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Abstract

A number of works have looked at the relationship betweegtleand space of resolution proofs. A
notorious question has been whether the existence of a@toartimplies the existence of a proof that
can be verified using limited space.

In this paper we resolve the question by answering it neglgtin the strongest possible way. We
show that there are families 6fCNF formulas of sizen, for arbitrarily largen, that have resolution
proofs of lengthO(n) but for which any proof requires spaf¥n/logn). This is the strongest asymp-
totic separation possible since any proof of len@{) can always be transformed into a proof in space
O(n/logn).

Our result follows by reducing the space complexity of sdechpebbling formulas over a directed
acyclic graph to the black-white pebbling price of the graphe proof is somewhat simpler than pre-
vious results (in particular, those reported in [Nordstr2006, Nordstrom and Hastad 2008]) as it uses
a slightly different flavor of pebbling formulas which allewior a rather straightforward reduction of
proof space to standard black-white pebbling price.

1 Introduction

Resolution length and space Perhaps the single most studied proof system in propoaltiproof
complexity isresolution This system made its first appearance in 1937 in [Bla37] @ugghiv to be investi-
gated in connection with automated theorem proving in tt@39DLL62, DP60, Rob65]. Because of the
simplicity of resolution—there is only one derivation ret@nd because all lines in a proof are clauses, this
proof system readily lends itself to proof search algorghm
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Being so simple and fundamental, resolution was also aaldanget to attack when developing meth-
ods for proving lower bounds in proof complexity. In this text, it is most straightforward to prove bounds
on thelengthof refutations, i.e., the number of clauses, rather thamendtal size of refutations. The length
and size measures are easily seen to be polynomially rel&telP68, Tseitin [Tse68] presented a super-
polynomial lower bound on refutation length for a restricterm of resolution, calledegular resolution,
but it was not until almost 20 years later that Haken [Hak85¥pd the first superpolynomial lower bound
for general resolution. This weakly exponential bound okétahas later been followed by many other
strong results, among others truly exponential lower bsuoml resolution refutation length for different
formula families in, for instance, [BKPS02, BSWO01, CS88q8JF].

The formal study oBpacein resolution was initiated by Esteban and Toran [ETO19%r Intuitively,
the space of a resolution refutation is the maximal numbe&laafses one needs to keep in memory while
verifying the refutation, and the space of refuting the CNiffrfulaF’ is defined as the minimal space of any
resolution refutation of”. A number of upper and lower bounds for refutation spacesnltgion and other
proof systems have subsequently been presented in, fopéxgiABSRW02, BSG03, EGM04, ETO03].

With the definition of space complexity, a natural questmagk is how space relates to other complexity
measures of propositional proofs. Esteban and Toran [EJi@Yed that the space is at most logarithmic in
the minimal length of a treelike refutation of a formula, ainimplies that space is bounded by the number
of variables appearing in the formula. The question of thatimm between space and length of general
resolution proofs, which is the focus of this paper, wasaghisy the first author in [BS02] and has also been
discussed in, for instance, [ET03, Seg07, Tor04], but thassbeen no consensus on what the right answer
should be. However, these papers identify a plausible frfamily for answering the question, namely
so-calledpebbling contradictionslefined in terms of pebble games over directed acyclic grdph&s) and
these formulas have indeed been used in [Nor06, NHO8] to mpadgress and, in this paper, finally resolve
the question.

While understanding the relation between space and lerggtimed stuck, progress was reported on
another front — that of space verswidth. The width measure, first made explicit by Galil in [Gal77],
is defined as the maximal number of literals in a clause in #figtation. Atserias and Dalmau showed
in [ADO3] that space is always greater than width, raisirg pbssibility of equivalence of these two mea-
sures. Notice that width is a different measure of “proofcgfaas it is the maximal “space” occupied
by a single line in the refutation and one may have speculdtadthe two “space” measures are in fact
equivalent.

Progress on the space-length question for general resolwias finally obtained by the second author
in [Nor06], which also separated space from width. This wasedby exhibiting &-CNF formula family of
sizeO(n) refutable in widthO(1) and lengthO(n) but requiring spac®(logn). In a recent joint work of
the second author with Hastad [NHO8] this separation wasdred to widthO(1) and lengthO(n) versus
spaceO(y/n) for a related formula family. We note however that this poesi state-of-the-art did not rule
out the existence of a space-length tradeoff quantitgtisehilar to the width-length tradeoff of [BSWO01]
which says width is at mo$d(/n - length).

Our contribution In this paper, we finally resolve the open question about éhationship between
space and length by establishing an optimal separationdegithe two measures. We do this by studying a
somewhat modified variant of pebbling contradictions definging XORs (see Definition 3.1) and proving
lower bounds for sucKOR-pebbling contradictionis terms of the pebbling price of the underlying DAGs.

Theorem 1.1 (Main). The space of refuting XOR-pebbling contradictions overBAE G in resolution is
lower-bounded by the black-white pebbling pricehfprovided that the number of variables per vertex in
the XOR-pebbling contradictions is at le&st



If we take a constant number of variables per vertex and sRAIgs with constant fan-in, it is easy
to show that XOR-pebbling contradictions can be refutedriadr length and constant width. Using the
result from [GT78] which exhibits a family of fan-ia DAGs {G,, }°2 ; of sizeO(n) having pebbling price
Q(n/logn), we get the following corollary.

Corollary 1.2 (Main). There is a family{ F,,},- , of 6-CNF formulas of siz&(n) that can be refuted in
lengthO(n) and widthO(1) but require spacé€)(n/logn).

Since it can be proven using results from [ET01, HPV77] thatfatation of lengthO(n) can be carried
out in spaceé)(n/logn), the separation of space and length in Corollary 1.2 is asytioplly optimal. As
an extra bonus, we note that while the constructions in [NONHO08] are quite intricate and the proofs very
involved, our optimal lower bound proof is relatively cleand straightforward and we discuss it next.

Proof outline For the purposes of analyzing space, a resolution derivditeom a CNF formulaF’ can
be viewed as a sequence of derivation steps on a blackboeedch step we may write a clause frémon
the blackboard (amxiomclause), erase a clause from the blackboard or derive somelaese implied by
the clauses currently written on the blackboard. The spaeederivation is then the maximum number of
clauses on the blackboard simultaneously.

The black-white pebble game models non-deterministic adatjpn, and the black-white pebbling price
of a DAG G is the minimal number of memory registers needed to veriéydhlculation described b¥,
where the source vertices contain the input and non-sowtiees specify operations on the values of the
predecessors. The pebble game on a DAGan be encoded as an unsatisfiable CNF formula, a so-called
pebbling contradictioroverG.

Pebble games have been used extensively as a tool to prayvatichspace lower bounds and tradeoffs
for computation. Loosely put, a lower bound for the pebblprice of a graph says that although the
computation that the graph describes can be performed Iguitkequires large space. Our hope is that
when we encode pebble games in terms of CNF formulas, theseilfas should inherit the same properties
as the underlying graphs. That is, if we pick a DAGwith high pebbling price, since the corresponding
pebbling contradiction encodes a calculation which neddsa memory we would like to try to argue that
any resolution refutation of this formula should requiregy&aspace.

Ideally, we would like to give a proof of a lower bound on theatution refutation space of pebbling
contradictions along the following lines:

1. First, find a natural interpretation of sets of clausesenily “on the blackboard” in a refutation of
the pebbling contradiction ovér in terms of black and white pebbles on the vertices of the IAG

2. Then, prove that this interpretation captures the peajpntee in the following sense: for any resolution
refutation of a pebbling contradiction ovét, looking at consecutive sets of clauses on the blackboard
and considering the corresponding sets of pebbles we gatk-tlhite pebbling of5.

