
Short Proofs May Be Spacious:
An Optimal Separation of Space and Length in Resolution

Eli Ben-Sasson∗

Computer Science Department
Technion — Israel Institute of Technology

Haifa, 32000, Israel
eli@cs.technion.ac.il

Jakob Nordström†

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology‡

Cambridge, MA 02139, USA
jakobn@mit.edu

November 23, 2008

Abstract

A number of works have looked at the relationship between length and space of resolution proofs. A
notorious question has been whether the existence of a shortproof implies the existence of a proof that
can be verified using limited space.

In this paper we resolve the question by answering it negatively in the strongest possible way. We
show that there are families of6-CNF formulas of sizen, for arbitrarily largen, that have resolution
proofs of lengthO(n) but for which any proof requires spaceΩ(n/ logn). This is the strongest asymp-
totic separation possible since any proof of lengthO(n) can always be transformed into a proof in space
O(n/ logn).

Our result follows by reducing the space complexity of so called pebbling formulas over a directed
acyclic graph to the black-white pebbling price of the graph. The proof is somewhat simpler than pre-
vious results (in particular, those reported in [Nordström 2006, Nordström and Håstad 2008]) as it uses
a slightly different flavor of pebbling formulas which allows for a rather straightforward reduction of
proof space to standard black-white pebbling price.

1 Introduction

Resolution length and space Perhaps the single most studied proof system in propositional proof
complexity isresolution. This system made its first appearance in 1937 in [Bla37] and began to be investi-
gated in connection with automated theorem proving in the 1960s [DLL62, DP60, Rob65]. Because of the
simplicity of resolution—there is only one derivation rule—and because all lines in a proof are clauses, this
proof system readily lends itself to proof search algorithms.

∗Research supported in part by an Alon Fellowship and grants by the Israeli Science Foundation and by the US-Israel Binational
Science Foundation.

†Research supported in part by the Ericsson Research Foundation, the Foundation Olle Engkvist Byggma”stare, and the Foun-
dation Blanceflor Boncompagni-Ludovisi, ne’e Bildt.

‡This work performed while at the Royal Institute of Technology (KTH) and while visiting the Technion.

Electronic Colloquium on Computational Complexity, Report No. 2 (2009)

ISSN 1433-8092

Being so simple and fundamental, resolution was also a natural target to attack when developing meth-
ods for proving lower bounds in proof complexity. In this context, it is most straightforward to prove bounds
on thelengthof refutations, i.e., the number of clauses, rather than on the total size of refutations. The length
and size measures are easily seen to be polynomially related. In 1968, Tseitin [Tse68] presented a super-
polynomial lower bound on refutation length for a restricted form of resolution, calledregular resolution,
but it was not until almost 20 years later that Haken [Hak85] proved the first superpolynomial lower bound
for general resolution. This weakly exponential bound of Haken has later been followed by many other
strong results, among others truly exponential lower bounds on resolution refutation length for different
formula families in, for instance, [BKPS02, BSW01, CS88, Urq87].

The formal study ofspacein resolution was initiated by Esteban and Torán [ET01, Tor99]. Intuitively,
the space of a resolution refutation is the maximal number ofclauses one needs to keep in memory while
verifying the refutation, and the space of refuting the CNF formulaF is defined as the minimal space of any
resolution refutation ofF . A number of upper and lower bounds for refutation space in resolution and other
proof systems have subsequently been presented in, for example, [ABSRW02, BSG03, EGM04, ET03].

With the definition of space complexity, a natural question to ask is how space relates to other complexity
measures of propositional proofs. Esteban and Torán [ET01] proved that the space is at most logarithmic in
the minimal length of a treelike refutation of a formula, which implies that space is bounded by the number
of variables appearing in the formula. The question of the relation between space and length of general
resolution proofs, which is the focus of this paper, was raised by the first author in [BS02] and has also been
discussed in, for instance, [ET03, Seg07, Tor04], but therehas been no consensus on what the right answer
should be. However, these papers identify a plausible formula family for answering the question, namely
so-calledpebbling contradictionsdefined in terms of pebble games over directed acyclic graphs(DAGs) and
these formulas have indeed been used in [Nor06, NH08] to makeprogress and, in this paper, finally resolve
the question.

While understanding the relation between space and length seemed stuck, progress was reported on
another front — that of space versuswidth. The width measure, first made explicit by Galil in [Gal77],
is defined as the maximal number of literals in a clause in the refutation. Atserias and Dalmau showed
in [AD03] that space is always greater than width, raising the possibility of equivalence of these two mea-
sures. Notice that width is a different measure of “proof space” as it is the maximal “space” occupied
by a single line in the refutation and one may have speculatedthat the two “space” measures are in fact
equivalent.

Progress on the space-length question for general resolution was finally obtained by the second author
in [Nor06], which also separated space from width. This was done by exhibiting ak-CNF formula family of
sizeO(n) refutable in widthO(1) and lengthO(n) but requiring spaceΘ(log n). In a recent joint work of
the second author with Håstad [NH08] this separation was improved to widthO(1) and lengthO(n) versus
spaceΘ(

√
n) for a related formula family. We note however that this previous state-of-the-art did not rule

out the existence of a space-length tradeoff quantitatively similar to the width-length tradeoff of [BSW01]
which says width is at mostO(

√
n · length).

Our contribution In this paper, we finally resolve the open question about the relationship between
space and length by establishing an optimal separation between the two measures. We do this by studying a
somewhat modified variant of pebbling contradictions defined using XORs (see Definition 3.1) and proving
lower bounds for suchXOR-pebbling contradictionsin terms of the pebbling price of the underlying DAGs.

Theorem 1.1 (Main). The space of refuting XOR-pebbling contradictions over anyDAGG in resolution is
lower-bounded by the black-white pebbling price ofG, provided that the number of variables per vertex in
the XOR-pebbling contradictions is at least2.

2

If we take a constant number of variables per vertex and studyDAGs with constant fan-in, it is easy
to show that XOR-pebbling contradictions can be refuted in linear length and constant width. Using the
result from [GT78] which exhibits a family of fan-in2 DAGs{Gn}∞n=1 of sizeO(n) having pebbling price
Ω(n/ log n), we get the following corollary.

Corollary 1.2 (Main). There is a family{Fn}∞n=1 of 6-CNF formulas of sizeO(n) that can be refuted in
lengthO(n) and widthO(1) but require spaceΩ(n/ log n).

Since it can be proven using results from [ET01, HPV77] that arefutation of lengthO(n) can be carried
out in spaceO(n/ log n), the separation of space and length in Corollary 1.2 is asymptotically optimal. As
an extra bonus, we note that while the constructions in [Nor06, NH08] are quite intricate and the proofs very
involved, our optimal lower bound proof is relatively cleanand straightforward and we discuss it next.

Proof outline For the purposes of analyzing space, a resolution derivation from a CNF formulaF can
be viewed as a sequence of derivation steps on a blackboard. In each step we may write a clause fromF on
the blackboard (anaxiomclause), erase a clause from the blackboard or derive some new clause implied by
the clauses currently written on the blackboard. The space of a derivation is then the maximum number of
clauses on the blackboard simultaneously.

The black-white pebble game models non-deterministic computation, and the black-white pebbling price
of a DAG G is the minimal number of memory registers needed to verify the calculation described byG,
where the source vertices contain the input and non-source vertices specify operations on the values of the
predecessors. The pebble game on a DAGG can be encoded as an unsatisfiable CNF formula, a so-called
pebbling contradictionoverG.

Pebble games have been used extensively as a tool to prove time and space lower bounds and tradeoffs
for computation. Loosely put, a lower bound for the pebblingprice of a graph says that although the
computation that the graph describes can be performed quickly, it requires large space. Our hope is that
when we encode pebble games in terms of CNF formulas, these formulas should inherit the same properties
as the underlying graphs. That is, if we pick a DAGG with high pebbling price, since the corresponding
pebbling contradiction encodes a calculation which needs alot of memory we would like to try to argue that
any resolution refutation of this formula should require large space.

Ideally, we would like to give a proof of a lower bound on the resolution refutation space of pebbling
contradictions along the following lines:

1. First, find a natural interpretation of sets of clauses currently “on the blackboard” in a refutation of
the pebbling contradiction overG in terms of black and white pebbles on the vertices of the DAGG.

2. Then, prove that this interpretation captures the pebblegame in the following sense: for any resolution
refutation of a pebbling contradiction overG, looking at consecutive sets of clauses on the blackboard
and considering the corresponding sets of pebbles we get a black-white pebbling ofG.

3. Finally, show that the interpretation captures clause space in the sense that if the content of the black-
board inducesN pebbles on the graph, then there must be at leastN clauses on the blackboard.

Combining the above with known lower bounds on the pebbling price of G, this would imply a lower
bound on the refutation space of pebbling contradictions. The separation from length and width would then
follow since pebbling contradictions are known to be refutable in linear length and constant width.

Unfortunately, this idea does not quite work “off the shelf.” Pebblings of DAGs and resolution refuta-
tions of CNF formulas are very different objects, and there is no reason a priori that there should be a tight
connection between the two. However, relaxing the requirements for the correspondence between resolu-
tion and pebbling, the papers [Nor06, NH08] made essentially the proof idea above work for two special

3

cases of graphs. In this paper, by using related ideas and studying a slightly modified variant of pebbling
contradictions, we can handle any graph, which results in anoptimal separation of space and length.

