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Abstract

The weight distribution and list-decoding size of Reed-Muller codes are studied in this work.
Given a weight parameter, we are interested in bounding the number of Reed-Muller codewords
with weight up to the given parameter; and given a received word and a distance parameter,
we are interested in bounding the size of the list of Reed-Muller codewords that are within that
distance from the received word.

Obtaining tight bounds for the weight distribution of Reed-Muller codes has been a long
standing open problem in coding theory, dating back to 1976. In this work, we make a new
connection between computer science techniques used to study low-degree polynomials and these
coding theory questions. This allows us to resolve the weight distribution and list-decoding size
of Reed-Muller codes for all distances. Previous results could only handle bounded distances:
Azumi,Kasami and Tokura gave bounds on the weight distribution which hold up to 2.5 times
the minimal distance of the code; and Gopalan, Klivans and Zuckerman gave bounds on the
list-decoding size which hold up to the Johnson bound.

1 Introduction

The weight distribution of an error correcting code counts, for every given weight parameter, the
number of codewords with weight bounded by the given parameter. The weight distribution of
a code is the main characteristic of the code and governs the behavior of the code, from both
theoretical and practical aspects.

Understanding the weight distribution of Reed-Muller codes is a 30-year-old open problem in
coding theory. The last progress on this question was made by Kasami and Tokura [KT70] who
characterized the codewords of Reed-Muller codes of weight up to twice the minimal distance
of the code, and hence obtained bounds for the weight distribution that apply up to twice the
minimal distance of the code; and by Azumi, Kasami and Tokura [KTA76] who obtained bounds
on codewords of weight up to 2.5 times the minimal distance. In this work we resolve this problem
and obtain asymptotically tight bounds for the weight distribution that apply to all distances.
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†Research supported by NSF grant DMS-0835373.
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The problem of list-decoding an error correcting code is the following: given a received word
and a distance parameter find all codewords that are within the given distance from the received
word. List-decoding is a generalization of the more common notion of unique decoding in which
the given distance parameter ensures that there can be at most one codeword that is within the
given distance from the received word. List-decoding has many applications for both practical
and theoretical problems. We refer the interested reader to surveys by Guruswami [Gur01] and
Sudan [Sud00] on list decoding. See [IDT06, DKT08, DS06, FT08, PW04, San07] for works dealing
with list-decoding of Reed-Muller codes.

In this work we study the question of list-decoding Reed-Muller codes. Specifically, we are
interested in bounding the list size for any distance parameter. Previous results of Gopalan, Klivans
and Zukcerman [GKZ08] gave bounds on the list-decoding size for distance parameters which are not
too large (specifically, distances up to the Johnson bound). In this work we obtain asymptotically
tight bounds for the list-decoding size that apply to all distances.

Our results are obtained by making a new connection between computer science techniques used
for studying low-degree polynomials and the discussed coding theoretic problems. This connection
allows to us to analyze the weight distribution and list-decoding size in a relatively simple way. We
view this as evidence for the importance of this connection.

1.1 Reed-Muller codes: facts and previous bounds

Reed-Muller codes form a basic and well studied family of codes. RM(n, d) is a linear code, whose
codewords f ∈ RM(n, d) : Fn2 → F2 are evaluations of polynomials in n variables of total degree
at most d over F2. In this work we study the code RM(n, d) when d � n, and are interested in
particular in the case of constant d.

The following facts regarding RM(n, d) are straight-forward: It has block length of 2n, dimension∑
i≤d
(
n
i

)
and minimum relative distance 2n−d

2n = 2−d. We next discuss the weight distribution and
list-decoding size of Reed-Muller codes.

Weight distribution of Reed-Muller codes The relative (or normalized) weight of a function
f : Fn2 → F2 is the relative number of ones in it,

wt(f) :=
1

2n
|{x ∈ Fn2 : f(x) = 1}|.

The cumulative weight distribution of RM(n, d) at a relative weight 0 ≤ α ≤ 1, denoted Wn,d(α), is
the number of codewords whose relative weight is at most α,

Wn,d(α) := |{f ∈ RM(n, d) : wt(f) ≤ α}|.

The fact that the minimal relative distance of RM(n, d) is 2−d implies that Wn,d(2
−d − ε) = 1

for any ε > 0. Kasami and Tokura [KT70] characterized the codewords in RM(n, d) of weight
up to twice the minimal distance of the code (i.e up to relative distance 21−d). Based on this
characterization Gopalan et al. deduce the following upper bound.

Corollary 1.1 (Corollary 10 in [GKZ08]). Wn,d(2
1−d − ε) ≤ (1/ε)2(n+1).

Combining this upper bound with a simple lower bound, one gets that Wn,d(2
1−d − ε) is ex-

ponential in n for any constant 0 < ε ≤ 2−d. On the other extreme, as half of the codewords in
RM(n, d) have relative weight at most 1/2, we have that Wn,d(1/2) is exponential in nd. Nontrivial
upper bounds on the cumulative weight distribution for weight parameters 21−d ≤ α < 1/2 were
unknown prior to this work.
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List-decoding size of Reed-Muller codes The relative distance between two functions f, g :
Fn2 → F2 is the fraction of inputs on which they differ,

dist(f, g) =
1

2n
|{x ∈ Fn2 : f(x) 6= g(x)}|.