3. Finally, show that the interpretation captures clauses|in the sense that if the content of the black-
board inducesV pebbles on the graph, then there must be at I¥aslauses on the blackboard.

Combining the above with known lower bounds on the pebblingepof GG, this would imply a lower
bound on the refutation space of pebbling contradictiofee Jeparation from length and width would then
follow since pebbling contradictions are known to be rdfidan linear length and constant width.

Unfortunately, this idea does not quite work “off the sieRebblings of DAGs and resolution refuta-
tions of CNF formulas are very different objects, and thered reason a priori that there should be a tight
connection between the two. However, relaxing the requergmfor the correspondence between resolu-
tion and pebbling, the papers [Nor06, NHO8] made essenti# proof idea above work for two special
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cases of graphs. In this paper, by using related ideas adgistua slightly modified variant of pebbling
contradictions, we can handle any graph, which results iopgimal separation of space and length.

Implications for practical SAT-solvers Inrecent yearsSATISFIABILITY has gone from a problem of
mainly theoretical interest to a practical approach fovisegl applied problems. Although all known Boolean
satisfiability solvers (SAT-solvers) have exponentialniag time in the worst case, enormous progress in
performance has led to satisfiability algorithms becomirgtamdard tool for solving a large number of
real-world problems such as hardware and software vergitagxperiment design, and scheduling.

Perhaps a somewhat surprising aspect of this developmahatighe most successful SAT-solvers
to date are still variants of the resolution-based Davisi@u-Logemann-Loveland (DPLL) procedure
[DLL62, DP60] augmented witlelause learning For instance, the great majority of the best algorithms
at the 2007 round of the international SAT competitions [B#Tthis description. DPLL procedures per-
form a recursive backtrack search in the space of partiti tralue assignments. The idea behind clause
learning, orconflict-driven learningis that at each failure (backtrack) point in the search, titee system
derives a reason for the inconsistency in the form of a newseland then adds this clause to the original
CNF formula (“learning” the clause). This can save a lot ofkvater on in the proof search, when some
other partial truth value assignment fails for similar @@ The main bottleneck for this approach, other
than the obvious one of time, is the amount of memory used éwaldporithms. Thus, understanding time
and memory requirements for clause learning algorithmd, kow these requirements are related to one
another is a question of great practical importance. We ttefee.g., [BKS03, KS07, Sab05] for a more
detailed discussion of clause learning (and SAT-solvinganeral) with examples of applications.

In the field of proof complexity, the resources of time and mgntorrespond to the length and space
of resolution proofs. Our work indicates that on certainuinfprmulas, a short proof does not necessarily
imply a space-efficient proof exists. Let us give one implara of our result to questions regarding the
practical construction of DPLL-based SAT-solvers.

Consider a “frugal” DPLL-based solver augmented with alalearning that tries to save memory by
limiting the number of learned clauses as a function of itmimg time. The reasoning underlying the frugal
algorithm is very natural — to save running time, start wité very minimal possible resources and increase
them slowly as necessary. Appealing as this strategy mawy,sme work shows that on certain inputs it will
perform much worse than other, more prodigal, stratebies.

Organization of the rest of the paper After stating the necessary definitions in Section 2, weestat
and discuss our main results in Section 3. Section 4 defimesdlolution-pebbling game” that we use as
an intermediate step when translating resolution refaiatinto black-white pebblings. In Sections 5-7 we
provide the proof of our main theorem. Section 8 containsesshort concluding remarks.

2 Preliminaries

For the sake of completeness, before presenting our maitig@ge briefly recount (verbatim) from [Nor08]
a few basic definitions regarding resolution and pebble gaive will be used later on.

IThis issue is somewhat subtle, however, and out of spacédesatons we cannot give a full discussion here. Let usrjose
that there are empirical results like [SBKO04] indicatingttlalthough pebbling contradictions have very short resmiuproofs,
these proofs can be very hard to find even for a state-of+th®8AT-solver.
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2.1 The Resolution Proof System

A literal is either a propositional logic variable or its negatiomatedz andz, respectively, or sometimes
or 2! andz®. We definet = x. Two literalsa andb arestrictly distinctif a # b anda # b, i.e., if they refer
to distinct variables.

A clauseC = a1 V -+ - V ay is a set of literals. Without loss of generality, all claugéare assumed to
be nontrivial in the sense that all literalsdhare pairwise strictly distinct (otherwis® is trivially true). We
say thatC' is asubclauseof D if C' C D. A clause containing at mostliterals is called &-clause

A CNF formulaF = C1 A --- A Cpy, is a set of clauses. A-CNF formulais a CNF formula consisting
of k-clauses. We define treze S (F) of the formulaF to be the total number of literals i counted with
repetitions. More often, we will be interested in the numbieclauseg F'| of F.

In this paper, when nothing else is stated it is assumedAh&t, C, D denote clauses;, D sets of
clauses;, y propositional variablesy, b, ¢ literals, «, G truth value assignments anda truth valued or 1.
We write

v=v(y) = {a(y) if y # =, )

v if y ==,

to denote the truth value assignment that agrees avéiierywhere except possibly @atto which it assigns
the valuev. We let Vars(C) denote the set of variables arid (C') the set of literals in a claus€.? This
notation is extended to sets of clauses by taking unionso,Al&e employ the standard notatijn| =
{1,2,...,n}.

A resolution derivationr : F'+ A of a claused from a CNF formulaF’ is a sequence of clauses=
{D1,...,D;} such thatD, = A and each lineD;, i € [r], either is one of the clauses i (axiom3 or is
derived from clause®);, Dy, in 7 with j, k < i by theresolution rule

Bvz CvV=xT

BVC @)

We refer to (2) agesolution on the variable and toB Vv C as theresolventof BV z andC vz onz. A
resolution refutationof a CNF formulaF' is a resolution derivation of the empty claugel.e., the clause
with no literals, fromF'. (Perhaps somewhat confusingly, this is sometimes alsoresf to as aesolution
proof of F.)

For a formulaF’ and a set of formula§ = {G,,...,G,}, we say thay implies F', denotedg F F,
if every truth value assignment satisfying all formuldse G satisfiesF' as well. It is well known that
resolution is sound and implicationally complete. Thatfithere is a resolution derivatiom : F'- A, then
FE A, and if F E A, then there is a resolution derivatian: '~ A’ for someA’ C A. In particular,F is
unsatisfiable if and only if there is a resolution refutataint.

With every resolution derivation : F'+ A we can associate a DAG,;, with the clauses i labeling
the vertices and with edges from the assumption clausestetiolvent for each application of the reso-
lution rule (2). There might be several different derivatiof a claus&” in 7, but if so we can label each
occurrence of” with a timestamp when it was derived and keep track of whigbyaaf C' is used where.
A resolution derivationr is tree-likeif any clause in the derivation is used at most once as a pecimian
application of the resolution rule, i.e.,d, is a tree. (We may make different “time-stamped” vertex espi
of the axiom clauses in order to makg. into a tree).

The length L(7) of a resolution derivationr is the number of clauses in it. We define the length of
deriving a claused from a formulaF’ asL(F + A) = ming,.pr a{L(7)}, where the minimum is taken over
all resolution derivations afl. In particular, the length of refuting’ by resolution is denoted(F - 0). The

2Although the notatiorit(C) is slightly redundant given the definition of a clause as aSkterals, we include it for clarity.

5



length of refutingF' by tree-like resolution.<(F' + 0) is defined by taking the minimum over all tree-like
resolution refutationg of F.

