. We require some definitions before stating it.

6

Definition 5 (Discrete derivatives). Let f : Fn2 → F2 by a function. The discrete derivative of f
in direction a ∈ Fn2 is defined as

fa(x) = f(x+ a) + f(x).

The k-iterated discrete derivative of f in directions a1, ..., ak ∈ Fn2 is defined as

fa1,...,ak
(x) =(...((fa1)a2)...)ak

(x) =∑
S⊆[k]

f(x+
∑
i∈S

ai)

We note that usually derivatives are defined as fa(x) = f(x+a)−f(x), but since we are working
over F2, we can ignore signs. Another notion central to our proof is that of a bias of a function.

Definition 6 (Bias). The bias of a function f : Fn2 → F2 is

bias(f) =Ex∈Fn
2
[(−1)f(x)] =

P[f = 0]− P[f = 1] =
1− 2wt(f)

Our main lemma states that if f is a function with small weight, then it can be approximated
by an algorithm having oracle access to a small number of its iterated derivatives. In the following
when we assume an algorithm A receives as input a function g(·), we mean A has the ability to
evaluate g on any input. One example is if A receives a representation of g in some canonical form
(when g is a polynomial, A receives as input its list of coefficients).

Lemma 7. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1− ε). For every error parameter
δ > 0 there exists a universal algorithm A (that is, independent of f) with the following properties.
A has two types of inputs. The first is an input x ∈ Fn2 on which A is required to guess f(x). The
second input is a family of t = O(log(1/εδ) · log(1/δ)) sets of k directions {yi,j ∈ Fn2 : 1 ≤ i ≤ t, 1 ≤
j ≤ k} and their corresponding k-iterated derivatives of f , {fyi,1,...,yi,k

(·) : 1 ≤ i ≤ t}. For every
function f there exists a set of directions {yi,j} such that

Pr
x∈Fn

2

[f(x) 6= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{fyi,1,...,yi,k
(·) : 1 ≤ i ≤ t})] ≤ δ.

Our starting point in the proof of Lemma 7 is the following lemma, which states that if a
function f has weight less than 2−k(1 − ε), then it can be computed exactly by a its iterated
(k − 1)-derivatives, and moreover each of theses derivatives is biased.

Lemma 8. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1 − ε) for integer k ≥ 2. Then
the function (−1)f(x) : Fn2 → {−1, 1} can be written as

(−1)f(x) =

Ea1,...,ak−1∈Fn
2
[αa1,...,ak−1

(−1)fa1,...,ak−1
(x)]

where

1. The coefficients αa1,...,ak−1
are real numbers of absolute value at most 10.

2. All the functions fa1,...,ak−1
are biased, bias(fa1,...,ak−1

) ≥ ε.

7

We prove Lemma 8 in Subsection 2.1. The second lemma shows that biased functions can be
approximated using a small number of their derivatives.

Lemma 9. Let f : Fn2 → F2 be a function such that bias(f) ≥ ε. For every error parameter δ > 0
there exists a universal algorithm A′ (that is, independent of f) with the following properties. A′
has two types of inputs. The first is an input x ∈ Fn2 on which A′ is required to guess f(x). The
second input is a set of t = log(1/εδ)+1 directions y1, . . . , yt ∈ Fn2 and the directional derivatives of
f in these directions fy1(·), . . . , fyt(·). For every function f there exists a set of directions y1, . . . , yt
such that

Pr
x∈Fn

2

[
f(x) 6= A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·))

]
≤ δ.

We prove Lemma 9 in Subsection 2.2. The last ingredient required for the proof of Lemma 7
is a standard sampling lemma showing how to transform exact computation by averaging many
functions, to approximation by averaging few functions.

Lemma 10. Let f : Fn2 → F2 be a function, H = {h1, ..., ht} a set of functions from Fn2 to F2, such
that there exist constants ch1 , ..., cht of absolute value at most C, such that

(−1)f(x) = Ei∈[t][chi
(−1)hi(x)] (∀x ∈ Fn2)

Then f can be approximated by a small number of the functions h1, ..., ht. For any error parameter
δ > 0, there exist functions h1, ..., h` ∈ H for ` = O(C2 log 1/δ), and a function F : F`2 → F2, such
that the relative distance between f(x) and F (h1(x), ..., h`(x)) is at most δ, i.e.