The list-decoding size of RM(n, d) at a relative distance 0 ≤ α ≤ 1, denoted Ln,d(α), is the maximal
number of codewords within relative distance α from any word,

Ln,d(α) = max
g:Fn

2→F2

|{f ∈ RM(n, d) : dist(f, g) ≤ α}|.

It is clear that the list-decoding size is lower bounded by the cumulative weight distribution.
Gopalan et al. [GKZ08] obtain bounds on the list decoding size for bounded distance parameters.
They show that the list size is constant for distances up to the minimal distance, and polynomial
(in the block length 2n) for distances up to a quantity which is bounded by twice the minimal
distance.

Theorem 1.2 (Theorem 11 in [GKZ08]).

1. Ln,d(2
−d − ε) ≤ O

(
(1/ε)8d

)
.

2. Ln,d(J(21−d)− ε) ≤ (1/2ε2)n+O(1) where J(α) := 1
2(1−

√
1− 2α) ≤ α is the Johnson bound.

Moreover, the work of Gopalan et al. develops a general list-decoding algorithm for RM(n, d)
whose running time is polynomial in the list-decoding size. Thus, they reduce the algorithmic
list-decoding problem to the combinatorial problem of bounding the list size.

1.2 Our Results

We give tight bounds on the cumulative weight distribution and list-decoding size for Reed-Muller
codes for relative weights and distances beyond the minimal distance. We show that the cumulative
weight distribution and the list-decoding size have similar asymptotic behavior: they are both
exponential in n` for integer values of ` which depend on the parameter α. Moreover, the value of `
jumps at the same ”cut-off” relative weights or distances. In the following the asymptotic notation
Od(·),Ωd(·) hides constants which depend only on d.

Theorem 3.1 (Main result, informal statement). Let 2−d ≤ α < 1/2 be a parameter. Let
1 ≤ k ≤ d− 1 and 0 < ε ≤ 1/2 be such that α = 2−k(1− ε). Then

(1/ε)Ωd(nd−k) ≤Wn,d(α) ≤ Ln,d(α) ≤ (1/ε)Od(nd−k).

We observe that the bound given by Theorem 3.1 is tight even for sub-constant values of ε: the
minimal value of ε is 2−n, at which stage the bound becomes exponential in nd−k+1.

1.3 Techniques

Our main result, Theorem 3.1, combines matching lower and upper bounds. The lower bound
follows from a simple construction. Let α = 2−k(1 − ε) for ε = 2−e. We assume w.l.o.g that
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e ≤ n/10 as otherwise the bound will follow from the bound for α = 2−k(1−2−n/10). Let p1, . . . , pe
be arbitrary polynomials of degree d− k in the variables xk+2e+1, . . . , xn and set

f(x) :=

k−1∏
i=1

xi · (
e∑
j=1

xk+j · (pj(x) + xk+e+j)).

It is not hard to verify that f has relative weight 2−k(1 − ε). The number of different choices for

f is dictated by the number of choices for p1, . . . , pe which is 2Ωd(nd−k)·e = (1/ε)Ωd(nd−k).
Our main contribution is the upper bound given in Theorem 3.1. The main technical ingredient

used in the proof is the use of directional derivatives. For f : Fn2 → F2 and a direction y ∈ Fn2 the
directional derivative of f in direction y is ∆yf(x) := f(x+ y)− f(x). Iterated direction derivative
in directions Y = {y1, . . . , yk} is given by ∆Y f = ∆y1 . . .∆ykf . We call ∆Y f for |Y | = k a k-
iterated derivative of f . Note that if f is a degree d polynomial, then its derivatives have degree
at most d− 1 and its k-iterated derivatives have degree at most d− k.

Our main technical lemma shows that any function of small relative weight can be approximated
by an algorithm which has oracle access to a small number if its iterated derivatives.

Lemma 2.1 (informal statement). Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1− ε)
for 0 < ε < 1 and let δ > 0 be an approximation parameter. There exists a universal algorithm A
(which does not depend of f) with the following properties:

1. A has two inputs: x ∈ Fn2 and t sets Y1, . . . , Yt of k directions each.

2. A has oracle access to the k-iterated derivatives ∆Y1f(·), . . . ,∆Ytf(·).

Then for t = O(log(1/δ) log(1/ε) + log(1/δ)2) there exists a setting for Y1, . . . , Yt such that

Pr
x∈Fn

2

[A(x;Y1, . . . , Yt,∆Y1f(·), . . . ,∆Ytf(·)) = f(x)] ≥ 1− δ.

We first describe how the upper bound in Theorem 3.1 follows from Lemma 2.1. Consider
for simplicity a bound on the number of codewords in RM(n, d) with hamming weight at most
2−k(1 − ε). Let δ be small enough to be determined later, and consider the family of all possible
functions computed by A applied to some codeword f ∈ RM(n, d) (i.e. some degree d polynomial).
Let H denote this family of functions. We have the following two properties:

1. If wt(f) ≤ 2−k(1− ε) then there exists h ∈ H which 1− δ approximates f .

2. If we choose δ small enough (δ < 2−d−1 suffices), then the minimal distance of RM(n, d)
guarantees that each h ∈ H can 1− δ approximate at most one codeword f ∈ RM(n, d).

