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Abstract

Learning is a central task in computer science, and there are various formalisms for cap-
turing the notion. One important model studied in computational learning theory is the
PAC model of Valiant (CACM 1984). On the other hand, in cryptography the notion of
“learning nothing” is often modelled by the simulation paradigm: in an interactive protocol,
a party learns nothing if it can produce a transcript of the protocol by itself that is indis-
tinguishable from what it gets by interacting with other parties. The most famous example
of this paradigm is zero knowledge proofs, introduced by Goldwasser, Micali, and Rackoff
(SICOMP 1989).

Applebaum, Barak, and Xiao (FOCS 2008) established a connection between these two
different notions of learning by observing that if there exist non-trivial languages with zero-
knowledge proofs (i.e. ZK 6= BPP), then no polynomial-time algorithm can PAC learn
polynomial-size circuits. In this paper, we consider the reverse implication: is it true that
if learning is hard then zero-knowledge proofs exist for non-trivial languages? We rule out
two classes of techniques for proving this statement:

1. Relativizing techniques: there exists an oracle O relative to which learning polynomial-
size circuits is hard and yet ZKO = BPPO.

2. Black-box techniques: if there is a (semi-)black-box proof that uses the hardness of
PAC learning polynomial-size circuits to construct a zero knowledge proof for some
language L, then in fact L ∈ AM ∩ coAM.

Together, these results rule out all known techniques for proving that hardness of learning
implies ZK 6= BPP, including partially non-black-box techniques such as those of Barak
(FOCS 2001). In addition, our technique relies on a new kind of separating oracle that may
be of independent interest.

1 Introduction

Computational learning theory began with the study of PAC learning [Val84], and understanding
what efficient algorithms can learn in the PAC model remains an important goal. In the PAC
model, the learning algorithm is said to learn all functions in a concept class F (e.g. linear
functions over F

n
2 , half-spaces, DNF’s) if given access to many labelled examples (X, f(X))

drawn from an arbitrary input distribution X and where f ∈ F , the learner outputs with high
probability a hypothesis h such that PrX [f(X) 6= h(X)] is small. Unfortunately, there are a
variety of seemingly elementary classes of functions for which we still only know sub-exponential
or quasi-polynomial learning algorithms (e.g. DNF [KS01, LMN93]). In fact, it has been shown
that various concept classes are hard to learn based on average-case hardness assumptions
[GGM86, PW90] or even based on NP-hardness if we restrict the form of the hypothesis h the
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learner outputs (e.g. [PV88]; it seems unlikely that we can prove hardness of learning under
NP-hardness if h is unrestricted, see [ABX08]).

In cryptography, a different notion of “learning” was developed in the study of zero knowledge
proof systems [GMR85]. In this context, the goal was to construct proof systems where a prover
P interacts with an efficient verifier V in order to prove a statement π such that the verifier
“learns nothing” except that π is true. In this setting, we say that V learns nothing if it is able
to simulate its interaction with the prover by itself, in other words anything the verifier could
compute after interacting with the prover, it could compute by itself anyway.

Although these notions superficially seem unrelated besides intuitively capturing some notion
of “learning”, Applebaum, Barak, and the author [ABX08] observed that they are intimately
connected. Specifically, we observed that if there are non-trivial zero knowledge protocols (i.e.
ZK 6= BPP) then PAC learning is hard.

This raises the natural question: does hardness of (non-uniform) learning imply ZK 6= BPP?
Such a result would mean that the two disparate notions of learning are in fact the same (at
least from a complexity-theoretic point of view), and so since both bodies of literature are large
and well-developed, many results from one side might have yet-to-be-discovered consequences
on the other side.

Already [ABX08] showed a partial result of this form, working with the promise problem
Learnability, defined as follows. Consider circuits C : {0, 1}m → {0, 1}n+1, and let X denote the
distribution on the first n bits of C(Um) where Um is uniform on {0, 1}m, and let Y denote the
distribution of the last bit of C(Um). C is a yes instance of Learnability if there exists a function
f computable by a circuit of size n2 such that the distribution (X,Y ) = (X, f(X)). That is, a
yes instance is “learnable” since Y can be computed from X by a size n2 circuit. On the other
hand, C is a no instance if the distribution (X,Y ) is such that for all functions g computable by
circuits of size nlog log n (any super-polynomial size will do), Pr[Y = g(X)] ≤ 1−1/poly(n). That
is, a no instance is “unlearnable” because no small circuit can compute Y from X. [ABX08]
show the following proposition:

Proposition 1.1 ([ABX08]). Learnability ∈ ZK.

Thus, if Learnability /∈ BPP then ZK 6= BPP. One might hope to generalize this result to
show that (non-uniform) hardness of learning implies ZK 6= BPP. In this paper we show that
this is not the case, at least if we restrict our attention to standard proof techniques. As we
will explain later, the key difference between Learnability and standard PAC learning is that in
Learnability, we are given the circuit C sampling (X,Y ), whereas in PAC learning we are only
given a set of labelled examples and cannot otherwise describe the distribution (X,Y ).

1.1 Our results

There are various notions of zero knowledge (see e.g. [OV07]), but in order to obtain stronger
results, we consider the broad notion of zero knowledge where the zero-knowledge property is
only required against an honest-but-curious verifier and efficient distinguisher, and the sound-
ness property is required only against efficient cheating provers. Following [OV07], we let
HV-CZKA denote the class of languages with such protocols. In particular, by ruling out
even proofs that use non-uniform hardness of learning to show that this broad notion of zero
knowledge is non-trivial, we also rule out proofs for more restricted notions of zero knowledge
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(e.g. with soundness against unbounded cheating provers or negligible statistical simulator
deviation). In this paper, ZK always refers to HV-CZKA (defined formally in Section 2).

Relativizing proofs: Our first theorem shows that relativizing techniques cannot prove that
if learning is hard against circuits, then ZK 6= BPP.

Theorem 1.2. There exists an oracle O relative to which learning is hard against circuits but
where ZKO = BPPO.

In fact, we prove the stronger statement that relative to O, learning is hard against circuits but
there exist no auxiliary-input one-way functions (AIOWF), which then implies ZKO = BPPO

by the theorem of [OW93] (stated in Corollary 2.4).1 An AIOWF is an efficiently computable
function f : {0, 1}n × {0, 1}`(n) → {0, 1}m(n) such that for every efficient algorithm A, there

exists an infinite sequence of w such that for y
R
← f(w,U`), the probability A(w, y) outputs a

preimage of y is negligible.

Unfortunately, in this setting ruling out relativizing proofs is not very convincing because we
have various non-relativizing proofs that ZK 6= BPP. In particular the proofs by Goldreich,
Micali, and Wigderson [GMW91] and Nguyen, Ong, and Vadhan [NOV06] that NP has various
forms of zero knowledge protocols based on the existence of one-way functions do not relativize
because they work directly with the NP-complete problem Three Coloring (3-COL).