Px∈Fn
2
[f(x) 6= F (h1(x), ..., h`(x))] ≤ δ

The function F is a weighted majority, i.e. it is of the form

F (h1(x), ..., h`(x)) = sign(
∑̀
i=1

si(−1)hi(x)).

Moreover, we can have s1, ..., s` to be integers of absolute value at most C + 1.

We prove Lemma 10 in Subsection 2.3. We now prove Lemma 7 using Lemmas 8, 9 and 10.

Proof of Lemma 7. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1− ε), and let δ > 0 be
an error parameter. We start by defining an algorithm A1(x) approximating f(x) using a small
number of its (k − 1)-iterated derivatives. If k = 1 simply set A1(x) = f(x). For k ≥ 2 apply
Lemma 8 to get that (−1)f(x) can be exactly computed as

Ea1,...,ak−1∈Fn
2
[αa1,...,ak−1

(−1)fa1,...,ak−1
(x)]

where |αa1,...,ak
| ≤ 10 and bias(fa1,...,ak−1

(x)) ≥ ε. Applying Lemma 10 we get that f can be
approximated by a small number of its (k − 1)-iterated derivatives,

Pr
x∈Fn

2

[Maj(fa1,1,...,a1,k−1
(x), . . . , fa`,1,...,a`,k−1

(x))

6= f(x)] ≤ δ/2

where ` = O(log 1/δ). Define

A1(x) = Maj(fa1,1,...,a1,k−1
(x), . . . , fa`,1,...,a`,k−1

(x)).

8

We now approximate each (k − 1)-iterated derivative by a small number of its derivatives. We
will use Lemma 9 to this end. Notice this can be done since by Lemma 8 all (k − 1)-iterated
derivatives fai,1,...,ai,k−1

have bias of at least ε (and in the k = 1 case, bias(f) ≥ ε). Thus, for each
1 ≤ i ≤ ` there exists t = O(log(1/εδ)) directions yi,1, . . . , yi,t such that

Pr
x∈Fn

2

[fai,1,...,ai,k−1
(x) 6= A′(x; yi,1, . . . , yi,k,

fai,1,...,ai,k−1,yi,1(·), . . . , fai,1,...,ai,k−1,yi,t(·))]
≤ δ/(2`).

Plugging all these into A1, we get an algorithm A such that

Pr
x∈Fn

2

[f(x) 6= A(x; {yi,j : 1 ≤ i ≤ `, 1 ≤ j ≤ t},

{fai,1,...,ai,k−1,yi,j : 1 ≤ i ≤ `, 1 ≤ j ≤ t})] ≤ δ.

In total, A has as input ` · t = O(log(1/εδ) · log(1/δ)) k-iterated derivatives of f , and (a subset)
of the directions of these derivatives.

2.1 Proof of Lemma 8

Before proving Lemma 8, we need some claims regarding derivatives. The first claim shows that if
a function has non-zero bias, it can be computed by an average of its derivatives.

Claim 11. Let g : Fn2 → F2 be a function such that bias(g) 6= 0. Then

(−1)g(x) =
1

bias(g)
Ea∈Fn

2
[(−1)ga(x)]

where the identity holds for any x ∈ Fn2 .

Proof. Fix x. We have

(−1)g(x)Ea∈Fn
2
[(−1)ga(x)] =

Ea∈Fn
2
[(−1)g(x)−ga(x)] =

Ea∈Fn
2
[(−1)g(x+a)] = bias(g)

The following claim shows that if a function has low weight, then derivatives of it will also have
low weight, and thus large bias.

Claim 12. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1 − ε). Let a1, ..., as ∈ Fn2 for
1 ≤ s ≤ k−1 be any derivatives, and consider bias(fa1,...,as). Then bias(fa1,...,as) ≥ 1−2s+1−k(1−ε).
In particular

1. If s < k − 1 then bias(fa1,...,as) ≥ 1− 2s+1−k.

2. If s = k − 1 then bias(fa1,...,as) ≥ ε.

9

Proof. Consider fa1,...,as

fa1,...,as =
∑
I⊆[s]

f(x+
∑
i∈I

ai)

For random x, the probability that f(x +
∑

i∈I ai) = 1 is wt(f), which is at most 2−k(1 − ε).
Thus by the union bound,

Px∈Fn
2
[∃I ⊆ [s], f(x+

∑
i∈I

ai) = 1] ≤ 2s−k(1− ε)

In particular it implies that

wt(fa1,...,as) = Px∈Fn
2
[fa1,...,as(x) = 1] ≤ 2s−k(1− ε)

and we get the bound since bias(fa1,...,as) = 1− 2wt(fa1,...,as).