The combination of these properties guarantees that Wn,d(2
−k(1− ε)) ≤ |H|. Now, the size of H is

dominated by the number of possibilities for ∆Y1f(·), . . . ,∆Ytf(·). As each k-iterated derivative is a
polynomial of degree d−k the number of choices for it is exponential in nd−k; and as t = Od(log(1/ε))

we get that |H| ≤ 2Od(nd−k)·log(1/ε) = (1/ε)Od(nd−k) as claimed.
The bound for the list-decoding size follows a similar approach. Let g : Fn2 → F2 be some fixed

function where we want to bound the number of codewords in RM(n, d) which have distance at
most 2−k(1− ε) from g. Define H as the family of functions computed by A applied to f ⊕ g where
f ranges over all codewords in RM(n, d) and apply the same argument as before.

We now describe the proof of Lemma 2.1. The goal is to show that a function with low weight
can be approximated by an algorithm with access to a small number of its derivatives. More
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concretely, if wt(f) = 2−k(1 − ε) we wish to show that f can be approximated by an algorithm
with access to Od(log(1/ε)) many k-derivatives of f .

Consider first the case of k = 1, i.e. of a function f with wt(f) = 1
2(1 − ε). That is, f is an

ε-biased function. A lemma of Bogdanov and Viola [BV10] shows any ε-biased function can be
approximated by a simple function of (1/ε)O(1) of its derivatives. To get the correct dependency
on ε, we effectively derandomize their result and show that a similar function with access to only
O(log(1/ε)) derivatives achieves the same result. For k > 1 we follow a two step process: we first
show that f can be approximated by a function of a constant number of its k − 1 derivatives; and
that each k − 1 derivative is by itself ε-biased. We then follow the approach for k = 1 to further
approximate each k − 1 derivative by O(log(1/ε)) of its derivatives, which are k-derivatives of f .

Organization The paper is organized as follows. In Section 2 we prove the main technical
lemma, showing that a low-weight function can be approximated by its iterated derivatives. We
then apply this lemma to bounding the weight distribution and list-decoding size of Reed-Muller
codes in Section 3. We study the extension of our techniques for Generalized Reed-Muller codes in
Section 4, where we provide some (non tight) bounds for these codes.

2 Approximation of low-weight functions by derivatives

We prove in this section that any low-weight function can be approximated by a function with
access to a small number of its derivatives. We first recall some definitions from the introduction.
Let f : Fn2 → F2 be a function. The relative (or normalized) weight of f is the fraction of ones in f ,

wt(f) = Pr
x∈Fn

2

[f(x) = 1].

The bias of f is given by

bias(f) = Ex∈Fn
2
[(−1)f(x)] = 1− 2wt(f).

The derivative of f in direction y ∈ Fn2 is ∆yf(x) := f(x+y)+f(x); and the k-iterated derivative
of f in directions Y = (y1, . . . , yk) ∈ (Fn2 )k is

∆Y f(x) := ∆y1 . . .∆ykf(x) =
∑
I⊆[k]

f(x+
∑
i∈I

yi).

Note that the order of y1, . . . , yk is irrelevant for the definition of ∆Y f , and so we can think of Y
as a multi-set of size k.

The following lemma is the main result proved in this section.

Lemma 2.1. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1 − ε) for 0 < ε < 1 and let
δ > 0 be an approximation parameter. There exists a universal algorithm A (which does not depend
of f) with the following properties:

1. A has two inputs: x ∈ Fn2 and Y1, . . . , Yt ∈ (Fn2 )k.

2. A has oracle access to the k-iterated derivatives ∆Y1f(·), . . . ,∆Ytf(·).

Then for t = O(log(1/δ) log(1/ε) + log(1/δ)2) there exists a setting for Y1, . . . , Yt such that

Pr
x∈Fn

2

[A(x;Y1, . . . , Yt,∆Y1f(·), . . . ,∆Ytf(·)) = f(x)] ≥ 1− δ.
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The proof follows two main steps. First, for k ≥ 2 we show that f can be approximated by a
majority function of O(log(1/δ)) many (k − 1)-iterated derivatives of f . Crucially, the number of
derivatives used does not depend on ε.

Lemma 2.2. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k for k ≥ 2. Then there exist
sets of directions Y1, . . . , Ya ∈ (Fn2 )k−1 where a = O(log(1/δ)) such that

Pr[f(x) = Maj(∆Y1f(x), . . . ,∆Yaf(x))] ≥ 1− δ.

We prove Lemma 2.2 in Subsection 2.1. We next note that each (k − 1)-iterated derivative of
f is biased.

Claim 2.3. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1−ε). Then for any Y ∈ (Fn2 )k−1

we have bias(∆Y f) ≥ ε > 0.

Proof. Let Y = (y1, . . . , yk−1) and recall that ∆Y f(x) =
∑

I⊆[k−1] f(x +
∑

i∈I yi). That is, ∆Y f

is a sum of 2k−1 shifted versions of f . Hence wt(∆Y f) ≤ 2k−1wt(f) ≤ 1
2(1 − ε) which gives

bias(∆Y f) = 1− 2wt(∆Y f) ≥ ε.