Semi-black-box proofs: [GMW91, NOV06] do not relativize in the traditional sense, but are
black-box: they require only black-box access to a one-way function to construct a protocol for
3-COL, which they then prove is zero-knowledge by assuming the one-way function is hard to
invert. Our second result rules out semi-black-box proofs that zero knowledge is non-trivial based
on the hardness of learning. A semi-black-box proof uses the hard concept class as a black-box
to construct a zero-knowledge protocol, but the analysis, which takes an adversary for breaking
zero knowledge and converts it into a learning algorithm, may be non-black-box (although the
adversary breaking zero knowledge is still allowed black-box access to the hard concept class).
In contrast, a proof is fully-black-box if the analysis is also black-box, i.e. the adversary breaking
zero knowledge is only accessed as a black box. See the taxonomy of Reingold, Trevisan, and
Vadhan [RTV04] for more details about classifying black-box proofs. We note that by ruling
out semi-black-box proofs, our second theorem rules out even constructions such as those of
Barak [Bar01], which have a non-black-box analysis but a black-box construction.

Unlike Theorem 1.2, our second theorem does not unconditionally rule out semi-black-box proofs
because there are zero knowledge protocols whose security is unconditional (e.g. for Graph
Isomorphism, Quadratic Residuosity). That is, it is conceivable one can build a statistical
zero knowledge proof (i.e. a SZK proof, defined in Section 2) for NP without complexity
assumptions, which is then trivially semi-black-box. We prove roughly that this is the only
thing that can happen:

Theorem 1.3. If there exists a semi-black-box proof that constructs a ZK protocol for a lan-
guage L based on non-uniform hardness of learning, then in fact L ∈ AM ∩ coAM.

Notice the theorem is not quite what our intuition suggests: our conclusion is L ∈ AM∩coAM

rather than L ∈ SZK. We elaborate on this discrepancy in Remark 4.4. Nevertheless, if L is
NP-complete then L ∈ AM ∩ coAM implies that the polynomial hierarchy collapses to Σ2

1In fact, our proof also rules out so-called ∀∃ semi-black-box proofs, which are even more general than
relativizing proofs. See Appendix B for details.
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[BHZ87, For87], which we interpret to mean that such a semi-black-box proof for an NP-
complete languages is unlikely to exist.

1.2 Our techniques

Relativizing proofs: the intuitive difference between PAC learning and inverting AIOWF
we exploit is that in PAC learning, the learner knows nothing about the function labelling the
examples other than it belongs to some class F . This is intrinsic to the model, since if the
learner knew the description of the function it could simply use it to label new examples. On
the other hand, in AIOWF, the inverting algorithm knows exactly a description of the function
f(w, ·) it is trying to invert.

Our oracle will be defined using a distribution over functions R(n) : {0, 1}n × {0, 1}n → {0, 1},
where for z of length n, we let Rz denote the function R(n)(z, ·) . For each z ∈ {0, 1}n, with
probability 2−n/2 the distribution sets z to be a “hard instance”, i.e. it sets Rz to be a uniformly
random function, and with probability 1− 2−n/2 it sets Rz to be the all zero function Rz ≡ 0.

It can be shown (e.g. in Lemma 3.3) that almost surely over the choice of R, the concept class
F = {Rz}z∈{0,1}∗ is hard to learn for polynomial-size circuits (with R gates). The intuition

is that there are roughly 2n/2 hard instances z on inputs of length n, and they are chosen at
random, so no polynomial-size circuit can find all of them, and it cannot learn the hard instances
it cannot find because they look like random functions.

As a first step, let us see how to rule out fully-black-box reductions that use non-uniform
hardness of learning to construct AIOWF. Consider the oracle O = (R,I), where R is defined
as above and I takes input (CR, y) where y is a string and CR is a circuit with R gates with
output length |y|, and I outputs an arbitrary element of (CR)−1(y). It can be shown that
F = {Rz}z∈{0,1}∗ cannot be learned by any efficient circuit even if given access to O: I does the
learning circuit C no good since it cannot help C to find more hard instances than C can find by
itself. Any fully-black-box proof produces from F an AIOWF, and the AIOWF is computable
using only calls to R (since F only has R gates and no I gates). But any such AIOWF can
be inverted using I because we know the description of the AIOWF, which we can then use I
to invert. Since the analysis is also black-box we get a learner for F that only makes poly(n)
queries to O, a contradiction.

This type of proof technique is common in the cryptographic literature (see e.g. [HHRS07,
HR04]) but it does not rule out relativizing reductions: it does not rule out an AIOWF where
the function itself calls I, because I may not be able to invert circuits that call I. Ruling out
relativizing techniques requires a more general oracle, which we describe below.2 To the best
of our knowledge, this is the first time such an oracle has been proposed, and it may be of use
for other black-box separations as well.

Definition 1.4. Let PSPACER∗ be the class of languages decidable by the following kind of
machine: on input x first run a polynomial-time machine M1(x) to obtain outputs z1, . . . , zm ∈
{0, 1}∗, then run a PSPACE machine M2(x) with access to oracle gates Rz1, . . . ,Rzm and
output the result of M2.

2Simon [Sim98] solves a similar problem: in our setting, his technique would allow I to also invert circuits
containing I queries (but only up to logarthmic recursions), and then we would need to prove that still this does
not help the learner. While such a technique may succeed, we present our result with the oracle above, which we
believe may be of independent interest.
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There is a natural complete language QBFR∗ for this class, described in Section 2.

Our oracle O is a PSPACER∗ oracle whereR is chosen from the same distribution as above. We
will argue that relative to this oracle, the same concept class F is still hard to learn for circuits,
again because no learner can find all the hard instances. On the other hand, we will show that
all functions f in PSPACER∗ can also be inverted in PSPACER∗ given the description of f ,
so no f can be an AIOWF because the inverter knows the description of f .

Semi-black-box proofs: we describe the intuition behind Theorem 1.3 for fully-black-box
reductions, where the analysis is also black-box. We use the same distribution of functions R
and also set O = PSPACER∗ . (To rule out semi-black-box reductions we “embed” PSPACER∗
inside R. See Section 4 for details.)

The family F = {Rz}z∈{0,1}∗ is hard to learn for circuits for the same reason as before, so we

have by the black-box reduction that L ∈ ZKO. On the other hand, we also have as before that
AIOWF do not exist relative to O. Ong and Vadhan [OV07] showed that if L ∈ ZK, then either
there exists an AIOWF, or L reduces to “Statistical Difference” (SD) which is complete for the
class SZK (see Theorem 2.3), and in fact their result relativizes. Since L ∈ ZKO and AIOWF
do not exist relative to O, we deduce from [OV07] that L reduces to SDO (where circuits can
contain O gates).

Furthermore, since the proof is black-box, the construction only uses oracle access to F , which
is implementable using only access to R, and we can observe that [OV07] says this means L
reduces to SDR. Finally, we deduce that L ∈ SZK: the zero knowledge property of SZK

is statistical, so intuitively the computational hardness of learning F = {Rz} cannot help;
furthermore, since L ∈ SZKR for almost all R, the oracle R does not contain information
about L itself. To use this intuition formally, we simply replace the R gates in instances of
SDR by hard-wired random bits, which gives an instance of plain SD. Since all but a “small”
fraction of R are good, this gives a good randomized reduction to SD. However, the “small”
fraction of bad R is not negligible, which is why we cannot prove L ∈ SZK, but instead prove
just L ∈ AM ∩ coAM.