Implications for practical SAT-solvers In recent years,SATISFIABILITY has gone from a problem of
mainly theoretical interest to a practical approach for solving applied problems. Although all known Boolean
satisfiability solvers (SAT-solvers) have exponential running time in the worst case, enormous progress in
performance has led to satisfiability algorithms becoming astandard tool for solving a large number of
real-world problems such as hardware and software verification, experiment design, and scheduling.

Perhaps a somewhat surprising aspect of this development isthat the most successful SAT-solvers
to date are still variants of the resolution-based Davis-Putnam-Logemann-Loveland (DPLL) procedure
[DLL62, DP60] augmented withclause learning. For instance, the great majority of the best algorithms
at the 2007 round of the international SAT competitions [SAT] fit this description. DPLL procedures per-
form a recursive backtrack search in the space of partial truth value assignments. The idea behind clause
learning, orconflict-driven learning, is that at each failure (backtrack) point in the search tree, the system
derives a reason for the inconsistency in the form of a new clause and then adds this clause to the original
CNF formula (“learning” the clause). This can save a lot of work later on in the proof search, when some
other partial truth value assignment fails for similar reasons. The main bottleneck for this approach, other
than the obvious one of time, is the amount of memory used by the algorithms. Thus, understanding time
and memory requirements for clause learning algorithms, and how these requirements are related to one
another is a question of great practical importance. We refer to, e.g., [BKS03, KS07, Sab05] for a more
detailed discussion of clause learning (and SAT-solving ingeneral) with examples of applications.

In the field of proof complexity, the resources of time and memory correspond to the length and space
of resolution proofs. Our work indicates that on certain input formulas, a short proof does not necessarily
imply a space-efficient proof exists. Let us give one implication of our result to questions regarding the
practical construction of DPLL-based SAT-solvers.

Consider a “frugal” DPLL-based solver augmented with clause learning that tries to save memory by
limiting the number of learned clauses as a function of its running time. The reasoning underlying the frugal
algorithm is very natural — to save running time, start with the very minimal possible resources and increase
them slowly as necessary. Appealing as this strategy may seem, our work shows that on certain inputs it will
perform much worse than other, more prodigal, strategies.1

Organization of the rest of the paper After stating the necessary definitions in Section 2, we state
and discuss our main results in Section 3. Section 4 defines the “resolution-pebbling game” that we use as
an intermediate step when translating resolution refutations into black-white pebblings. In Sections 5–7 we
provide the proof of our main theorem. Section 8 contains some short concluding remarks.

2 Preliminaries

For the sake of completeness, before presenting our main results we briefly recount (verbatim) from [Nor08]
a few basic definitions regarding resolution and pebble games that will be used later on.

1This issue is somewhat subtle, however, and out of space considerations we cannot give a full discussion here. Let us justnote
that there are empirical results like [SBK04] indicating that although pebbling contradictions have very short resolution proofs,
these proofs can be very hard to find even for a state-of-the-art SAT-solver.

4

2.1 The Resolution Proof System

A literal is either a propositional logic variable or its negation, denotedx andx, respectively, or sometimes
or x1 andx0. We definex = x. Two literalsa andb arestrictly distinct if a 6= b anda 6= b, i.e., if they refer
to distinct variables.

A clauseC = a1 ∨ · · · ∨ ak is a set of literals. Without loss of generality, all clausesC are assumed to
be nontrivial in the sense that all literals inC are pairwise strictly distinct (otherwiseC is trivially true). We
say thatC is asubclauseof D if C ⊆ D. A clause containing at mostk literals is called ak-clause.

A CNF formulaF = C1 ∧ · · · ∧ Cm is a set of clauses. Ak-CNF formulais a CNF formula consisting
of k-clauses. We define thesizeS (F) of the formulaF to be the total number of literals inF counted with
repetitions. More often, we will be interested in the numberof clauses|F | of F .

In this paper, when nothing else is stated it is assumed thatA,B,C,D denote clauses,C, D sets of
clauses,x, y propositional variables,a, b, c literals,α, β truth value assignments andν a truth value0 or 1.
We write

αx=ν(y) =

{

α(y) if y 6= x,

ν if y = x,
(1)

to denote the truth value assignment that agrees withα everywhere except possibly atx, to which it assigns
the valueν. We letVars(C) denote the set of variables andLit(C) the set of literals in a clauseC.2 This
notation is extended to sets of clauses by taking unions. Also, we employ the standard notation[n] =
{1, 2, . . . , n}.

A resolution derivationπ : F `A of a clauseA from a CNF formulaF is a sequence of clausesπ =
{D1, . . . ,Dτ} such thatDτ = A and each lineDi, i ∈ [τ], either is one of the clauses inF (axioms) or is
derived from clausesDj ,Dk in π with j, k < i by theresolution rule

B ∨ x C ∨ x

B ∨ C
. (2)

We refer to (2) asresolution on the variablex and toB ∨ C as theresolventof B ∨ x andC ∨ x on x. A
resolution refutationof a CNF formulaF is a resolution derivation of the empty clause0, i.e., the clause
with no literals, fromF . (Perhaps somewhat confusingly, this is sometimes also referred to as aresolution
proof of F .)

For a formulaF and a set of formulasG = {G1, . . . , Gn}, we say thatG impliesF , denotedG � F ,
if every truth value assignment satisfying all formulasG ∈ G satisfiesF as well. It is well known that
resolution is sound and implicationally complete. That is,if there is a resolution derivationπ : F `A, then
F � A, and ifF � A, then there is a resolution derivationπ : F `A′ for someA′ ⊆ A. In particular,F is
unsatisfiable if and only if there is a resolution refutationof F .

With every resolution derivationπ : F `A we can associate a DAGGπ, with the clauses inπ labeling
the vertices and with edges from the assumption clauses to the resolvent for each application of the reso-
lution rule (2). There might be several different derivations of a clauseC in π, but if so we can label each
occurrence ofC with a timestamp when it was derived and keep track of which copy of C is used where.
A resolution derivationπ is tree-like if any clause in the derivation is used at most once as a premise in an
application of the resolution rule, i.e., ifGπ is a tree. (We may make different “time-stamped” vertex copies
of the axiom clauses in order to makeGπ into a tree).

The lengthL(π) of a resolution derivationπ is the number of clauses in it. We define the length of
deriving a clauseA from a formulaF asL(F ` A) = minπ:F `A{L(π)}, where the minimum is taken over
all resolution derivations ofA. In particular, the length of refutingF by resolution is denotedL(F ` 0). The

2Although the notationLit(C) is slightly redundant given the definition of a clause as a setof literals, we include it for clarity.

5

length of refutingF by tree-like resolutionLT(F ` 0) is defined by taking the minimum over all tree-like
resolution refutationsπT of F .

Thewidth W(C) of a clauseC is |C|, i.e., the number of literals appearing in it. The width of a set of
clausesC is W(C) = maxC∈C{W(C)}. The width of derivingA from F by resolution isW(F ` A) =
minπ:F `A{W(π)}, and the width of refutingF is denotedW(F ` 0). Note that the minimum width
measures in general and tree-like resolution coincide, so it makes no sense to make a separate definition for
WT(F ` 0).

We next define the measure ofspace. Following the exposition in [ET01], a proof can be seen as a
Turing machine computation, with a special read-only inputtape from which the axioms can be downloaded
and a working memory where all derivation steps are made. Theclause spaceof a resolution proof is the
maximum number of clauses that need to be kept in memory simultaneously during a verification of the
proof. For the formal definition, it is convenient to use the alternative definition of resolution introduced
in [ABSRW02].

Definition 2.1 (Resolution). A clause configurationC is a set of clauses. A sequence of clause configura-
tions {C0, . . . , Cτ} is a resolution derivationfrom a CNF formulaF if C0 = ∅ and for allt ∈ [τ], Ct is
obtained fromCt−1 by one3 of the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for someC ∈ F .

Erasure Ct = Ct−1 \ {C} for someC ∈ Ct−1.

Inference Ct = Ct−1 ∪ {D} for someD inferred by resolution fromC1, C2 ∈ Ct−1.

A resolution derivationπ : F `A of a clauseA from a formulaF is a derivation{C0, . . . , Cτ} such that
Cτ = {A}. A resolution refutationof F is a derivation of the empty clause0 from F .

Definition 2.2 (Clause space [ABSRW02, BS02]).Theclause spaceof a resolution derivationπ={C0, . . . ,Cτ}
is maxt∈[τ]{|Ct|}. The clause space of derivingA from F is Sp(F ` A) = minπ:F `A{Sp(π)}, and
Sp(F ` 0) denotes the minimum clause space of any resolution refutation ofF .

Restricting the resolution derivations to tree-like resolution, we get the measureSpT(F ` 0) in analogy
with LT(F ` 0) defined above.

We note that for technical reasons, it is sometimes convenient to add a rule forweakening, saying that
we can always derive a weaker clauseC ′ ⊇ C from C. It is easy to show that any weakening steps can
always be eliminated from a resolution refutation without increasing the length, width or space.

A technical tools that we will use to simplify some of the proofs arerestrictions.

Definition 2.3 (Restriction). A partial assignmentor restriction ρ is a partial functionρ : X 7→ {0, 1},
whereX is a set of Boolean variables. We identifyρ with the set of literals{a1, . . . , am} set to true byρ.
Theρ-restrictionof a clauseC is defined to be

C�ρ =

{

1 (i.e., the trivially true clause) ifLit
(

C
)

∩ ρ 6= ∅,

C \ {a | a ∈ ρ} otherwise.

