
ARTIN AUTOMORPHISMS, CYCLOTOMIC FUNCTION FIELDS, AND

FOLDED LIST-DECODABLE CODES

VENKATESAN GURUSWAMI

Abstract. Algebraic codes that achieve list decoding capacity were recently constructed
by a careful “folding” of the Reed-Solomon code. The “low-degree” nature of this folding
operation was crucial to the list decoding algorithm. We show how such folding schemes
conducive to list decoding arise out of the Artin-Frobenius automorphism at primes in Galois
extensions. Using this approach, we construct new folded algebraic-geometric codes for list
decoding based on cyclotomic function fields with a cyclic Galois group. Such function fields
are obtained by adjoining torsion points of the Carlitz action of an irreducible M ∈ Fq[T].
The Reed-Solomon case corresponds to the simplest such extension (corresponding to the
case M = T). In the general case, we need to descend to the fixed field of a suitable Galois
subgroup in order to ensure the existence of many degree one places that can be used for
encoding.

Our methods shed new light on algebraic codes and their list decoding, and lead to new
codes achieving list decoding capacity. Quantitatively, these codes provide list decoding (and
list recovery/soft decoding) guarantees similar to folded Reed-Solomon codes but with an
alphabet size that is only polylogarithmic in the block length. In comparison, for folded RS
codes, the alphabet size is a large polynomial in the block length. This has applications to
fully explicit (with no brute-force search) binary concatenated codes for list decoding up to
the Zyablov radius.

Contents

1. Introduction 2
2. Background on Cyclotomic function fields 4
3. Reed-Solomon codes as cyclotomic function field codes 6
4. Subfield construction from cyclic cyclotomic function fields 7
5. Code construction from cyclotomic function field 11
6. List decoding algorithm 15
7. Long codes achieving list decoding capacity 20
Acknowledgments 23
References 23
Appendix A. Table of parameters used 24
Appendix B. Algebraic preliminaries 25

Research supported in part by NSF CCF-0343672, a David and Lucile Packard Fellowship, and NSF grant
CCR-0324906 to the IAS.

Electronic Colloquium on Computational Complexity, Report No. 1 (2009)

ISSN 1433-8092

2

1. Introduction

1.1. Context and Motivation. Recent progress in algebraic coding theory [16, 6] has led to
the construction of explicit codes over large alphabets that achieve list decoding capacity —
namely, they admit efficient algorithms to correct close to the optimal fraction 1−R of errors
with rate R. The algebraic codes constructed in [6] are folded Reed-Solomon codes, where the
Reed-Solomon (RS) encoding (f(1), f(γ), · · · , f(γn−1)) of a low-degree polynomial f ∈ Fq[T]
is viewed as a codeword of length N = n/m over the alphabet Fm

q by identifying successive
blocks of m symbols. Here γ is a primitive element of the field Fq.

Simplifying matters somewhat, the principal algebraic engine behind the list decoding algo-
rithm in [6] was the identity f(γT) ≡ f(T)q (mod (T q−1 − γ)), and the fact that (T q−1 − γ)
is irreducible over Fq. This gave a low-degree algebraic relation between f(T) and f(γT) in
the residue field Fq[T]/(T q−1 − γ). This together with an algebraic relation found by the “in-
terpolation step” of the decoding enabled finding the list of all relevant message polynomials
f(T) efficiently.

One of the main motivations of this work is to gain a deeper understanding of the general
algebraic principles underlying the above folding, with the hope of extending it to more general
algebraic-geometric (AG) codes. The latter question is an interesting algebraic question in its
own right, but is also important for potentially improving the alphabet size of the codes, as
well as the decoding complexity and output list size of the decoding algorithm. (The large
complexity and list size of the folded RS decoding algorithm in [6] are a direct consequence of
the large degree q in the identity relating f(γT) and f(T).)

An extension of the Parvaresh-Vardy codes [16] (which were the precursor to the folded RS
codes) to arbitrary algebraic-geometric codes was achieved in [5]. But in these codes the
encoding includes the evaluations of an additional function explicitly picked to satisfy a low-
degree relation over some residue field. This leads to a substantial loss in rate. The crucial
insight in the construction of folded RS codes was the fact that this additional function could
just be the closely related function f(γT) — the image of f(T) under the automorphism
T 7→ γT of Fq(T).

1.2. Summary of our contributions. We explain how folding schemes conducive to list
decoding (such as the above relation between f(γT) and f(T)) arise out of the Artin-Frobenius
automorphism at primes in Galois extensions. With the benefit of hindsight, the role of such
automorphisms in folding algebraic codes is quite natural. In terms of technical contributions,
we use this approach to construct new list-decodable folded algebraic-geometric codes based
on cyclotomic function fields with a cyclic Galois group. Cyclotomic function fields [1, 9]
are obtained by adjoining torsion points of the Carlitz action of an irreducible M ∈ Fq[T].
The Reed-Solomon case corresponds to the simplest such extension (corresponding to the case
M = T). In the general case, we need to descend to the fixed field of a suitable Galois subgroup
in order to ensure the existence of many degree one places that can be used for encoding. We
establish some key algebraic lemmas that characterize the desired subfield in terms of the
appropriate generator µ in the algebraic closure of Fq(T) and its minimal polynomial over
Fq(T). We then tackle the computational algebra challenge of computing a representation
of the subfield and its rational places, and the message space, that is conducive for efficient
encoding and decoding of the associated algebraic-geometric code.

3

Our constructions lead to some substantial quantitative improvements in the alphabet size
which we discuss below in Section 1.4. We also make some simplifications in the list decoding
algorithm and avoid the need of a zero-increasing basis at each code place (Lemma 6.2).
This, together with several other ideas, lets us implement the list decoding algorithm in
polynomial time assuming only the natural representation of the code needed for efficient
encoding, namely a basis for the message space. Computing such a basis remains an interesting
question in computational function field theory. Our description and analysis of the list
decoding algorithm in this work is self-contained, though it builds strongly on the framework
of the algorithms in [23, 16, 5, 6].

1.3. Galois extensions and Artin automorphisms. We now briefly discuss how and why
Artin-Frobenius automorphisms arise in the seemingly distant world of list decoding. In order
to generalize the Reed-Solomon case, we are after function fields whose automorphisms we
have a reasonable understanding of. Galois extensions are a natural subclass of function fields
to consider, with the hope that some automorphism in the Galois group will give a low-degree
relation over some residue field. Unfortunately, the explicit constructions of good AG codes
are typically based on a tower of function fields [3, 4], where each step is Galois, but the whole
extension is not. (Stichtenoth [22] recently showed the existence of a Galois extension with
the optimal trade-off between genus and number of rational places, but this extension is not,
and cannot be, cyclic, as we require.)

In Galois extensions K/F , for each place A′ in the extension field K, there is a special and
important automorphism called the Artin-Frobenius automorphism (see, eg. [13, Chap. 4])
that simply powers the residue of any (regular) function at that place. The exponent or degree
of this map is the norm of the place A of F lying below A′. Since the degree dictates the
complexity of decoding, we would like this norm to be small. On the other hand, the residue
field at A′ needs to be large enough so that the message functions can be uniquely identified
by their residue modulo A′. The most appealing way to realize this is if the place A is inert,
i.e., has a unique A′ lying above it. However, this condition can only hold if the Galois group
is cyclic, a rather strong restriction. For example, it is known [2] that even abelian extensions
must be asymptotically bad.

In order to construct AG codes, we also need to have a good control of how certain primes split
in the extension. For cyclotomic function fields, and of course their better known number-
theoretic counterparts Q(ω) obtained by adjoining a root of unity ω, this theory is well devel-
oped. As mentioned earlier, the cyclotomic function field we use itself has very few rational
places. So we need to descend to an appropriate subfield where many degree one places of
Fq(T) split completely, and develop some underlying theory concerning the structure of this
subfield.

The Artin-Frobenius automorphism1 is a fundamental notion in algebraic number theory,
playing a role in Chebatorev density theorem and Dirichlet’s theorem on infinitude of primes
in arithmetic progressions, as well as quadratic and more general reciprocity laws. We find

1Following Rosen [18], we will henceforth refer to the Artin-Frobenius automorphisms as simply Artin
automorphisms. Many texts (eg. [13]) actually refer to these as Frobenius automorphisms. Since the latter
term is most commonly associated with automorphism x 7→ xq of Fqm , we prefer the term Artin automorphism
to refer to the general notion that applies to all Galois extensions. The association of a place with its Artin-
Frobenius automorphism is called the Artin map.

4

it rather intriguing that this notion ends up playing an important role in algorithmic coding
theory as well.

1.4. Long codes achieving list decoding capacity and explicit binary concatenated

codes. Quantitatively, our cyclotomic function field codes achieve list decoding (and list
recovery) guarantees similar to folded RS codes but with an alphabet size that is only polylog-
arithmic in the block length. In comparison, for folded RS codes, the alphabet size is a large
polynomial in the block length. We note that Guruswami and Rudra [6] also present capacity-
achieving codes of rate R for list decoding a fraction (1 −R− ε) of errors with alphabet size

|Σ| = 2(1/ε)O(1)
, a fixed constant depending only on ε. But these codes do not have the strong

“list recovery” (or more generally, soft decoding) property of folded RS codes.

Our codes inherit the powerful list recovery property of folded RS codes, which makes them
very useful as outer codes in concatenation schemes. In fact, due to their small alphabet
size, they are even better in this role. Indeed, they can serve as outer codes for a family of
concatenated codes list-decodable up to the Zyablov radius, with no brute-force search for the
inner codes. This is the first such construction for list decoding. It is similar to the “Justesen-
style” explicit constructions for rate vs. distance from [11, 20], except even easier, as one can
use the ensemble of all linear codes instead of the succinct Wozencraft ensemble at the inner
level of the concatenated scheme.