2 Preliminaries

For any distribution X, we let x
R
← X denote a random variable sampled according to X. If

S is a finite set, x
R
← S denotes a random variable sampled uniformly from S. Un denotes the

uniform distribution on {0, 1}n. For any function f and distribution X, we let f(X) denote the

distribution of outputs f(x) given an input x
R
← X. The statistical difference ∆(X,Y ) of two

distributions X,Y over a common universe U is defined as ∆(X,Y ) = 1
2

∑

u∈U |Pr[X = u]−
Pr[Y = u]|. We say that X,Y are computationally indistinguishable for non-uniform adver-
saries if for every family of circuits {Cn}, |Pr[Cn(X) = 1]− Pr[Cn(Y ) = 1]| ≤ n−ω(1).

Let QBF denote the language of satisfiable quantified boolean formulas. It is standard that QBF

is PSPACE-complete (see e.g. [AB]). For every oracle R = {R(n)}n≥1 where R(n) : {0, 1}n ×
{0, 1}n → {0, 1}, let QBFR∗ be the language of satisfiable QBF where the final propositional
formula is allowed R(n)(z, ·) gates in addition to NAND gates, but only for fixed auxiliary inputs
z (e.g. ∃z,R(n)(z, x) is not a valid formula for QBFR∗ ). It follows immediately from the proof
that QBF is complete for PSPACE that QBFR∗ is complete for PSPACER∗ (defined previously
in Definition 1.4). We include a proof of this in Appendix A for the sake of completeness.
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PAC Learning: we say that a family of circuits C = {Cn} learns a family of functions F (called
a concept class) with advantage ε if for every f ∈ F , f : {0, 1}n → {0, 1}, and every distribution
X over {0, 1}n, given a set S of many labelled examples each drawn independently from the joint

distribution (X, f(X)) and an unlabelled x′
R
← X, Cn(S, x′) = f(x′) with probability at least

1+ε
2 .3 We say learning is non-uniformly hard or hard against circuits if no family of poly-size

circuits can learn functions computable by circuits of size n2 with advantage ε = 1/poly(n).4

Learning relative to an oracle O is defined in the obvious way: both the concept classes and
learning circuits are allowed queries to O.

Auxiliary-input one-way functions: we say that a family of functions f (n) : {0, 1}n ×
{0, 1}`(n) → {0, 1}m(n) is a family of auxiliary-input one-way functions (abbreviated AIOWF)
against uniform (resp. non-uniform) adversaries if it is efficiently computable and for every
polynomial-time inverting algorithm A (resp. non-uniform algorithm), there exists an infinite
set W ⊆ {0, 1}∗ such that for every w ∈W of length n

Pr
x

R
←U`(n)

[A(w, y) ∈ f−1
w (y) | y = fw(x)] < n−ω(1)

where we use the short-hand fw(x) = f (n)(w, x) and f−1
w (y) = {x | fw(x) = y}. Note that

in the above the hard instances W might depend on the inverter A. We say that f (n) has
a set of universally hard instances W ⊆ {0, 1}∗ if the same W is hard against all A. The
definitions relativize in the obvious way: both the algorithm computing the function as well as
the adversaries are allowed access to the oracle.

Zero-knowledge: zero knowledge proofs come in many varieties, depending on requirements
such as round complexity, public vs. private coin, and composability criteria. In this work, we
ignore these issues and work with a very broad definition of zero knowledge, called honest-verifier
computation zero knowledge arguments HV-CZKA in work of [OV07], which we denote simply
by ZK. We let 〈P, V 〉(x) denote the transcript of an interactive protocol between a prover P
and a verifier V on common input x. We say that L ∈ ZK if there is a prover strategy and
efficient (randomized) verifier strategy such that the following hold:

• Completeness: ∀x ∈ L, V accepts the transcript 〈P, V 〉(x) with probability 1− 2−n.

• Soundness: ∀x /∈ L, for any efficient prover strategy P ∗, V accepts the transcript 〈P ∗, V 〉(x)
with probability at most 2−n.5

• Zero knowledge: there exists an efficient simulator S such that ∀x ∈ L and any auxiliary
input a of length poly(|x|), the distribution 〈P, V (a)〉(x) is computationally indistinguish-
able from S(x, a).

3The success condition is syntactically different from Valiant’s original definition [Val84], but can be proven
to be equivalent [HKLW88]. We use it here to simplify the presentation of our results. Also, we define learning
non-uniformly, which makes the statements of our results stronger than if we used a uniform definition.

4We consider n
2-size circuits rather than poly(n)-size circuits since wlog one follows from the other by standard

padding arguments.
5There is an odd asymmetry here: we allow the honest prover to be unbounded but demand only soundness

against efficient cheating provers. This can be removed using [OV07], who show that if L ∈ NP then any
ZK argument for L can be transformed into one with many additional properties including an efficient prover.
However, this is irrelevant for us: we prove that even allowing the honest prover to be unbounded, still such an
argument system is unlikely to exist.
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Furthermore we say that L has a honest-verifier statistical zero knowledge proof (i.e. HV-SZKP

in the terminology of [OV07], which we abbreviate as SZK) if the soundness condition holds
with respect to all (possibly inefficient) prover strategies and the zero knowledge condition guar-
antees not only computational indistinguishability but also statistical indistinguishability, i.e.
∆(〈P, V (a)〉(x), S(x, a)) ≤ n−ω(1). We now review some facts about ZK and SZK.

Theorem 2.1 ([Ost91]). If SZK 6= BPP then there exist AIOWF against uniform algorithms.

Theorem 2.2 ([SV97]). For any α, β ∈ [0, 1] satisfying α2 > β, the following promise problem
(Statistical Difference, SD) is complete for SZK. We identify a circuit X : {0, 1}m → {0, 1}n

with the output distribution X(Um). A yes instance is a pair of circuits (X,Y ) such that the
∆(X,Y ) > α, and a no instance is a pair of circuits (X,Y ) such that ∆(X,Y ) < β.

Theorem 2.3 (SZKP/AIOWF characterization, [OV07]). If L ∈ ZK, then there exists an
efficient reduction Red such that exactly one of the following holds:

1. Red reduces L to SD

2. There exists an infinite subset W ⊆ {0, 1}∗ and an efficiently computable f (n) : {0, 1}n ×
{0, 1}`(n) → {0, 1}m(n) such that f (n) is an AIOWF against non-uniform circuits with
universally hard instances W .

Corollary 2.4 ([OV07, OW93]). If ZK 6= BPP then there exists AIOWF against uniform
algorithms.

Since we will study black-box constructions of zero-knowledge protocols, we will work with
relativized versions of ZK. We say L ∈ ZKO if it satisfies the definition of ZK as defined above
except the prover, verifier, simulator, and distinguisher are all allowed access to the oracle O.
Also, SDO is like SD except circuits are allowed O gates. Examining the proofs of the above
theorems, we observe that they all relativize, that is:

Proposition 2.5. For any oracle O, Theorem 2.1, Theorem 2.2, Theorem 2.3, Corollary 2.4
all hold relative to O.

3 Relativizing techniques

Our main result for relativizing techniques is to separate hardness of learning and AIOWF.
First we recall the oracle.