We now can prove Lemma 8 using Claims 11 and 12.

Proof of Lemma 8. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1 − ε). Thus bias(f) =
1− 2wt(f) > 0 and by Claim 11 we can write

(−1)f(x) =
1

bias(f)
Ea1∈Fn

2
[(−1)fa1 (x)]

If k = 1 we are done. Otherwise by Claim 12, fa1 also has positive bias,

bias(fa1) ≥ 1− 2s+1−k(1− ε) > 0

and so again by Claim 11 we can write

(−1)fa1 (x) =
1

bias(fa1)
Ea2∈Fn

2
[(−1)fa1,a2 (x)]

Thus we have

(−1)f(x) =
1

bias(f)
Ea1∈Fn

2
[

1
bias(fa1)

Ea2∈Fn
2
[(−1)fa1,a2 (x)]]

We can continue this process as long as we can guarantee that fa1,...,as has non-zero bias for all
a1, ..., as ∈ Fn2 . By Claim 12 we know this happens for s ≤ k − 1, and thus we have

(−1)f(x) =

Ea1,...,ak−1∈Fn
2
[αa1,...,ak−1

(−1)fa1,...,ak−1
(x)]

where

αa1,...,ak
=

1
bias(f)

1
bias(fa1)

1
bias(fa1,a2)

...
1

bias(fa1,...,ak−2
)
.

By Claim 12 we know that bias(fa1,...,ak−1
) ≥ ε for all (k − 1)-iterated derivatives. We now

bound αa1,...,ak
. By Claim 12 we get that

1 ≤ αa1,...,ak
≤

k−2∏
s=0

1
1− 2s−k+1

≤
∏
r≥1

1
1− 2−r

≤ 10.

10

2.2 Proof of Lemma 9.

For a set of directions y1, . . . , yt ∈ Fn2 and a subset I ⊆ [t], define yI =
∑

i∈I yi. We start by
showing that if we know the directions y1, . . . , yt and the directional derivatives of f in these
directions fy1(·), . . . , fyt(·), then we can also compute all the derivatives in directions yI , that is
the functions fyI (·).
Claim 13. Let y1, . . . , yt ∈ Fn2 a set of directions, and fy1(·), . . . , fyt(·) the directional derivatives
of a function f : Fn2 → F2. For every non-empty I ⊆ [t] there exists an algorithm AI such that

AI(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) = fyI (x)

for all x ∈ Fn2 .

Proof. Let I = {i1, . . . , ir}. The algorithm AI calculates

AI(x) =
r∑

a=1

fyia
(x+

a−1∑
b=1

yib).

It is straightforward to verify that AI(x) = fyI (x) for all x ∈ Fn2 .

We turn to prove Lemma 9.

Proof of Lemma 9. Define the algorithm A′ as follows. For a set of directions y1, . . . , yt ∈ Fn2 and
the directional derivatives of f : Fn2 → F2 in these directions fy1(·), . . . , fyt(·), define A′(x) to be
the majority vote of fyI (x), which according to Claim 13 can be computed by algorithms receiving
x, y1, . . . , yt, fy1(·), . . . , fyt(·), that is,

A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) =
Maj {AI(x; y1, . . . , yt, fy1(·), . . . , fyt(·))}∅6=I⊆[t] =

Maj {fyI (x)}∅6=I⊆[t] .

We will prove that there is a choice of y1, . . . , yt for which A′(x) = f(x) for almost all x. In fact,
we will prove this occurs for a random choice of y1, . . . , yt. First, we claim that A′(x) = f(x) iff

S =
∑
∅6=I⊆[t]

(−1)f(x+yI) > 0.

