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Abstract

The main argument of the report TR06-133 is in error. The paper claims
to prove the result of the title by reduction from the (∃, k)-pebble game,
shown to be EXPT IME-complete by Kolaitis and Panttaja. This note
shows that the principal lemma is incorrect by providing a simple counter-
example.

1 The counter-example

The main theorem of the paper depends on the following claim, stated as Lemma
5.3:

“If A and B are coloured graphs, and k ≥ 3, then the Spoiler has a winning
strategy for the (∃, k)-pebble game on A and B if and only if the Prover has a
winning strategy for the k + 2-width game on Σ(A,B).”

The counter-example that follows shows that this claim is incorrect. We
provide two graphs A and B, for which the Prover has a winning strategy for
the 5-width game on Σ(A,B), but on the other hand, the Spoiler does not have
a winning strategy for the (∃, 3)-pebble game on A and B.

The graphs A and B are easy to describe. The graph A is the complete
graph K5, and the graph B is the complete graph K4. The colours of the nodes
in the graphs play no role (we can think of all the nodes as being coloured the
same colour), so we shall ignore them in the remainder of this note.
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Clearly, the Spoiler wins the (∃, 5)-pebble game on K5 and K4, since when
pebbles have been placed on all the nodes of K5, the Duplicator is forced to
place two different pebbles on the same node, thus violating the partial homo-
morphism property. On the other hand, the Duplicator wins the (∃, k)-pebble
game on K5 and K4, for k ≤ 4, since as long as the Duplicator is careful never
to place two pebbles on the same node, the partial homomorphism property can
never be violated.

We now have to demonstrate a winning strategy for the Prover in the 5-
width game on Σ(K5, K4). The set of clauses Σ(K5, K4) contains 20 variables
P i

j , for 1 ≤ i ≤ 5 and 1 ≤ j ≤ 4, together with 15 variables Qi
j , for 1 ≤ i ≤ 5

and 1 ≤ j ≤ 3.
The clauses constituting Σ(K5, K4) are as follows:

1. Qi
1, for 1 ≤ i ≤ 5.

2. Qi
j ↔ (P i

j ∨ Qi
j+1), for 1 ≤ j < 3, and Qi

3 ↔ (P i
3 ∨ P i

4).

3. ¬P i
j ∨ ¬P l

j , where i < l.

4. ¬P i
j ∨ ¬P i

k, where 1 ≤ j < k ≤ 4,

They can be interpreted as asserting that there is a bijective mapping from a
set of size 5 into a set of size 4, and so the fact that Σ(K5, K4) is contradictory
formalizes the pigeonhole principle. In fact, Σ(K5, K4) is essentially the same
as the formalization of the pigeonhole principle EPHP 5

4 given by Atserias and
Dalmau [1].

In explaining the Prover’s winning strategy in the 5-width game, it helps
to think of the width game as a pebbling game. The game is played on a
board, consisting of a set of locations, where either a black or a white pebble
can be placed (we think of a white pebble as representing “true,” and a black
pebble as representing “false”). A round in the game consists of the Prover
first (optionally) removing some pebbles, and then querying a location. The
Adversary responds by placing a pebble, either black or white, on the location
in question. Certain configurations of pebbles are declared forbidden. If a play
of the game ends with a forbidden configuration on the board, but no more than
k pebbles have been on the board at any time, then the Prover is said to win
the k-width game.

The board on which the k-width game for Σ(K5, K4) is played can be visu-
alized as a seven by four matrix, with the P i

j variables on the righthand side,

and the extension variables Qi
j on the left. The forbidden configurations are

defined by the clauses. For example, the clauses of type 3 correspond to the
fact that in the board game, a righthand column containing two white pebbles
is forbidden.

Q1
1 Q1

2 Q1
3 P 1

1 P 1
2 P 1

3 P 1
4

Q2
1 Q2

2 Q2
3 P 2

1 P 2
2 P 2

3 P 2
4

Q3
1 Q3

2 Q3
3 P 3

1 P 3
2 P 3

3 P 3
4

Q4
1 Q4

2 Q4
3 P 4

1 P 4
2 P 4

3 P 4
4

Q5
1 Q5

2 Q5
3 P 5

1 P 5
2 P 5

3 P 5
4
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The Prover’s strategy consists of two parts. First, the Prover, playing solely
on the righthand side of the board, forces a row containing four black pebbles.
Second, using the lefthand side of the board, the Prover forces a black pebble
on a location containing a variable of the form Qi

1, or a white pebble on Q5
1 and

black pebbles on P 5
1 and Q5

2 – under the assumption that the Adversary puts
up as long a resistance as possible.