This definition is extended to set of clauses by taking unions.
We writeρ(¬C) to denote the minimal restriction fixingC to false, i.e.,ρ(¬C) = {a | a ∈ C}.

3In some previous papers, resolution is defined so as to allow every derivation step tocombineone or zero applications of each
of the three derivation rules. Therefore, some of the boundsstated in this paper for space as defined next are off by a constant as
compared to the cited sources.

6

Proposition 2.4. If π is a resolution refutation ofF and ρ is a restriction onVars(F), thenπ�ρ can be
transformed into a resolution refutation ofF�ρ in at most the same length, width and space asπ.

In fact, π�ρ is a refutation ofF�ρ (removing all trivially true clauses), but possibly using weakening.
The proof of this is an easy induction over the resolution refutationπ.

2.2 The Black-White Pebble Game

Pebble games were devised for studying programming languages and compiler construction, but have found
a variety of applications in computational complexity theory. In connection with resolution, pebble games
have been employed both to analyze resolution derivations with respect to how much memory they consume
(using the original definition of space in [ET01]) and to construct CNF formulas which are hard for different
variants of resolution in various respects (see for example[AJPU02, BSIW04, BEGJ00, BOP03]). An
excellent survey of pebbling up to ca 1980 is [Pip80].

The black pebbling price of a DAGG captures the memory space, i.e., the number of registers, required
to perform the deterministic computation described byG. The space of a non-deterministic computation is
measured by the black-white pebbling price ofG. We say that vertices ofG with indegree0 aresourcesand
that vertices with outdegree0 aresinksor targets. In the following, unless otherwise stated we will assume
that all DAGs under discussion have a unique sink and this sink will always be denotedz. The next definition
is adapted from [CS76], though we use the established pebbling terminology introduced by [HPV77].

Definition 2.5 (Black-white pebble game).Suppose thatG is a DAG with sourcesS and a unique targetz.
Theblack-white pebble gameon G is the following one-player game. At any point in the game, there are
black and white pebbles placed on some vertices ofG, at most one pebble per vertex. Apebble configuration
is a pair of subsetsP = (B,W) of V (G), comprising the black-pebbled verticesB and white-pebbled
verticesW . The rules of the game are as follows:

1. If all immediate predecessors of an empty vertexv have pebbles on them, a black pebble may be
placed onv. In particular, a black pebble can always be placed on any vertex inS.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertexv have pebbles on them, the white pebble on
v may be removed. In particular, a white pebble can always be removed from a source vertex.

A black-white pebblingfrom (B1,W1) to (B2,W2) in G is a sequence of pebble configurationsP =
{P0, . . . , Pτ} such thatP0 = (B1,W1), Pτ = (B2,W2), and for allt ∈ [τ], Pt follows fromPt−1 by one of
the rules above. If(B1,W1) = (∅, ∅), we say that the pebbling isunconditional, otherwise it isconditional.

The cost of a pebble configurationP = (B,W) is cost(P) = |B ∪ W | and the cost of a peb-
bling P = {P0, . . . , Pτ} is max0≤t≤τ{cost(Pt)}. The black-white pebbling priceof (B,W), denoted
BW-Peb(B,W), is the minimum cost of any unconditional pebbling reaching(B,W).

A complete pebblingof G, also called apebbling strategyfor G, is an unconditional pebbling reaching
({z}, ∅). Theblack-white pebbling priceof G, denotedBW-Peb(G), is the minimum cost of any complete
black-white pebbling ofG.

3 Main Results

In this section we formally present and discuss our main results. To this end we start by defining the class
of formulas that we analyze in this paper.

7

Pebbling Formulas Let ⊕d
i=1xi denote the xor ofx1, . . . , xd and⊕d

i=1xi denote the negation of this
formula. The satisfying assignments of⊕d

i=1xi (⊕d
i=1xi, respectively) are assignments with an odd (even,

respectively) number of1’s. In what follows, we associate a Boolean formula with the CNF formula that
is logically equivalent to it in the canonical way. For instance, the formula(x ⊕ y) → (z ⊕ w), which is
equivalent to(x⊕y) ∨ (z ⊕ w), is associated with the CNF formula

(x ∨ y ∨ z ∨ w) ∧ (x ∨ y ∨ z ∨ w) ∧ (x ∨ y ∨ z ∨ w) ∧ (x ∨ y ∨ z ∨ w) .

The next definition is a generalization of formulas previously studied in [BSW01, BEGJ00, RM99].

Definition 3.1 (XOR-pebbling contradiction). Let G be a DAG with sourcesS, a unique sinkz, and let
d > 0 be an integer. Associated distinct variablesv1, . . . , vd with every vertexv ∈ V (G). Thedth degree
XOR-pebbling contradictionover G, denotedPebd

G[⊕], is the CNF obtained from the conjunction of the
following formulas over xor-constraints:

• Source Axioms:
⊕d

i=1si for all sourcess ∈ S.

• Pebbling Axioms: For all verticesu(1), . . . , u(`), v, such thatu(1), . . . , u(`) are all the immediate
predecessors ofv, we have

⊕d
i=1u

(1)
i ∧ . . . ∧ ⊕d

i=1u
(`)
i → ⊕d

i=1vi, which is equivalent to the
disjunction

⊕d

i=1u
(1)
i ∨ . . . ∨ ⊕d

i=1u
(`)
i ∨ ⊕d

i=1vi.

• Sink Axioms:
⊕d

i=1zi for the sinkz.

See Figure 1 on the facing page for an example XOR-pebbling contradiction.
If G hasn vertices and maximal in-degree`, thenPebd

G[⊕] is an unsatisfiable(` + 1)d-CNF formula
with at most2(`+1)(d−1) · n clauses overd · n variables.

We can now give a more precise statement of our lower bound on refutation space for XOR-pebbling
contradictions.

Theorem 1.1 (restated).For everyd > 1, there is a constantc such that for any DAGG it holds that

Sp(Pebd
G[⊕] ` 0) ≥ BW-Peb(G) − c .

In what follows, a family of formulas{Fn}∞n=1 is said to beexplicitly constructibleif there exists a
polynomial time Turing machine that on input1n outputsFn.

Corollary 1.2 (restated). For everyd > 1, there is a explicitly constructible family{Fn}∞n=1 of 3d-CNF for-
mulas of sizeO(n) such thatL(Fn ` 0) = O(n) andW(Fn ` 0) = O(1) butSp(Fn ` 0) = Ω(n/ log n).

Proof. For any DAGG with n vertices, in-degree2 and a single sink, the CNF formulaPeb2
G[⊕] is a

3d-CNF of sizeO(n) that can be refuted using proofs of lengthO(n) and widthO(1) (for a proof see
[BS02, Theorem 4.3]). The lower bound on space and the explicit constructibility of the formulas follow
respectively from Theorem 1.1 and the following lower boundon black-white pebbling price.

Theorem 3.2 ([GT78]). There is a family of explicitly constructible4 DAGsGn with Θ(n) vertices and
vertex indegree2 for all non-sources such thatBW-Peb(G) = Θ(n/ log n).

4This was not known at the time of the original theorem in [GT78]. What is needed is an explicit construction of supercon-
centrators of linear density, and it has since been shown in [GG81] how to do this with [AC03] presenting the currently best
construction.

8

z

x y

u v w

(u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (v1 ∨ v2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (w1 ∨ w2) ∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (u1 ∨ u2 ∨ v1 ∨ v2 ∨ x1 ∨ x2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2 ∨ z1 ∨ z2)

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ z1 ∨ z2

∧ (v1 ∨ v2 ∨ w1 ∨ w2 ∨ y1 ∨ y2) ∧ z1 ∨ z2

Figure 1: The XOR-pebbling contradiction Peb2

Π2
[⊕] for the pyramid graph Π2 of height 2.

Proof of Theorem 1.1.There are three main components to our proof of Theorem 1.1. In the next section
we define and discuss theresolution-pebbling priceof a DAGG, denotedRes-Peb(G). Then we prove the
following pair of statements. The first theorem is proved in Sections 5,6 and the second is proved in Section
7. Taken together, they complete the proof of Theorem 1.1.

Theorem 3.3. For everyd > 1, there is a constantc such that for any DAGG it holds that

Sp(Pebd
G[⊕] ` 0) ≥ Res-Peb(G) − c .

Theorem 3.4. For any DAGG it holds that

Res-Peb(G) ≥ BW-Peb(G) .

4 The Resolution-Pebbling Game

In this section we define our modified pebble game that will be used to analyze resolution refutations. The
next definition is similar to [NH08], but somewhat simpler.

Definition 4.1 (Res-pebbling subconfiguration).If B andW are sets of vertices in a DAGG with B 6= ∅,
B ∩ W = ∅, we say that[B]〈W 〉 is a res-pebbling subconfiguration, or justsubconfiguration, in G with
black pebbles onB and white pebbles onW supportingB. A set of subconfigurationsR =

{

[Bi]〈Wi〉
∣

∣i =
1, . . . ,m

}

is ares-pebbling configurationand itscostis cost(R) = |⋃m
i=1(Bi ∪ Wi)|.

The game that we play with subconfigurations is also similar to that in [NH08], although noticeably less
complicated.