This is because fyI (x) = f(x) iff f(x+ yI) = 0. Having the majority of fyI (x) being equal to f(x)
is equivalent to S > 0 (note we cannot have S = 0 as S is the sum of an odd number of {−1, 1}
summands). Let x, y1, . . . , yt ∈ Fn2 be chosen uniformly and independently. We prove S > 0 with
high probability using Markov’s inequality. First we compute E[S].

E[S] = E

 ∑
∅6=I⊆[t]

(−1)f(x+yI)

 = (2t − 1)bias(f).

To bound Var[S] we observe that the different summands in S are pairwise independent. This is
because for distinct I, J ⊆ [t] we have

E[(−1)f(x+yI) · (−1)f(x+yI)] =

E[(−1)f(x+yI)+f(x+yJ)] =

E[(−1)f(x+yI)] · E[(−1)f(x+yJ)] =

bias(f)2,

11

where we used the fact that the two points x + yI and x + yJ are uniform and independent given
that x, y1, . . . , yt are chosen uniformly and independently. We thus conclude that

Var[S] =
∑
∅6=I⊆[t]

Var[(−1)f(x+yI)]

= (2t − 1)Var[(−1)f(x)] ≤ 2t − 1.

Hence we conclude that

Pr[S ≤ 0] ≤ Pr[|S − E[S]| ≥ (2t − 1)bias(f)]

≤ bias(f)
2t − 1

.

Thus, for t = log(1/εδ) + 1 we get that

Pr[S ≤ 0] ≤ δ,

Hence we get that for uniformly chosen x, y1, . . . , yt,

Pr
x,y1,...,yt∈Fn

2

[A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·))

6= f(x)] ≤ δ.

By an averaging argument, for every f there must exist a choice for y1, . . . , yt where

Pr
x∈Fn

2

[A′(x; y1, . . . , yt, fy1(·), . . . , fyt(·)) 6= f(x)] ≤ δ.

2.3 Proof of Lemma 10

The proof of Lemma 10 is based on a standard sampling argument.

Proof of Lemma 10. Choose h1, ..., h` uniformly and independently from H. Fix x ∈ Fn2 , and let
Zi be the random variable

Zi = chi
(−1)hi(x)

and let S = Z1+...+Z`
` . We will use the fact that if |S − (−1)f(x)| < 1 then sign(S) = (−1)f(x).

We first bound the probability that

|S − (−1)f(x)| > 1/4

By regular Chernoff arguments for bounded independent variables, since E[S] = (−1)f(x) and
each Zi is of absolute value of at most C, we get that

Ph1,...,h`∈H [|S − (−1)f(x)| > 1/4] ≤ e−
`

32C2

(see for example Theorem A.1.16 in [2]).
In particular for ` = O(C2 log 1/δ) we get that

Ph1,...,h`∈H [|S − (−1)f(x)| > 1/4] ≤ δ

12

Thus by averaging arguments, there exists h1, ..., h` such that

Px∈Fn
2
[|
∑`

i=1 chi
(−1)hi(x)

`
− (−1)f(x)| ≥ 1/4] ≤ δ

We now round each coefficient to a close rational, without damaging the approximation error.
The coefficient of (−1)hi(x) is αi =

chi
` . If we round chi

to the closest integer [chi
], we get that the

coefficient of each (−1)hi(x) is changed by at most 1
2` , and thus the total approximation is changed

by at most 1/2. Hence we have

Px∈Fn
2
[|
∑`

i=1[chi
](−1)hi(x)

`
)− (−1)f(x)| ≥ 3/4] ≤ δ.

Thus we got that

Px∈Fn
2
[sign(

∑`
i=1[chi

](−1)hi(x)

`
) 6= (−1)f(x)] ≤ δ.

Since dividing by ` does not change the sign we get

Px∈Fn
2
[sign(

∑̀
i=1

[chi
](−1)hi(x)) 6= (−1)f(x)] ≤ δ

3 Bounds for Reed-Muller codes

In this section we study the weight distribution and list-decoding size of Reed–Muller codes. Recall
that RM(n, d) denotes the code of multivariate polynomials p(x1, ..., xn) over F2 of total degree at
most d. In the following n and d will always stand for the number of variables and the total degree.
We assume that d� n, and study in particular the case of constant d.