We thus proceed to approximate biased functions by an algorithm with query access to a small
number of their derivatives. Bogdanov and Viola [BV10] show that any ε-biased function can be
approximated by a function of (1/ε)O(1) of its derivatives. Here we refine their argument and show
that such a function can in fact be approximated by an algorithm with oracle access to O(log(1/ε))
of the derivatives.

Lemma 2.4. Let f : Fn2 → F2 be a function such that bias(f) ≥ ε > 0 and let δ > 0 be an
approximation parameter. There exists a universal algorithm A′ (which does not depend of f) with
the following properties:

1. A′ has two inputs: x ∈ Fn2 and y1, . . . , yb ∈ Fn2 .

2. A′ has oracle access to the derivatives ∆y1f(·), . . . ,∆ybf(·).

Then for b = O(log(1/ε) + log(1/δ)) there exists a setting for y1, . . . , yb such that

Pr
x∈Fn

2

[A′(x; y1, . . . , yb,∆y1f(·), . . . ,∆ybf(·)) = f(x)] ≥ 1− δ.

We prove Lemma 2.4 in Subsection 2.2. The proof of Lemma 2.1 now follows immediately from
a combination of Lemma 2.2, Claim 2.3 and Lemma 2.4.

Proof of Lemma 2.1. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k(1−ε). Apply Lemma 2.2
with error parameter δ2. There exist a = O(log(1/δ)) sets of directions Y1, . . . , Ya ∈ (Fn2 )k−1 such
that

Pr
x∈Fn

2

[f(x) = Maj(∆Y1f(x), . . . ,∆Yaf(x))] ≥ 1− δ2.

Moreover, by Claim 2.3 we know that bias(∆Yif) ≥ ε for all 1 ≤ i ≤ a. Thus, we can apply
Lemma 2.4 to each ∆Yif independently with error parameter δ2, getting that there exists a setting
of yi,1, . . . , yi,b ∈ Fn2 with b = O(log(1/εδ)) such that

Pr
x∈Fn

2

[∆Yif(x) = A′(x; yi,1, . . . , yi,b,∆yi,1∆Yif(·), . . . ,∆yi,b∆Yif(·))] ≥ 1− δ2.

6



Let Yi,j ∈ (Fn2 )k be formed by concatenating Yi and yi,j . Define the algorithm A to sim-
ulate this two-step process. That is, the algorithm A has inputs x ∈ Fn2 and Yi,j ∈
(Fn2 )k and oracle access to ∆Yi,jf(·). The algorithm A ranges over i ∈ [a]; it simulates
A′(x; y1, . . . , yi,b,∆yi,1∆Yif(·), . . . ,∆yi,b∆Yif(·))) using the values of yi,1, . . . , yi,b and oracle access
to ∆Yi,jf(·); and then combines the answers using majority. By the union bound we have that

Pr
x∈Fn

2

[f(x) = A(x; {Yi,j}, {∆Yi,jf(·)})] ≥ 1− δ2 · (a+ 1) = 1− δ2 ·O(log(1/δ)) ≥ 1− δ

for δ bounded by some absolute constant.

2.1 Proof of Lemma 2.2

Let f : Fn2 → F2 be a function with wt(f) ≤ 2−k for k ≥ 2 and let δ > 0 be an error parameter.
We wish to show that there exist a = O(log(1/δ)) sets of directions Y1, . . . , Ya ∈ (Fn2 )k−1 such that

Pr
x∈Fn

2

[f(x) = Maj(∆Y1f(x), . . . ,∆Yaf(x))] ≥ 1− δ.

We first show that f(x) can be computed as a weighted average of its derivatives with bounded
coefficients.

Lemma 2.5. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k for k ≥ 2. Then there exist
coefficients {αY : Y ∈ (Fn2 )k−1} where 0 ≤ αY ≤ 10 such that

(−1)f(x) = EY ∈(Fn
2 )k−1 [αY · (−1)∆Y f(x)].

The proof of Lemma 2.5 is based on an iterative application of the following claim from [Lov09]
which is a simplification of a lemma in [BV10]. It shows that a biased function can be computed
by the average of its derivatives.

Claim 2.6. Let f : Fn2 → F2 be a function such that bias(f) 6= 0. Then

(−1)f(x) =
1

bias(f)
Ey∈Fn

2
[(−1)∆yf(x)].

For completeness we give the proof.

Proof. Fix x and let y ∈ Fn2 be chosen uniformly. We have

Ey∈Fn
2
[(−1)∆yf(x)] = Ey∈Fn

2
[(−1)f(x+y)+f(x)] = (−1)f(x)Ey∈Fn

2
[(−1)f(x+y)] = (−1)f(x) · bias(f).

We now prove Lemma 2.5.