9

Definition 4.2 (Resolution-pebbling game).ForG a DAG, aresolution-pebbling, or res-pebblingfor short,
is a sequenceR =

{

R0, . . . , Rτ

}

of pebbling clause configurations such that for everyt ∈ [τ], the configu-
rationRt is obtained fromRt−1 by one of the following rules:

Download Rt = Rt−1 ∪
{

[v]〈pred (v)〉
}

, wherepred(v) denotes the set of predecessors ofv. (Notice
pred(v) = ∅ for a source nodev.)

Resolution Rt = Rt−1 ∪
{

[B1 ∪ B2]〈W1 ∪ W2〉
}

if there exist[B1]〈W1 ∪ {v}〉 and[B2 ∪ {v}]〈W2〉
in Rt−1 such thatB1 ∩ W2 = ∅.

Weakening Rt = Rt−1 ∪
{

[B ∪ B′]〈W ∪ W ′〉
}

if [B]〈W〉 ∈ Rt−1 and(B ∪ B′) ∩ (W ∪ W ′) = ∅.

Erasure Rt = Rt−1 \
{

[B]〈W〉
}

for [B]〈W〉 ∈ Rt−1.

The cost of a resolution-pebbling iscost(R) = maxt∈[τ]{cost(Rt)}. The resolution-pebbling priceof G
is the minimal cost of a resolution pebbling starting withR0 = ∅ and ending withRτ =

{

[z]〈∅〉
}

wherez
is the sink ofG:

Res-Peb(G) = min
{

cost(R) | R =
{

R0, . . . , Rτ

}

with R0 = ∅ andRτ =
{

[z]〈∅〉
}}

.

Let us try to provide some intuition for the pebbling rules. We interpret a subconfiguration[B]〈W〉 as
saying “If all vertices inW have a white pebble on them, then a black pebble can be placed somewhere
in B via a legal sequence of black-white pebbling moves.” A res-pebbling configuration is a set of such
statements and the res-pebbling game is a system that allowsfor deducing new true statements from existing
ones. Indeed, going over the four allowed moves in Definition4.2 one can verify that they give rise to legal
statements. For instance, a download step allows us to state: “If all predecessors ofv have a white pebble,
then a black pebble may be placed onv.” The case of the Resolution rule is perhaps the most subtle so we
will describe it in detail. The pair(i) [B1]〈W1 ∪ {v}〉, (ii) [B2 ∪ {v}]〈W2〉 says:(i) “If white pebbles are
placed onW1 ∪ {v} we may place a black pebble somewhere inB2”, and (ii) “If white pebbles are placed
on W2 we may place a black pebble somewhere onB2 ∪ {v}”. The new statement derived by a resolution
step says:(iii) “If W1 ∪ W2 are covered by white pebbles then a black pebble may be placedsomewhere
onB1 ∪ B2.” Indeed, if all ofW1 ∪ W2 have white pebbles, then by statement(ii) we know a black pebble
may be placed somewhere onB2 ∪ {v}. If it is placed inB2 we are done because(iii) is true. Otherwise,
the black pebble is placed onv. Then by statement(i) a black pebble may be placed somewhere onB1 after
which the black pebble can be removed fromv. This shows why, intuitively, the resolution step should be
valid. The cases of weakening and erasure can be argued in a similar fashion.

5 Resolution Derivations Induce Res-Pebblings

The proof of Theorem 3.3 follows from two main steps. The firststep argues that every refutationπ of
Pebd

G[⊕] induces a res-pebblingRπ. The second step says that the cost of the induced res-pebblingRπ is a
lower bound on the space ofπ. Together, these two steps imply Theorem 3.3.

In this section, we do the first step by showing how resolutionderivations can be interpreted in terms
of resolution-pebblings. As in [Nor06, NH08], we get a cleaner correspondence between resolution and

pebbling if we ignore the sink axioms
⊕d

i=1zi and instead study resolution derivations of
⊕d

i=1zi from the

rest of the formula rather than refutations of all ofPebd
G[⊕]. Let us write*Pebd

G[⊕] = Pebd
G[⊕]\

{
⊕d

i=1zi

}

to denote the pebbling formula overG with the sink axioms in the pebbling contradiction removed.The next
lemma is the formal statement saying that as long as we keep the pebbling degreed constant, we may just
as well study resolution derivations of

⊕d
i=1zi from *Pebd

G[⊕] instead of refutations ofPebd
G[⊕] without

10

losing more than a constant term. The proof, which is similarto [Nor06, NH08], is omitted due to space
constraints.

Lemma 5.1. For any DAGG with sinkz, it holds thatSp(Pebd
G[⊕] ` 0) = Sp

(

*Pebd
G[⊕] ` ⊕d

i=1zi

)

+
O

(

2d
)

.

Proof. For any resolution derivationπ∗ : *Pebd
G[⊕]`⊕d

i=1zi, we can get a refutation ofPebd
G[⊕] from π∗

in at mostO
(

2d
)

extra space by downloading all sink axioms defining
⊕d

i=1zi and then, keeping all clauses
in memory, deriving the empty clause in additional spaced + O(1) (since any formula overd variables is
refutable in spaced + O(1) by [ET01]).

In the other direction, suppose we have a refutationπ : Pebd
G[⊕]` 0. Let ρ be a partial assignment

to z1, . . . , zd such that
⊕d

i=1ρ(zi). Consider the restricted refutationπ�ρ. This restriction satisfies all
sink axioms, so these axioms are never used in the restrictedrefutationπ�ρ. Also, it is not hard to see
that the restricted refutation has space at mostSp(π). Removing the restriction again, we get a resolution
derivationπC : *Pebd

G[⊕]`C whereC is the unique clause overz1, . . . , zd that is not satisfied byρ. Notice

C � (
⊕d

i=1zi). Ranging over all2d−1 partial assignmentsρ satisfying
⊕d

i=1ρ(zi) we derive all clauses
implying

⊕d
i=1zi. Keeping all such clauses in memory we conclude the overall space required to derive

⊕d
i=1zi is at mostSp(π) + 2d−1.

In view of Lemma 5.1, from now on we will only consider resolution derivations from*Pebd
G[⊕] and

translate clause configurations in such derivations into sets of black and white pebbles. Note that since
*Pebd

G[⊕] is non-contradictory and resolution is sound, any clause set C derived from*Pebd
G[⊕] is satisfi-

able. We next specify how to translate clauses to pebbles.

Definition 5.2 (Induced res-pebbling subconfiguration).Let G be a DAG andC a set of clauses derived
from *Pebd

G[⊕]. ThenC induces the res-pebbling subconfiguration[B]〈W〉 if

C �
(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

(3a)

but for all strict subsetsB′ $ B andW ′ $ W that

C 2
(

∨

b∈B′

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

, and (3b)

C 2
(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W ′

⊕d

i=1wi

)

. (3c)

To save space, when all conditions (3a)–(3c) hold, we write

C B
(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

(4)

and refer to this asprecise implication. We also say that the clause setC implies
(
∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W

⊕d

i=1wi

)

precisely. We will also overload the notation and writeC � [B]〈W 〉, C 2 [B]〈W 〉,
and C B [B]〈W 〉 when the corresponding implications or non-implications hold for C with respect to
(
∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W ′

⊕d

i=1wi

)

. We write

R(C) =
{

[B]〈W〉
∣

∣C B [B]〈W〉
}

(5)

to denote the set of all res-pebbling subconfigurations induced byC.

11



































x1 ∨ x2

x1 ∨ x2

v1 ∨ w1 ∨ y1 ∨ y2

v1 ∨ w1 ∨ y1 ∨ y2

v2 ∨ w1 ∨ y1 ∨ y2

v2 ∨ w1 ∨ y1 ∨ y2

v1 ∨ w2 ∨ y1 ∨ y2

v1 ∨ w2 ∨ y1 ∨ y2

v2 ∨ w2 ∨ y1 ∨ y2

v2 ∨ w2 ∨ y1 ∨ y2



































(a) Clauses on blackboard.

z

x y

u v w

(b) Corresponding pebbles in the graph.

Figure 2: Example of correspondence between clauses and pebbles for XOR-pebbling contradiction.

See Figure 2 for an example of how clauses are translated intopebbles in this way.
The following theorem forms the first part of the proof of Theorem 3.3 and says that resolution deriva-

tions induce legal res-pebbling sequences.

Theorem 5.3. Let π =
{

C0, . . . , Cτ

}

be a resolution derivation of
⊕d

i=1zi from *Pebd
G[⊕]. Then the

induced res-pebbling configurations
{

R(C0), . . . , R(Cτ)
}

form the “backbone” of a complete res-pebbling
R of G in the sense that

1. R(C0) = ∅,

2. R(Cτ) =
{

[z]〈∅〉
}

, and

3. for everyt ∈ [τ], the transitionR(Ct−1) R(Ct) can be accomplished in accordance with the
res-pebbling rules in costmax

{

cost(R(Ct−1)), cost(R(Ct))
}

+ O(1).

In particular, to any resolution derivationπ : *Pebd
G[⊕]`⊕d

i=1zi we can associate a complete res-pebbling
Rπ of G such thatcost(Rπ) ≤ maxC∈π

{

cost(R(C))
}

+ O(1).

Before proving Theorem 5.3 let us try to describe in words what the theorem says. Using the translation
of clauses into pebbles in Definition 5.2, clause configurationsC0, C1, . . . , Cτ in a resolution derivationπ
can be seen to correspond to “snapshots” at different time intervals of a res-pebblingRπ of the DAG G.
Furthermore, the cost of this pebbling is essentially upper-bounded by the largest cost we see at any of the
snapshots. There may be many pebbling moves needed to go fromthe pebble configuration corresponding
to Ct−1 to the one corresponding toCt, but the maximal cost during this intermediate pebbling moves is
at most an additive constant larger than the cost of the pebble configuration corresponding toCt−1 or Ct.
Later on we use this to show that the cost of the res-pebblingRπ yields a lower bound on the space of the
resolution refutationπ.