Thewidth W(C) of a clauseC' is |C], i.e., the number of literals appearing in it. The width ofed of
clausesC is W(C) = maxcec{ W(C)}. The width of derivingA from F' by resolution isW(F + A) =
ming. - 4{ W(7)}, and the width of refuting’ is denotedW(F + 0). Note that the minimum width
measures in general and tree-like resolution coincide, rakes no sense to make a separate definition for
Wz(F F 0).

We next define the measure gipace Following the exposition in [ETO01], a proof can be seen as a
Turing machine computation, with a special read-only inppe from which the axioms can be downloaded
and a working memory where all derivation steps are made.clhese spacef a resolution proof is the
maximum number of clauses that need to be kept in memory simadusly during a verification of the
proof. For the formal definition, it is convenient to use thiemative definition of resolution introduced
in [ABSRWO02].

Definition 2.1 (Resolution). A clause configuratiort is a set of clauses. A sequence of clause configura-
tions {Cy,...,C,} is aresolution derivatiorfrom a CNF formulaF’ if Cy = () and for allt € [r], C; is
obtained fromC,_; by oné of the following rules:

Axiom Download C; = C;_; U {C'} for someC € F.
Erasure C; = C;—1 \ {C} for someC € C;_;.

Inference C; = C;_; U {D} for someD inferred by resolution front’;, Cs € C;_;.

A resolution derivationr : F'- A of a clauseA from a formulaF' is a derivation{Cy, ..., C,} such that
C, = {A}. Aresolution refutatiorof F' is a derivation of the empty clausegrom F.

Definition 2.2 (Clause space [ABSRWO02, BS02]'heclause spacef a resolution derivation = {Cy, ... ,C,}
is max;c(;){|C;|}. The clause space of deriving from F is Sp(F - A) = minqpr 4{Sp(7)}, and
Sp(F' + 0) denotes the minimum clause space of any resolution refutafi /.

Restricting the resolution derivations to tree-like region, we get the measusp-(F + 0) in analogy
with Lz (F + 0) defined above.

We note that for technical reasons, it is sometimes conmendeadd a rule foweakening saying that
we can always derive a weaker clause > C from C. It is easy to show that any weakening steps can
always be eliminated from a resolution refutation withawdreasing the length, width or space.

A technical tools that we will use to simplify some of the pimarerestrictions

Definition 2.3 (Restriction). A partial assignmenbr restriction p is a partial functiorp : X — {0,1},
whereX is a set of Boolean variables. We identgywith the set of literal§ a1, . .., a,,} set to true byp.
The p-restriction of a clauseC' is defined to be

- 1 (i.e., the trivially true clause) iLit(C') N p # 0,
7 lC\{a|aep} otherwise.

This definition is extended to set of clauses by taking unions
We write p(—C') to denote the minimal restriction fixing to false, i.e.p(-C) = {@ | a € C}.

3In some previous papers, resolution is defined so as to ailew elerivation step taombineone or zero applications of each
of the three derivation rules. Therefore, some of the bowtated in this paper for space as defined next are off by aaunss
compared to the cited sources.



Proposition 2.4. If 7 is a resolution refutation of” and p is a restriction onVars(F'), thenz|, can be
transformed into a resolution refutation &fl , in at most the same length, width and spaceras

In fact, [, is a refutation ofF'[, (removing all trivially true clauses), but possibly usingakening.
The proof of this is an easy induction over the resolutiontagfon .

2.2 The Black-White Pebble Game

Pebble games were devised for studying programming lamguaigd compiler construction, but have found
a variety of applications in computational complexity thedn connection with resolution, pebble games
have been employed both to analyze resolution derivatiotisrespect to how much memory they consume
(using the original definition of space in [ET01]) and to donst CNF formulas which are hard for different
variants of resolution in various respects (see for exarfpléU02, BSIW04, BEGJ00, BOPO03]). An
excellent survey of pebbling up to ca 1980 is [Pip80].

The black pebbling price of a DAG captures the memory space, i.e., the number of registeysred
to perform the deterministic computation described‘hyThe space of a non-deterministic computation is
measured by the black-white pebbling priceébfWe say that vertices a@f with indegreed aresourcesand
that vertices with outdegregaresinksor targets In the following, unless otherwise stated we will assume
that all DAGs under discussion have a unigue sink and thiswithalways be denoted. The next definition
is adapted from [CS76], though we use the established peptdrminology introduced by [HPV77].

Definition 2.5 (Black-white pebble game).Suppose thatr is a DAG with sources$' and a unique target
The black-white pebble gamen G is the following one-player game. At any point in the gameyé¢hare
black and white pebbles placed on some vertices,@lt most one pebble per vertex p&bble configuration
is a pair of subset® = (B,W) of V(G), comprising the black-pebbled verticés and white-pebbled
verticesiV. The rules of the game are as follows:

1. If all immediate predecessors of an empty vertexave pebbles on them, a black pebble may be
placed orw. In particular, a black pebble can always be placed on artgxer.S.

2. A black pebble may be removed from any vertex at any time.
3. A white pebble may be placed on any empty vertex at any time.

4. If allimmediate predecessors of a white-pebbled vestaave pebbles on them, the white pebble on
v may be removed. In particular, a white pebble can alwaysin@ved from a source vertex.

A black-white pebblingrom (B, W;) to (B, W») in G is a sequence of pebble configuratidis=
{Py,...,P;} such thafPy = (B, W1), P, = (B3, Ws), and for allt € [r], P, follows fromP;_; by one of
the rules above. IfBy, W;) = (0, 0), we say that the pebbling isiconditiona) otherwise it isconditional

The cost of a pebble configuratio® = (B, W) is cost(P) = |B U W] and the cost of a peb-
bling P = {Po,...,P;} is maxo<;<-{cost(P;)}. The black-white pebbling pricef (B, W), denoted
BW-Peb (B, W), is the minimum cost of any unconditional pebbling reachifbgW’).

A complete pebblingf G, also called gebbling strategyor G, is an unconditional pebbling reaching
({z},0). Theblack-white pebbling pricef G, denotedBW-Peb(G), is the minimum cost of any complete
black-white pebbling of.

3 Main Results

In this section we formally present and discuss our mainlt®stio this end we start by defining the class
of formulas that we analyze in this paper.



Pebbling Formulas Let eaglzlmi denote the xor ofq,..., x4 and@lemi denote the negation of this
formula. The satisfying assignments@lexi @f:lxi, respectively) are assignments with an odd (even,
respectively) number of's. In what follows, we associate a Boolean formula with tiéFCormula that

is logically equivalent to it in the canonical way. For insta, the formuldz © y) — (2 © w), which is
equivalent tox®y) V (z ® w), is associated with the CNF formula

ZVyVzVw)AZVyVZVO)A(xVyVzVw)A(xVyVZV®D) .
The next definition is a generalization of formulas previgissudied in [BSW01, BEGJ00, RM99].

Definition 3.1 (XOR-pebbling contradiction). Let G be a DAG with sources$, a unigue sinkz, and let

d > 0 be an integer. Associatédistinct variables, ..., vy with every vertexo € V(G). Thedth degree
XOR-pebbling contradictiomver G, denotedPeb?,[@], is the CNF obtained from the conjunction of the
following formulas over xor-constraints:

e Source Axioms:@?zlsi for all sourcess € S.

e Pebbling Axioms: For all verticesu, ..., u® v, such thatu®, ... u® are all the immediate
predecessors of, we have@®® u" A ... A @L,ul” — @L,v;, which is equivalent to the
disjunction

@?:1%('1) ViV @?:1%@ VL, i
e Sink Axioms: @._,  for the sinkz.