1.5. Related work. Codes based on cyclotomic function fields have been considered previ-
ously in the literature. Some specific (non-asymptotic) constructions of function fields with
many rational places over small fields Fq (q 6 5) appear in [14, 15]. Cyclotomic codes based
on the action of polynomials T a for small a appear in [17], but decoding algorithms are not
discussed for these codes, nor are these extensions cyclic as we require. Our approach is more
general and works based on the action of an arbitrary irreducible polynomial. Exploiting the
Artin automorphism of cyclotomic fields for an algorithmic purpose is also new to this work.

Independent of our work, Huang and Narayanan [10] also consider AG codes constructed from
Galois extensions, and observe how automorphisms of large order can be used for folding such
codes. To our knowledge, the only instantiation of this approach that improves on folded
RS codes is the one based on cyclotomic function fields from our work. As an alternate
approach, they also propose a decoding method that works with folding via automorphisms
of small order. This involves computing several coefficients of the power series expansion of
the message function at a low-degree place. Unfortunately, piecing together these coefficients
into a function could lead to an exponential list size bound. The authors suggest a heuristic
assumption under which they can show that for a random received word, the expected list size
and running time are polynomially bounded.

2. Background on Cyclotomic function fields

Some basic preliminaries on function fields, valuations and places, Galois extensions, decom-
position of primes, Artin-Frobenius automorphism, etc. are discussed in Appendix B. In this
section, we will focus on background material concerning cyclotomic function fields. These
are the function-field analog of the classic cyclotomic number fields from algebraic number
theory. This theory was developed by Hayes [9] in 1974 building upon ideas due to Carlitz [1]

5

from the late 1930’s. The objective was to develop an explicit class field theory classifying
all abelian extensions of the rational function field Fq(T), analogous to classic results for Q

and imaginary quadratic extensions of Q. The common idea in these results is to allow a ring
of “integers” in the ground field to act on part of its algebraic closure, and obtain abelian
extensions by adjoining torsion points of this action. We will now describe these extensions
of Fq(T).

Let T be an indeterminate over the finite field Fq. Let RT = Fq[T] denote the polynomial
ring, and F = Fq(T) the field of rational functions. Let F ac be a fixed algebraic closure of
F . Let EndFq(F

ac) be the ring of Fq-endomorphisms of F ac, thought of as a Fq-vector space.
We consider two special elements of EndFq(F

ac): (i) the Frobenius automorphism τ defined
by τ(z) = zq for all z ∈ F ac, and (ii) the map µT defined by µT (z) = Tz for all z ∈ F ac.
The substitution T → τ + µT yields a ring homomorphism from RT to EndFq(F

ac) given by:
f(T) 7→ f(τ + µT). Using this, we can define the Carlitz action of RT on F ac as follows: For
M ∈ RT ,

CM (z) = M(τ + µT)(z) for all z ∈ F ac .

This action endows F ac the structure of an RT -module, which is called the Carlitz module.
For a nonzero polynomial M ∈ RT , define the set

ΛM = {z ∈ F ac | CM (z) = 0} ,
to consist of the M -torsion points of F ac, i.e., the elements annihilated by the Carlitz action of
M (this is also the set of zeroes of the polynomial CM (Z) ∈ RT [Z]). Since RT is commutative,
ΛM is in fact an RT -submodule of F ac. It is in fact a cyclic RT -module, naturally isomorphic
to RT /(M).

The cyclotomic function field F (ΛM) is obtained by adjoining the set ΛM of M -torsion points
to F . 2 The following result from [9] summarizes some fundamental facts about cyclotomic
function fields, stated for the special case when M is irreducible (we will only use such ex-
tensions). Proofs can also be found in the graduate texts [18, Chap. 12] or [19, Chap. 12].
In what follows, we will often use the convention that an irreducible polynomial P ∈ RT is
identified with the place of F which is the zero of P , and also denote this place by P . Recall
that these are all the places of F , with the exception of the place P∞, which is the unique
pole of T .

Proposition 2.1. Let M ∈ RT be a nonzero degree d monic polynomial that is irreducible
over Fq. Let K = F (ΛM). Then

(i) CM (Z) is a separable polynomial in Z of degree qd over RT , of the form
∑d

i=0[M, i]Zqi

where the degree of [M, i] as a polynomial in T is qi(d− i). The polynomial ψM (Z) =
CM (Z)/Z is irreducible in RT [Z]. The field K is equal to the splitting field of ψM (Z),
and is generated by any nonzero element λ ∈ ΛM , i.e., K = F (λ).

(ii) K/F is a Galois extension of degree (qd−1) and Gal(K/F) is isomorphic to (RT /(M))∗,
the cyclic multiplicative group of units of the field RT /(M). The Galois automorphism
σN associated with N̄ ∈ (RT /(M))∗ is given by σN (λ) = CN (λ).

2It is instructive to compare this with the more familiar setting of cyclotomic number fields. There, one lets
Z act on the multiplicative group (Qac)∗ with the endomorphism corresponding to n ∈ Z sending ζ 7→ ζn for
ζ ∈ Qac. The n-torsion points now equal {ζ ∈ Qac | ζn = 1}, i.e., the n’th roots of unity. Adjoining these gives
the various cyclotomic number fields.

6

The Galois automorphisms commute with the Carlitz action: for any σ ∈ Gal(K/F)
and A ∈ RT , σ(CA(x)) = CA(σ(x)) for all x ∈ K.

(iii) If P ∈ RT is a monic irreducible polynomial different from M , then the Artin auto-
morphism at the place P is equal to σP .

(iv) The integral closure of RT in F (λ) equals RT [λ].
(v) The genus gM of F (ΛM) satisfies 2gM − 2 = d(qd − 2) − q

q−1(qd − 1).

The splitting behavior of primes in the extension F (ΛM)/F will be crucial for our construction.
We record this as a separate proposition below.

Proposition 2.2. Let M ∈ RT , M 6= 0, be a monic, irreducible polynomial of degree d.

(i) (Ramification at M) The place M is totally ramified in the extension F (ΛM)/F . If

λ ∈ ΛM is a root of CM (z)/z and M̃ is the unique place of F (ΛM) lying above M ,

then λ is a M̃ -prime element, i.e., vM̃ (λ) = 1.
(ii) (Ramification at P∞) The infinite place P∞ of F , i.e., the pole of T , splits into

(qd−1)/(q−1) places of degree one in F (ΛM)/F , each with ramification index (q−1).
Its decomposition group equals F∗

q.
(iii) (Splitting at other places) If P ∈ RT is a monic irreducible polynomial different from

M , then P is unramified in F (ΛM)/F , and splits into (qd − 1)/f primes of degree
f · deg(P) where f is the order of P modulo M (i.e., the smallest positive integer e
such that P e ≡ 1 (mod M)).

3. Reed-Solomon codes as cyclotomic function field codes

We now discuss how Reed-Solomon codes arise out of the simplest cyclotomic extension
F (ΛT)/F . This serves both as a warm-up for our later results, and as a method to illustrate
that one can view the folding employed by Guruswami and Rudra [6] as arising naturally from
the Artin automorphism at a certain prime in the extension F (ΛT)/F .

We have ΛT = {u ∈ F ac | uq + Tu = 0}. Pick a nonzero λ ∈ ΛT . By Proposition 2.2, the only
ramified places in F (ΛT)/F are T , and the pole P∞ of T . Both of these are totally ramified
and have a unique place above them in F (ΛT). Denote by Q∞ the place above P∞ in F (ΛT).

We have λq−1 = −T , so λ has a pole of order one at Q∞, and no poles elsewhere. The place
T + 1 splits completely into n = q − 1 places of degree one in F (ΛT). The evaluation of λ at
these places correspond to the roots of xq−1 = 1, i.e., to nonzero elements of Fq. Thus the
places above T + 1 can be described as P1, Pγ , · · · , Pγq−2 where γ is a primitive element of Fq

and λ(Pγi) = γi for i = 0, 1, . . . , q − 2.

For k < q − 1, define Mk = {∑k−1
i=0 βiλ

i | βi ∈ Fq}. Mk has qk elements, each with at most
(k − 1) poles at Q∞ and no poles elsewhere. Consider the Fq-linear map ERS : Mk → Fn

q

defined as

ERS(f) =
(

f(P1), f(Pγ), · · · , f(Pγq−2)
)

.

Clearly the above just defines an [n, k]q Reed-Solomon code, consisting of evaluations of poly-
nomials of degree < k at elements of F∗

q.

7

Consider the place T + γ of F . The condition (T + γ)f ≡ 1 (mod T) is satisfied iff γf = 1,
which happens iff (q − 1)|f . Therefore, the place T + γ remains inert in F (ΛT)/F . Let A
denote the unique place above T + γ in F (ΛT). The degree of A equals q − 1.

The Artin automorphism at A, σA, is given by σA(λ) = CT+γ(λ) = Cγ(λ) = γλ. Note
that this implies f(Pγi+1) = σA(f)(Pγi) for 0 6 i < q − 2. By the property of the Artin
automorphism, we have σA(f) ≡ f q (mod A) for all f ∈ RT [λ]. Note that this is same
as the condition f(γλ) ≡ f(λ)q (mod (λq−1 − γ)) treating f as a polynomial in λ. This
corresponds to the algebraic relation between f(X) and f(γX) in the ring Fq[X] that was used
by Guruswami and Rudra [6] in their decoding algorithm, specifically in the task of finding
all f(X) of degree less than k satisfying Q(X, f(X), f(γX)) = 0 for a given Q ∈ Fq[X,Y,Z].
In the cyclotomic language, this corresponds to finding all f ∈ RT [λ] with < k poles at Q∞
satisfying Q(f, σA(f)) = 0 for Q ∈ RT [λ](Y,Z). Since deg(A) = q − 1 > k, f is determined
by its residue at A, and we know σA(f) ≡ f q (mod A). Therefore, we can find all such f by
finding the roots of the univariate polynomial Q(Y, Y q) mod A over the residue field OA/A.