Proof of Lemma 2.5. Applying Claim 2.6 iteratively k − 1 times to f ,∆y1f ,. . . ,∆y1,...,yk−2
f we get

that
(−1)f(x) = Ey1,...,yk−1∈Fn

2
[αy1,...,yk−1

(−1)∆y1,...,yk−1
f(x)],
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where αy1,...,yk−1
= 1

bias(f) ·
1

bias(∆y1f) · . . . ·
1

bias(∆y1,...,yk−2
f) . To conclude we need to show that

|αy1,...,yk−1
| ≤ 10. Note that for any ` ≤ k − 2, ∆y1,...,y`f =

∑
I⊆[`] f(x +

∑
i∈I yi) hence

wt(∆y1,...,y`f) ≤ 2` · wt(f) ≤ 2`−k. Thus

1

αy1,...,yk−1

= bias(f) · bias(∆y1f) · . . . · bias(∆y1,...,yk−2
f)

= (1− 2wt(f)) · (1− 2wt(∆y1f)) · . . . · (1− 2wt(∆y1,...,yk−2
f))

≥
k−2∏
`=0

(1− 2`−k+1)

≥
∞∏
m=1

(1− 2−m) ≥ 1/10.

The proof of Lemma 2.2 follows from Lemma 2.5 by a standard sampling argument.

Proof of Lemma 2.2. Let f : Fn2 → F2 be a function such that wt(f) ≤ 2−k. Applying Lemma 2.5
we have

(−1)f(x) = EY [αY · (−1)∆Y f(x)]

where Y is uniformly chosen in (Fn2 )k−1 and where 0 ≤ αY ≤ 10. Let Ω = (Fn2 )k−1 denote the set
of possible Y . Let c = |Ω|−1

∑
Y ∈Ω αY . By assumption c ≤ 10. Define a probability distribution

D over Ω by choosing Y with probability proportional to αY , i.e. PrD[Y ] = αY
c|Ω| . Note that under

this distribution we have
(−1)f(x) = c · EY∼D[(−1)∆Y f(x)].

Thus, we must have c ≥ 1 and

(−1)f(x) · c−1 = EY∼D[(−1)∆Y f(x)].

Let Y1, . . . , Ya be sampled according to D independently. Note that if∣∣∣∣∣c
∑a

i=1(−1)∆Yi
f(x)

a
− (−1)f(x)

∣∣∣∣∣ < 1

then

(−1)f(x) = sign

(
c
∑a

i=1(−1)∆Yi
f(x)

a

)
= sign

(
a∑
i=1

(−1)∆Yi
f(x)

)
= (−1)Maj(∆Y1

f(x),...,∆Yaf(x)) .

We next apply standard Chernoff bounds (see, e.g., A.1.16 in [AS92]) and get that by setting
a = O(c2 log(1/δ)) = O(log(1/δ)) we have for any fixed x that

Pr
Y1,...,Ya∼D

[f(x) = Maj(∆Y1f(x), . . . ,∆Yaf(x))] ≥ 1− δ.

Thus, by an averaging argument there exists a setting for Y1, . . . , Ya such that

Pr
x∈Fn

2

[f(x) = Maj(∆Y1f(x), . . . ,∆Yaf(x))] ≥ 1− δ.
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Indeed, for showing the above it suffices to show that

Pr
Y1,...,Ya∼D

[∣∣∣∣∣c
∑a

i=1(−1)∆Yi
f(x)

a
− (−1)f(x)

∣∣∣∣∣ > 1

4

]
< δ.

Consider random variables z1, · · · , za defined as

zi =
c

c+ 1
[(−1)∆Yi

f(x) − (−1)f(x)

c
].

We have E[zi] = 0; |zi| ≤ 1; and z1, . . . , za are mutually independent. Thus, by A.1.16 in [AS92],

Pr
z1,...,za∼D

[

a∑
i=1

zi > r] < e
−r2

2a .

By setting r = a
4(c+1) we get that

Pr
Y1,...,Ya∼D

[∣∣∣∣∣c
∑a

i=1(−1)∆Yi
f(x)

a
− (−1)f(x)

∣∣∣∣∣ > 1

4

]
= Pr

z1,...,za∼D
[
a∑
i=1

zi > r] < e
−a

32(c+1)2 .

Thus, by setting a = O(c2 log(1/δ)) = O(log(1/δ)) we get the claimed bound.

2.2 Proof of Lemma 2.4.

Let f : Fn2 → F2 be a function such that bias(f) ≥ ε > 0 and let δ > 0 be an error parameter. We
wish to show that there exists a universal algorithm A′ (which does not depend on f) that gets as
inputs x ∈ Fn2 , a set of directions y1, . . . , yb ∈ Fn2 and has oracle access to the derivatives of f in
these directions, such that for some setting of y1, . . . , yb we have

Pr
x∈Fn

2

[A′(x; y1, . . . , yb,∆y1f(·), . . . ,∆ybf(·)) = f(x)] ≥ 1− δ.

The algorithm is simple. For I ⊆ [b] let yI :=
∑

i∈I yi denote the partial sums of y1, . . . , yb. The
algorithm computes the majority of ∆yIf , where I ranges over for all nonempty subsets of [b]:

A′(x; y1, . . . , yb,∆y1f(·), . . . ,∆ybf(·)) = Maj({∆yIf(x) : ∅ 6= I ⊆ [b]}).