Proof of Theorem 5.3.Property 1 above follows fromC0 = ∅ and property 2 follows fromCτ =
{
⊕d

i=1zi

}

.
Thus, we focus on proving property 3. Since the resolution-pebbling game allows us to erase any res-
pebbling subconfiguration, we only have to show that every new subconfiguration at timet

[B]〈W〉 ∈ R(Ct) \ R(Ct−1) (6)

can be obtained by res-pebbling moves starting withR(Ct−1) and that the intermediate res-pebbling config-
urations in betweenR(Ct−1) andR(Ct) do not affect the pebbling cost by more than an additive constant.
Let us first take care of the two easy cases.

12

If Ct follows fromCt−1 by an erasure, thenR(Ct)\R(Ct−1) = ∅ as is easily verified from Definition 5.2.
Thus, the only thing that can happen is that subconfigurations disappear, and we can get fromR(Ct−1) to
R(Ct) by performing the corresponding erasure moves in the res-pebbling. This decreases the pebbling cost
monotonically.

If Ct follows from Ct−1 by an inference, then no subconfigurations can disappear. Furthermore, we
have thatCt−1 � Ct, which implies by (3a) that every subconfiguration[B]〈W〉 ∈ R(Ct) satisfiesCt−1 �

[B]〈W〉. But then it is straightforward to show that all new subconfigurations[B]〈W〉 can be derived from
R(Ct−1) by weakening moves. For completeness, we write down this as aformal statement and provide a
proof.

Observation 5.4. Suppose thatC �
(
∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W

⊕d

i=1wi

)

for a clause setC derived from
*Pebd

G[⊕]. Then there is a subconfiguration[B′]〈W ′〉 ∈ R(C) such thatB′ ⊆ B and W ′ ⊆ W . In
particular, [B]〈W 〉 is derivable by weakening fromR(C).

Proof. Just pick any minimal clause setC′ ⊆ C, and any minimal vertex setsB′ ⊆ B andW ′ ⊆ W

such that the implicationC′ �
(
∨

b∈B′

⊕d
i=1bi

)

∨
(
∨

w∈W ′

⊕d

i=1wi

)

holds. (We note thatB′ 6= ∅ since
*Pebd

G[⊕] 2
∨

w∈W

(

⊕d
i=1wi = 0

)

and resolution is sound.) But then by Definition 5.2, it holdsthat

C′ B
(
∨

b∈B′

⊕d
i=1bi

)

∨
(
∨

w∈W ′

⊕d

i=1wi

)

, so [B′]〈W ′〉 ∈ R(C) and clearly[B]〈W 〉 can be derived
from [B′]〈W ′〉 by weakening.

In particular, this means that the pebbling cost increases monotonically when going fromR(Ct−1) to
R(Ct) if the derivation step at timet is an inference.

The interesting case is when the derivation step at timet is an axiom download, i.e.,Ct = Ct−1 ∪ {C}
for some axiomC. This is more complicated, and we will spend the rest of this section showing how to take
care of this case.

First, we need some notation. Recall that we identify the constraints
⊕d

i=1xi and
⊕d

i=1xi with the
canonical CNF formulas overx1, . . . , xd which are logically equivalent to these constraints. That is, we

interpret
⊕d

i=1xi and
⊕d

i=1xi as sets of clauses. For convenience of notation, we also define the disjunction
C ∨ D of two clause setsC andD to be the clause set

C ∨ D = {C ∨ D | C ∈ C, D ∈ D} . (7)

This notation extends to more than two clause sets in the natural way.
If r is a non-source vertex with predecessorspred(r) = {p, q}, we say that theaxioms forr in *Pebd

G[⊕]
are

Axd(r) =
⊕d

i=1pi ∨
⊕d

i=1qi ∨
⊕d

i=1ri (8)

where using the notational convention in (7) we have that
⊕d

i=1pi ∨
⊕d

i=1qi ∨
⊕d

i=1ri is the set of clauses

{

C¬p ∨ C¬q ∨ Cr

∣

∣C¬p ∈ ⊕d

i=1pi, C¬q ∈ ⊕d

i=1qi, Cr ∈ ⊕d
i=1ri

}

, (9)

and if r is a source, we define
Axd(r) =

⊕d
i=1ri . (10)

For U a set of vertices inG, we let Axd(U) =
⋃

u∈U Axd(u). Note that with this notation, we have
*Pebd

G[⊕] =
⋃

v∈V (G) Axd(v).
A key tool in the proof that will follow is the next technical observation, which is an easy consequence

of Observation 5.4 once has deciphered the notation.

13

Observation 5.5. If C is a clause set derived from*Pebd
G[⊕] andC ∈ Axd(r) is an axiom clause for some

vertexr ∈ V (G) such that

C ∪ {C} �
(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

, (11)

then:

1. It always holds thatC �
(
∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W ∪{r}

⊕d

i=1wi

)

, so if r /∈ B we can derive
[B]〈W ∪ {r}〉 from R(C) by weakening.

2. If r is a non-source andq ∈ pred (r), thenC �
(
∨

b∈B ∪{q}

⊕d
i=1bi

)

∨
(
∨

w∈W

⊕d

i=1wi

)

holds. In
particular, if q /∈ W we can derive[B ∪ {q}]〈W 〉 from R(C) by weakening.

Proof. If C ∈ Axd(r), then by (8) and (10) there is a subclauseD ⊆ C such thatD ∈ ⊕d
i=1ri. Suppose

that α is any assignment withα(C) = 1 but α
((

∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W

⊕d

i=1wi

))

= 0 (if there is no
suchα then we are already done). Then we must haveα(C) = 0 since otherwise we get a contradiction to

(11), so in particularα(D) = 0. But thenα
(
⊕d

i=1ri

)

= 1. Hence, any assignmentα that satisfiesC must

also satisfy
(
∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W ∪{r}

⊕d

i=1wi

)

. Applying Observation 5.4, we get part 1 above.

Part 2 is very similar. IfC ∈ Axd(r) for a non-source vertexr with q ∈ pred(r), there is a subclause

D ⊆ C such thatD ∈ ⊕d

i=1qi (compare (9) above). Let us again pick any truth value assignmentα such

thatα(C) = 1 butα
((

∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W

⊕d

i=1wi

))

= 0. Then it must hold thatα(C) = 0, but this

implies thatα(D) = 0 andα
(
⊕d

i=1qi

)

= 1.

Returning to our proof of Theorem 5.3 in the case when the derivation step at timet is a download of an
axiomC ∈ Axd(r), assume that this induces a new res-pebbling subconfiguration [B]〈W〉. ThenC must
be one of the clauses inducing the subconfiguration, and we get that there is a clause setC ⊆ Ct−1 such that

C ∪ {C} B
(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

. (12)

Our intuition is that download of an axiom clauseC ∈ Axd(r) in the resolution derivation should correspond
to an introduction of[r]〈pred(r)〉 in the induced res-pebbling. We want to prove that any other res-pebbling
subconfiguration[B]〈W〉 in R(Ct) is derivable by the pebbling rules fromR(Ct−1) ∪

{

[r]〈pred (r)〉
}

. We
will also need to prove that the resolution-pebbling moves needed to go fromR(Ct−1) to R(Ct) do not
increase the res-pebbling cost by more than an additive constant compared to

max
{

cost(R(Ct−1)), cost(R(Ct))
}

= cost(R(Ct)),

where the equality holds since no subconfigurations inducedby Ct−1 can disappear when we add clauses
to Ct−1.

As a warm-up, let us consider the case whenr is a source, i.e.,pred(r) = ∅ andC ∈ Axd(r) =
⊕d

i=1ri.
We make a case analysis depending on whetherr ∈ B in (12) or not.

1. r ∈ B: In this case we need no further analysis. Just make the res-pebbling download move[r]〈∅〉
and weaken[r]〈∅〉 to get[B ∪ {r}]〈W 〉 = [B]〈W〉.

2. r /∈ B: By part 1 of Observation 5.5, we can derive[B]〈W ∪ {r}〉 by weakening fromR(Ct−1).
Then[B]〈W〉 can be derived by a download of[r]〈∅〉 followed by a resolution of[B]〈W ∪ {r}〉 and
[r]〈∅〉.

14

We see that whenr is a source, we can get fromR(Ct−1) to R(Ct) by a download of[r]〈∅〉 and possibly
some weakenings and resolutions.

The case whenr is a non-source is a bit more involved, but the general idea isthe same. Suppose for the
rest of this section thatC ∈ Axd(r) for some fixed vertexr with pred(r) = {p, q}. This means thatC can

be writtenC = C¬p ∨ C¬q ∨ Cr for someC¬p ∈ ⊕d

i=1pi, C¬q ∈ ⊕d

i=1qi, andCr ∈ ⊕d
i=1ri, and we can

rewrite (12) as

C ∪
{

C¬p ∨ C¬q ∨ Cr

}

B
(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

. (13)

Let us also assume that
Ct−1 2

(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

(14)

since otherwise we can derive[B]〈W〉 by an weakening move fromR(Ct−1) (using Observation 5.4) and
be done. Recall that by definition, we haveB ∩ W = ∅. Observe that it must hold that

{p, q} ∩ B = ∅ , (15)

since if, say,q ∈ B, we could apply part 1 of Observation 5.5 to get that the implication in (14) in fact holds
for B = B ∪ {q} contrary to assumption. In the same way, we see that

r /∈ W (16)

since otherwise part 2 of Observation 5.5 shows that the implication (14) on the contrary is true forW =
W ∪ {r}.