4. Subfield construction from cyclic cyclotomic function fields

In this section, we will construct the function field construction that will be used for our
algebraic-geometric codes, and establish the key algebraic facts concerning it. The approach
will be to take cyclotomic field K = F (ΛM) where M is an irreducible of degree d > 1 and
get a code over Fq. But the only places of degree 1 in F (ΛM) are the ones above the pole P∞
of T . There are only (qd − 1)/(q − 1) such places above P∞, which is much smaller than the
genus. So we descend to a subfield where many degree 1 places split completely. This is done
by taking a subgroup H of (Fq[T]/(M))∗ with many degree 1 polynomials and considering
the fixed field E = KH . For every irreducible N ∈ RT such that N̄ = N mod M ∈ H, the
place N splits completely in the extension E/F (this follows from the fact that CN is the
Artin automorphism at the place N). This technique has also been used in the previous works
[17, 14, 15] mentioned in Section 1.5, though our approach is more general and works with
any irreducible M . The study of algorithms for cyclotomic codes and the role played by the
Artin automorphism in their list decoding is also novel to our work.

4.1. Table of parameters. Since there is an unavoidable surfeit of notation and parameters
used in this section and Section 5, we summarize them for easy reference in Appendix A.

4.2. Function field construction. Let Fr be a subfield of Fq. Let M ∈ Fr[T] be a monic
polynomial that is irreducible over Fq (note that we require M(T) to have coefficients in the
smaller field Fr, but demand irreducibility in the ring Fq[T]). The following lemma follows
from the general characterization of when binomials Tm−α are irreducible in Fq[T] [12, Chap.
3].

Lemma 4.1. Let d > 1 be an odd integer such that every prime factor of d divides (r − 1)
and gcd(d, (q − 1)/(r − 1)) = 1. Let γ be a primitive element of Fr. Then T d − γ ∈ Fr[T] is
irreducible in Fq[T].

A simple choice for which the above conditions are met is r = 2a, q = r2, and d = r − 1
(we will need a more complicated choice for our list decoding result in Theorem 7.1). For the

8

sake of generality as well as clarity of exposition, we will develop the theory without making
specific choices for the parameters, a somewhat intricate task we will undertake in Section 7.

For the rest of this section, fix M(T) = T d−γ as guaranteed by the above lemma. We continue
with the notation F = Fq(T), RT = Fq[T], and K = F (ΛM). Fix a generator λ ∈ ΛM of K/F
so that K = F (λ).

Let G be the Galois group of K/F , which is isomorphic to the cyclic multiplicative group
(Fq[T]/(M))∗. Let H ⊂ G be the subgroup F∗

q · (Fr[T]/(M))∗. The cardinality of H is

(rd − 1) · q−1
r−1 . Note that since G is cyclic there is a unique subgroup H of this size. Indeed, if

Γ ∈ G is an arbitrary generator of G, then H = {1,Γb,Γ2b, . . . ,Γqd−1−b} where

(4.1) b =
|G|
|H| =

qd − 1

rd − 1
· r − 1

q − 1
.

Let A ∈ RT be an arbitrary polynomial such that A mod M is a generator of (Fq[T]/(M))∗.
We can then take Γ so that Γ(λ) = CA(λ). (We fix a choice of A in the sequel and assume that
A is pre-computed and known. We will later, in Section 5.3, pick such an A of appropriately
large degree.) Note that by part (2) of Proposition 2.1, the Galois action commutes with the
Carlitz action and therefore Γj(λ) = CAj (λ) for all j > 1. Thus knowing the polynomial A
lets us compute the action of the automorphisms of H on any desired element of K = F (λ).

Let E ⊂ K be the subfield ofK fixed by the subgroupH, i.e., E = {x ∈ K | σ(x) = x ∀σ ∈ H}.
The field E will be the one used to construct our codes. We first record some basic properties
of the extension E/F , and how certain places decompose in this extension.

Proposition 4.2. For E = F (ΛM)H , the following properties hold:

(i) E/F is a Galois extension of degree [E : F] = b.
(ii) The place M is the only ramified place in E/F , and it is totally ramified with a unique

place (call it M ′) above it in E.
(iii) The infinite place P∞ of F , i.e., the pole of T , splits completely into b degree one

places in E.

(iv) The genus gE of E equals d(b−1)
2 + 1.

(v) For each β ∈ Fr, the place T −β of F splits completely into b degree one places in E.
(vi) If A ∈ RT is irreducible of degree ` > 1 and A mod M is a primitive element

of RT /(M), then the place A is inert in E/F . The Artin automorphism σA at A
satisfies

(4.2) σA(x) ≡ xq`
(mod A′)

for all x ∈ OA′ , where A′ is the unique place of E lying above A.

Proof. By Galois theory, [E : F] = |G|/|H| = b. Since G is abelian, E/F is Galois with Galois
group isomorphic to G/H. Since E ⊂ K, and M is totally ramified in K, it must also be
totally ramified in E. The only other place ramified in K is P∞, and since H contains the
decomposition group F∗

q of P∞, P∞ must split completely in E/F .

The genus of E is easily computed since E/F is a tamely ramified extension [21, Sec. III.5].
Since only the place M of degree d is ramified, we have 2gE − 2 = d(b− 1).

9

Since H ⊃ Fr[T], for β ∈ Fr, the Artin automorphism σT−β of the place T −β in K/F belongs
to H. The Artin automorphism of T − β in the extension E/F is the restriction of σT−β to
E, which is trivial since H fixes E. It follows that T − β splits completely in E.

For an irreducible polynomial A ∈ RT which has order qd − 1 modulo M , by part (3) of
Proposition 2.2, the place A remains inert in the extension K/F , and therefore also in the
sub-extension E/F . Since the degree of the place A equals `, (4.2) follows from the definition
of the Artin automorphism at A. �

4.3. A generator for E and its properties. We would like to represent elements of E and
be able to evaluate them at the places above T − β. To this end, we will exhibit a µ ∈ F ac

such that E = F (µ) along with defining equation for µ (which will then aid in the evaluations
of µ at the requisite places).

Theorem 4.3. Let λ be an arbitrary nonzero element of ΛM (so that K = F (λ)). Define

(4.3) µ
def
=
∏

σ∈H

σ(λ) = CAb(λ)CA2b(λ) · · ·C
Aqd

−1(λ) .

Then, the fixed field KH equals E = F (µ). The minimal polynomial h(Z) ∈ RT [Z] of µ over
F is given by

h(Z) =

b−1
∏

j=0

(Z − Γj(µ)) .

Further, the polynomial h(Z) can be computed in qO(d) time.

Proof. By definition µ is fixed by each π ∈ H and so µ ∈ E. Therefore F (µ) ⊆ E.

To show E = F (µ), we will argue that [F (µ) : F] = b, which in turn follows if we show that
h(Z) has coefficients in F and is irreducible over F . Since Γb(µ) = µ and thus Γj(µ) only

depends on j mod b, all symmetric functions of {Γj(µ)}b−1
j=0 are fixed by Γ, and thus also by

all of Gal(K/F). The coefficients of h(Z) must therefore belong to F . The lemma actually
claims that the coefficients lie in RT . To see this, note that for j = 0, 1, . . . , b− 1,

(4.4) Γj(µ) =
∏

06i<qd
−1

i mod b=j

Γi(λ) =
∏

06i<qd
−1

i mod b=j

CAi(λ) .

Since λ and all its Galois conjugates CAi(λ) are integral over F , each Γj(µ) is integral over
F , and thus so is each coefficient of h(Z). But since we already know they belong to F , the
coefficients must in fact lie in RT .

We will prove h(Z) is irreducible over F by showing that it is an Eisenstein polynomial with
respect to the place M . Since µ = λ×∏σ∈H,σ 6=1 σ(λ), for each j, 0 6 j < b, Γj(µ) is divisible

by Γj(λ) in the ring RT [λ]. Now Γj(λ) = CAj(λ) which is divisible by λ. By Proposition 2.2,

λ ∈ M̃ , and hence each coefficient of h(Z) belongs to the ideal F ∩ M̃ = M . (A reminder that
we are using M to denote both the polynomial in RT and its associated place.) Therefore, all
coefficients of h(Z) except the leading coefficient are divisible by M .

10

The constant term of h(Z) equals

(4.5)

b−1
∏

j=0

Γj(µ) =

b−1
∏

j=0

∏

σ∈H

Γj(σ(λ)) =

b−1
∏

j=0

∏

06i<(qd−1)/b

Γbi+j(λ) =
∏

π∈G

π(λ) = M

where the last step follows since the minimal polynomial of λ over F is
∏

π∈G(Z − π(λ)),
but the minimal polynomial is also CM (Z)/Z which has M as the constant term. Thus the
constant term of h(Z) is not divisible by M2. By Eisenstein’s criterion, we conclude that h(Z)
must be irreducible over F .

Finally, we turn to how the coefficients of h(Z) can be computed efficiently. By the expression
(4.4), we can compute Γj(µ) for 0 6 j 6 b − 1 as a formal polynomial in λ with coefficients
from RT . We can divide this polynomial by the monic polynomial CM (λ)/λ (formally, over
the polynomial ring RT [λ]) and represent Γj(µ) as a polynomial of degree less than (qd − 1)

in λ. Using this representation, we can compute the polynomials h(i)(Z) =
∏i

j=0(Z − Γj(µ))

for 1 6 i 6 b− 1 iteratively, as an element of RT [λ][Z], with all coefficients having degree less
than (qd − 1) in λ. When i = b− 1, we would have computed h(Z) — we know at the end all
the coefficients will have degree 0 in λ and belong to RT . �

By Equation (4.5) in the above argument, and the fact that vM ′(Γj(µ)) = vM ′(µ), we conclude
that vM ′(µ) = 1, i.e. µ (as well as each of its Galois conjugates Γj(µ)) is M ′-prime. We record
this fact below. It will be used to prove that the integral closure of RT in E equals RT [µ]
(Proposition 5.2), en route characterizing the message space in Theorem 5.1.

Lemma 4.4. The element µ has a simple zero at M ′, i.e., vM ′(µ) = 1.

With the minimal polynomial h(Z) of µ at our disposal, we turn to computing the evaluations

of µ at the b places above T − β, call them P
(β)
j for j = 0, 1, . . . , b − 1, for each β ∈ Fr.