Definition 3.1. We define the distribution over oracles O as follows. First, select a function
R(n) : {0, 1}n ×{0, 1}n → {0, 1} by letting each z ∈ {0, 1}n be a hard instance with probability
2−n/2, where we set Rz = R(n)(z, ·) to be a random function, and letting z be an easy instance
with probability 1− 2−n/2, where Rz ≡ 0. Let O decide QBFR∗ , which is PSPACER∗ -complete.

Theorem 3.2. With probability 1 over the choice of oracle O as in Definition 3.1, the concept
class F = {Rz}z∈{0,1}∗ is hard to learn for circuits, but no AIOWF exists.

Proof. The theorem immediately follows from the following two lemmas, proven in Appendix B.
We sketch their proofs here.
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Lemma 3.3. With probability 1 over the choice of R, the concept class F = {Rz}z∈{0,1}∗ is
hard to learn by any efficient oracle machine with access to O.

To prove this lemma, we show that any oracle circuit CO has probability 2−2Ω(n)
of learning

all Rz simultaneously on z of length n. This proof follows from a case analysis: first we show
that it is unlikely CO learns Rz without querying the oracle at Rz (since otherwise Rz looks
like a random function), and then we show that the probability CO queries Rz given just oracle
access to an example oracle is negligible since the function Rz is random and therefore contains
no information about z.

Lemma 3.4. With probability 1 over choice of O as in Definition 3.1, it holds that for any
efficient oracle algorithm f computing a function fO : {0, 1}n ×{0, 1}`(n) → {0, 1}m(n), fO can
be inverted by an efficient oracle algorithm A on every auxiliary input w. Namely, for every
w ∈ {0, 1}n

Pr
x

R
←{0,1}`(n)

[AO(w, y) ∈ (fOw )−1(y) | fOw (x) = y] > 1/2

Roughly A works as follows: it finds all the z such that fOw (x) queries Rz with noticeable
probability over choice of random input x. We show that by finding all such “heavy” queries,
A knows most of the hard instances z such that fOw queries Rz. It is well-known that a
PSPACER oracle can invert all PSPACER computations (see e.g. Proposition A.2), so since
fOw is computable using a PSPACER oracle and since A knows all the hard instances that fOw
queries, it can “effectively”simulate PSPACER for the purposes of inverting fOw .

Notice that combining Corollary 2.4 (which relativizes) with Theorem 3.2 we obtain our main
theorem about relativizing proofs Theorem 1.2. Actually, this argument already rules out a
more general class of proofs, namely so-called ∀∃ semi-black-box reductions. We define these
reduction in Appendix B and explain why our result rules them out.

4 GMW-style techniques

We first prove the result for fully-black-box reductions to demonstrate the main ideas. The
proofs of the lemmas can be found in Appendix C.

Theorem 4.1. If there exists a fully-black-box proof that a language L ∈ ZK based on the
non-uniform hardness of PAC learning, then in fact L ∈ AM ∩ coAM.

Proof. If there were such a fully-black-box proof, then both the construction and analysis must
hold relative to any oracle. We will use the same oracle from Definition 3.1.

Recall that Lemma 3.3 says with probability 1 over the choice of R, F = {Rz}z∈{0,1}∗ is hard to
learn for circuits relative to O. Since zero knowledge protocol is fully-black-box by hypothesis,
this means that we have a zero-knowledge protocol for L where the prover, verifier, and simulator
all use only the hard concept class F , which can be implemented using just R (and not O).

We claim that in fact, not only is the protocol computationally zero knowledge, it is statistically
zero knowledge. Formally, applying the relativized version of the SZK/AIOWF characterization
(Theorem 2.3 and Proposition 2.5) we know that if L ∈ ZKO then (a) there is an efficient
reduction Red reducing L to SDO, or (b) there exists an AIOWF fO against non-uniform
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circuits with a set of universally hard instances W ⊆ {0, 1}∗. Case (b) never occurs because
Lemma 3.4 tells us that AIOWF do not exist relative to O, so we must be in case (a).

In fact, the proof of Theorem 2.3 actually proves not only that Red reduces L to SDO but
the circuits that Red are define simply in terms of the (code of the) simulator of the original
ZKO protocol. But recall that the simulator of the original protocol needed access only to R.
Therefore, we actually can conclude that with probability 1 over the choice of R, Red reduces
every x ∈ L to a yes instance of SDR and every x /∈ L to a no instance of SDR.

We can now deduce that with high probability over R, the reduction Red is good for all long
enough instances. Let us say that “Red succeeds on L≥n” if for all x of length at least n, Red(x)
maps each x ∈ L to a yes instance of SDR and each x /∈ L reduction to a no instance of SDR.

Lemma 4.2. If Red reduces L to SDR with probability 1 over R, then PrR[Red succeeds on L≥n]
approaches 1 as n→∞.

This claim is elementary but we prove it for completeness in Appendix C.

The next lemma finishes the proof.

Lemma 4.3. If there exists a constant n0 such that Red succeeds on L≥n0 with probability
≥ 99/100 over the choice of R, then in fact L ∈ AM ∩ coAM.

Red produces a pair of circuits (XR, Y R) with R gates, and we will remove the R gates without
changing their output distributions much by hard-wiring explicit values for R into the circuits:
we show that we only need to hard-wire a description of the oracle R up to inputs of length
O(log n), and for longer inputs we simply set the oracle gates to output 0. Intuitively, this works
because the long queries the circuit makes are unlikely to be hard instances anyway, since hard
instances become very sparse. The resulting instance of SD is still good with probability 98/100
over the hard-wiring we chose (we lose a little because of the long hard instances we might
simulate as 0), which means that for every x, with probability 98/100 the reduction produces a
yes instance of SD if x ∈ L and a no instance of SD if x /∈ L. Since SD can be decided in SZK,
it and its complement can also be decided in AM ([For87, AH91]), which the reduction shows
L ∈ AM ∩ coAM.

Remark 4.4. Notice because hardwiring the oracle R into the circuits in the above proof incurs
non-negligible error, we do not show that L ∈ SZK: the reduction may produce an instance
of SD that does not satisfy the promise of SD, and interacting with the prover on such a bad
instance may reveal information. In particular, the prover might reveal to us that this instance
fails the promise of SD, something the verifier cannot discover on its own.6

The proof of Theorem 4.1 fails to rule out semi-black-box reductions. In the above proof, we
use Lemma 3.4, which in turn describes how to invert all AIOWF by using queries to O. In
contrast, in a semi-black-box reduction the adversary is allowed to access only to the hard
concept class, which in the above proof is F = {Rz}. To rule out semi-black-box reductions we
will “embed” O = PSPACER∗ inside the hard concept class itself (an idea of Simon [Sim98], see

6If in addition Pr[Red succeeds on L≥n] = 1 − n
−ω(1) then we would be able to conclude that L ∈ SZK

because the probability of the reduction producing a bad instance of SD is negligible. Indeed, we can prove such
a statement for fully-black-box proofs because we can relate the simulator error to the advantage parameter in
the hardness of learning. However we omit this argument here because it does not generalize to semi-black-box
proofs, and in any case the weaker conclusion L ∈ AM ∩ coAM is still strong enough to show that such proofs
are unlikely to exist.
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also [RTV04]), but this must be done carefully. We have to balance two requirements: first, the
inverter for the AIOWF must be able to decide QBFR∗ so that we can still invert all AIOWF.
On the other hand, the verifier in the zero knowledge protocol must not be able to decide
QBFR∗ , or else it could decide PSPACE on its own and all of PSPACE would trivially have
a zero knowledge protocol in this relativized world. The key to achieve these two conflicting
goals simultaneously is that the inverter for the AIOWF is allowed to be non-uniform, while
the verifier in the construction of the protocol is uniform. Finally we must ensure that the
embedding procedure is well-defined, i.e. its definition is not circular.