As in the case whenr was a source vertex, the induction step is by a case analysis depending on whether
or notr ∈ B in the implication (13) (which, we remind ourselves, is just(12) with added information about
what the downloaded axiom clauseC looks like).

1. r ∈ B: We split this case into subcases depending on whetherp, q ∈ W or not. By the symmetry of
p andq, we have the following three possibilities to consider:

(a) {p, q} ⊆ W ,

(b) p ∈ W , q /∈ W ,

(c) {p, q} ∩ W = ∅.

We analyze these cases in order.

(a) {p, q} ⊆ W : This is the easiest case. Since by assumptionr ∈ B and {p, q} ⊆ W , the
subconfiguration[B]〈W〉 ∈ R(Ct) can be derived by a download of[{r}]〈{p, q}〉 followed by a
weakening of[{r}]〈{p, q}〉 to [B ∪ {r}]〈W ∪ {p, q}〉 = [B]〈W 〉.

(b) p ∈ W , q /∈ W : In this case[{r}]〈{p, q}〉 cannot be weakened to[B]〈W〉, sinceq /∈ W .
We need to find some way to eliminate the white pebble onq. But sinceq /∈ W , part 2 of
Observation 5.5 says that we can derive[B ∪ {q}]〈W 〉 by weakening fromR(Ct−1). Using
this subconfiguration, we can derive[B]〈W〉 as follows:

• download[{r}]〈{p, q}〉,
• derive[B ∪ {q}]〈W 〉 from R(Ct−1) by weakening,

• resolve[{r}]〈{p, q}〉 and[B ∪ {q}]〈W 〉 to get[B ∪ {r}]〈W ∪ {p}〉 = [B]〈W〉.
Note that the resolution move is in accordance with the rulessince{r} ∩ W = ∅ as noted in (16)
and(B ∪ {q}) ∩ {p, q} = {q} as noted in (15).

15

(c) {p, q} ∩ W = ∅: Now both p and q have to be eliminated if we are to use[{r}]〈{p, q}〉
to derive[B]〈W〉, but by applying part 2 of Observation 5.5 twice we see that wecan derive
[B ∪ {p}]〈W 〉 and[B ∪ {q}]〈W 〉 by weakening fromR(Ct−1). Using this fact, we can per-
form a pebbling to get[B]〈W〉 as follows:

• download[{r}]〈{p, q}〉,
• derive[B ∪ {q}]〈W 〉 from R(Ct−1) by weakening,

• resolve[{r}]〈{p, q}〉with [B ∪ {q}]〈W 〉 onq to get[B ∪ {r}]〈W ∪ {p}〉 = [B]〈W ∪ {p}〉,
• derive[B ∪ {p}]〈W 〉 from R(Ct−1) by weakening,

• conclude by resolving[B]〈W ∪ {p}〉 with [B ∪ {p}]〈W 〉 on p, resulting in the subcon-
figuration[B]〈W〉.

Of course, it needs to be checked that all resolution moves are legal, but this follows from (15)
and (16).

This concludes the analysis for the caser ∈ B for a non-source vertexr.

2. r /∈ B: This case is quite similar to the previous caser ∈ B. Here also we make a subcase analysis
depending on whether|pred(r) ∩ W | is equal to2, 1 or 0.

Before we do this, though, we observe that there is a particular subconfiguration that will be useful
for us. Since we are now assuming thatr /∈ B, part 1 of Observation 5.5 says that[B]〈W ∪ {r}〉
is derivable by weakening fromR(Ct−1). This subconfiguration will play an important role in the
pebblings below.

(a) {p, q} ⊆ W : To get the subconfiguration[B]〈W〉 from R(Ct−1) in this case, first derive the
subconfiguration[B]〈W ∪ {r}〉 just mentioned by weakening fromR(Ct−1), then download
[{r}]〈{p, q}〉, and finally resolve the two to get[B]〈W ∪ {p, q}〉 = [B]〈W〉. This resolution
move is in accordance with the res-pebbling rules sinceB ∩ {p, q} = ∅ according to (15) and
{r} ∩ (W ∪ {r}) = {r}.

(b) p ∈ W , q /∈ W : Just as in case 1b, part 2 of Observation 5.5 says that[B ∪ {q}]〈W 〉 is
derivable fromR(Ct−1) by weakening. Now do the following pebbling moves:

• download[{r}]〈{p, q}〉,
• derive [B ∪ {q}]〈W 〉 from R(Ct−1) by weakening using part 2 of Observation 5.5 as in

case 1b,

• resolve[{r}]〈{p, q}〉 with [B ∪ {q}]〈W 〉 on q to get[B ∪ {r}]〈W ∪ {p}〉,
• use part 1 of Observation 5.5 to derive[B]〈W ∪ {r}〉 from R(Ct−1) by weakening,

• finally, resolve[B ∪ {r}]〈W ∪ {p}〉 with [B]〈W ∪ {r}〉 on r to get [B]〈W ∪ {p}〉 =
[B]〈W〉.

(c) {p, q} ∩ W = ∅: As in case 1c, appeal to part 2 of Observation 5.5 twice to findsubcon-
figurations[B ∪ {p}]〈W 〉, [B ∪ {q}]〈W 〉 derivable fromR(Ct−1) by weakening. Using that
[B]〈W ∪ {r}〉 also can be derived fromR(Ct−1) by weakening, we can make the following
sequence of pebbling moves:

• download[{r}]〈{p, q}〉,
• derive[B ∪ {q}]〈W 〉 by weakening,

• resolve[{r}]〈{p, q}〉 and[B ∪ {q}]〈W 〉 on q to derive[B ∪ {r}]〈W ∪ {p}〉,
• derive[B ∪ {p}]〈W 〉 by weakening,

• resolve[B ∪ {r}]〈W ∪ {p}〉 and[B ∪ {p}]〈W 〉 onp to derive[B ∪ {r}]〈W 〉,

16

• derive[B]〈W ∪ {r}〉 by weakening,

• finally, resolve[B ∪ {r}]〈W 〉 and[B]〈W ∪ {r}〉 on r resulting in[B]〈W〉.
Double-checking the set intersections and inclusions shows that all these moves are legal.

This concludes the analysis for the caser /∈ B.

We are finally through the case analysis for axiom download. Let us put the bits and pieces together and
argue why Theorem 5.3 now follows.

If π =
{

C0, . . . , Cτ

}

is a derivation of
⊕d

i=1zi from *Pebd
G[⊕], it is easily verified from Definition 5.2

that R(C0) = R(∅) = ∅ andR(Cτ) = R(
⊕d

i=1zi) = {[z]〈∅〉}. Above, we have shown how to do the
intermediate res-pebbling moves to get fromR(Ct−1) to R(Ct) in the case of erasure, inference and axiom
download, respectively. For erasure and inference, we already noted that the res-pebbling cost changes
monotonically during the transitionR(Ct−1) R(Ct). In the case of axiom download, all pebbles used in
the intermediate moves are still on the DAG inR(Ct) except possibly for the pebbles on{r} ∪ pred(r),
so the extra intermediate cost is upper-bounded by3. This shows that the complete res-pebblingRπ of the
DAG G associated to any resolution derivationπ : *Pebd

G[⊕]`⊕d
i=1zi by the construction in this section

has res-pebbling cost bounded from above bycost(Rπ) ≤ maxC∈π

{

cost(R(C))
}

+ 3. Theorem 5.3 is
thereby proven.

6 Comparing Resolution Space and Res-Pebbling Cost

In this section, we provide the second component in the proofof Theorem 3.3, namely, that the cost of the
induced resolution pebblingRπ is a lower bound on the space ofπ.

We introduce some notation to make the argument more concise. Let us writeVarsd(u) = {u1, . . . , ud}.
We say that a vertexu is representedin a clauseC derived from*Pebd

G[⊕], or that C mentionsu, if
Varsd(u) ∩ Vars(C) 6= ∅. We write

V (C) =
{

u ∈ V (G)
∣

∣Varsd(u) ∩Vars(C) 6= ∅
}

(17)

to denote all vertices represented inC. We will also refer toV (C) as the set of verticesmentionedby C.
This notation is extended to sets of clauses by taking unions.

The main component in the proof of Theorem 3.3 is the following theorem. We remark that this is
the place in the proof where it is absolutely crucial that we are working with XOR-pebbling contradictions
Pebd

G[⊕] and not the “standard” pebbling contradictionsPebd
G[∨] defined in terms logical or that were used

in [BS02, Nor06, NH08].

Theorem 6.1. For every clause configurationC that is derived from*Pebd
G[⊕] with d > 1, it holds that

|C| > cost(R(C)) ,

wherecost(R(C)) =
∣

∣

⋃

[B]〈W〉∈R(C)(W ∪ B)
∣

∣.

Proof. Let us write
V ∗ =

⋃

[B]〈W〉∈R(C)(B ∪ W) (18)

to denote all vertices mentioned in the configuration induced by C. At this point, we know nothing about
the relationship betweenV ∗ andV (C). However, it is intuitively plausible thatV ∗ ⊆ V (C), i.e., that the
clause set must mention variables for the vertices on which it induces pebbles, and as we will see later in the
proof this is indeed the case.