(Recall that the place T − β splits completely in E/F by Proposition 4.2, Part (v).) The
following lemma identifies the set of evaluations of µ at these places. This method is related
to Kummer’s theorem on splitting of primes [21, Sec. III.3].

Lemma 4.5. Consider the polynomial h̄(β)(Z) ∈ Fq[Z] obtained by evaluating the coefficients

of h(Z), which are polynomials in T , at β. Then h̄(β)(Z) =
∏b−1

j=0(Z−µ(P
(β)
j)). In particular,

the set of evaluations of µ at the places above (T − β) equals the roots of h̄(β) in Fq, and can

be computed in bO(1) time given h ∈ RT [Z].

Proof. We know h(Z) =
∏b−1

j=0(Z − Γj(µ)). Therefore

h̄(β)(Z) =
b−1
∏

j=0

(Z − Γj(µ)(P
(β)
0)) =

b−1
∏

j=0

(

Z − µ
(

Γ−j(P
(β)
0)

)

)

=
b−1
∏

j=0

(Z − µ(P
(β)
j))

where the last step uses the fact that Γ−j(P
(β)
0) for j = 0, 1, . . . , b − 1 is precisely the set of

places above T − β. �

11

5. Code construction from cyclotomic function field

We will now describe the algebraic-geometric codes based on the function field E. A tempting

choice for the message space is perhaps {∑b−1
i=0 ai(T)µi} ⊂ RT [µ] where ai(T) are polynomials

of some bounded degree. This is certainly a Fq-linear space and messages in this space have
no poles outside the places lying above P∞. However, the valuations of µ at these places is
complicated (one needs the Newton polygon method to estimate these [19, Sec. 12.4]), and
since µ has both zeroes and poles amongst these places, it is hard to get good bounds on the
total pole order of such messages at each of the places above P∞.

5.1. Message space. Let M ′ be the unique totally ramified place M ′ in E lying above M ;
deg(M ′) = deg(M) = d. We will use as message space elements of RT [µ] that have no
more than a certain number ` of poles at the place M ′ and no poles elsewhere. These can
equivalently be thought of (via a natural correspondence) as elements of E that have bounded
(depending on `) pole order at each place above P∞, and no poles elsewhere, and we can
develop our codes and algorithms in this equivalent setting. Since the literature on AG codes
typically focuses on one-point codes where the messages have poles at a unique place, we work
with functions with poles restricted to M ′.

Formally, for an integer ` > 1, let L(`M ′) be the space of functions in E that have no poles
outside M ′ and at most ` poles at M ′. L(`M ′) is an Fq-vector space, and by the Riemann-
Roch theorem, dim(L(`M ′)) > `d− g+ 1, where g = d(b− 1)/2+ 1 is the genus of E. We will
assume that ` > b, in which case dim(L(`M ′)) = `d− g + 1.

We will represent the code by a basis of L(`M ′) over Fq. Of course, we first need to understand
how to represent a single function in L(`M ′). The following lemma suggest a representation
for elements of L(`M ′) that we can use.

Theorem 5.1. A function f in E with poles only at M ′ has a unique representation of the
form

(5.1) f =

∑b−1
i=0 aiµ

i

Me

where e > 0 is an integer, each ai ∈ RT , and not all the ai’s are divisible by M (as polynomials
in T).

Proof. If f has poles only at M ′, there must be a smallest integer e > 0 such that Mef has
no poles outside the places above P∞. This means that Mef must be in the integral closure
(“ring of integers”) of RT in E, i.e., the minimal polynomial of Mef over RT is monic. The
claim will follow once we establish that the integral closure of RT in E equals RT [µ], which
we show next in Proposition 5.2. The uniqueness follows since {1, µ, . . . , µb−1} forms a basis
of E over F . �

Proposition 5.2. The integral closure of RT in E equals RT [µ] =
{

∑b−1
i=0 aiµ

i | ai ∈ RT

}

.

Proof. The minimal polynomial h(Z) of µ over RT is monic (Theorem 4.3). Thus µ is integral
over RT , and so RT [µ] is contained in the integral closure of RT in E. We turn to proving the
reverse inclusion. The proof follows along the lines of a similar argument used to prove that

12

the integral closure of RT in K = F (λ) equals RT [λ] [18, Prop. 12.9]. Let ω ∈ E be integral
over RT . We know that {1, µ, µ2, . . . , µb−1} is a basis for E over F . Also µ, and therefore
each µi, is integral over F . By virtue of these facts, it is known (see, for example, [13, Chap.

2]) that there exist ai ∈ RT such that ω = 1
∆

∑b−1
i=0 aiµ

i where ∆ ∈ RT is the discriminant of
the extension E/F . As M is the only ramified place in the extension E/F , the discriminant
∆ is a power of M up to units, and by assuming wlog that ∆ is monic, we can conclude that
∆ = Me′ for some exponent e′ > 0. Thus we have

(5.2) Me′ω =

b−1
∑

i=0

aiµ
i

with ai ∈ RT , and not all the ai’s are divisible by M .

Our goal is to show that e′ = 0. We will do this by comparing the valuations vM ′ of the both
sides of (5.2). We have

(5.3) vM ′(Me′ω) = vM ′(Me′) + vM (ω) = be′ + vM (ω) > be′ .

Let i0, 0 6 i0 < b, be the smallest value of i such that vM (ai) = 0. Such an i0 must exist since
not all the ai’s are divisible by M . By Lemma 4.4, vM ′(µ) = 1, and so

vM ′(aiµ
i) = vM ′(ai) + i = bvM (ai) + i .

For i = i0, vM ′(ai0µ
i0) = i0. For i < i0, vM ′(aiµ

i) > bvM (ai) > b > i0 (since vM (ai) > 1 for
i < i0). For i > i0, vM ′(aiµ

i) > vM ′(µi) = i > i0. It follows that

(5.4) vM ′

(

b−1
∑

i=0

aiµ
i
)

= min
06i6b−1

vM ′(aiµ
i) = i0

Combining (5.3) and (5.4), we conclude b > i0 > be′ which implies e′ = 0. �

5.2. Succinctness of representation. In order to be able to efficiently compute with the
representation (5.1) of functions in L(`M ′), we need the guarantee that the representation
will be succinct, i.e., of size polynomial in the code length. We show that this will be the case
by obtaining an upper bound on the degree of the coefficients ai ∈ RT in Lemma 5.3 below.
This is not as straightforward as one might hope, and we thank G. Anderson and D. Thakur
for help with its proof. For the choice of parameters we will make (in Theorems 6.10 and 7.1),
this upper bound will be polynomially bounded in the code length. Therefore, the assumed
representation of the basis functions is of polynomial size.

Lemma 5.3. Suppose f ∈ L(`M ′) is given by f = 1
Me

∑b−1
i=0 aiµ

i for ai ∈ RT (not all divisible

by M) and e > 0. Then the degree of each ai is at most `+ qdb.

Proof. Let g = Mef =
∑b−1

i=0 aiµ
i. We know that g has at most eb poles at each place of E

that lies above P∞ (since f has no poles at these places). Using the fact that f has at most

` poles at M ′, and the uniqueness of the representation f = 1
Me

∑b−1
i=0 aiµ

i, it is easy to argue
that eb 6 `+ b. So, g has at most `+ b poles at each place of E lying above P∞.

Let σ = σA; we know that σ is a generator of Gal(E/F). For j = 0, 1, . . . , b − 1, we have

σj(g) =
∑b−1

i=0 aiσ
j(µi). Let a = (a0, a1, . . . , ab−1)

T be the (column) vector of coefficients,

13

and let g = (g, σ(g), . . . , σb−1(g))T . Denoting by Φ the b × b matrix with Φji = σj(µi) for
0 6 i, j 6 b− 1, we have the system of equations Φa = b.

We can thus determine the coefficients ai by solving this linear system. By Cramer’s rule,
ai = det(Φi)/det(Φ) where Φi is obtained by replacing the i’th column of Φ by the column
vector g. The square of the denominator det(Φ) is the discriminant of the field extension
E/F , and belongs to RT . Thus the degree of ai is at most the pole order of det(Φi) at an

arbitrary place, say P̃ , above P∞. By the definition (4.3) of µ, and the fact that λ and its
conjugates have at most one pole at the places above P∞ in F (ΛM), it follows that µ has at

most (qd − 1)/b poles at P̃ . The same holds for all its conjugates σj(µ). The function g and

its conjugates σj(g) have at most `+ b poles at P̃ . In all, this yields a crude upper bound of

qd − 1

b

(b− 1)b

2
+ `+ b 6 `+ qdb

for the pole order of det(Φi) at P̃ , and hence also the degree of the polynomial ai ∈ RT . �

5.3. Rational places for encoding and their ordering. So far, the polynomial A ∈ RT

was any monic irreducible polynomial that was a primitive element modulo M , so that its
Artin automorphism σA generates Gal(E/F). We will now pick A to have degree D satisfying

D > `d
b . This can be done by a Las Vegas algorithm in (Dqd)O(1) time by picking a random

polynomial and checking that it works, or deterministically by brute force in qO(d+D) time.
Either of these lies within the decoding time claimed in Theorem 6.10, and will be polynomial
in the block length for our parameter choices in Theorem 7.1. By Proposition 2.1, A remains
inert in E/F , and let us denote by A′ the unique place of E that lies over A. The degree of
A′ equals Db.

For each β ∈ Fr, fix an arbitrary place P
(β)
0 lying above T − β in E. For j = 0, 1, . . . , b − 1,

define

(5.5) P
(β)
j = σ−j

A (P
(β)
0) .