See Figure 1 on the facing page for an example XOR-pebblingadiction.

If G hasn vertices and maximal in-degréethen Peb%[@] is an unsatisfiablél + 1)d-CNF formula
with at most2(c+1)(@=1) .y, clauses oved - n variables.

We can now give a more precise statement of our lower bouneforetion space for XOR-pebbling
contradictions.

Theorem 1.1 (restated).For everyd > 1, there is a constant such that for any DAG- it holds that

Sp(Peb[®] F 0) > BW-Peb(G) — ¢ .
In what follows, a family of formulag{F, },- ; is said to beexplicitly constructibleif there exists a
polynomial time Turing machine that on inplit outputsF;,.

Corollary 1.2 (restated). For everyd > 1, there is a explicitly constructible family;, } >~ , of 3d-CNF for-

n=1

mulas of siz&)(n) such thatL(F,, - 0) = O(n) and W(F,, - 0) = O(1) but Sp(F,  0) = Q(n/logn).

Proof. For any DAGG with n vertices, in-degre@ and a single sink, the CNF formulBeb? (@] is a
3d-CNF of sizeO(n) that can be refuted using proofs of lendtt{n) and widthO(1) (for a proof see
[BS02, Theorem 4.3]). The lower bound on space and the d@xpbastructibility of the formulas follow
respectively from Theorem 1.1 and the following lower bowndlack-white pebbling price. O

Theorem 3.2 ([GT78]). There is a family of explicitly constructifleDAGs G,, with ©(n) vertices and
vertex indegre& for all non-sources such th&W-Peb(G) = O(n/logn).

“This was not known at the time of the original theorem in [G]T 78/hat is needed is an explicit construction of supercon-
centrators of linear density, and it has since been showiG{B8L] how to do this with [AC03] presenting the currently tes
construction.
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Figure 1: The XOR-pebbling contradiction Peb%’12 [@] for the pyramid graph II, of height 2.

Proof of Theorem 1.1There are three main components to our proof of Theorem h.1hel next section
we define and discuss thesolution-pebbling pricef a DAG G, denotedRes-Peb(G). Then we prove the
following pair of statements. The first theorem is provedédet®ns 5,6 and the second is proved in Section
7. Taken together, they complete the proof of Theorem 1.1. O

Theorem 3.3. For everyd > 1, there is a constant such that for any DAG:- it holds that
Sp(Pebd[®] - 0) > Res-Peb(G) — ¢ .
Theorem 3.4. For any DAGG it holds that

Res-Peb(G) > BW-Peb(G) .

4 The Resolution-Pebbling Game

In this section we define our modified pebble game that will §eduo analyze resolution refutations. The
next definition is similar to [NHO08], but somewhat simpler.

Definition 4.1 (Res-pebbling subconfiguration).If B andWW are sets of vertices in a DAG with B # 0,
B n W = (), we say thatB](WW) is ares-pebbling subconfiguratiomr justsubconfigurationin G with
black pebbles o3 and white pebbles oW supportingB. A set of subconfiguration® = {[B,-](Wiﬂz‘ =
1,...,m} is ares-pebbling configuratioand itscostis cost(R) = | ", (B; U W;)|.

The game that we play with subconfigurations is also similahnat in [NHO8], although noticeably less
complicated.



Definition 4.2 (Resolution-pebbling game) For G a DAG, aresolution-pebblingor res-pebblingor short,
is a sequenc® = {RO, e ,IR{T} of pebbling clause configurations such that for evegy[r], the configu-
rationR; is obtained fromR;_; by one of the following rules:

Download R; = Ry—1 U {[v](pred(v))}, wherepred(v) denotes the set of predecessorsyof(Notice
pred(v) = () for a source node.)

Resolution R; = Ry—1 U {[By U Bo](W; U Wa)} if there exist{B; (W7 U {v}) and[By U {v}](W>)
in R,_; such thatB; N Wy = (.

Weakening R, =R, U {[B U B'(W U W)} if [B[(W) € Ry_yand(B U B') n (W U W') =0.
Erasure R; = R;—1 \ {[B](W)} for [B}(W) € Ry_.

The cost of a resolution-pebbling i®st(R) = max,c;1{cost(R;)}. Theresolution-pebbling pricef ¢
is the minimal cost of a resolution pebbling starting with = () and ending witiR, = {[](0) } wherez
is the sink ofG:

Res-Peb(G) = min{cost(R) | R = {Ry, ..., R, } with Ry = ) andR, = {[2](0)} }.

Let us try to provide some intuition for the pebbling rulese Wterpret a subconfiguratidi|(1V) as
saying “If all vertices in/ have a white pebble on them, then a black pebble can be placeemshere
in B via a legal sequence of black-white pebbling moves.” A relshting configuration is a set of such
statements and the res-pebbling game is a system that &lodsducing new true statements from existing
ones. Indeed, going over the four allowed moves in Definididhone can verify that they give rise to legal
statements. For instance, a download step allows us to Skl predecessors of have a white pebble,
then a black pebble may be placedwh The case of the Resolution rule is perhaps the most subtiees
will describe it in detail. The paii) [B1](W1 U {v}), (i) [B2 U {v}](Ws) says:(i) “If white pebbles are
placed oni¥; U {v} we may place a black pebble somewhereisi, and (i) “If white pebbles are placed
on W, we may place a black pebble somewherelru {v}”. The new statement derived by a resolution
step saysf{iii) “If W, U W, are covered by white pebbles then a black pebble may be ptawadwhere
on B; U By.” Indeed, if all of W, U W5 have white pebbles, then by stateméitwe know a black pebble
may be placed somewhere & U {v}. Ifitis placed in B, we are done becaug#) is true. Otherwise,
the black pebble is placed en Then by statemerft) a black pebble may be placed somewherdgrafter
which the black pebble can be removed fromThis shows why, intuitively, the resolution step should be
valid. The cases of weakening and erasure can be arguedrmilardashion.

5 Resolution Derivations Induce Res-Pebblings

The proof of Theorem 3.3 follows from two main steps. The fatslp argues that every refutatianof
Pebé[@] induces a res-pebbling .. The second step says that the cost of the induced res-pglbliis a
lower bound on the space of Together, these two steps imply Theorem 3.3.

In this section, we do the first step by showing how resolutlerivations can be interpreted in terms
of resolution-pebblings. As in [Nor06, NHO8], we get a cleagorrespondence between resolution and

pebbling if we ignore the sink axion@).._, z; and instead study resolution derivations®f._, z; from the

rest of the formula rather than refutations of allRfb:[@]. Let us write*Peb% (@] = Peb%[@]\ {@?:1%}
to denote the pebbling formula overwith the sink axioms in the pebbling contradiction removeke next
lemma is the formal statement saying that as long as we keepetbbling degred constant, we may just
as well study resolution derivations @?_, z; from *Peb? @] instead of refutations aPeb,[] without
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losing more than a constant term. The proof, which is simdgiNor06, NHO8], is omitted due to space
constraints.

Lemma 5.1. For any DAGG with sinkz, it holds thatSp (Pebd[@] F 0) = Sp (*Pebd (@] - @, 2) +
O(2%).

Proof. For any resolution derivation* : *Peb{:[®] - @™, z;, we can get a refutation dPebl:[@®] from 7*

in at mostO(2d) extra space by downloading all sink axioms defir@ilzi and then, keeping all clauses
in memory, deriving the empty clause in additional spdee O(1) (since any formula oved variables is
refutable in spacd + O(1) by [ETO1]).