17

Consider the bipartite graph with clauses inC on the left-hand side and vertices inV ∗ on the right-hand
side. We draw an edge betweenC ∈ C andv ∈ V ∗ if C mentionsv. That is, the set of neighbors ofC is
N(C) = V (C) ∩ V ∗.

Let C1 ⊆ C be a set of maximal size such that|C1| > |N(C1)|. Let C2 = C \ C1 and define the vertex
setV ∗

1 = N(C1). By the maximality ofC1 we have

|D| ≤
∣

∣N(D) \ V ∗
1

∣

∣ for all D ⊆ C2. (19)

This holds trivially in the caseC2 = ∅. For the case of nonemptyC2, if, by way of contradiction,|D| >
∣

∣N(D) \ V ∗
1

∣

∣, thenC′ = C1 ∪ D would be a larger set thanC1 with |C′| > |N(C′)|, contradicting the
maximality ofC1.

Equation (19) implies, by Hall’s marriage theorem, that there is an injective mappingM of C2 into
V ∗ \ V ∗

1 . ForC ∈ C2 let v(C) = M(C) be the vertex matched toC and letV ∗
2 = {v(C) |C ∈ C2}. We

now showV ∗ = V ∗
1 ∪ V ∗

2 and this will prove the theorem because|C1| > |V ∗
1 | and|C2| = |V ∗

2 | imply

|C| = |C1| + |C2| > |V ∗
1 | + |V ∗

2 | = |V ∗|. (20)

Assume by way of contradictionV ∗
3 = V ∗ \ (V ∗

1 ∪ V ∗
2) 6= ∅. Fix somev ∈ V ∗

3 and[B]〈W〉 ∈ R(C) such
thatv ∈ (W ∪ B), which must exist by definition ofV ∗. By Definition 5.2

C B
(

∨

b∈B

⊕d
i=1bi

)

∨
(

∨

w∈W

⊕d

i=1wi

)

. (21)

We claim that we can construct a truth value assignmentα that makesC true but
(
∨

b∈B

⊕d
i=1bi

)

∨
(
∨

w∈W

⊕d

i=1wi

)

false. This clearly contradicts condition (3a) from Definition 5.2 and so the theorem
follows.

The desiredα will be the union of three partial assignmentsα1 ∪ α2 ∪ α3 that assign values to distinct
variables. Forj = 1, 2 let Bj = B ∩ V ∗

j andWj = W ∩ V ∗
j . By assumptionv ∈ (B ∪ W) \ (B1 ∪ W1)

so conditions (3b), (3c) in Definition 5.2 imply

C 2
(

∨

b∈B1

⊕d
i=1bi

)

∨
(

∨

w∈W1

⊕d

i=1wi

)

(22)

so we can find a truth value assignmentβ that setsC to true but violates all constraints
⊕d

i=1bi, b ∈ B1,

and
⊕d

i=1wi, w ∈ W1. Takeα1 to be the restriction ofβ to Vars
(

C1

)

∪ Varsd
(

B1 ∪ W1

)

. What is
important to notice aboutα1 is that it(i) does not assign any value toVarsd

(

V ∗
2 ∪ V ∗

3

)

, (ii) setsC1 to true,

(iii) violates all constraints
⊕d

i=1bi, b ∈ B1, and
⊕d

i=1wi, w ∈ W1 and(iv) any extension ofα1 will not
change(ii) , (iii) .

To constructα2 we use the matchingM of C2 into V ∗
2 to find a distinct vertexv(C) for everyC ∈ C2

and a literal over some variablev(C)i ∈ Varsd
(

v(C)
)

that fixesC to true. Letγ be this partial assignment.
We stress thatγ assigns values to at most one variablevi for anyv ∈ B2 ∪ W2. This means that we can
extendγ to an assignmentα2 to Varsd

(

V ∗
2

)

still satisfyingC2 but violating all constraints
⊕d

i=1bi, b ∈ B2,

and
⊕d

i=1wi, w ∈ W2. Regardingα2, notice it (i) assigns values only toVarsd
(

V ∗
2

)

, (ii) setsC2 to true,

(iii) violates all constraints
⊕d

i=1bi, b ∈ B2, and
⊕d

i=1wi, w ∈ W2 and(iv) any extension ofα2 will not
change(ii) , (iii) .

Finally, to constructα3 we pick for everyv ∈ (B ∪ W) ∩ V ∗
3 an assignment that violates the constraint

overv. I.e., if v ∈ B we setα3 so that
⊕d

i=1vi is false and ifv ∈ W set it so that
⊕d

i=1vi is false. Notice
α3 assigns values only to variables inVarsd

(

V ∗
3

)

. Thus, takingα = α1 ∪ α2 ∪ α3 contradicts (21), which
proves the claim.

Theorem 3.3 now follows from Theorems 5.3 and 6.1 together with Lemma 5.1.

18

7 From Res-Pebblings to Black-White Pebblings

To complete the proof of Theorem 1.1, we also need to establish lower bounds on res-pebbling price in terms
of black-white pebbling price.

Theorem 3.4 (restated).For any DAGG it holds thatRes-Peb(G) ≥ BW-Peb(G).

On the face of it, the resolution-pebbling game might seem quite different from the standard black-white
pebble game. The lower bounds on black-white pebbling depend critically on the fact that the rules for
black pebble placement and white pebble removal are very strict. In the resolution-pebbling game, however,
we can always remove any white pebbles by doing an erasure, and by weakening we can always black-
pebble any vertex although no white pebbles are even near this vertex. However, the fact that we collect
black pebblesB and white pebblesW in subconfigurations[B]〈W〉, and only allow operations on these
subconfigurations, makes it relatively straightforward toshow Theorem 3.4. The proof follows immediately
from the following pair of lemmas, proved next.

Lemma 7.1. Given any complete res-pebblingR of G using weakening, there is a complete res-pebbling
R′ which never makes any weakening moves and hascost(R′) ≤ cost(R).

Lemma 7.2. Given any complete res-pebblingR′ of G that does not make any weakening moves, there is a
complete standard black-white pebblingP of G such thatcost(P) ≤ cost(R′).

Proof of Lemma 7.1.This is true since we can always construct a shadow pebbling that matches download,
resolution, and erasure moves but ignores weakening moves.Such a pebbling can have at most the same
cost as the pebbling that it is shadowing.

Formally, given any complete res-pebblingR =
{

R0, . . . , Rτ

}

of G, we construct our pebblingR′ =
{

R′
0, . . . , R

′
τ

}

inductively by maintaining the following invariant: For every Rt ∈ R there is a surjective
functiongt : Rt 7→ R′

t such that whenevergt([B]〈W〉) = [b]〈Wb〉 it holds thatb ∈ B andWb ⊆ W . If we
can construct such a functiongt for everyt we are clearly done, sincecost(R′

t) = cost(gt(Rt)) ≤ cost(Rt)
and we must havegτ ([z]〈∅〉) = {[z]〈∅〉}. The base caseR0 = ∅ is trivial. We make a case analysis over the
pebbling move made at timet.

Download Rt = Rt−1 ∪ {[v]〈pred (v)〉}: Make the same download move inR′, setgt([v]〈pred (v)〉) =
[v]〈pred (v)〉 and letgt = gt−1 for all other subconfigurations inRt−1.

Erasure Rt = Rt−1 \
{

[B]〈W〉
}

: SetR′
t = gt−1(Rt) (which might result in an erasure or leaveR′

t = R′
t−1

unchanged).

Weakening Rt = Rt−1 ∪
{

[B ∪ B′]〈W ∪ W ′〉
}

for some subconfiguration[B]〈W〉 ∈ Rt−1: set

gt([B ∪ B′]〈W ∪ W ′〉) = gt−1([B]〈W〉)

and letgt = gt−1 for all other subconfigurations (leavingR′
t = R′

t−1 unchanged).

Resolution Rt = Rt−1 ∪
{

[B1 ∪ B2]〈W1 ∪ W2〉
}

derived from[B1]〈W1 ∪ {v}〉, [B2 ∪ {v}]〈W2〉 ∈
Rt−1: This is the only nontrivial case. Letgt−1([B1]〈W1 ∪ {v}〉) = [b1]〈W ′

1〉 and similarly let
gt−1([B2 ∪ {v}]〈W2〉) = [b2]〈W ′

2〉. Note that by the induction hypothesis we haveb1 ∈ B1 ⊆
B1 ∪ B2 andW ′

2 ⊆ W2 ⊆ W1 ∪ W2. We get three subcases:

1. v /∈ W ′
1: ThenW ′

1 ⊆ W1 ⊆ W1 ∪ W2, so we can setgt([B1 ∪ B2]〈W1 ∪ W2〉) = [b1]〈W ′
1〉.

2. v 6= b2: Thenb2 ∈ B2 ⊆ B1 ∪ B2, so we can setgt([B1 ∪ B2]〈W1 ∪ W2〉) = [b2]〈W ′
2〉.

19

3. Otherwise, we havev = b2 and v ∈ W ′
1, so we can resolve[b1]〈W ′

1〉 and [b2]〈W ′
2〉 to get

[b1]〈(W ′
1 ∪ W ′

2) \ {b2}〉 and setgt([B1 ∪ B2]〈W1 ∪ W2〉) = [b1]〈(W ′
1 ∪ W ′

2) \ {b2}〉.