Since Gal(E/F) acts transitively on the set of primes above a prime, and σA generates
Gal(E/F), these constitute all the places above T − β. Lemma 4.5 already tells us the set of
evaluations of µ at these places, but not which evaluation corresponds to which point. We

have µ(σ−j
A (P

(β)
0)) = σj

A(µ)(P
(β)
0); hence, to compute the evaluations of µ at all these b places

as per the ordering (5.5), it suffices to know

(i) the value at µ(P
(β)
0), which we can find by simply picking one one of the roots from

Lemma 4.5 arbitrarily, and

(ii) a representation of σA(µ) as an element of RT [µ] (since σA(µ) is integral over RT , it

belongs to RT [µ] by virtue of Proposition 5.2). Note that T (P
(β)
0) = β, so once we

know µ(P
(β)
0), we can evaluate any element of RT [µ] at P

(β)
0 .

We now show that σA(µ) ∈ RT [µ] can be computed efficiently.

Lemma 5.4. (i) The values of σj
A(µ) for 0 6 j 6 b − 1 as elements of RT [µ] can be

computed in qO(d) time.

14

(ii) The values µ(P
(β)
j) for β ∈ Fr and j = 0, 1, . . . , b− 1 can be computed in qO(d) time.

Knowing these values, we can compute any function in the message space L(`M ′)

represented in the form (5.1) at the places P
(β)
j in poly(`, qd) time.

Proof. Part (ii) follows from Part (i) and the discussion above. To prove Part (i), note that once

we compute σA(µ), we can recursively compute σj
A(µ) for j > 2, using the relation h(µ) = 0 to

replace µb and higher powers of µ in terms of 1, µ, . . . , µb−1. By definition (4.3), we have µ =
∏

06i<(qd−1)/b CAib mod M (λ). Thus one can compute an expression µ =
∑qd−2

i=0 eiλ
i ∈ RT [λ]

with coefficients ei ∈ RT in qO(d) time. By successive multiplication in the ring RT [λ] (using

the relation CM (λ) = 0 to express λqd−1 and higher powers in terms of 1, λ, . . . , λqd−2), we

can compute, for l = 0, 1, . . . , b− 1, expressions µl =
∑qd−2

i=0 eilλ
i with eil ∈ RT in qO(d) time.

We have σA(µ) =
∑qd−2

i=0 eiσA(λ)i =
∑qd−2

i=0 eiCA mod M (λ)i. So one can likewise compute an

expression σA(µ) =
∑qd−2

i=0 fiλ
i with fi ∈ RT in qO(d) time. The task now is to re-express this

expression for σA(µ) as an element of RT [µ], of the form
∑b−1

l=0 alµ
l, for “unknowns” al ∈ RT

that are to be determined. We will argue that this can be accomplished by solving a linear
system.

Indeed, using the above expressions µl =
∑qd−2

i=0 eilλ
i, the coefficients al satisfy the following

system of linear equations over RT :

(5.6)

b−1
∑

l=0

eilal = fi for i = 0, 1, . . . , qd − 2 .

Since the representation σA(µ) =
∑b−1

l=0 alµ
l is unique, the system has a unique solution. By

Cramer’s rule, the degree of each al is at most qO(d). Therefore, we can express the system
(5.6) as a linear system of size qO(d) over Fq in unknowns the coefficients of all the polynomials

al ∈ RT . By solving this system in qO(d) time, we can compute the representation of σA(µ)
as an element of RT [µ]. �

5.4. The basic cyclotomic AG code. The basic AG code C0 based on subfield E of the
cyclotomic function field F (ΛM) is defined as

(5.7) C0 =

{

(

f(P
(β)
j)

)

β∈Fr,06j<b
| f ∈ L(`M ′)

}

where the ordering of the places P
(β)
j above T − β is as in (5.5). We record the standard

parameters of the above algebraic-geometric code, which follows from Riemann-Roch, the
genus of E from Proposition 4.2, and the fact a nonzero f ∈ L(`M ′) can have at most
` · deg(M ′) = `d zeroes.

Lemma 5.5. Let ` > b. C0 is an Fq-linear code of block length n = rb, dimension k =
`d− d(b− 1)/2, and distance at least n− `d.

Lemma 5.4, Part (ii), implies the following.

15

Lemma 5.6 (Efficient encoding). Given a basis for the message space L(`M ′) represented in
the form (5.1), the generator matrix of the cyclotomic code C0 can be computed in poly(`, qd, qD)
time.

5.5. The folded cyclotomic code. Let m > 1 be an integer. For convenience, we assume
m|b (though this is not really necessary). Analogous to the construction of folded Reed-
Solomon codes [6], the folded cyclotomic code C is obtained from C0 by bundling together
successive m-tuples of symbols into a single symbol to give a code of length N = n/m over
Fm

q . Formally,

(5.8) C =

{

(

f(P (β)
mı), f(P

(β)
mı+1), · · · , f(P

(β)
mı+m−1)

)

β∈Fr,06ı<b/m
| f ∈ L(`M ′)

}

We will index the N positions of codewords in C by pairs (β, ı) for β ∈ Fr and ı ∈ {0, 1, . . . , b
m−

1}.

The generator matrix of unfolded code C0, which can be computed given a basis for L(`M ′)
as per Lemma 5.6, obviously suffices for encoding. We will later on argue that the same
representation also suffices for polynomial time list decoding.

5.6. Folding and Artin-Frobenius automorphism. The unique place A′ lying above A

has degree D′ def

= Db. The residue field at A′, denote it KA′ , is isomorphic to FqD′ . By our

choice Db > `d. This immediately implies a message in L(`M ′) is uniquely determined by its
evaluation at A′.

Lemma 5.7. The map evA′ : L(`M ′) → KA′ given by evA′(f) = f(A′) is one-one.

The key algebraic property of our folding is the following.

Lemma 5.8. For every f ∈ L(`M ′):

(i) For every β ∈ Fr and 0 6 j < b− 1, σA(f)(P
(β)
j) = f(P

(β)
j+1).

(ii) σA(f)(A′) = f(A′)q
D
.

Proof. The first part follows since we ordered the places above T − β such that P
(β)
j+1 =

σ−1
A (P

(β)
j).

The second part follows from the property of the Artin automorphism at A, since the norm
of the place A equals qdeg(A) = qD. (A nice discussion of the Artin-Frobenius automorphism,
albeit in the setting of number fields, appears in [13, Chap. 4].) �

6. List decoding algorithm

We now turn to list decoding the folded cyclotomic code C defined in (5.8). The underlying
approach is similar to that of the algorithm for list decoding folded RS codes [6] and algebraic-
geometric generalizations of Parvaresh-Vardy codes [16, 5]. We will therefore not repeat
the entire rationale and motivation behind the algorithm development. But our technical

16

presentation and analysis is self-contained. In fact, our presentation here does offer some
simplifications over previous descriptions of AG list decoding algorithms from [7, 8, 5]. A
principal strength of the new description is that it avoids the use of zero-increasing bases at

each code place P
(β)
j . This simplifies the algorithm as well as the representation of the code

needed for decoding.

The list decoding problem for C up to e errors corresponds to solving the following function
reconstruction problem. Recall that the length of the code is N = n/m = rb/m, and the
codeword positions are indexed by Fr × {0, 1, . . . , b

m − 1}.

Input: Collection T of N tuples
(

y
(β)
mı , y

(β)
mı+1, · · · , y

(β)
mı+m−1

)

∈ Fm
q for β ∈ Fr and

0 6 ı < b/m

Output: A list of all f ∈ L(`M ′) whose encoding as per C agrees with the (β, ı)’th
tuple for at least N − e codeword positions.

6.1. Algorithm description. We describe the algorithm at a high level below and later
justify how the individual steps can be implemented efficiently, and under what condition
the decoding will succeed. We stress that regardless of complexity considerations, even the
combinatorial list-decodability property “proved” by the algorithm is non-trivial.

Algorithm List-Decode(C): (uses the following parameters):

• an integer parameter s, 2 6 s 6 m, for s-variate interpolation

• an integer parameter w > 1 that governs the zero order (multiplicity) guaranteed by
interpolation

• an integer parameter ∆ > 1 which is the total degree of the interpolated s-variate
polynomial

Step 1: (Interpolation) Find a nonzero polynomial Q(Z1, Z2, . . . , Zs) of total degree at
most ∆ with coefficients in L(`M ′) such that for each β ∈ Fr, 0 6 ı < b/m, and
j′ ∈ {0, 1, . . . ,m− s}, the shifted polynomial

(6.1) Q
(

Z1 + y
(β)
mı+j′, Z2 + y

(β)
mı+j′+1, · · · , Zs + y

(β)
mı+j′+s−1

)

has the property that the coefficient of the monomial Zn1
i Zn2

2 · · ·Zns
s vanishes at

P
(β)
mı+j′ whenever its total degree n1 + n2 + · · · + ns < w.

Step 2: (Root-finding) Find a list of all f ∈ L(`M ′) satisfying

Q(f, σA(f), . . . , σAs−1(f)) = 0 .

Output those whose encoding as per the code C agrees with at least N − e of the
m-tuples in T .

6.2. Analysis of error-correction radius.

Lemma 6.1. If k(∆ + 1)s > N(m− s+ 1)(w + s− 1)s (where, recall, k = `d− d(b− 1)/2 is
the dimension of L(`M ′)), then a nonzero polynomial Q with the stated properties exists. If
we know the evaluations of the functions in a basis {φ1, φ2, . . . , φk} of L(`M ′) at the places

17

P
(β)
j , then such a Q can be found by solving a homogeneous system of linear equations over

Fq with at most Nm(w + s)s equations and unknowns.

Proof. The proof is standard and follows by counting degrees of freedom vs. number of
constraints. One can express the desired polynomial as

∑

n1,n2,...,ns
q(n1,...,ns)Z

n1
1 · · ·Zns

s with

unknowns q(n1,...,ns) ∈ Fq. The number of coefficients is k
(∆+s

s

)

> k(∆+1)s/s!. For each place

P
(β)
mı+j′ , one can express the required condition at that place by

(w+s−1
s

)

linear conditions (this

quantity is the number of monomials of total degree < w), for a total of

N(m− s+ 1)

(

w + s− 1

s

)

< N(m− s+ 1)
(w + s− 1)s

s!

constraints. When the number of unknowns exceeds the number of constraints, a nonzero
solution must exist. A solution can also be found efficiently once the linear system is set
up, which can clearly be done if we know the evaluations of φi’s at the code places (i.e., a
“generator matrix” of the code). �

Lemma 6.2. Let Q be the polynomial found in Step 1. If the encoding of some f as per C
agrees with

(

y
(β)
mı , y

(β)
mı+1, · · · , y

(β)
mı+m−1

)

for some position (β, ı), then Q(f, σA(f), . . . , σAs−1(f))

has at least w zeroes at each of the (m− s+ 1) places P
(β)
mı+j′ for j′ = 0, 1, . . . ,m− s.