Definition 4.5. Let R : {0, 1}n × {0, 1}n → {0, 1} be chosen as follows: for each z ∈ {0, 1}n,
with probability 1/2n/2 let Rz be a function drawn from the distribution R described below (call
such z hard instances) and with probability 1− 1/2n/2 let Rz ≡ 0 be the constant 0 function.

The distribution R over functions {0, 1}n → {0, 1} is defined as follows: on input x ∈ {0, 1}n,
if the first n/2 bits of x are not identically zero then output a random bit. If the first n/2 bits
of x are all 0 then let ϕ be the second n/2 bits of x and interpret ϕ as a QBFR∗ formula, and
output whether ϕ is satisfiable.

First we check that R is well-defined. Namely, what if one queries Rz(0
n/2ϕ) where z is a hard

instance and ϕ is a QBFR∗ that calls Rz? We argue that this cannot happen: because |z| = n
and |ϕ| = n/2, there can be no self-reference, i.e. ϕ can never have Rz gates because it cannot
even describe z. If ϕ does not call Rz then the oracle is well-defined since all the oracle calls
made in all possible ϕ of length n/2 are independent of Rz’s responses.

Theorem 1.3 (Restated). If there exists a semi-black-box proof that constructs a ZK protocol
for a language L based on non-uniform hardness of learning, then in fact L ∈ AM ∩ coAM.

Proof sketch. We show that the theorem holds with probability 1 with the oracleR of Definition 4.5.
The full proof may be found in Appendix C. First, by an argument almost identical to
Lemma 3.3 we claim that F = {Rz}z∈{0,1}∗ is hard to learn for circuits relative to R, which

by the semi-black-box construction gives us that L ∈ ZKR. Then, we claim that there exist
no AIOWF relative to R: for any function computable in time p(n), we define a non-uniform
inverter C with a hard instance z′ of length poly(p(n)) as advice, which it can use to query
Rz′(0

n′/2ϕ) effectively giving it a PSPACER∗ for queries of length poly(p(n)). C then uses
this PSPACER∗ oracle and the same strategy as the inverter in Lemma 3.4 to invert f . As
before, combining this with Theorem 2.3 implies that there is an efficient reduction Red that,
with probability 1 over R, reduces L to SDR. Then, as before R succeeds on L≥n with high
probability as n → ∞, which means that by hardwiring outputs of R on instances of length
O(log n) directly into the SDR we obtain randomized reduction from L to SD without oracle
gates. The only detail is that in order to hardwire outputs of R on inputs of length O(log n),
we must also be able to decide QBFR∗ instances of length O(log n), which we can do by brute
force because the instances are so short.

As a final remark, let us explain why the proof of Theorem 1.3 does not rule out relativizing
reductions. In semi-black-box proofs, there is a single procedure that uses black-box access to R
and produces a zero-knowledge protocol. We use this fact because this implies we have a single
reduction Red reducing L to SDR. A relativizing proof could conceivably imply a radically
different Red for each R, and so Lemma 4.3 would no longer hold. It is an interesting open
question whether one can rule out relativizing reductions in this setting as well.
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A Technical lemmas

Proposition A.1. QBFR∗ is PSPACER∗ -complete.

Proof. QBFR∗ ∈ PSPACER∗ : this immediate because the proof that QBF ∈ PSPACE rela-
tivizes. On input ϕ, M1 takes ϕ and outputs all the z such that ϕ contains a Rz gate to obtain
z1, . . . , zm. M2 then simply decides ϕ using access to the Rzi gates.

All L ∈ PSPACER∗ reduce to QBFR∗ : recall the proof that QBF is complete for PSPACE (see
e.g. [AB]). For a PSPACE machine M with space bound p(n) and an input x, we look at the
configuration graph of M on input x. A state of the configuration graph is describable by a
string of size O(p(n)). Furthermore, there is a O(p(n)) size formula φM,x that describes edges in
the configuration graph: namely, given S, S′ ∈ {0, 1}p(n), φM,x(S, S′) = 1 iff S′ follows from one
step of the computation of M starting with configuration S. The QBF formula is constructed
recursively by contracting paths in the configuration graph: we initialize ψ1 = φ and define

ψi(S, S
′) = ∃S′′,∀T1, T2, (T1 = S ∧ T2 = S′′) ∨ (T1 = S′′ ∧ T2 = S′)⇒ ψi−1(T1, T2)

and the final output formula is ψp(n)(S0, Sa) where S0 is the initial configuration and Sa is an
accepting final configuration. One can check that |ψp(n)(S0, Sa)| = O(p(n)2).
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To generalize this reduction to PSPACER∗ , on input x our reduction first uses M1 to obtain
z1, . . . , zm. Now, it produces the formula φM,x, which contains only (say) NAND gates and
gates of the form Rzi . Then, run the same reduction as in the PSPACE case, which gives us
the final formula ψp(n)(S0, Sa) which contains only Rz gates with explicit z (i.e. those obtained
from M1).

We use the fact that for any PSPACEO relation R, a PSPACEO oracle can count the number
of satisfying pairs {(x, y) | R(x, y) = 1} simply by enumerating over all pairs and checking the
relation. We use this to show the following two facts. First, PSPACEO is able to invert itself:

Proposition A.2. There is an efficient oracle algorithm A that, for every O, APSPACE
O

takes
input a circuit C : {0, 1}` → {0, 1}m with oracle gates and a string y ∈ {0, 1}m, and outputs

a uniform element of the set {x | CPSPACE
O

(x) = y} with probability at least 1 − 2−|y|, and
outputs a special failure symbol ⊥ with the remaining probability.

Proof. The computation of C on inputs of length ` can be expressed as a polynomial-size QBFO,
and so we can use a PSPACEO oracle to compute s = |(CPSPACE

O

)−1(y)|. Now pick a random

number i
R
← [s] and use the PSPACEO oracle to output the i’th lexicographically ordered string

in f−1(y). There is some probability of failure because sampling a number in [s] may have a
probability of failure if s is not a power of 2, but this can be made to be smaller than 2−|y| by
repeating the procedure.

Second, PSPACEO is able to find “heavy” outputs of a PSPACEO computation, say over the
uniform distribution of inputs (in the following, think of D as being the equality predicate; we
will state it more generally because of how we use it in our proofs):

Proposition A.3. There is an efficient oracle algorithm A that, for every O, APSPACE
O

takes
input two oracle circuits C : {0, 1}` → {0, 1}m and circuit D : {0, 1}m × {0, 1}n → {0, 1}
computing a predicate, and a unary string 1p and outputs a set

S =

{

y

∣

∣

∣

∣

∣

Pr
x

R
←U`

[

DPSPACE
O

(CPSPACE
O

(x), y) = 1
]

≥ 1/p

}

Proof. Since PSPACEO is capable of counting PSPACEO relations, A simply iterates over all
y ∈ {0, 1}n and outputs all y such that the number of x such thatDPSPACE

O

(CPSPACE
O

(x), y) =
1 is larger than 2n/p. There can be at most p such y, so the procedure runs in polynomial space.