To prove the correctness of the algorithm we need to prove two things: first, that the algorithm
can in fact compute the majority of {∆yIf(x)} given its inputs; and second, that this majority
indeed approximates f well for some setting of the directions y1, . . . , yb. We first show that the
algorithm can indeed compute the required majority.

Claim 2.7. Let f : Fn2 → F2 be a function and let y1, . . . , yb ∈ Fn2 a set of directions. Then for
any x ∈ Fn2 and any nonempty I ⊆ [b], there is an algorithm which computes the value of ∆yIf(x)
given as inputs x, I, y1, . . . , yb and oracle access to ∆y1f(·), . . . ,∆ybf(·).

Proof. Let I = {i1, . . . , ir}. The algorithm computes the value of ∆yIf(x) using the following
identity:

∆yIf(x) =

r∑
`=1

∆yi`
f(x+

`−1∑
j=1

yij ).
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We next show that f(x) can be approximated by the majority of ∆yIf(x) where I ranges over
non-empty subsets of [b] for some choice of y1, . . . , yb. In fact, we show that most choices of y1, . . . , yb
are suitable.

Claim 2.8. Let f : Fn2 → F2 be a function such that bias(f) ≥ ε > 0 and let δ > 0 be an error
parameter. Then

Pr
x,y1,...,yb∈Fn

2

[f(x) = Maj({∆yIf(x) : ∅ 6= I ⊆ [b]}) ≥ 1− δ

for b = O(log(1/ε) + log(1/δ)). In particular, there is a setting for y1, . . . , yb such that

Pr
x∈Fn

2

[f(x) = Maj({∆yIf(x) : ∅ 6= I ⊆ [b]}) ≥ 1− δ

Proof. Define

S(x, y1, . . . , yb) :=
∑
∅6=I⊆[b]

(−1)f(x)+∆yI
f(x) =

∑
∅6=I⊆[b]

(−1)f(x+yI)

and note that S > 0 iff f(x) = Maj({∆yIf(x) : ∅ 6= I ⊆ [b]}. Thus, we need to show that
Prx,y1,...,yb∈Fn

2
[S > 0] ≥ 1 − δ for a suitable choice of b. We will use Chebychev’s inequality. The

expected value of S is
E[S] = (2b − 1)E[(−1)f ] = (2b − 1)bias(f),

and as the summands in S are pairwise independent (for a uniform choice of x, y1, . . . , yb ∈ Fn2 ) the
variance of S is bounded by

Var[S] = (2b − 1)Var[(−1)f ] ≤ (2b − 1)bias(f).

We thus conclude that

Pr[S ≤ 0] ≤ Pr[|S − E[S]| ≥ E[S]] ≤ Var[S]

|E[S]|2
≤ 1

(2b − 1)bias(f)
.

Since bias(f) ≥ ε, for b = O(log(1/ε) + log(1/δ)) we conclude that Pr[S ≤ 0] ≤ δ.

3 Bounds for Reed-Muller codes

In this section we bound the cumulative weight distribution and list-decoding size of Reed-Muller
codes. The following is our main result.

Theorem 3.1 (Main result). Let 2−d ≤ α < 1/2 be a parameter. Let 1 ≤ k ≤ d−1 and 0 < ε ≤ 1/2
be such that α = 2−k(1− ε). Then

(1/ε)cd·n
d−k ≤Wn,d(α) ≤ Ln,d(α) ≤ (1/ε)Cd·nd−k

,

where cd, Cd > 0 are constants which depend only on d.

We prove the lower and upper bound in the next two subsections.
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3.1 Proof of lower bound

We prove a lower bound on the cumulative weight distribution Wn,d(α). The lower bound follows
from a simple construction. Let α = 2−k(1 − ε) for ε = 2−e. We assume w.l.o.g that e ≤ n/10 as
otherwise the bound will follow from the bound for α = 2−k(1− 2−n/10).

Let p1, . . . , pe be arbitrary polynomials of degree d − k in the variables xk+2e+1, . . . , xn and
consider polynomials of the form

f(x1, . . . , xn) :=

k−1∏
i=1

xi · (
e∑
j=1

xk+j · (pj(x) + xk+e+j)).

We clearly have f ∈ RM(n, d). We would shortly show that wt(f) = 2−k(1 − ε). The number of
distinct such f is a lower bound on Wn,d(α). This is the number of choices for each polynomial

pi(x) (which is exponential in
(n−(k+2e)+(d−k)

d−k
)

= 1
(d−k)!Ω(n)d−k)) raised to the power e. That is,

Wn,d(α) ≥ 2
1

(d−k)!
O(nd−k)·log(1/ε)

= (1/ε)
1

(d−k)!
O(nd−k)

.

The computation of the relative weight of f follows immediately from the following claim and the
fact the the polynomials p1, . . . , pe do not contain the variables x1, . . . , xk+2e.

Claim 3.2. Let a1, . . . , ae ∈ F2 be constants. Let q(x1, . . . , xk+2e) be the polynomial

q(x1, . . . , xk+2e) :=
k−1∏
i=1

xi · (
e∑
j=1

xk+j · (aj + xk+e+j)).

Then Pr[q = 1] = 2−k(1− 2−e).