For the first part of the strategy, the Prover queries all the variables P 1
j . If

the Adversary responds with black pebbles to all the queries, then the Adversary
can proceed to the second part. However, let us assume that the Adversary
places a white pebble on one of the locations, say P 1

2 . The Prover then removes
all the pebbles except the white pebble from the first row, and then queries the
locations P 2

1 , P 2
3 , P 2

4 . If the Adversary responds with black pebbles to all of
these queries, then the Prover queries P 2

2 . Since there is a white pebble on P 1
2 ,

the Adversary must respond with a black pebble, and again we have forced a
black row. So, let us assume that the Adversary responded with a white pebble
on P 2

3 . The Adversary now removes all the pebbles except the white pebbles
on P 1

2 and P 2
3 , and queries P 3

1 and P 3
4 . Again, if the Adversary answers with a

black pebble to both queries, the Prover can force black pebbles on P 3
2 and P 3

3 ,
removing the white pebbles when they are no longer needed. So, again, we can
assume that the Adversary answers with a white pebble to one of the queries.
Proceeding in the same manner on the fourth row, the Prover either forces a
black row, or four white pebbles, none of which are in the same row or column
(that is to say, they represent a partial homomorphism from K5 to K4). In the
second case, by querying successively the P 5

j variables, and then removing the
corresponding white pebbles in the appropriate column, the Prover can force
either a black row, or an immediate termination of the game (if the Adversary
ever responds with a white pebble).

So, let us assume that the Prover has forced black pebbles on all of the
locations P 5

1 , P 5
2 , P 5

3 , P 5
4 (by symmetry, the strategy is the same for all the

rows). The Prover then queries Q5
3. The Adversary is forced to answer with

a black pebble, or the game ends immediately. The Prover then removes the
black pebbles on P 5

3 and P 5
4 , and queries Q5

2. Again, the Adversary must answer
with a black pebble, or the game ends with a win for the Prover. Finally, the
Prover queries Q5

1. No matter how the Adversary answers, the game ends with
a win for the Prover. Since this strategy never uses more than five pebbles, the
Prover wins the 5-width game on Σ(K5, K4). More generally, the Prover wins
the n + 1-width game on Σ(Kn+1, Kn), showing that the minimum width of a
resolution refutation of Σ(Kn+1, Kn) is exactly n.

2 The nature of the error

The error in the paper is slightly subtle, so it is of some interest to see just
where it lies. It is possible to pinpoint the mistake by following through the
Prover’s strategy from the previous section, while employing the Adversary’s
strategy from the paper.
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The error occurs in the second part of Lemma 5.3. The argument that
purports to show that the Adversary’s strategy succeeds uses implicitly the
following principle:

If C is an initial clause containing only variables of the form P i
j and

Qi
j , f is a partial homomorphism, and ai is in the domain of f , then

C is true under the assignment β[f ].

The principle is easily seen to be true, since the initial clauses are all intended
to describe a partial homomorphism.

The mistake arises from an incorrect assumption that can be expressed as
follows:

If f is the partial homomorphism maintained by the adversary, ai

is in Dom(f), and a variable of the form P i
j or Qi

j is assigned a
value by the current assignment, this value is in agreement with the
assignment β[f ].

Somewhat surprisingly, this assumption is false. Let us follow through the
Adversary’s strategy to see where it fails.

We take up the game at the point where the Prover has forced a partial
homomorphism of size 4; let’s say, for example, that the variables P 1

1 , P 2
2 , P 3

3

and P 4
4 are all assigned true under the current assignment. Now the Prover

queries P 5
4 , which the Adversary is compelled to answer with “false.” Next,

the Prover removes the white pebble on P 4
4 (removes this assignment from the

current assignment) and queries P 5
3 . At this point, the Adversary, following the

given strategy, must extend the new partial homomorphism to include a5 in the
domain. However, the only consistent way to do this is to set f(a5) = a4. This
setting contradicts the assumption above, since the current assignment sets P 5

4

to false, but β[f ] sets it to true. In fact, two more queries result in the initial
clause Q5

3 → (P 5
3 ∨P 5

4 ) being set to false (assuming that the Adversary continues
following the given strategy).

The precise point where the error occurs is in the sentence: “In the first
two cases, this is clearly true, by the definition of an extendible k-family.” So,
this confirms once again the mathematician’s rule of thumb – to find errors in
a paper, look for points where words like “obviously,” “clearly,” “trivially” and
the like occur.

3 Status of the problem

So where does this leave the problem? The original claim was that a generic
reduction would work to reduce instances of the existential k-pebble game to
the width problem for resolution – the reduction would be “generic” in the sense
that it would not depend on the details of the particular instance.

However, the fact that the Prover wins with only n + 1 pebbles in the
Σ(Kn+1, Kn) width game seems to depend on the precise details of the set
of clauses. It does not seem easy to generalize the strategy. Consequently, it
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appears at the moment that the complexity of the width problem for resolution
must be considered open once again.
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