The standard Chernoff shows that the empirical average of many samples drawn from a dis-
tribution deviates from the mean of the distribution with exponentially small probability. We
use the fact that this also holds for weighted empirical averages, as long as the weights are
relativelly smooth:

Lemma A.4 (Generalized Chernoff bound). Let D be a distribution over a finite universe U
such that maxu∈U Pr[D = u] ≤ 1/k (equivalently, it has min-entropy H∞(D) ≥ log k). Let F be
a distribution on functions f : U → {0, 1}. Let µ = ED,F [F (D)] and let µu = EF [F (u)]. Then

Pr
F

[ED[F (D)] > µ+ γ] < e−γ2k/2
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Proof. By the guarantee on min-entropy, we know that for each u ∈ U , Pr[D = u] ≤ 1/k and
the support is large, |supp(D)| ≥ k. We derive that for any positive constant t:

Pr
F

[ED[F (D)] > µ+ γ] = Pr
F

[

et(kED [F (D)]−kµ) > etkγ
]

≤ e−tkγ
EF

[

et(kED [F (D)]−kµ)
]

≤ e−tkγ
EF

[

et(kED [F (D)−µD])
]

≤ e−tkγ
EF

[

et(
P

u∈supp(D) F (u)−µu)
]

(using Pr[D = u] ≤ 1/k)

= e−tkγ
∏

u∈supp(D)

EF

[

et(F (u)−µu)
]

≤ e−tkγ+t2k (using |supp(D)| ≥ k plus Taylor expansion)

= e−γ2k/2

where the last line follows from setting t = γ/2.

B Proofs of lemmas of Section 3

First, let us recall the oracle O.

Definition 3.1 (Restated). We define the distribution over oracles O as follows. First, select
a function R(n) : {0, 1}n × {0, 1}n → {0, 1} by letting each z ∈ {0, 1}n be a hard instance
with probability 2−n/2, where we set Rz = R(n)(z, ·) to be a random function, and letting z
be an easy instance with probability 1 − 2−n/2, where Rz ≡ 0. Let O decide QBFR∗ , which is
PSPACER∗ -complete.

B.1 Proof that non-uniform hardness of learning holds

Lemma 3.3 (Restated). With probability 1 over the choice of R, the concept class F =
{Rz}z∈{0,1}∗ is hard to learn by any efficient oracle machine with access to O.

Proof. Fix n and any circuit C of size p(n) = poly(n). We calculate the probability that C
learns Rz for every z ∈ {0, 1}n.

Let Sz = {(x1,R(z, x1)), . . . , (xp(n)−1,R(z, xp(n)))} where the xi
R
← Un, and let x

R
← Un be the

example C must label.

Claim B.1. For ε = 2− log2 n.

Pr
O





∧

z∈{0,1}n

CO learns Rz with advantage ε



 ≤ 2−2Ω(n)

This claim implies the lemma, since taking a union bound over all 2O(p(n) log(p(n))) circuits of
size p(n) for any p(n) = poly(n) shows that the probability of there existing any circuit learning

all the Rz is still 2−2Ω(n)
.
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We say that C queries Rz if it asks O a formula ϕ that contains a Rz gate. We will show that
the probability C learns Rz without querying Rz is small because the function Rz is random,
and then we will show that the probability of C querying z given only p(n) queries to the oracle
is small because the output of Rz contains essentially no information about z itself.

Define

• Aε
z as the event over the choice of O that CO learns Rz with advantage ε

• Bε4

z as the event over the choice of O that Pr[CO(Sz)(x) queries Rz)] > ε4

We develop the LHS of Claim B.1

Pr
O





∧

z∈{0,1}n

Aε
z



 ≤ Pr
O

[

∧

z hard

Aε
z

]

(B.1)

≤ Pr
O

[

∧

z hard

(Aε
z ∨B

ε4

z )

]

(B.2)

≤ Pr
O

[

∃z hard, Aε
z ∧B

ε4

z

]

+ Pr
O

[

∧

z hard

Bε4

z

]

(B.3)

This formalizes our above intuition, since the first term is the probability that, for some z ∈
{0, 1}n, CO learns R(z, x) without querying it, and the second term is the probability that
CO(Sz, x) queries Rz on all the hard z.

Bounding the first term of Inequality B.3. Fix a hard z (of which there are at most 2n).
We want to bound the quantity

Pr
O

[{

Pr
S,x

[CO(Sz, x) = R(z, x)] > 1+ε
2

}

∧

{

Pr
S,x

[CO(Sz, x) queries Rz] ≤ ε
4

}]

= ER′ Pr
O

[{

Pr
S,x

[CO|R
′

(Sz, x) = R(z, x)] > 1+ε
2

}

∧

{

Pr
S,x

[CO|R
′

(Sz, x) queries Rz] ≤ ε
4

}]

Here, R′ is a fixing of the entire oracle R except for the function Rz, which remains random,
and O|R′ is the oracle constructed as before except with R′ replacing the fully random R. To
bound this last probability, we will count the number of functions that CO can possibly learn
without querying R(z, x) too often and then show that it is a small fraction of all functions
that R(z, x) can be.

Let us model this problem abstractly, since we will use a similar idea in the proof of the semi-
black-box case. What we want to show is that a random function is hard to learn if we do not
query the random function with high probability. Think of Rz as a random function F , and
think of CO|R

′
as a computationally-unbounded procedure A with access to a F oracle. The

above is simply the probability that A learns F without querying F too often, which cannot
happen with high probability over F . We state this formally:

Lemma B.2. Let F : {0, 1}n → {0, 1} be a random function, and let AF be a computationally
unbounded procedure with oracle access to F . Let S = ((x1,F(x1)), . . . , (xp,F(xp))) be a set

of labelled examples where p = p(n) = poly(n), the xi
R
← Un, and let x

R
← Un be an unlabelled
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example. Let ε = 2log2 n. Then:

Pr
F

[{

Pr
S,x

[AF (S, x) = F(x)] > 1+ε
2

}

∧

{

Pr
S,x

[AF (S, x) queries F ] < ε4
}]

< 2−2Ω(n)

This lemma and a union bound over all hard instances z bounds the first term of Inequality B.3.

Proof of Lemma B.2. If A never queried F , then the number of functions that CO can possibly
learn is bounded by the number of possible inputs (i.e. labelled examples), which is at most
2p(n)(n+1), which is a negligible fraction of the 22n

possible functions F could be.