Proof. The proof differs slightly from earlier proofs of similar statements (eg., [5, Lemma 6.6])
in that it avoids the use of zero-increasing bases and is thus simpler. We will prove the claim
for j′ = 0, and the same proof works for any j′ 6 m− s. Note that agreement on the m-tuple
at position (b, ı) implies that

f(P (β)
mı) = y(β)

mı , f(P
(β)
mı+1) = y

(β)
mı+1, · · · , f(P

(β)
mı+s−1) = y

(β)
mı+s−1 .

By Lemma 5.8, Part (i), this implies

f(P (β)
mı) = y(β)

mı , σA(f)(P (β)
mı) = y

(β)
mı+1, · · · , σAs−1(f)(P (β)

mı) = y
(β)
mı+s−1 .

Denote by Q∗ the shifted polynomial (6.1) for the triple (β, ı, 0). We have

Q
(

f, σA(f), . . . , σAs−1(f)
)

= Q∗(f − y(β)
mı , σA(f) − y

(β)
mı+1, · · · , σs−1

A (f) − y
(β)
mı+s−1

)

=
∑

n1,n2,...,ns
w6n1+···+ns6∆

q∗(n1,...,ns)

(

f − f(P (β)
mı)

)n1
(

σA(f) − σA(f)(P (β)
mı)

)n2 · · ·
(

σAs−1(f) − σAs−1(f)(P (β)
mı)

)ns .

for some coefficients q∗(n1,...,ns)
∈ Fq. Each term of the function in the last expression clearly

has valuation at least w at P
(β)
mı , and hence so does Q

(

f, σA(f), . . . , σAs−1(f)
)

. �

Lemma 6.3. If the encoding of f ∈ L(`M ′) has at least N − e agreements with the input
tuples T , and (N − e)(m− s+ 1)w > d`(∆ + 1), then Q(f, σA(f), . . . , σAs−1(f)) = 0.

Proof. Since f has no poles outside M ′, neither do σAi(f) for 1 6 i < s. Moreover,
vM ′(σA(f)) = vσ−1

A (M ′)(f) = vM ′(f) (since M ′ is the unique place above M and is thus fixed

by every Galois automorphism). Since f ∈ L(`M ′), this implies σAi(f) ∈ L(`M ′) for every i.
Since each coefficient ofQ also belongs to L(`M ′), we conclude thatQ(f, σA(f), . . . , σAs−1(f)) ∈
L((` + `∆)M ′). On the other hand, by Lemma 6.2, Q(f, σA(f), . . . , σAs−1(f)) has at least

18

(N−e)(m−s+1)w zeroes. If (N−e)(m−s+1)w > `(∆+1)d, then Q(f, σA(f), . . . , σAs−1(f))
has more zeroes than poles and must thus equal 0. �

Putting together the above lemmas, we can conclude the following about the list decoding
radius guaranteed by the algorithm. Note that we have not yet discussed how Step 2 may be
implemented, or why it implies a reasonable bound on the output list size. We will do this in
Section 6.3.

Theorem 6.4. For every s, 2 6 s 6 m, and any ζ > 0, for the choice w = ds/ζe and a
suitable choice of the parameter ∆, the algorithm List-Decode(C) successfully list decodes up
to e errors whenever

(6.2) e < (N − 1) − (1 + ζ)

(

k

m− s+ 1

)1−1/s

N1/s

(

1 +
d(b− 1)

2k

)

.

Proof. Picking w = ds/ζe and ∆ + 1 =

⌈

(

N(m−s+1)
k

)1/s
(w + s− 1)

⌉

, the requirement of

Lemma 6.1 is met. By Lemma 5.5, the dimension k satisfies `d = k+d(b−1)/2. A straightfor-
ward computation reveals that for this choice, the bound (6.2) implies the decoding condition
(N − e)(m− s+1)w > `d(∆+1) under which Lemma 6.3 guarantees successful decoding. �

Remark 6.5. The above error-correction radius is non-trivial only when s > 2. We will see
later how to pick parameters so that the error fraction approaches 1−R1−1/s. For AG codes,
even s = 1 led to a non-trivial guarantee of about 1−

√
R in [7], and for folded Reed-Solomon

codes the error fraction with s-variate interpolation was 1 − Rs/(s+1). The weaker bound we
get is due to restricting the pole order of coefficients of Q to at most `, the number of poles
allowed for messages. This is similar to the algorithm in [5, Sec. 5]. Since we let grow s
anyway, this does not hurt us. It also avoids some difficult technical complications that would
arise otherwise (discussed, eg. in [5]), and allows implementing the interpolation step just
using the natural generator matrix of the code.

6.3. Root-finding using the Artin automorphism. So far we have not discussed how
Step 2 of decoding can be performed, and why in particular it implies a reasonably small
upper bound on the number of solutions f ∈ L(`M ′) that it may find in the worst-case. We
address this now. This is where the properties of the Artin automorphism σA will play a
crucial role. Recall (i) KA′ = OA′/A′ denotes the residue field at the place A′ of E lying above
A, and (ii) we picked A so that D = deg(A) obeyed Db > `d.

Lemma 6.6. Suppose f ∈ OA′ satisfies

Q(f, σA(f), . . . , σAs−1(f)) = 0

for some Q ∈ OA′ [Z1, Z2, . . . , Zs]. Let Q ∈ KA′ [Z1, Z2, . . . , Zs] be the polynomial obtained by
reducing the coefficients of Q modulo A′. Then f(A′) ∈ KA′ obeys

(6.3) Q
(

f(A′), f(A′)q
D
, f(A′)q

2D
, · · · , f(A′)q

D(s−1))

= 0 .

Proof. If Q(f, σA(f), . . . , σAs−1(f)) = 0, then surely Q
(

f(A′), σA(f)(A′), · · · , σAs−1(f)(A′)
)

=
0. The claim (6.3) now follows immediately from Lemma 5.8, Part (ii). �

19

Lemma 6.7. If Q(Z1, . . . , Zs) is a nonzero polynomial of total degree at most ∆ < qD all of
whose coefficients belong to L(`M ′), then the polynomial Φ ∈ KA′ [Y] defined as

Φ(Y)
def
= Q

(

Y, Y qD
, · · · , Y qD(s−1))

is a nonzero polynomial of degree at most ∆ · qD(s−1).

Proof. If ψ ∈ L(`M ′) is nonzero, then ψ(A′) 6= 0. (Otherwise, the degree of zero divisor of
ψ will be at least deg(A′) = bD > `d, and thus exceed the degree of the pole divisor of ψ.)
It follows that if Q 6= 0, then Q(Z1, . . . , Zs) obtained by reducing coefficients of Q modulo A′

is also nonzero.3 Since the degree of Q in each Zi is at most ∆ < qD, it is easy to see that

Φ(Y) = Q
(

Y, Y qD
, · · · , Y qD(s−1))

is also nonzero. The degree of Φ is at qD(s−1) times the total

degree of Q, which is at most ∆. �

By the above two lemmas, we see that one can compute the set of residues f(A′) of all f
satisfying Q(f, σA(f), . . . , σAs−1(f)) = 0 by computing the roots in KA′ of Φ(Y). Since evA′

is injective on L(`M ′) (Lemma 5.7), this also lets us recover the message f ∈ L(`M ′).

Lemma 6.8. Given a nonzero polynomial Q(Z1, . . . , Zs) with coefficients from L(`M ′) and
degree ∆ < qD, the set of functions

S = {f ∈ L(`M ′) | Q
(

f, σA(f), . . . , σAs−1(f)
)

= 0}

has cardinality at most qDs.

Moreover, knowing the evaluations of a basis B = {φ1, φ2, . . . , φk} of L(`M ′) at the place A′,
one can compute the coefficients expressing each f ∈ S in the basis B in qO(Ds) time.

Proof. As argued above, any desired f ∈ L(`M ′) has the property that Φ(f(A′)) = 0, so the
evaluations of functions in S take at most degree(Φ) 6 ∆qD(s−1) 6 qDs values. Since evA′

is injective on S, this implies |S| 6 qDs. The second part follows since we can compute the

roots of Φ in KA′ in time poly(qDs, log |KA′ |) 6 qO(Ds). Knowing f(A′), we can recover f (in
terms of the basis B) by solving a linear system if we know the evaluations of the functions in
the basis B at A′. The next section discusses a convenient representation for computations in
KA′ . �

6.3.1. Representation of the residue field KA′. The following gives a convenient representation
for elements of KA′ which can be used in computations involving this field.

Lemma 6.9. The elements {1, µ(A), . . . , µ(A)b−1} form a basis for KA′ over the field RT /(A) '
FqD . In other words, elements of KA′ can be expressed in a unique way as

b−1
∑

i=0

bi(T)µ(A)i

where each bi ∈ RT has degree less than D.

3This is simplicity we gain by restricting the coefficients of Q to also belong to L(`M ′).

20

Proof. Since A is inert in E/F , the minimal polynomial h(Z) of µ over F has the property
that h(Z), obtained by reducing the coefficients of h modulo A, is irreducible over the residue
field RT /(A) . Thus µ(A) generates KA′ over RT /(A), and in fact minimal polynomial of
µ(A) w.r.t to KA equals h(Z). Note that the coefficients of h, which belong to RT /(A), have
a natural representation as a polynomial in RT of degree < deg(A) = D. �

We note that given the representation of the basis B = {φ1, φ2, . . . , φk} in the form guaranteed
by Theorem 5.1, one can trivially compute the evaluations of φi(A

′) in the above form. There
is no need to explicitly compute µ(A) ∈ OA/A. Therefore, the decoding algorithm requires
no additional pre-processed information beyond a basis for the message space L(`M ′) — the
rest can all be computed efficiently from the basis alone.