In the other direction, suppose we have a refutationPeb[®] 0. Let p be a partial assignment

—d : . . . - -
to z1,...,2q4 such that@®,_,p(z;). Consider the restricted refutatiorj,. This restriction satisfies all
sink axioms, so these axioms are never used in the restriefathtion[,. Also, it is not hard to see
that the restricted refutation has space at ntpgtr). Removing the restriction again, we get a resolution

derivationr¢ : *Peb[® ¢:[®]F C whereC' is the unique clause ovet, ... ., z4 that is not satisfied by. Notice
CFE (@ 1zl) Ranging over alR?~! partial assignments satisfying@lep(zi) we derive all clauses
implying @2:1%- Keeping all such clauses in memory we conclude the ovepaltes required to derive
P,z is at mostSp () + 201, O

In view of Lemma 5.1, from now on we will only consider resabut derivations fromtPeb%[®] and
translate clause configurations in such derivations inte geblack and white pebbles. Note that since
*Pebd[@®] is non-contradictory and resolution is sound, any claus€ sterived from*Pebd (@] is satisfi-
able. We next specify how to translate clauses to pebbles.

Definition 5.2 (Induced res-pebbling subconfiguration).Let G be a DAG andC a set of clauses derived
from *Pebd[@]. ThenC induces the res-pebbling subconfiguratj@ (1) if

cE(\ @Lb) v (\ Biywi) (3)

beB weW

but for all strict subset®’ ;Cé B andW’ ;Cé W that

£V @Lb)v(\ Bw) . and (3b)
beB’ weWw
2\ @Lb)v(V & _w;) (3c)
beB weWw’

To save space, when all conditions (3a)—(3c) hold, we write

(CD \/EB? 1b \/ EB 1“’2 (4)

beB weWw

and refer to this aprecise implication We also say that the clause s@timplies (\/,.p @7 ,b;) V

(Vwew®j:1wi) precisely We will also overload the notation and write = [B](W), C ¥ [B|(W),
andC > [B](W) when the corresponding implications or non-implicatiomddhfor C with respect to

(vbeB @Zd:lbi) N (vweW’ @jzlwi). We write
R(C) = {[B(W)|C > [B](W)} ()

to denote the set of all res-pebbling subconfigurationsdadyC.
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(a) Clauses on blackboard. (b) Corresponding pebbles in the graph.

Figure 2: Example of correspondence between clauses and pebbles for XOR-pebbling contradiction.

See Figure 2 for an example of how clauses are translategétioles in this way.
The following theorem forms the first part of the proof of Therm 3.3 and says that resolution deriva-
tions induce legal res-pebbling sequences.

Theorem 5.3. Let® = {Cy,...,C,} be a resolution derivation of}_,z; from *Pebd[®]. Then the
induced res-pebbling configuratior{R(Co), e ,}R((CT)} form the “backbone” of a complete res-pebbling
R of GG in the sense that

1. R(Cy) = 0,
2. R(C;) = {[z](0)}, and

3. for everyt € [r], the transitionR(C;_;) ~~ R(C,;) can be accomplished in accordance with the
res-pebbling rules in coshax {cost(R(C;_1)), cost(R(Cy)) } + O(1).

In particular, to any resolution derivation : *Pebdg[@] F @lezi we can associate a complete res-pebbling
R, of G such thatcost(R ) < maxcer{cost(R(C))} + O(1).

Before proving Theorem 5.3 let us try to describe in wordstwiatheorem says. Using the translation
of clauses into pebbles in Definition 5.2, clause configarstiCy, C4, ..., C. in a resolution derivatiom
can be seen to correspond to “snapshots” at different tineevials of a res-pebblin@& , of the DAG G.
Furthermore, the cost of this pebbling is essentially wigmemded by the largest cost we see at any of the
snapshots. There may be many pebbling moves needed to gdtfeopebble configuration corresponding
to C;_; to the one corresponding ©;, but the maximal cost during this intermediate pebbling esois
at most an additive constant larger than the cost of the patibifiguration corresponding €&, or C;.
Later on we use this to show that the cost of the res-peblingields a lower bound on the space of the
resolution refutationr.

Proof of Theorem 5.3Property 1 above follows frorfi, = () and property 2 follows fronT, = {@lez,-}.
Thus, we focus on proving property 3. Since the resolutiebbting game allows us to erase any res-
pebbling subconfiguration, we only have to show that evevy sigoconfiguration at time

[B(W) € R(Cy) \ R(C;-1) (6)

can be obtained by res-pebbling moves starting Ritfi; ;) and that the intermediate res-pebbling config-
urations in betweei® (C,_;) andR(C;) do not affect the pebbling cost by more than an additive emrst
Let us first take care of the two easy cases.
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If C; follows fromC;_; by an erasure, théR(C;)\R(C;_1) = () as is easily verified from Definition 5.2.
Thus, the only thing that can happen is that subconfiguratitisappear, and we can get fr@C;_;) to
R(C,) by performing the corresponding erasure moves in the rbblipg. This decreases the pebbling cost
monotonically.

If C; follows from C;_; by an inference, then no subconfigurations can disappeathdfmore, we
have thatC,_, £ C;, which implies by (3a) that every subconfiguratid®|(IW) € R(C;) satisfiesC;_; F
[B](W). But then it is straightforward to show that all new subcamfigions[B](1V) can be derived from
R(C;-1) by weakening moves. For completeness, we write down thisfasral statement and provide a
proof.

Observation 5.4. Suppose that = (\/,c z D ,b;) V (\/wew@lewi) for a clause se€ derived from
*Pebd[®]. Then there is a subconfiguratidiB’](W’) € R(C) such thatB’ € B and W’ C W. In
particular, [B](WW) is derivable by weakening fro(C).

Proof. Just pick any minimal clause s€&f C C, and any minimal vertex set8’ C B andW’' C W
such that the implicatio®’ & (Ve L 10:) V (Vyew @?lei) holds. (We note thaB’ # 0 since
*Pebl @] ¥ Vypew (8L w; =0) and resolution is sound.) But then by Definition 5.2, it hottat
C > (Vyer @ 10) vV (Ve @?:lw,-), so [B'|{W’) € R(C) and clearly[B](W) can be derived
from [B’}(W’) by weakening. O

In particular, this means that the pebbling cost increasassotonically when going fronR(C;_1) to
R(C,) if the derivation step at timeis an inference.

The interesting case is when the derivation step at tilmean axiom download, i.eG; = C;—; U {C'}
for some axionC'. This is more complicated, and we will spend the rest of thetien showing how to take
care of this case.

First, we need some notation. Recall that we identify thestramts@lea:i and@?_,z; with the
canonical CNF formulas overy, ..., x4 which are logically equivalent to these constraints. Thatne
interpret@?zlxi and@lem,- as sets of clauses. For convenience of notation, we alseedbgrdisjunction
C v D of two clause set€ andD to be the clause set

CvD={CvD|CecC,DecD} . (7)

This notation extends to more than two clause sets in thealatay.
If ~ is a non-source vertex with predecessarsi(r) = {p, ¢}, we say that thaxioms forr in *Peb% (@]

are
—d —d
Amd(r) =@ VEDi—1ai vV @?:177 (8)

. . o —=d —d .
where using the notational convention in (7) we have @gat ,p; V D,_,¢: Vv @ler,- is the set of clauses

—d —d
{C o,V C gV C|Cy, €@ 1pis Cq € Dy_1ai Cr € D1} 9)

and ifr is a source, we define
Azd(r) = @?:177 . (10)
For U a set of vertices irG, we let Az¢(U) = Uwer Az?(u). Note that with this notation, we have

*PebG @] = Uyer(q) A2 (v)-
A key tool in the proof that will follow is the next technicabservation, which is an easy consequence
of Observation 5.4 once has deciphered the notation.
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Observation 5.5. If C is a clause set derived froiPeb? (@] andC' € Az?(r) is an axiom clause for some
vertexr € V(G) such that

cu{cte(\V/ @®Lb)v(V D wi) | (11)

beB weW

then:

1. It always holds thaC F (V. @ ,b;) v (\/wGWU{r}@?:lwi)' so ifr ¢ B we can derive
[BI(W U {r}) fromR(C) by weakening.

2. Ifris a non-source ang € pred(r), thenC & (Vycp 1) DL )V (Vpew @lew,-) holds. In
particular, if ¢ ¢ W we can derivd B U {¢}](IW) fromR(C) by weakening.