Now consider A that can query F but only with probability at most ε4 over random S, x. This
means by Markov that

Pr
S

[

Pr
x

[AF (S, x) queries F(x)] ≥ 4ε3
]

< ε/4

Meanwhile, we also have by averaging that

Pr
S

[Pr
x

[AF (S, x) = F(x)] > 1+ε/2
2 ] > ε/4

This means that there must exist some fixed S′ such that both events Prx[AF (S′, x) = F(x)] >
1+ε/2

2 and Prx[A
F (S′, x) queries F ] < 4ε3 occur. Thus, the string S′ plus an explicit labelling of

all 4ε32n points x where the circuit queries F gives us a description of F that is accurate up to
relative distance 1−ε/2

2 ; call this the noisy description of F . It is easy to see by Chernoff that the

number of vectors of length 2n of relative weight at most 1−ε/2
2 is at most 22n−Ω(ε22n). Therefore,

every function F that A is able to learn can be specified by first giving the noisy description of
F and then giving the low-weight vector that equals the difference between the noisy description
and the true function. This means that A can learn at most 2p(n)(n+1)+4ε3(n+1)2n+2n−Ω(ε22n)

different functions, and therefore

Pr
F

[{

Pr
S,x

[AF (S, x) = F(x)] > 1+ε
2

}

∧

{

Pr
S,x

[AF (S, x) queries F ] ≤ ε2
}]

≤ 2p(n)(n+1)+2ε3(n+1)2n+2n−Ω(ε22n)−2n

= 2−2Ω(n)

where in the last line we use that ε = 2− log2 n.

Bounding the second term of Inequality B.3. We will show that if the learner C can query
Rz with noticeable probability given a random S, x, it solves the following inversion problem,
and then we show that no algorithm can solve the inversion problem with only polynomial
number of queries to the oracle.

Definition B.3. The D-inversion problem for a family of distributions D = {Dn} over strings
{0, 1}2

n
is defined as follows. Let F denote the distribution of over functions {0, 1}n → {0, 1}2

n

where, for each z ∈ {0, 1}n, with probability 2−n/2 we set F(z) to be a string sampled from Dn,
and with probability 1− 2−n/2 we set F(z) = 02n

. We say that a (computationally unbounded)
oracle procedure IF solves the R-inversion problem with q queries if for every y ∈ {0, 1}2

n
such

that F−1(y) 6= ∅, we have IF (y) ∈ F−1(y) and I makes at most q queries to F .
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To apply this to our setting, we will show that if CO(Sz)(x) is able to query Rz with probability
≥ ε4 over Sz, x, then in fact there is a deterministic procedure that solves the U2n-inversion
problem making only O(p(n)n/ε4) queries. Then we show this is impossible with high proba-
bility.

First let us show that the event
∧

z hardB
ε4

z implies one can solve the U2n-inversion problem
using O(p(n)n/ε4) queries. Notice that the function R(z) = Rz, where we interpret the function
Rz as its truth table, is exactly the distribution of F in the U2n-inversion problem, and if C
queries Rz then in particular it finds z.

First we describe a randomized procedure I ′ for solving the U2n-inversion problem, then we
show that there exists a way to fix the random coin tosses to obtain a deterministic I. I ′

is defined using the learning circuit C as follows: simulate C using independent randomness
O(n/ε4) times; for each query ϕ that C makes to O, let Z be the set of z such that Rz appears
in ϕ. For each z ∈ Z of length n, I ′ will query F to get F(z) which it uses as the truth table
of Rz. For every z′ ∈ Z where |z′| = n′ 6= n, I ′ sets Rz′ using independent coin tosses to be

02n′

with probability 1− 2−n′/2 and to be a random string U2n′ with probability 2−n′/2. Then
I ′ decides the QBF formula ϕ using these truth tables (I ′ can do this since it is unbounded).
All these independent runs together query the oracle at most O(p(n)n/ε4) times. Because Bε4

z

holds for every z, i.e. for each z the circuit C queries Rz with probability at least ε4, this means
with probability 1− (1−ε4)O(n/ε4) ≥ 1−2−2n at least one of the simulations will query Rz, and
so I ′ will query F(z); I will simply check each query z whether F(z) matches its input, and if
so it will halt and output z. Now take a union bound over all possible inputs y = F(z) of which
there are at most 2n, still with probability 1 − 2−n the random bits used are simultaneously
good for all y; fix any such a good choice of the random bits and let that be our inverting
deterministic inverting procedure I.

It therefore follows that

Pr
O

[

∧

z hard

Bε4

z

]

≤ Pr
R

[

I inverts R and makes at most O(p(n)n/ε4) queries
]

Since R is distributed as F in the U2n-inversion problem, the following lemma concludes the
bound on the second term of Inequality B.3.

Lemma B.4. For any IF , the probability it solves U2n-inversion problem with O(p(n)n/ε4)

queries over the choice of F is at most 2−2Ω(n)
.

Proof. Fix any oracle procedure IF making at mostO(p(n)n/ε4) to F . LetN = |{x | F(x)
R
← U2n}|

denote the number of hard outputs of F ; by Chernoff the probability that N /∈ [2n/2−1, 2n/2+1]

is bounded by 2−Ω(2n/2), so in the following we condition on this event not happening:

Pr
F

[I inverts F ] ≤ 2−Ω(2n/2) + EN∈[2n/2−1,2n/2+1]

[

Pr
F

[I inverts F | N hard outputs]

]

We will further throw out the oracles F that are not injective (this occurs with probability at
most ≤

(N
2

)

2−2n
) and F where one of the hard instances F(x) = U2n samples the all zero string

(this occurs with probability at most N2−2n
). We call F where neither of these conditions hold

“good”. Therefore our bound is now:

Pr
F

[I inverts F ] ≤ 2−2Ω(n)
+ EN∈[2n/2−1,2n/2+1]

[

Pr
F good

[I inverts F | N hard outputs]

]
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Notice that with this conditioning, F is uniform in the set of good F .

To bound the probability on the RHS, we show that I is only capable of inverting very few
functions. Here, we follow the argument of [GT00] proving that one-way permutations are hard
against circuits.

We give a procedure for describing all possible injective functions F with N hard outputs as
follows: we will keep track of a set Y ⊆ {0, 1}2

n
of “easily describable outputs” y for which

we will be able to compute the preimage x = F−1(y) with very little information using I. For
the “hard-to-describe outputs” outside Y we will just explicitly record the function. We show
that this is sufficient for reconstructing any F that I is able to invert. We then prove that
the number of functions describable this way is small compared to all possible functions, which
gives us the desired bound.

For a fixed F , define Y constructively as follows. Initialize Y = ∅ and the set T ⊆ {0, 1}2
n

to
be the image of the hard instances of F , namely t ∈ T iff t = F(z) 6= 0 for some hard instance
z. Since we are conditioning on good F , we have that initially |T | = N .

Repeatedly perform the following until T is empty: remove the lexicographically first element
t ∈ T and add it to Y . Execute IF (t) and record the queries x1, . . . , xm (in the order that I
makes them) that I makes to F , where m = O(p(n)n/ε4). If none of the xi satisfy F(xi) = t,
then remove all of the x1, . . . , xm from T . If some xi satisfies F(xi) = y, then remove x1, . . . , xi−1

from T . Repeat by removing the next lexicographically first element of T , adding it to Y , etc.