6.4. Wrap-up. We are now ready to state our final decoding claim.

Theorem 6.10. For any s, 2 6 s 6 m, and ζ > 0, the folded cyclotomic code C ⊆ (Fm
q)N

defined in (5.8) can be list decoded in time (Nm)O(1)(s/ζ)O(s) + qO(Ds) from a fraction ρ of
errors

(6.4) ρ = 1 − (1 + ζ)

(

R0m

m− s+ 1

)1−1/s (

1 +
d

2R0r

)

,

where R0 = k/n is the rate of the code. The size of the output list is at most qDs. The
decoding algorithm assumes polynomial amount of pre-processed information consisting of basis
functions {φ1, . . . , φk} for the message space L(`M ′) represented in the form (5.1). (Note that
this is the same representation used for encoding, and it is succinct by Lemma 5.3.)

Proof. We first note that bound on fraction of errors follows from Theorem 6.4, and the fact
that k = R0n = R0Nm = R0br. By Lemma 6.1 and its proof, in Step 1 of the algorithm
we can find a nonzero polynomial Q (of degree < qD) such that for any f ∈ L(`M ′) that
needs to be output by the list decoder, we must have Q(f, σA(f), · · · , σAs−1(f)) = 0. We can

evaluate the basis functions φi at P
(β)
j in (`qd)O(1) time by Lemma 5.4, and with this infor-

mation, the running time of this interpolation step can be bounded by (Nm)O(1)(w+ s)O(s) =

(Nm)O(1)(s/ζ)O(s) (since w = O(s/ζ)). We can also efficiently compute the evaluations of φi

at A′ in the representation suggested by Lemma 6.9. Therefore, by Lemma 6.8, we can then
find a list of the at most qDs functions f satisfying Q(f, σA(f), · · · , σAs−1(f)) = 0 in qO(Ds)

time. �

Remark 6.11 (List Recovery). A similar claim holds for the more general list recovery prob-
lem, where for each position we are given as input a set of up to l elements of Fm

q , and the
goal is to find all codewords which agree with some element of the input sets for at least a
fraction (1− ρ) of positions. In this case, 1− ρ only needs to be only a factor l1/s larger than
the bound (6.4). By picking s� l, the effect of l can be made negligible. This feature is very
useful in concatenation schemes; see Section 7.1 and [6] for further details.

7. Long codes achieving list decoding capacity

We now describe the parameter choices which leads to capacity-achieving list-decodable codes,
i.e., codes of rate R0 that can correct a fraction 1−R0−ε of errors (for any desired 0 < R0 < 1),

21

and whose alphabet size is polylogarithmic in the block length; the formal statement appears in
Theorem 7.1 below. (Recall that for folded RS codes, the alphabet size is a large polynomial in
the block length.) Using concatenation and expander-based ideas, Guruswami and Rudra [6]
also present capacity-achieving codes over a fixed alphabet size (that depends on the distance
ε to capacity alone). The advantage of our codes is that they inherit strong list recovery
properties similar to the folded RS codes (Remark 6.11). This is very useful in concatenation
schemes, and indeed our codes can be used as outer codes for an explicit family of binary
concatenated codes list-decodable up to the Zyablov radius, with no brute-force search for the
inner code (see Section 7.1 below).

We now describe our main result on how to obtain the desired codes from the construction C
and Theorem 6.10. The underlying parameter choices to achieve this require a fair bit of care.

Theorem 7.1 (Main). For every R0, 0 < R0 < 1, and every constant ε > 0, the following
holds for infinitely many integers q which are powers of two. There is a code of rate at least

R0 over an alphabet of size q with block length N > 2q
Ω(ε2/ log(1/R0))

that can be list decoded up

to a fraction 1 −R0 − ε of errors in time bounded by (N log(1/R0)/ε
2)O(1/(R0ε)2).

Proof. Suppose R0, 0 < R0 < 1, and ε > 0 are given. Let c = 2b 10
R0εc+ 1, and φ(c) denote the

Euler’s totient function of c.

Let u > 1 be an arbitrary integer; we will get a family of codes by varying u. The code we
construct will be a folded cyclotomic code C defined in Eq. (5.8). Let x = φ(c)u. Note that
2x ≡ 1 (mod c). We first pick q, r, d as follows: r = 2x, q = r2, and d = (2x − 1)/c. For this
choice, d|r − 1 and (q − 1)/(r − 1) = r + 1 is coprime to d, as required in Lemma 4.1. So we
can take M(T) = T d − γ ∈ Fr[T] for γ primitive in Fr as the irreducible polynomial over Fq.

For the above choice d/r < 1/c 6 εR0/20, so that d
2R0r <

ε
10 . By picking

s = Θ(ε−1 log(1/R0)), m = Θ(s/ε) ,

and ζ = ε/20, we can ensure that the decoding radius ρ guaranteed in Eq. (6.4) by Theo-
rem 6.10 is at least 1 − (1 + ε)R0.

The degree b of the extension E/F (Eq. (4.1)) is given by b = rd+1
r+1 . The length of the unfolded

cyclotomic code C0 (defined in (5.7)) equals n = rb > rd/2. We need to ensure that the rate
of C0, which is equal to the rate of the folded cyclotomic code C, is at least R0. To this end,
we will pick

(7.1) ` =

⌈

b

2
+
R0rb

d

⌉

.

It is easily checked that for our choice of parameters ` > b. By Lemma 5.5, the rate of C0

equals d(`−(b−1)/2)
rb , which is at least R0 for the above choice of `.

We next pick the value of D, the degree of the irreducible A, which is the key quantity
governing the list size and decoding complexity. We need D > `d/b. For the ` chosen above,
this condition is surely met if D > 2r. But there must also be an irreducible A of degree D
that is a primitive root modulo M . Since we know the Riemann hypothesis for function fields,
there is an effective Dirichlet theorem on the density of irreducibles in arithmetic progressions

22

(see [18, Thm 4.8]). This implies that when D � 2d, such a polynomial A must exist (in fact

about a φ(qd−1)
D(qd−1)

fraction of degree D polynomials satisfy the needed property). We can thus

pick
D = Θ(r) = Θ(dc) = Θ(d/(R0ε)) .

The running time of the list decoding algorithm is dominated by the qO(Ds) term, and for the

above choice of parameters can be bounded by qO(d/(R0ε)2). The block length of the code N
satisfies

N =
n

m
>

rd

2m
=
qd/2

2m
= Ω

(

ε2qd/2

log(1/R0)

)

.

As a function ofN , the decoding complexity is therefore bounded by (N log(1/R0)/ε
2)O(1/(R0ε)2).

The alphabet size of the folded cyclotomic code is q = qm, and we can bound the block length
N from below as a function of q as:

N >
qd/2

2m
>
qΩ(r/c)

2m
>
qΩ(εR0

√
q)

2m

> 2
√

q (for large enough q compared to 1/R0, 1/ε)

= 2q
1/(2m)

> 2q
Ω(ε2/ log(1/R0)))

.

This establishes the claimed lower bound on block length, and completes the proof of the
theorem. �

7.1. Concatenated codes list-decodable up to Zyablov radius. Using the strong list
recovery property of folded RS codes, a polynomial time construction of binary codes list-
decodable up to the Zyablov radius was given in [6, Thm 5.3]. The construction used folded
RS codes as outer codes in a concatenation scheme, and involved an undesirable brute-force
search to find a binary inner code that achieves list decoding capacity. The time to construct
the code grew faster than NΩ(1/ε) where ε is the distance of the decoding radius to the Zyablov
radius. This result as well as our result below hold not only for binary codes but also codes
over any fixed alphabet; for sake of clarity, we state results only for binary codes.

Since the folded cyclotomic codes from Theorem 7.1 are much longer than the alphabet size,
by using them as outer codes, it is possible to achieve a similar result without having to search
for an inner code, by using as inner codes all possible binary linear codes of a certain rate!

Theorem 7.2. Let 0 < R0, r < 1 and ε > 0. Let C be a folded cyclotomic code guaranteed
by Theorem 7.1 with rate at least R0 and a large enough block length N . Let C∗ be a binary
code obtained by concatenating C with all possible binary linear maps of rate r (each one used
a roughly equal number of times). Then C∗ is binary linear code of rate at least R0 · r that can

be list decoded from a fraction (1 −R0)H
−1(1 − r) − ε of errors in N (1/ε)O(1)

time.

We briefly discuss the idea behind proving the above claim. As the alphabet size of folded
cyclotomic codes is polylogarithmic in N , each outer codeword symbol can be expressed
using Oε(log logN) bits. Hence the total number of such inner codes S will be at most

2Oε((log log N)2) � N for large enough N . The N outer codeword positions will be partitioned
into S (roughly) equal parts in an arbitrary way, and each inner code used to encode all the
outer codeword symbols in one of the parts. Most of the inner codes achieve list decoding

23

capacity — if their rate is r, they can list decode H−1(1−r)−ε fraction of errors with constant
sized lists (of size 2O(1/ε)). This suffices for analyzing the standard algorithm for decoding
concatenated codes (namely, list decode the inner codes to produce a small set of candidate
symbols for each position, and then list recover the outer code based on these sets). Arguing
as in [6, Thm 5.3], we can thus prove Theorem 7.2.

Acknowledgments

Many thanks to Dinesh Thakur for several illuminating discussions about Carlitz-Hayes theory
and cyclotomic function fields. I thank Dinesh Thakur and Greg Anderson for helping me
with the proof of Lemma 5.3. Thanks to Andrew Granville for pointing me to Dirichlet’s
theorem for polynomials.

References

[1] L. Carlitz. A class of polynomials. Trans. Amer. Math. Soc., 43:167–182, 1938.
[2] G. Frey, M. Perret, and H. Stichtenoth. On the different of abelian extensions of global fields. In Cod-

ing theory and algebraic geometry, volume 1518 of Lecture Notes in Mathematics, pages 26–32. Springer
Berlin/Heidelberg, 1992.