Proof. If C € Axd(r), then by (8) and (10) there is a subclauseC C such thatD < @ler,-. Suppose
that o is any assignment with(C) = 1 buta((Vyes @ 10:) V (Voew @jzlw,-)) = 0 (if there is no
sucha then we are already done). Then we must hai@) = 0 since otherwise we get a contradiction to
(11), so in particulary(D) = 0. But thena(@?:m) = 1. Hence, any assignmeatthat satisfieC must
also satisfy(\/,c s D ,b;) V (Vwewuin @?:1“%)- Applying Observation 5.4, we get part 1 above.
Part 2 is very similar. I’ € Az%(r) for a non-source vertex with ¢ € pred(r), there is a subclause
D C C such thatD € @leqi (compare (9) above). Let us again pick any truth value asségna such
thata(C) = 1 buta((Vyes @F10:) V (Voew @jzlwi)) = 0. Then it must hold that(C) = 0, but this
implies that(D) = 0 anda (P7_,¢;) = 1. O
Returning to our proof of Theorem 5.3 in the case when thevalioh step at time is a download of an

axiomC € Az?(r), assume that this induces a new res-pebbling subconfigarigti (1/). ThenC must
be one of the clauses inducing the subconfiguration, and weaethere is a clause sétC C;_; such that

cu{cte (\/ ®Lb)Vv(V D w) - (12)

beB weW

Our intuition is that download of an axiom clauSec Az¢(r) in the resolution derivation should correspond
to an introduction ofr](pred(r)) in the induced res-pebbling. We want to prove that any ometpebbling
subconfigurationB](W) in R(C;) is derivable by the pebbling rules froR(C;_1) U {[r](pred(r))}. We
will also need to prove that the resolution-pebbling movesded to go fronR(C;_;) to R(C;) do not
increase the res-pebbling cost by more than an additivedaoinsompared to

max{cost(R(C;_1)), cost(R(Cy))} = cost(R(Cy)),

where the equality holds since no subconfigurations indbged; ; can disappear when we add clauses
to Cy_;.

As a warm-up, let us consider the case whéma source, i.egred(r) = ¢ andC € Az?(r) = @leri.
We make a case analysis depending on whetherB in (12) or not.

1. » € B: In this case we need no further analysis. Just make theetaislipg download mové-|(()
and weakerir](0) to get[B U {r}|(W) = [B(W).

2. r ¢ B: By part 1 of Observation 5.5, we can deriM@](IV U {r}) by weakening fronR(C;_,).
Then[B](W) can be derived by a download pf () followed by a resolution of B|(W U {r}) and

[7]{0)-
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We see that whenis a source, we can get frof(C;_; ) to R(C;) by a download ofr](#) and possibly
some weakenings and resolutions.

The case whenis a non-source is a bit more involved, but the general iddseisame. Suppose for the
rest of this section tha®' € Az¢(r) for some fixed vertex with pred(r) = {p, q}. This means that’ can
be writtenC' = C_, V Cy V C,, for someC., € @ pir Cq € B:—,i, andC, € B, r:, and we can
rewrite (12) as

—d
CU{C,vC Vil (\/ D)V (\ Dimywi) - (13)
beB weWw
Let us also assume that .
Cia K (\/ @?:162') Vv ( \/ @i:lwi) (14)
beB weW

since otherwise we can deriy8](1V) by an weakening move froR(C;_;) (using Observation 5.4) and
be done. Recall that by definition, we ha®en W = (). Observe that it must hold that

{p,g} nB=10, (15)

since if, sayg € B, we could apply part 1 of Observation 5.5 to get that the iogpion in (14) in fact holds
for B= B U {q} contrary to assumption. In the same way, we see that

rgWw (16)

since otherwise part 2 of Observation 5.5 shows that theicadmn (14) on the contrary is true fé¥ =
W U {r}.

As in the case whenwas a source vertex, the induction step is by a case analgéending on whether
or notr € B in the implication (13) (which, we remind ourselves, is j(is?) with added information about
what the downloaded axiom clau€elooks like).

1. r € B: We split this case into subcases depending on whethee W or not. By the symmetry of
p andg, we have the following three possibilities to consider:

@ {p,q} €W,
by pe W,q¢ W,

© {p,g} "W =0.

We analyze these cases in order.

(@) {p,q} € W: This is the easiest case. Since by assumptioa B and {p,q} C W, the
subconfigurationB](IV) € R(C;) can be derived by a download df-}]({p, ¢}) followed by a
weakening of {r}]({p,¢}) t0 [B U {r}](W U {p,q}) = [BI(W).

(b) p € W, g ¢ W: In this case[{r}|{{p,q}) cannot be weakened {@&](WW), sinceq ¢ W.
We need to find some way to eliminate the white pebble;oBut sinceq ¢ W, part 2 of
Observation 5.5 says that we can deriye U {q}](W) by weakening fromR(C;_;). Using
this subconfiguration, we can deril@] (V) as follows:

e download[{r}|{({p,q}),
e derive[B U {¢}|(W) fromR(C;_;) by weakening,
o resolve[{r}]({p,q}) and[B U {¢}|(W) to get[B U {r}|(W U {p}) = [B|(W).

Note that the resolution move is in accordance with the silese{r} N W = () as noted in (16)
and(B U {q}) N {p,q} = {¢} as noted in (15).
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(©) {p.q} N W = 0: Now bothp and ¢ have to be eliminated if we are to use}|({p,q})
to derive [B](WW), but by applying part 2 of Observation 5.5 twice we see thatam derive
[B U {p}|(W) and[B U {q}|(W) by weakening fronR(C;_;). Using this fact, we can per-
form a pebbling to getB] (W) as follows:

download({r}}({p, ¢}),

derive[B U {q}[(W) fromR(C;_;) by weakening,

resolve[{r}|{{p, ¢}) with [B U {¢}(W) onqtoget[B U {r}|(W U {p}) = [BW U {p}),
derive[ B U {p}|(W) from R(C;_;) by weakening,

conclude by resolvingB](W U {p}) with [B U {p}](W) on p, resulting in the subcon-
figuration[B](W).

Of course, it needs to be checked that all resolution mowesegal, but this follows from (15)
and (16).

This concludes the analysis for the case B for a non-source vertex

. v ¢ B: This case is quite similar to the previous case B. Here also we make a subcase analysis
depending on whethepred(r) N W] is equal ta2, 1 or 0.

Before we do this, though, we observe that there is a paaticubconfiguration that will be useful
for us. Since we are now assuming thag B, part 1 of Observation 5.5 says tH#&](IWW U {r})

is derivable by weakening fro®(C;_;). This subconfiguration will play an important role in the
pebblings below.