3.1 Weight distribution of Reed-Muller codes

We prove in this subsection our first main theorem, Theorem 4, which gives the asymptotic behavior
of the weight distribution of Reed-Muller codes. It is a direct corollary of Theorem 14, giving an
upper bound on the accumulative weight at distance 2`−d− ε, and Lemma 15, giving a simple lower
bound at distance 2`−d−1.

Theorem 14 (Upper bound on the accumulative weight). For any integer 1 ≤ k ≤ d− 1,

A(2−k(1− ε)) ≤ (1/ε)O(d2

(d−k)!
nd−k)

.

In particular for constant d we get that

A(2−k − ε) ≤ (1/ε)O(nd−k).

Lemma 15 (Lower bound on the accumulative weight). For any integer 1 ≤ k ≤ d

A(2−k) ≥ 2
nd−k+1

(d−k+1)!
(1+o(1))

.

In particular for constant d we get that

A(2−k) ≥ 2Ω(nd−k+1).

13

We start by proving the lower bound.

Proof of Lemma 15. Single out k variables x1, ..., xk, and let q be any degree d− k+ 1 polynomials
on the remaining n − k variables. First, for any such q, the following degree d polynomial has
relative weight exactly 2−k

q′(x1, ..., xn) = x1x2...xk−1(xk + q(xk+1, ..., xn))

The number of different polynomials q is

2(n−k
d−k+1) = 2

nd−k+1

(d−k+1)!
(1+o(1))

We prove Theorem 14 using Lemma 7.

Proof of Theorem 14. Fix 1 ≤ k ≤ d− 1. We will bound the number of polynomials p ∈ RM(n, d)
such that wt(p) ≤ 2−k(1 − ε). Let p be any such polynomial. Apply Lemma 7 to p(x) with
error parameter δ = 2−(d+2). There exists a universal algorithm A, and for each p a set of t =
O(d2 + d log(1/ε)) directions {yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k} such that

Pr
x∈Fn

2

[p(x) 6= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{pyi,1,...,yi,k
(·) : 1 ≤ i ≤ t})] ≤ δ.

Define p′(x) = A
(
x; {yi,j}, {pyi,1,...,yi,k

(·)}
)
. We have that dist(p, p′) = Prx[p(x) 6= p′(x)] ≤ δ. We

claim that this guarantees that p′(x) specifies p(x) uniquely - it is the only element of RM(n, d) of
distance at most δ from p′. This is because the minimal distance of RM(n, d) is 2−d, and we chose
δ to be less than half the minimal distance. Now, in order to compute p′(x), we need to specify
to the algorithm A the set of vectors yi,j and the polynomials pyi,1,...,yi,k

(·). To specify each vector
yi,j ∈ Fn2 we require n bits. Each polynomial pyi,1,...,yi,k

(·) is a k-iterated derivative of a degree-d
polynomial p(x), hence it is a degree d−k polynomial. Thus, in order to specify it, we need to give
the list of its

∑d−k
i=0

(
n
i

)
bits. Summing up, we need a total of

tk · n+ t ·
d−k∑
i=0

(
n

i

)
= O

(
d2 log(1/ε) · nd−k

(d− k)!

)
bits in order to specify p′ completely. Since each p′ approximates at most a single p we get that
the number of polynomials p ∈ RM(n, d) such that wt(p) ≤ 2−k(1− ε) is bounded by the number
of distinct p′, which is bounded by

(1/ε)O
(

d2

(d−k)!
nd−k

)
.

3.2 List-decoding size of Reed-Muller codes

We now turn to the problem of bounding the list-decoding size of Reed-Muller codes, and we prove
our second main theorem, Theorem 5. We will show that the same techniques used to bound the
weight distribution when proving Theorem 4 can be applied with minor variants to also bound the
list-decoding size. We note this is an exception; commonly bounding the list-decoding size is a

14

much harder task than bounding the weight distribution, and there exist codes where these two
parameters behave very differently. However, we will see that in the case of Reed–Muller codes
they share the same asymptotic behavior.

Theorem 5 giving the list-decoding size of Reed-Muller codes is a direct corollary of Theorem 16,
giving an upper bound on the list-decoding size at distance 2`−d− ε, and the same lower bound we
used to bound the accumulative weight distribution, obtained in Lemma 15.