Proof. Let yj = xk+j · (aj + xk+e+j). Note that Pr[yj = 1] = 1/4, that x1, . . . , xk−1, y1, . . . , ye are

independent and that q(x) :=
∏k−1
i=1 xi · (

∑e
j=1 yj). Thus

Pr[q = 1] =
k−1∏
i=1

Pr[xi = 1] · Pr[
e∑
j=1

yj = 1] = 21−k · 1

2
(1− E[(−1)y1+...+ye ]) =

= 2−k(1−
e∏
j=1

E[(−1)yj ]) = 2−k(1− 2−e).

3.2 Proof of upper bound

We prove an upper bound on the list-decoding size Ln,d(α). Let g : Fn2 → F2 be fixed. We wish to
bound the number of codewords f ∈ RM(n, d) for which dist(f, g) ≤ α.

Let A be the algorithm guaranteed by Lemma 2.1. We would show that any function f ∈
RM(n, d) whose distance from g is at most α = 2−k(1 − ε) can be well approximated by the
function computed by A applied to f ⊕ g, and then xoring this function to g. Choosing the error
parameter δ to be below half the minimal distance of RM(n, d) would guarantee that each function
can approximate at most one codeword. The upper bound follows from an upper bound on the
different number of functions that can be computed by the algorithm (recall the g is fixed, hence
is not counted).
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Formally, let H denote the following family of functions. Let f ∈ RM(n, d) and Y1, . . . , Yt ∈
(Fn2 )k. Let h(x) : Fn2 → F2 denote the function computed by the algorithm A applied to f +g given
directions Y1, . . . , Yt and error parameter δ to be determined later:

h(x) = A(x;Y1, . . . , Yt,∆Y1(f + g)(·), . . . ,∆Yt(f + g)(·)).

We define H to be the family of all such functions h. The family H has the following two properties:

1. If dist(f, g) ≤ 2−k(1−ε) then there exists h ∈ H for which Prx∈Fn
2
[f(x)+g(x) = h(x)] ≥ 1−δ.

This follows from the guarantees of Lemma 2.1 since wt(f + g) ≤ 2−k(1− ε).

2. If we choose δ smaller than half the minimal distance of the code RM(n, d) (i.e. δ < 2−d−1),
then for any function h there can be at most one codeword f ∈ RM(n, d) for which
Prx∈Fn

2
[f(x) + g(x) = h(x)] ≥ 1− δ (if there were two such codewords f1, f2 then this would

imply that dist(f1, f2) < δ).

Thus the number of functions in H is an upper bound on Ln,d(α). The number of different
possibilities for each Yi is 2nk. Given Yi, the number of possible functions ∆Yi(f + g)(·) is bounded
by the number of n-variate polynomials of degree d−k, since f is an arbitrary degree d polynomial,
g is fixed and by linearity ∆Yi(f + g)(·) = ∆Yi(f)(·) + ∆Yi(g)(·). The number of such polynomials
is exponential in nd−k. Thus we get that

|H| ≤ 2
(nk+ 1

(d−k)!
nd−k)t

.

The choice of δ gives t = O(d2 + d log(1/ε)) which implies

|H| ≤ (1/ε)Od(nd−k).

4 Generalized Reed-Muller codes

The problems of bounding both the cumulative weight distribution and the list-decoding size can
be extended to Generalized Reed-Muller, the code of low-degree polynomials over larger fields.
However, our techniques fail to prove tight result in these cases. Following we give some partial
results for cumulative weight distribution and the list-decoding size of Generalized Reed-Muller
codes.

We start by making some basic definitions. Let q be a prime and let GRMq(n, d) denote the
code of multivariate polynomials f(x1, · · · , xn) over the field Fq of total degree at most d.

Definition 4.1. The relative weight of a function f : Fnq → Fq is the fraction of non-zero elements,

wt(f) =
1

qn
|{x ∈ Fnq : f(x) 6= 0}|.

Definition 4.2. The relative distance between two functions f, g : Fnq → Fq is defined as

dist(f, g) =
1

qn
|{x ∈ Fnq : f(x) 6= g(x)}|.

The cumulative weight distribution and the list-decoding size are defined analogously for
GRMq(n, d), using the appropriate definitions for relative weight and relative distance. We de-
note them by Wn,d,q and Ln,d,q. For each 1 ≤ k ≤ d, we define a relative distance rk as follows.
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1. For k = 1, let a ≥ 0, 1 ≤ b ≤ q − 1 be such that d = (q − 1)a+ b. Define r1 = q−a(1− b/q).
r1 is the minimal relative distance of GRMq(n, d).

2. For 2 ≤ k ≤ d − 1, let a ≥ 0, 1 ≤ b ≤ q − 1 be such that d − k = (q − 1)a + b. Define
rk = q−a(1− b/q)(1− 1/q).

3. For k = d, define rd = 1− 1/q.

We conjecture that both for the cumulative weight distribution and the list-decoding size, the
distances rk are the thresholds for the exponential dependency in n.

Conjecture 4.3. Let ε > 0 be constant, and consider GRMq(n, d) for constant d. Then

• For α ≤ r1 − ε both Wn,d,q(α) and Ln,d,q(α) are constants. This case was already conjectured
by [GKZ08].