(@) {p,q} € W: To get the subconfiguratiofB](W) from R(C;_;) in this case, first derive the
subconfiguratior] Bj(W U {r}) just mentioned by weakening frolR(C;_; ), then download
[{r}]{({p,¢}), and finally resolve the two to géB](W U {p,q}) = [B](W). This resolution
move is in accordance with the res-pebbling rules siice {p, ¢} = () according to (15) and

{r} n W U {r}) ={r}.
(b) p € W, q ¢ W: Just as in case 1b, part 2 of Observation 5.5 says[Bat {¢}|(W) is
derivable fromR(C;_1) by weakening. Now do the following pebbling moves:

e download[{r}]{{p,q}),

e derive[B U {q}](W) from R(C;_;) by weakening using part 2 of Observation 5.5 as in
case 1b,

o resolve[{r}]({p, q}) with [B U {g}](W) ongto get[B U {r}|(W U {p}),
e use part 1 of Observation 5.5 to deri\@] (W U {r}) from R(C;_) by weakening,
e finally, resolve[B U {r}|(W U {p}) with [B[(W U {r}) onr to get[B[(W U {p}) =
[BI(W).

(©) {p,q} N W = (: As in case 1c, appeal to part 2 of Observation 5.5 twice to $imnacon-
figurations|B U {p}|(W),[B U {q}](W) derivable fromR(C;_;) by weakening. Using that
[BI(W U {r}) also can be derived froR(C;_;) by weakening, we can make the following
sequence of pebbling moves:

download({r}]({p, ¢}),

derive[ B U {q}](W) by weakening,

resolve[{r}]({p,¢}) and[B U {q}](W) ongqto derive[B U {r}[(W U {p}),
derive[B U {p}](W) by weakening,

resolve[B U {r}[(W U {p})and[B U {p}|(W) onpto derive[B U {r}|(W),
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e derive[B|(W U {r}) by weakening,
e finally, resolve[B U {r}|(W) and[B](W U {r}) onr resulting in[B](W).
Double-checking the set intersections and inclusions shbat all these moves are legal.

This concludes the analysis for the casg B.

We are finally through the case analysis for axiom downloaa.us put the bits and pieces together and
argue why Theorem 5.3 now follows.

If m = {(CO, . ,(CT} is a derivation o@lezi from *Peb?;[@], it is easily verified from Definition 5.2
thatR(Co) = R() = § andR(C,) = R(PL,z) = {[z](0)}. Above, we have shown how to do the
intermediate res-pebbling moves to get frik(C;_;) to R(C,) in the case of erasure, inference and axiom
download, respectively. For erasure and inference, wadr@oted that the res-pebbling cost changes
monotonically during the transitioR(C;_;) ~» R(C,). In the case of axiom download, all pebbles used in
the intermediate moves are still on the DAGRAC,) except possibly for the pebbles ¢n} U pred(r),
so the extra intermediate cost is upper-bounded.bhis shows that the complete res-pebbliRg of the
DAG G associated to any resolution derivation *Peb% @] - @7, z; by the construction in this section
has res-pebbling cost bounded from abovecbgt(R,) < maxcer{cost(R(C))} + 3. Theorem 5.3 is
thereby proven. O

6 Comparing Resolution Space and Res-Pebbling Cost

In this section, we provide the second component in the pgb@heorem 3.3, namely, that the cost of the
induced resolution pebbling.. is a lower bound on the space of

We introduce some notation to make the argument more corasers write Vars®(u) = {u1, ..., uq}.
We say that a vertex: is representedn a clauseC' derived from*Peb% (], or thatC' mentionsu, if
Vars®(u) N Vars(C) # 0. We write

V(C) = {u € V(G)| Vars®(u) N Vars(C) # 0} (17)

to denote all vertices represented(n We will also refer toV (C') as the set of verticesientionecdby C.
This notation is extended to sets of clauses by taking unions

The main component in the proof of Theorem 3.3 is the follgvineorem. We remark that this is
the place in the proof where it is absolutely crucial that wewvaorking with XOR-pebbling contradictions
Pebd[@] and not the “standard” pebbling contradictioRebd [v] defined in terms logical or that were used
in [BS02, Nor06, NHO8].

Theorem 6.1. For every clause configuratioB that is derived fromtPeb% (@] with d > 1, it holds that
|C| > cost(R(C)) ,
wherecost(R(C)) = |U;z)umyercy(W U B)|.

Proof. Let us write

V' =Uswyercy(B U W) (18)
to denote all vertices mentioned in the configuration induogC. At this point, we know nothing about
the relationship betweevi* and V' (C). However, it is intuitively plausible thadt™ C 1V (C), i.e., that the

clause set must mention variables for the vertices on whidldiices pebbles, and as we will see later in the
proof this is indeed the case.
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Consider the bipartite graph with clausegiron the left-hand side and verticeslift on the right-hand
side. We draw an edge betweéhe C andv € V* if C mentionsv. That is, the set of neighbors 6f is
N(C)=V(C)n V*.

LetC; C C be a set of maximal size such th@; | > |[N(C;)|. LetCy = C\ C; and define the vertex
setV* = N(C,). By the maximality ofC; we have

ID| < |[N(D) \ Vi*| forall D C C,. (19)
This holds trivially in the cas€, = (). For the case of nonempfs, if, by way of contradiction|D| >
IND)\ Vi, = C; U D would be a larger set tha@i; with |C'| > |N(C’)|, contradicting the
maximality of C;.

Equation (19) implies, by Hall’'s marriage theorem, thatr¢his an injective mapping/ of C, into
V*\ V. ForC € Cq letv(C) = M(C) be the vertex matched @ and letVy' = {v(C) |C € Ca}. We
now showl* = V;* U V5" and this will prove the theorem becaugg | > |V;*| and|Cq| = |V5| imply

ICl = ICy| + |Cof > [Vi'| + V5| = [V7. (20)

Assume by way of contradictiol;" = V* \ (V;* U V") # (0. Fix somev € V5* and[B](W) € R(C) such
thatv € (W U B), which must exist by definition df*. By Definition 5.2

ce (\V/ dLb)v(V D wi) . (21)

beB weWw

We claim that we can construct a truth value assignmerthat makesC true but (\/beB @lebi) V
(\/wew@jzlwi) false. This clearly contradicts condition (3a) from Defnit 5.2 and so the theorem
follows.

The desiredy will be the union of three partial assignments U a2 U a3 that assign values to distinct
variables. Fojj = 1,2let B; = B N V" andW; = W N V. By assumption € (BU W)\ (B U W)
so conditions (3b), (3c) in Definition 5.2 imply

(Cl’f \/ @f 1b \/ @z 1“’2 (22)

beB weWr

so we can find a truth value assignmenthat setsC to true but violates all constrain@lebi, b e By,

—d - .

and@,_,w;, w € Wy. Takea; to be the restriction off to Vars(Cy) U Vars®(By U W1). What is
important to notice about; is that it(i) does not assign any value tars®(V;* U Vi), (i) setsC; to true,
e . —d . . :

(iii) violates all constramt@f:lbi, b € By, and@,_,w;, w € Wy and(iv) any extension ofy; will not
change(ii), (iii) .

To constructa, we use the matching/ of Cq into V' to find a distinct vertex(C') for everyC € C,
and a literal over some variabléC); € Vars? (v(C)) that fixesC to true. Lety be this partial assignment.
We stress thay assigns values to at most one variabjdor anyv € By U W,. This means that we can
extendy to an assignmernt, to Varsd(VQ*) still satisfyingC, but violating all constraint@lebi, b € By,

—d . o . .
and@,_,w;, w € W,. Regardingx,, notice it(i) assigns values only Warsd(v;), (ii) setsC, to true,

. . —d . . :
(iii) violates all constramt@lebi, b € By, and@,_,w;, w € Wy and(iv) any extension ofx, will not
changd(ii), (iii) .
Finally, to constructys we pick for everyv € (B U W) N V5* an assignment that violates the constraint
. . . . —d . :
overu. l.e., ifv € B we setas so thatd? =1V is false and ifv € W set it so thatp,_,v; is false. Notice

a3 assigns values only to variables ¥ars? ( ) Thus, takingy = a1 U ae U ag contradicts (21), which
proves the claim. O

Theorem 3.3 now follows from Theorems 5.3 and 6.1 togeth#dr hkémma 5.1.
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7 From Res-Pebblings to Black-White Pebblings

To complete the proof of Theorem 1.1, we also need to eskelokiger bounds on res-pebbling price in terms
of black-white pebbling price.