Theorem 16 (Upper bound on the list-decoding size). For any integer 1 ≤ k ≤ d− 1,

L(2−k(1− ε)) ≤ (1/ε)O(d2

(d−k)!
nd−k)

.

In particular for constant d we get that

L(2−k − ε) ≤ (1/ε)O(nd−k).

Proof of Theorem 16. The proof follows the same lines as that of Theorem 14. Fix f : Fn2 → F2 to
be any function. We will bound the number of polynomials p ∈ RM(n, d) such that dist(p, f) ≤
2−k(1− ε). Let g = p+ f such that wt(g) ≤ 2−k(1− ε). Applying Lemma 7 to g(x) with the error
parameter δ = 2−(d+2), there exists a universal algorithm A and a set of direction {yi,j : 1 ≤ i ≤
t, 1 ≤ j ≤ k} such that

Pr
x∈Fn

2

[g(x) 6= A(x;{yi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ k},

{gyi,1,...,yi,k
(·) : 1 ≤ i ≤ t})] ≤ δ.

Since g(x) = p(x) + f(x) we also have gyi,1,...,yi,k
(·) = pyi,1,...,yi,k

(·) + fyi,1,...,yi,k
(·). Hence, we can

replace each instance of g or its derivatives in A with instances of p, f and their derivatives. Thus
we get that

Pr
x∈Fn

2

[p(x) 6=f(x) +A(x; {yi,j},

{pyi,1,...,yi,k
(·) + fyi,1,...,yi,k

(·)})] ≤ δ.

Define p′(x) = f(x)+A(x; {yi,j}, {pyi,1,...,yi,k
(·)+fyi,1,...,yi,k

(·)}). Since we again have dist(p, p′) ≤ δ,
the function p′(x) specifies p(x) uniquely as the only element in RM(n, d) which has distance at
most δ from p′. Now, in order to compute p′, we may assume the algorithm A has oracle access to
the function f(·), since we have fixed it in advance, and it is the same for all the polynomials we
wish to bound. Thus, in order to calculate p′(x), we need to provide to the algorithm A the set
of directions yi,j and the polynomials pyi,1,...,yi,k

(·). Notice that A can compute fyi,1,...,yi,k
(·) using

the oracle access to f and the set of directions yi,j . As in the proof of Theorem 14, each direction
yi,j ∈ Fn2 requires n bits, and each polynomial pyi,1,...,yi,k

(·) being a degree d−k polynomial requires∑d−k
i=0

(
n
i

)
bits to specify. Following the same calculations as those in the proof of Theorem 14, we

conclude that the number of distinct p′(x) is bounded by

(1/ε)O(d2

(d−k)!
nd−k)

.

Thus, for every fixed function f , this is also a bound on the number of p ∈ RM(n, d) such that
dist(p, f) ≤ 2−k(1− ε).

15

4 Generalized Reed-Muller codes

The problems of bounding both the accumulative weight distribution and the list-decoding size
can be extended to Generalized Reed-Muller, the code of low-degree polynomials over larger fields.
However, our techniques fail to prove tight result in these cases. We briefly describe the reasons
below, and give some partial results.

We start by making some basic definitions. Let q be a prime, and let GRMq(n, d) denote the
code of multivariate polynomials p(x1, ..., xn) over the field Fq, of total degree at most d.

Definition 7. The relative weight of a function f : Fnq → Fq is the fraction of non-zero elements,

wt(f) =
1
qn
|{x ∈ Fnq : f(x) 6= 0}|

Definition 8. The relative distance between two functions f, g : Fnq → Fq is defined as

dist(f, g) = Px∈Fn
q
[f(x) 6= g(x)]

The accumulative weight distribution and the list-decoding size are defined analogously for
GRMq(n, d), using the appropriate definitions for relative weight and relative distance. We denote
them by Aq and Lq. For each 1 ≤ k ≤ d, we define a distance rk as follows.

1. For k = 1, let d = (q − 1)a + b, where 1 ≤ b ≤ q − 1. Define r1 = q−a(1 − b/q). r1 is the
minimal distance of GRMq(n, d).