Let gt = gt−1 for all other subconfigurations inRt−1.

Since in all cases we can construct a surjective functiongt : Rt 7→ R′
t satisfying the invariant conditions,

the lemma follows.

Proof of Lemma 7.2.We assume without loss of generality thatR′ terminates at timeτ once it contains a
subconfiguration[z]〈∅〉 wherez is the sink ofG. Next, we define theessentialsubconfigurations ofR′

by backwards induction as follows. The only essential subconfiguration ofRτ is [z]〈∅〉. For t < τ , we
say a subconfiguration is essential inRt iff it is either (i) essential at timet + 1, or (ii) one of the two
subconfigurations used in a resolution step resulting in an essential subconfiguration. To prove the lemma
it is sufficient to show that the set of pebbles mentioned in essential subconfigurations forms a legal black-
white pebbling ofG. Formally, let

Bt = {∪B |[B]〈W〉 is essential inRt}

and

Wt = {∪W |[B]〈W〉 is essential inRt} \ Bt.

We claim the sequence{(B0, W0), . . . , (Bτ , Wτ)} is a legal black-white pebbling ofG and this proves our
lemma.

By constructionB0 = W0 = ∅ and Bτ = {z}, Wτ = ∅ so we only need to argue that interme-
diate steps are legal black-white moves. By definition of essentiality we do not need to worry about
erasure moves because only unessential clauses can be erased. Thus, if thetth step is an erasure then
(Bt−1, Wt−1) = (Bt, Wt). By assumption, there are no weakening moves so we only need to handle down-
loads and resolution steps which is what we do next.

Download Suppose thetth step is a download of an essential subconfiguration corresponding to vertex
v. ThenBt = Bt−1 ∪ {v} andWt = (Wt ∪ pred(v)) \ (Bt−1∪){v}) and this transition corresponds to
a sequence of legal pebbling moves involving(i) placing white pebbles on all predecessors ofv that are
not covered byWt ∪ Bt, (ii) removing a white pebble fromv, if v ∈ Wt, which is legal because all of
v’s predecessors are pebbled, and(iii) placing a black pebble onv. Notice the overall number of pebbles
throughout this sequence is at most|Bt ∪ Wt|.

Resolution Suppose thetth move is a resolution step deriving an essential subconfiguration. By defini-
tion, the two subconfigurations used in the resolution step are essential at timet − 1. Furthermore, ifv is
the vertex that is removed in this step we havev ∈ Bt−1. Inspection revealsBt−1 ⊇ Bt ⊇ Bt−1 \ {v} and
Wt ⊇ Wt−1 implying we can reach(Bt, Wt) by a legal sequence of pebbling moves because we need only
remove the black pebble fromv and perhaps place a white one on it. This completes the proof of the lemma
and with it the proof of Theorem 3.4 is complete.

8 Concluding Remarks

We have proven an asymptotically optimal separation of space and length in resolution. This answers an
open question discussed in, for instance, [ET03, Seg07, Tor04].

20

It would be interesting to see if the proof technique used in this paper can be extended to yield length-
space tradeoffs in the sense that there are CNF formulas thatcan be refuted in short length and small space,
but where any short refutation must have large space.5

Another natural question is whether our lower bounds can be extended to stronger proof systems than
resolution. One obvious candidate would be thek-DNF resolution proof systemsR(k) introduced by
Kraj́ıček [Kra01], where the lines in the proofs arek-DNF formulas instead of clauses and one can “re-
solve” over up tok variables simultaneously. We believe that XOR-pebbling contradictionsPebk+1

G [⊕]
should separatek-DNF resolution and (k+1)-DNF resolution with respect to space. If so, this would estab-
lish that thek-DNF resolution proof systems form a strict hierarchy with respect to space. Currently, all that
is known is the separation result in [EGM04] for the restricted case of tree-likek-DNF resolution.

Acknowledgements

The second author wants to acknowledge that Albert Atseriasmentioned already back in 2006, albeit in a
slightly different context, that working on XOR-pebbling contradictions might be a possible way forward.

References

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, AlexanderA. Razborov, and Avi Wigderson. Space
complexity in propositional calculus.SIAM Journal on Computing, 31(4):1184–1211, 2002.

[AC03] Noga Alon and Michael Capalbo. Smaller explicit superconcentrators. InProceedings of
the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA ’03), pages 340–346,
2003.

[AD03] Albert Atserias and Victor Dalmau. A combinatoricalcharacterization of resolution width. In
Proceedings of the 18th IEEE Annual Conference on Computational Complexity (CCC ’03),
pages 239–247, July 2003. Journal version to appear inJournal of Computer and System
Sciences.

[AJPU02] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. InProceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 448–456, May 2002.

[BEGJ00] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative
complexity of resolution refinements and cutting planes proof systems. SIAM Journal on
Computing, 30(5):1462–1484, 2000.

[BKPS02] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution
and Davis-Putnam procedures.SIAM Journal on Computing, 31(4):1048–1075, 2002.

[BKS03] Paul Beame, Henry Kautz, and Ashish Sabharwal. Understanding the power of clause learn-
ing. In Proceedings of the 18th International Joint Conference in Artificial Intelligence (IJ-
CAI ’03), pages 94–99, 2003.

[Bla37] Archie Blake.Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago,
1937.

5At the time of submission of this paper, the answer seems to bea firm yes, but the manuscript is still in a very early stage of
preparation.

21

[BOP03] Josh Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements. In
Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS ’03), pages
138–147, June 2003.

[BS02] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 457–464, May 2002.

[BSG03] Eli Ben-Sasson and Nicola Galesi. Space complexityof random formulae in resolution.Ran-
dom Structures and Algorithms, 23(1):92–109, August 2003.

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of treelike
and general resolution.Combinatorica, 24(4):585–603, September 2004.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.Jour-
nal of the ACM, 48(2):149–169, March 2001.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirementsfor deterministic polynomial time
recognizable languages.Journal of Computer and System Sciences, 13(1):25–37, 1976.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, October 1988.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.Journal
of the ACM, 7(3):201–215, 1960.

[EGM04] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions.Theoretical Computer Science, 321(2-3):347–370, August 2004.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds forresolution. Information and Compu-
tation, 171(1):84–97, 2001.

[ET03] Juan Luis Esteban and Jacobo Torán. A combinatorialcharacterization of treelike resolution
space.Information Processing Letters, 87(6):295–300, 2003.

[Gal77] Zvi Galil. On resolution with clauses of bounded size. SIAM Journal on Computing,
6(3):444–459, 1977.

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions oflinear-sized superconcentrators.Journal
of Computer and System Sciences, 22(3):407–420, June 1981.

[GT78] John R. Gilbert and Robert Endre Tarjan. Variations of a pebble game on graphs. Technical
Report STAN-CS-78-661, Stanford University, 1978.

[Hak85] Armin Haken. The intractability of resolution.Theoretical Computer Science, 39(2-
3):297–308, August 1985.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space.Journal of the ACM,
24(2):332–337, April 1977.

[Kra01] Jan Kraj́ıček. On the weak pigeonhole principle.Fundamenta Mathematicae, 170(1-
3):123–140, 2001.

22

[KS07] Henry Kautz and Bart Selman. The state of SAT.Discrete Applied Mathematics,
155(12):1514–1524, June 2007.

[NH08] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in
resolution. InProceedings of the 40th Annual ACM Symposium on Theory of Computing.
ACM, May 2008.

[Nor06] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in resolu-
tion (Extended abstract). InProceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC ’06), pages 507–516, May 2006.

[Nor08] Jakob Nordström. Short Proofs May Be Spacious: Understanding Space in Resolution.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden, May 2008. Available at
http://www.csc.kth.se/˜jakobn/research/ .

[Pip80] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Center,
1980. Appeared in Proceedings of the 5th IBM Symposium on Mathematical Foundations of
Computer Science, Japan.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy.Combinatorica,
19(3):403–435, March 1999.

[Rob65] John Alan Robinson. A machine-oriented logic basedon the resolution principle.Journal of
the ACM, 12(1):23–41, January 1965.

[Sab05] Ashish Sabharwal.Algorithmic Applications of Propositional Proof Complexity. PhD thesis,
University of Washington, Seattle, 2005.

[SAT] The international SAT Competitions web page.http://www.satcompetition.org .

[SBK04] Ashish Sabharwal, Paul Beame, and Henry Kautz. Using problem structure for efficient clause
learning. In6th International Conference on Theory and Applications ofSatisfiability Testing
(SAT ’03), Selected Revised Papers, volume 2919 ofLecture Notes in Computer Science,
pages 242–256. Springer, 2004.

[Seg07] Nathan Segerlind. The complexity of propositionalproofs. Bulletin of Symbolic Logic,
13(4):482–537, December 2007.

[Tor99] Jacobo Torán. Lower bounds for space in resolution. In Proceedings of the 13th International
Workshop on Computer Science Logic (CSL ’99), volume 1683 ofLecture Notes in Computer
Science, pages 362–373. Springer, 1999.

[Tor04] Jacobo Torán. Space and width in propositional resolution. Bulletin of the European Associ-
ation for Theoretical Computer Science, 83:86–104, June 2004.

[Tse68] Grigori Tseitin. On the complexity of derivation inpropositional calculus. In A. O.
Silenko, editor,Structures in Constructive Mathematics and Mathematical Logic, Part II,
pages 115–125. Consultants Bureau, New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolution.Journal of the ACM, 34(1):209–219, Jan-
uary 1987.

23

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