[3] A. Garcia and H. Stichtenoth. A tower of Artin-Schreier extensions of function fields attaining the Drinfeld-
Vlădut bound. Inventiones Mathematicae, 121:211–222, 1995.

[4] A. Garcia and H. Stichtenoth. On the asymptotic behavior of some towers of function fields over finite
fields. Journal of Number Theory, 61(2):248–273, 1996.

[5] V. Guruswami and A. Patthak. Correlated Algebraic-Geometric codes: Improved list decoding over
bounded alphabets. Mathematics of Computation, 77(261):447–473, 2008.

[6] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-correction with optimal
redundancy. IEEE Transactions on Information Theory, 54(1):135–150, 2008.

[7] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and algebraic-geometric codes. IEEE
Transactions on Information Theory, 45:1757–1767, 1999.

[8] V. Guruswami and M. Sudan. On representations of algebraic-geometry codes. IEEE Transactions on
Information Theory, 47(4):1610–1613, 2001.

[9] D. R. Hayes. Explicit class field theory for rational function fields. Trans. Amer. Math. Soc., 189:77–91,
March 1974.

[10] M.-D. Huang and A. K. Narayanan. Folded algebraic geometric codes from Galois extensions. Personal
communication, 2008.

[11] J. Justesen. A class of constructive asymptotically good algebraic codes. IEEE Transactions on Information
Theory, 18:652–656, 1972.

[12] R. Lidl and H. Niederreiter. Introduction to Finite Fields and their applications. Cambridge University
Press, Cambridge, MA, 1986.

[13] D. A. Marcus. Number Fields. Springer-Verlag, New York Inc., 1977.
[14] H. Niederreiter and C. P. Xing. Explicit global function fields over the binary field with many rational

places. Acta Arithmetica, 75:383–396, 1996.
[15] H. Niederreiter and C. P. Xing. Cyclotomic function fields, Hilbert class fields and global function fields

with many rational places. Acta Arithmetica, 79:59–76, 1997.
[16] F. Parvaresh and A. Vardy. Correcting errors beyond the Guruswami-Sudan radius in polynomial time. In

Proceedings of the 43nd Annual Symposium on Foundations of Computer Science (FOCS), pages 285–294,
2005.

[17] H.-G. Quebbemann. Cyclotomic Goppa codes. IEEE Trans. Info. Theory, 34:1317–1320, 1988.
[18] M. Rosen. Number Theory in Function Fields. Springer-Verlag New York, Inc., 2002.
[19] G. D. V. Salvador. Topics in the theory of algebraic function fields. Birkhauser, Boston, 2006.
[20] B.-Z. Shen. A Justesen construction of binary concatenated codes that asymptotically meet the Zyablov

bound for low rate. IEEE Transactions on Information Theory, 39(1):239–241, 1993.

24

[21] H. Stichtenoth. Algebraic function fields and codes. Springer, Berlin, 1993.
[22] H. Stichtenoth. Transitive and self-dual codes attaining the Tsfasman-Vladut-Zink bound. IEEE Transac-

tions on Information Theory, 52(5):2218–2224, 2006.
[23] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of Complexity,

13(1):180–193, 1997.

Appendix A. Table of parameters used

Since the construction of the cyclotomic function field and the associated error-correcting code
used a large number of parameters, we summarize them below for easy reference.

We begin by recalling the parameters concerning the function field construction:

q size of the ground finite field
r size of the subfield Fr ⊂ Fq

F the field Fq(T) of rational functions
RT the ring of polynomials Fq[T]
P∞ the place of F that is the unique pole of T
M polynomial T d − γ ∈ Fr[T], irreducible over Fq

d degree of the irreducible polynomial M
CM the Carlitz action corresponding to M
ΛM the M -torsion points in F ac under the action CM

K the cyclotomic function field F (ΛM)
λ nonzero element of ΛM that generates K over F ; K = F (λ)
G the Galois group of K/F , naturally isomorphic to (RT /(M))∗

H the subgroup F∗
q · Fr[T] of G

E the fixed field KH of H
µ primitive element for E/F ; E = F (µ)
b the degree [E : F] of the extension E/F
g the genus of E/F , equals d(b− 1)/2 + 1

The construction of the code C0 (Eqn. (5.7)) and its folded version C (Eqn. (5.8)) used further
parameters, listed below:

M ′ the unique place of E lying above M
` maximum pole order at M ′ of message functions; ` > b
L(`M ′) Fq-linear space of messages of the codes
n block length of C0, n = br
k dimension of the Fq-linear code C, k = `d− g + 1
m folding parameter
N block length of folded code C, N = n/m

P
(β)
j for β ∈ Fr and 0 6 j < b, these are the rational places lying above T − β in E

A an irreducible polynomial (place of F) that remains inert in E/F
D the degree of the polynomial A; satisfies Db > `d
σA the Artin automorphism of the extension E/F at A
A′ the unique place of E lying above A

25

Appendix B. Algebraic preliminaries

We review some basic background material concerning global fields and their extensions. The
term global field refers to either a number field, i.e., a finite extension of Q, or the function
field L of an algebraic curve over a finite field, i.e., a finite extension of F = Fq(T). While we
are only interested in the latter, much of the theory applies in a unified way to both settings.
Good references for this material are the texts by Marcus [13] and Stichtenoth [21].

B.1. Valuations and Places. A subring X of L is said to be a valuation ring if for every
z ∈ L, either z ∈ X or z−1 ∈ X. Each valuation ring is a local ring, i.e., it has a unique
maximal ideal. The set of places of L, denoted PL, is the set of maximal ideals of all the
valuation rings of L. Geometrically, this corresponds to the set of all (non-singular) points
on the algebraic curve corresponding to L. The valuation ring corresponding to a place P is
called the ring of regular functions at P and is denoted OP .

Associated with a place P is a valuation vP : L→ Z∪{∞}, that measures the order of zeroes
or poles of a function at P , a negative valuation implies the function has a pole at P (by
convention we set vP (0) = ∞). In terms of vP , we have OP = {x ∈ L | vP (x) > 0} and
P = {x ∈ L | vP (x) > 0}. The valuation vP satisfies vP (xy) = vP (x) + vP (y) and the triangle
inequality vP (x+ y) > min{vP (x), vP (y)} (and equality holds if vP (x) 6= vP (y)).

The quotient OP /P is a field since P is a maximal ideal and it is called the residue field at P .
The residue field OP /P is a finite extension field of Fq; the degree of this extension is called
the degree of P . We will also sometimes use the terminology primes to refer to places — the
terms primes and places will be used interchangeably.

B.2. Decomposition of primes in Galois extensions. We now discuss how primes de-
compose in field extensions. Let K/L be a finite, separable extension of global fields of degree
[K : L] = n. We will restrict our attention of Galois extensions. Let P be a place of L. Let O′

P
be the integral closure of OP in K, i.e., the set of all z ∈ K which satisfy a monic polynomial
equation with coefficients in OP . The ideal PO′

P can be written as the product of prime ideals
of O′

P as PO′
P = (P1P2 . . . Pr)

e. Here P1, P2, . . . , Pr are said to be the places of K lying above
P (and P is said to be lie below each Pi). One has the equality Pi ∩ L = P for every i. The
ring O′

P is the fact the intersection of OPi for i = 1, 2, . . . , r. The quantity e is called the
ramification index, and when e = 1, P (as well as the Pi) are said to be unramified. For x ∈ L,
one has vPi(x) = e · vP (x). The residue field OPi/Pi is a finite extension of OP /P ; the degree
f of this extension is called the inertia degree of P . The ramification index e, inertia degree
f , and number r of primes above P satisfy efr = n = [K : L].

If e = n and f = r = 1, the prime P is said to be totally ramified. If r = n and e = f = 1, the
prime P is said to split completely. If f = n and e = r = 1, the prime P is said to be inert.

B.3. Galois action on primes and the Artin automorphism. The Galois group G =
Gal(K/L) acts transitively on the primes P1, P2, . . . , Pr of K lying above P ∈ PL. For each Pi,
there is a subgroup D(Pi|P) ⊆ G that fixes Pi; this is called the decomposition group of Pi. It
is known that the decomposition is isomorphic to the Galois group of the finite field extension
(OPi/Pi)/(OP /P) of the residue fields. Note that the latter group is cyclic and generated by

26

the Frobenius automorphism Frob mapping x 7→ xq. The element of D(Pi|P) corresponding
to Frob is called the Artin automorphism A(Pi|P) of Pi over P .

When G is abelian (which covers the cases we are interested in), the decomposition group
D(Pi|P) and the Artin automorphism A(Pi|P) are the same for every Pi, and they depend
only on the prime P below. Denote the Artin automorphism at P by AP . This has the
following important property:

AP (x) ≡ x‖P‖ (mod Pi)

for every x ∈ O′
P and every prime Pi lying above P . If P is unramified, then AP is the only

element of G with this property. In the unramified case, by Chinese Remaindering the above
also implies

AP (x) ≡ x‖P‖ (mod PO′
P)

for every x ∈ O′
P .

Note that if P is inert with a unique prime P ′ lying above it, then D(P ′|P) = G, and thus G
must be cyclic. Thus, only cyclic extensions can have an inert prime.

Department of Computer Science and Engineering, University of Washington. Currently vis-

iting the Computer Science Dept., Carnegie Mellon University. Some of this work was done

when the author was a member in the School of Mathematics, Institute for Advanced Study.

E-mail address: venkat@cs.washington.edu

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	1. Introduction
	2. Background on Cyclotomic function fields
	3. Reed-Solomon codes as cyclotomic function field codes
	4. Subfield construction from cyclic cyclotomic function fields
	5. Code construction from cyclotomic function field
	6. List decoding algorithm
	7. Long codes achieving list decoding capacity
	Acknowledgments
	References
	Appendix A. Table of parameters used
	Appendix B. Algebraic preliminaries