2. For 2 ≤ k ≤ d−1, let d−k = (q−1)a+b, where 1 ≤ b ≤ q−1. Define rk = q−a(1−b/q)(1−1/q).

3. For k = d, define rd = 1− 1/q.

We conjecture that both for the accumulative weight distribution and the list-decoding size, the
distances rk are the thresholds for the exponential dependency in n.

Conjecture 17. Let ε > 0 be constant, and consider GRMq(n, d) for constant d. Then

• For α ≤ r1 − ε both Aq(α) and Lq(α) are constants.

• For rk ≤ α ≤ rk+1 − ε both Aq(α) and Lq(α) are 2Θ(nk).

• For α ≥ rd both Aq(α) and Lq(α) are 2Θ(nd).

Proving lower bounds for Aq(rk) is similar to the case of RM(n, d).

Lemma 18 (Lower bound for Aq). For any integer 1 ≤ k ≤ d,

Aq(rk) ≥ 2Ω(nk)

The problem is proving matching upper bounds. Using directly the derivatives method we used
to give upper bounds for RM(n, d) gives the same bounds for GRMq(n, d), alas they are not tight
for q > 2.

Aq(2−k − ε) ≤ 2O(nd−k)

If we would like to get upper bounds closer to the lower bounds, a natural approach would be
to generalize Lemma 8 to taking several derivatives in the same direction (which is possible over

16

larger fields). This would give tight results for some values of k. The crucial point is generalizing
Claim 11 to the case of taking multiple derivatives in the same direction. So far, we didn’t find a
way of doing so.

Instead, we give partial results for Conjecture 17 at both ends of the spectrum. We give results
when α ≤ r1 − ε, and when rd−1 ≤ α ≤ rd − ε (when α ≥ rd Lemma 18 gives Lq(α) and Aq(α) are
both exponential in nd, and this is obviously tight).

First, the minimal distance of GRMq(n, d) is known to be r1. Thus, for any ε > 0, Aq(r1−ε) = 1.
Gopalan, Klivans and Zuckerman [7] prove that Lq(r1 − ε) is constant when q − 1 divides d.

Theorem 19 (Corollary 18 in [7]). Assume q − 1 divides d. Then

Lq(r1 − ε) ≤ c(q, d, ε)

Moving to the case of rd−1 ≤ α ≤ rd − ε, we prove

Lemma 20. Let ε > 0 be constant. then

Aq(rd − ε) ≤ 2O(nd−1)

We now move on to prove Lemmas 18 and 20. We start with Lemma 18.

Proof of Lemma 18. We start by proving for 2 ≤ k ≤ d − 1. Let d − k = (q − 1)a + b, where
1 ≤ b ≤ q − 1. Single out a+ 2 variables x1, ..., xa+2, and let g be any degree k polynomial on the
remaining variables. The following polynomial has degree d and weight exactly q−a(1−b/q)(1−1/q).

g′(x1, ..., xn) = a∏
i=1

q−1∏
j=1

(xi − j)

 ·
 b∏
j=1

(xa+1 − j)

 ·
(xa+2 + g(xa+3, ..., xn))

The number of distinct polynomial g is 2Ω(nk).
The proofs for k = 1 and k = d are similar: for k = 1, let d = (q− 1)a+ b. Let l1(x), ..., la+1(x)

be any independent linear functions, and consider

g′(x1, ..., xn) = a∏
i=1

q−1∏
j=1

(li(x)− j)

 b∏
j=1

(la+1(x)− j)

For k = d, let g be any degree d polynomial on variables x2, ..., xn, and consider g′(x1, ..., xn) =
x1 + g(x2, ..., xn).

We now continue to prove Lemma 20. We first make some necessary definitions.

Definition 9. The bias of a polynomial p(x1, ..., xn) over Fq is defined to be

bias(p) = Ex∈Fn
q
[ωp(x)]

where ω = e2πi/q is a primitive q-th root of unity.

17

Kaufman and Lovett [9] prove that biased low-degree polynomials can be decomposed into a
function of a constant number of lower degree polynomials.

Theorem 21 (Theorem 2 in [9]). Let p(x1, ..., xn) be a degree d polynomial, such that |bias(p)| ≥ ε.
Then p can be decomposed as a function of a constant number of lower degree polynomials

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d− 1, and c = c(q, d, ε).