• For rk ≤ α ≤ rk+1 − ε both Wn,d,q(α) and Ln,d,q(α) are 2Ω(nk).

• For α ≥ rd both Wn,d,q(α) and Ln,d,q(α) are 2Ω(nd).

Here and in the reminder of this section, asymptotic notation (e.g. Ω(·)) hides constants which
depend only on d, q.

Proving lower bounds for Wn,d,q(rk) is similar to the case of RM(n, d).

Lemma 4.4 (Lower bound for the weight distribution of Generalized Reed-Muller code). For any
integer 1 ≤ k ≤ d,

Wn,d,q(rk) ≥ 2Ω(nk).

Proof. We start by proving for 2 ≤ k ≤ d− 1. Let d− k = (q− 1)a+ b, where 1 ≤ b ≤ q− 1. Single
out a + 2 variables x1, ..., xa+2, and let f be any degree k polynomial on the remaining variables.
The following polynomial has degree d and weight exactly q−a(1− b/q)(1− 1/q):

g(x1, ..., xn) := (
a∏
i=1

q−1∏
j=1

(xi − j)) · (
b∏

j=1

(xa+1 − j)) · (xa+2 + f(xa+3, ..., xn)).

The number of distinct polynomials f is 2Ω(nk). The proofs for k = 1 and k = d are similar. For
k = 1, let d = (q− 1)a+ b. Let `1(x), ..., `a+1(x) be any independent linear functions, and consider

g(x1, ..., xn) := (
a∏
i=1

q−1∏
j=1

(`i(x)− j))(
b∏

j=1

(`a+1(x)− j)).

For k = d, let f be any degree d polynomial on variables x2, ..., xn, and consider g(x1, ..., xn) :=
x1 + f(x2, ..., xn).

Using directly the derivatives method we used to give upper bounds for RM(n, d) gives the same
bounds for GRMq(n, d), alas they are not tight for q > 2.

Wn,d,q(2
−k − ε) ≤ 2O(nd−k)
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Following, we give partial results for Conjecture 4.3 at both ends of the spectrum. We give
results when α ≤ r1 − ε, and when rd−1 ≤ α ≤ rd − ε (when α ≥ rd Lemma 4.4 gives Ln,d,q(α) and
Wn,d,q(α) are both exponential in nd, and this is obviously tight).

First, the minimal distance of GRMq(n, d) is known to be r1. Thus, for any ε > 0, Wn,d,q(r1 −
ε) = 1. Gopalan, Klivans and Zuckerman [GKZ08] prove that Ln,d,q(r1− ε) is constant when q− 1
divides d.

Theorem 4.5 (Corollary 18 in [GKZ08]). Assume q − 1 divides d. Then

Ln,d,q(r1 − ε) ≤ c(q, d, ε).

Moving to the case of rd−1 ≤ α ≤ rd − ε, we prove

Lemma 4.6 (Upper bound for the weight distribution of Generalized Reed-Muller code). Let ε > 0
be constant. then

Wn,d,q(rd − ε) ≤ 2O(nd−1).

We first make some necessary definitions.

Definition 4.7. The bias of a polynomial f(x1, ..., xn) over Fq is defined to be

bias(f) = Ex∈Fn
q
[ωf(x)],

where ω = e2πi/q is a primitive q-th root of unity.

Kaufman and Lovett [KL08] prove that biased low-degree polynomials can be decomposed into
a function of a constant number of lower degree polynomials.

Theorem 4.8 (Theorem 2 in [KL08]). Let f(x1, ..., xn) be a degree d polynomial, such that
|bias(f)| ≥ ε. Then f can be decomposed as a function of a constant number of lower degree
polynomials

f(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d− 1 and c = c(q, d, ε).

We will use Theorem 4.8 to bound Wn,d,q(rd − ε) for any constant ε > 0.

Proof of Lemma 4.6. We will show that any polynomial f ∈ GRMq(n, d) such that wt(f) ≤ 1 −
1/q − ε can be decomposed as

f(x) = F (g1(x), ..., gc(x))

where deg(gi) ≤ d − 1, and c depends only on q, d and ε. Thus the number of such polynomials
is bounded by the number of possibilities to choose c degree d − 1 polynomials, and a function
F : Fcq → Fq. The number of such possibilities is at most 2O(nd−1). Let f be such that wt(f) ≤
1 − 1/q − ε. We will show there exists α ∈ Fq, α 6= 0 such that bias(αf) ≥ ε. We will then finish
by using Theorem 4.8 on the polynomial αf . Consider the bias of αf for random α ∈ Fq,

Eα∈Fq [bias(αf)] = Eα∈Fq ,x∈Fn
q
[ωαf(x)] = 1− wt(f),

since for x’s for which f(x) = 0, Eα∈Fq [ωαf(x)] = 1, and for x such that f(x) 6= 0, Eα∈Fq [ωαf(x)] = 0.
We thus get that

Eα∈Fq\{0}[bias(αf)] = 1− q

q − 1
wt(f) ≥ q

q − 1
ε.

So, there must exist α 6= 0 such that bias(αf) ≥ ε and the lemma follows.
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