Theorem 3.4 (restated).For any DAGG it holds thatRes-Peb(G) > BW-Peb(G).

On the face of it, the resolution-pebbling game might seeite glifferent from the standard black-white
pebble game. The lower bounds on black-white pebbling dieetically on the fact that the rules for
black pebble placement and white pebble removal are vacy.dtn the resolution-pebbling game, however,
we can always remove any white pebbles by doing an erasudebyameakening we can always black-
pebble any vertex although no white pebbles are even neawéhiex. However, the fact that we collect
black pebblesB and white pebbledV in subconfigurationsB](W), and only allow operations on these
subconfigurations, makes it relatively straightforwargtiow Theorem 3.4. The proof follows immediately
from the following pair of lemmas, proved next.

Lemma 7.1. Given any complete res-pebblirig of G using weakening, there is a complete res-pebbling
R’ which never makes any weakening moves anccbs§R’) < cost(R).

Lemma 7.2. Given any complete res-pebblifigf of G that does not make any weakening moves, there is a
complete standard black-white pebblifgof G such thatcost(P) < cost(R').

Proof of Lemma 7.1This is true since we can always construct a shadow pebltieignatches download,
resolution, and erasure moves but ignores weakening m@&uash a pebbling can have at most the same
cost as the pebbling that it is shadowing.

Formally, given any complete res-pebblify= {Ry, ..., R, } of G, we construct our pebblin®’ =
{]R{/ - ,}R’T} inductively by maintaining the following invariant: Forew R, € R there is a surjective
function g, : R; — R} such that whenevey, ([B](W)) = [b](W}) it holds thath € B andW;, C W. If we
can construct such a functignfor everyt we are clearly done, sin@®st (R;) = cost(g:(R;)) < cost(R;)
and we must have, ([z](0)) = {[z](0)}. The base casR, = 0 is trivial. We make a case analysis over the
pebbling move made at tinte

Download R; = R;—1 U {[v]{pred(v))}: Make the same download move RY, setg;([v]{pred(v))) =
[v]{pred(v)) and letg, = g;—; for all other subconfigurations iR;_;.

Erasure R, = R, \ {[B}(W)}: SetR] = g, (RR;) (which might result in an erasure or leakg = R;_,
unchanged).

Weakening R, = R,y U {[B U B'l(W U W’)} for some subconfiguratioiB](W) € R;_;: set
gi([B U B W U W) = gi1([BI(W))
and letg; = ¢;—1 for all other subconfigurations (leavifi®j = R}_, unchanged).

Resolution R; = R, U {[B1 U Bo](W1 U Wa)} derived from[B;[(W; U {v}), By U {v}](W) €
R;—1: This is the only nontrivial case. Let_1([B1](W1 U {v})) = [b:](W7) and similarly let
gi—1([B2 U {v}](W3)) = [b2](W3). Note that by the induction hypothesis we hdayee B; C
By U By andWj C Wy C W7 U Wa. We get three subcases:

1. v ¢ W{: ThenW| C W; C Wy U Wo, so we can sej;([B1 U Ba](Wy U Wa)) = [b1[(W7).
2. v # bo: Thenby € By C B; U By, SO we can S@t([Bl U B2]<W1 U W2>) = [b2]<W2/>
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3. Otherwise, we have = by andv € W/, so we can resolvé; |(W]) and [by](W3) to get
[01]((W] U Wy) \ {b2}) and selg;([B1 U B2](W1 U Wa)) = [b1](W] U W3) \ {b2}).

Let g; = g, for all other subconfigurations iR;_.

Since in all cases we can construct a surjective fungfionR; — R} satisfying the invariant conditions,
the lemma follows. O

Proof of Lemma 7.2We assume without loss of generality that terminates at time once it contains a
subconfiguratioriz] () wherez is the sink ofG. Next, we define thessentialsubconfigurations oR’

by backwards induction as follows. The only essential sobigaration ofR. is [z](0)). Fort < T, we
say a subconfiguration is essentialRn iff it is either (i) essential at time + 1, or (ii) one of the two
subconfigurations used in a resolution step resulting insapréial subconfiguration. To prove the lemma
it is sufficient to show that the set of pebbles mentioned #eetal subconfigurations forms a legal black-
white pebbling ofG. Formally, let

B, = {UB |[B](W) is essential ifR, }

and
W, = {UW |[B](W) is essential iR, } \ B;.

We claim the sequencgBy, Wy), ..., (B,,W,)} is a legal black-white pebbling @¥ and this proves our
lemma.

By constructionBy = Wy = 0 andB, = {z},W, = 0 so we only need to argue that interme-
diate steps are legal black-white moves. By definition okesality we do not need to worry about
erasure moves because only unessential clauses can bd. efEses, if thet!" step is an erasure then
(Bi—1, W;_1) = (B, W,). By assumption, there are no weakening moves so we only ndehtle down-
loads and resolution steps which is what we do next.

Download Suppose the'" step is a download of an essential subconfiguration corneipg to vertex
v. ThenB; = B;—; U {v} andW; = (W, U pred(v)) \ (B;—1U){v}) and this transition corresponds to
a sequence of legal pebbling moves involvifigplacing white pebbles on all predecessors dhat are
not covered byW, U B, (ii) removing a white pebble from, if v € W,, which is legal because all of
v's predecessors are pebbled, i)l placing a black pebble on. Notice the overall number of pebbles
throughout this sequence is at m@t U W,|.

Resolution Suppose the!" move is a resolution step deriving an essential subcontignraBy defini-

tion, the two subconfigurations used in the resolution stepeasential at time— 1. Furthermore, ifv is

the vertex that is removed in this step we have B,_;. Inspection reveal®;_; O B; 2 B,_; \ {v} and

W, > W,_ implying we can reackiB;, W) by a legal sequence of pebbling moves because we need only
remove the black pebble fromand perhaps place a white one on it. This completes the pfabédemma

and with it the proof of Theorem 3.4 is complete. O

8 Concluding Remarks

We have proven an asymptotically optimal separation of sex length in resolution. This answers an
open guestion discussed in, for instance, [ET03, Seg0D4Jor
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It would be interesting to see if the proof technique usedis paper can be extended to yield length-
space tradeoffs in the sense that there are CNF formulasahdie refuted in short length and small space,
but where any short refutation must have large space.

Another natural question is whether our lower bounds carnxbEnded to stronger proof systems than
resolution. One obvious candidate would be th®NF resolution proof system3t(k) introduced by
Krajicek [Kra01], where the lines in the proofs deDNF formulas instead of clauses and one can ‘“re-
solve” over up tok variables simultaneously. We believe that XOR-pebblingtmﬂictionsPeb’g“[@]
should separatk-DNF resolution andi+1)-DNF resolution with respect to space. If so, this wouldbst
lish that thek-DNF resolution proof systems form a strict hierarchy wigbpect to space. Currently, all that
is known is the separation result in [EGMO04] for the restittase of tree-liké-DNF resolution.
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