We will use Theorem 21 to bound A(rd − ε) for any constant ε > 0.

Proof of Lemma 20. We will show that any polynomial p ∈ GRMq(n, d) such that wt(p) ≤ 1 −
1/p− ε can be decomposed as

p(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d − 1, and c depends only on q, d and ε. Thus the number of such polynomials
is bounded by the number of possibilities to choose c degree d − 1 polynomials, and a function
F : Fcq → Fq. The number of such possibilities is at most 2O(nd−1). Let p be such that wt(p) ≤
1 − 1/p − ε. We will show there exists α ∈ Fq, α 6= 0 such that bias(αp) ≥ ε. We will then finish
by using Theorem 21 on the polynomial αp.

Consider the bias of αp for random α ∈ Fq.

Eα∈Fq [bias(αp)] = Eα∈Fq ,x∈Fn
q
[ωαp(x)] = 1− wt(p)

since for x’s for which p(x) = 0, Eα∈Fq [ωαp(x)] = 1, and for x such that p(x) 6= 0, Eα∈Fq [ωαp(x)] = 0.
We thus get that

Eα∈Fq\{0}[bias(αp)] = 1− q

q − 1
wt(p) ≥ q

q − 1
ε

So, there must exist α 6= 0 such that bias(αp) ≥ ε.

Acknowledgement. We would like to thank Madhu Sudan for helpful comments on this work.
The second author would like to thank his advisor, Omer Reingold, for on-going advice and encour-
agement. He would also like to thank Microsoft Research for their support during his internship.
The first author was supported in part by NSF Awards CCF-0514167 and NSF-0729011. The
second author was supported partly by the Israel Science Foundation (grant 1300/05). Research
was conducted partly when the second author was an intern at Microsoft Research.

References

[1] S. Azumi and T. Kasami and N. Tokura, On the Weight Enumeration of Weights Less than
2.5d of Reed-Muller Codes, Information and Control, 30(4): 380–395, 1976.

[2] N. Alon and J. Spencer, The Probabilistic Method, Second edition, published by John Wiley,
2000.

[3] A. Bogdanov and E. Viola. Pseudorandom bits for polynomials via the Gowers norm. In the
48th Annual Symposium on Foundations of Computer Science (FOCS 2007).

[4] O. Goldreich and L. Levin, A hard core predicate for all one way functions, In the Proceedings
of the 21st ACM Symposium on Theory of Computing (STOC), 1989.

18

[5] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan, Learning polynomials with queries: The
highly noisy case, SIAM Journal on Discrete Mathematics, 13(4):535-570, November 2000.

[6] Oded Goldreich, Ronitt Rubinfeld, and Madhu Sudan, Learning polynomials with queries: The
highly noisy case, SIAM Journal on Discrete Mathematics, 13(4):535-570, November 2000.

[7] P. Gopalan, A. Klivans and D. Zuckerman, List-Decoding Reed Muller Codes over Small Fields,
In the Proceedings of the 40th ACM Symposium on Theory of Computing (STOC), 2008.

[8] V. Guruswami, List decoding of Error-Correcting Codes, vol 3282 of Lecture notes in Computer
Science, Springer 2004.

[9] T. Kaufman and S. Lovett, Worst case to Average Case Reductions for Polynomials, To ap-
pear in the Proceedings of the 49th Annual Symposium on Foundations of Computer Science
(FOCS), 2008.

[10] E. Kushilevitz and Y. Mansour, Learning Decision Trees using the Fourier Spectrum, SIAM
Journal of Computing, 22(6), (1993), pp 1331-1348.

[11] T. Kasami and N. Tokura, On the weight structure of Reed-Muller codes, In the IEEE Trans-
actions on Information Theory 16 (Issue 6), 1970.

[12] J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes, Amsterdam,
North-Holland, 1977.

[13] M. Sudan, Decoding of Reed-Solomon codes beyond the error-correction bound, Journal of
Complexity, 13, (1997), pp. 180-193.

[14] M. Sudan, List decoding: Algorithms and Applications , SIGACT News, 31 (2000), pp 16-27.

[15] M. Sudan, L. Trevian, S. Vadhan Pseudorandom Generators without the XOR Lemma, J.
Comput. Syst. Sci., 61 (2001), pp 236-266.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