Clearly we have that |Y | ≥ N/m. We claim that given the set of hard instances Z = F−1(T ) ⊆
{0, 1}n (which is of size N), the set Y , the preimage of Y which we call X = F−1(Y ) ⊆ Z, and
the explicit values of F on all inputs x ∈ Z \X, we can completely reconstruct F as follows.
For each x /∈ Z, F(x) = 02n

. For each x ∈ Z \ X, output the explicitly recorded value. It
only remains to match the elements of Y with their correct preimage in X. For each y ∈ Y in
lexicographic order, run IF (y). The queries IF (y) makes to F will all either be for x /∈ X in
which case we know the answer explicitly, for x ∈ X such that F(x) is lexicographically smaller
than y and so we already computed the answer previously, or for some x ∈ X we have not
seen in a previous computation, which by construction must mean x = F−1(y). Either way, we
obtain the value F−1(y).

The number of functions describable in this way is exactly

(

2n

N

)(

N

|Y |

)(

22n−1

|Y |

)

·
(22n−1 − |Y |)!

(22n −N)!

where the first factor is the number of ways of choosing N hard instances, the second is the
choice of X, the third is the choice of Y , and the final is the number of ways of explicitly defining
the function on Z \X assuming the function is injective and never maps to 02n

. Therefore, the
probability over F that I inverts F is exactly the above quantity divided by the total number
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of good F , namely
(2n

N

) (22n−1)!
(22n−1−N)!

. So we can calculate that:

Pr
F injective

[I inverts F everywhere | N hard instances] ≤

(2n

N

)( N
|Y |

)(22n−1

|Y |

)

· (22n−1−|Y |)!
(22n−1−N)!

(2n

N

) (22n−1)!
(22n−1−N)!

(B.4)

=

( N
|Y |

)

|Y |!
(B.5)

≤

(

N3e

|Y |2

)|Y |

(B.6)

which is 2−2Ω(n)
for N ≤ 2n/2+1 and |Y | > N/m = 2(1−o(1))n/2.

To conclude the proof of Lemma 3.3, notice that since both terms of Inequality B.3 are bounded
by 2−2Ω(n)

, so is their sum.

B.2 AIOWF do not exist

Lemma 3.4 (Restated). With probability 1 over choice of O as in Definition 3.1, it holds that
for any efficient oracle algorithm f computing a function fO : {0, 1}n ×{0, 1}`(n) → {0, 1}m(n),
fO can be inverted by an efficient oracle algorithm A on every auxiliary input w. Namely, for
every w ∈ {0, 1}n

Pr
x

R
←{0,1}`(n)

[AO(w, y) ∈ (fOw )−1(y) | fOw (x) = y] > 1/2

Proof. Recall that a query to O is a QBFR∗ formula ϕ, which is a QBF formula with Rz gates
for explicit strings z, and QBFR∗ complete for PSPACER∗ . We say that z is a heavy query if f

queries O with a formula ϕ containing a Rz gate with noticeable probability over x
R
← U`. We

show that by finding all the heavy z, A is also able to find most of the hard instances that f
finds, and this allows A to invert f . The key is that unlike in the case of learning, A knows the
description of fw.

We describe and analyze an algorithm A such that for every efficiently computable oracle func-
tion fO : {0, 1}n × {0, 1}`(n) → {0, 1}m(n), for every large enough n, with probability 1 − 2−n

over the choice of O, AO takes as input a description of f , w ∈ {0, 1}n, and y ∈ {0, 1}m, and
guarantees that for all w ∈ {0, 1}n,

Pr
x∈U`

[AO(y) ∈ (fOw )−1(y) | y = fOw (x)] > 1/2 (B.7)

This inequality proves the lemma, since by the Borel-Cantelli lemma this means AO inverts fO

on all but a finite number of input lengths n with probability 1 over O, and since there are only
a countable number of f this means AO can invert all efficient f with probability 1 over O.

We turn to proving Inequality B.7. Since f is efficiently computable with oracle queries, let C be
the circuit computing fw (with O gates) on inputs of length `(n), and suppose |C| ≤ p = p(n).
Let g1, . . . , gp be the oracle gates of C in topologically sorted order. Let D be the circuit taking
inputs ϕ, z and outputting 1 if ϕ contains a Rz gate, and outputs 0 otherwise.

19



Set the heaviness threshold to be α = 100np6. In sorted order, A finds all z such that CO(U`)
queries O with a formula containing a Rz gate with probability larger than 1/α using the
following procedure.

First, A initializes the set Z0 = {z | |z| ≤ 8 log p}. Then, to construct Zi, the set of heavy queries
up till the i’th query, using Zi−1, A does the following. Let the circuit Q′i be the sub-circuit of C
that computes queries for gi. We transform Q′i into a related circuit Qi by replacing each oracle
gate gj , j < i that appears in Q′i (these are the only other oracle gates gi depends on since
we work in sorted order) with the following: on input ϕ, replace each Rz gate inside ϕ where
z /∈ Zj by a constant 0 gate, and then pass this modified formula to O. This transformation
forces all the hard instances that ϕ queries to be in Zj.

Note that Qi(x) = ϕ is exactly saying that C(x) queries ϕ at gi, conditioned on each previous
oracle query gj containing only heavy instances (z ∈ Zj) or easy instances (Rz ≡ 0), and
D(ϕ, z) = 1 means exactly that ϕ contains a Rz gate. Since Qi only makes oracle queries
containing Rz gates for z ∈ Zi−1, and since A knows Zi−1, it can simulate a PSPACER

′
i−1

oracle where R′i−1(z, x) = R(z, x) for z ∈ Zi−1 and is zero otherwise. This means it can invoke
Proposition A.3 with input (Qi,D, 1

α) to get the set {z | Pr[Qi(x) = ϕ ∧D(ϕ, z) = 1] > 1/α},
which we add to Zi−1 to obtain Zi.

Proposition A.3 guarantees Zp is a collection of all z such that there exists i such that Qi queries
z with probability > 1/α over the choice of random input x.

We now show that with high probability over O, if A knows Zp then it knows most of the hard
instances that fOw might have queried, and so it can invert fOw almost everywhere. Formally, let
Bw(x) be the bad event that fOw (x) queries some hard z outside Zp. We claim:

Pr
R

[

Pr
x

R
←U`

[Bw(x)] > 1
p(n)

]

≤ 2−2n (B.8)

First we use this inequality to prove the lemma: by a union bound over all w, this means that
for a 1 − 2−n fraction of the R that with probability 1 − p over x, fOw (x) never queries hard
z /∈ Zp. But in this case we can replace O by an oracle that only has access to the hard instances
in Zp. Namely, let R′ be the oracle where R′(z, x) = R(z, x) for all z ∈ Zp and is 0 elsewhere,

and we have that ∆
(

(x, fOw (x)), (x, fPSPACE
R′

w (x))
)

≤ 1/p. Furthermore, since A knows Zp it

can use Zp and O to simulate PSPACER
′

, so it can use Proposition A.2 to compute uniformly

random preimages of fPSPACE
R′

w with failure probability 2−m, giving us

∆
(

(x, fPSPACE
R′

w (x)), (AO(y), y | y = fPSPACE
R′

w (x))
)

≤ 2−m

Putting the two together by the triangle inequality, we have

∆((x, fOw (x)), (AO(y), y | y = fOw (x))) ≤ 1/p + 2−m

which proves the lemma modulo Inequality B.8. In fact, we prove something much better: AO

actually gives an almost uniformly random preimage of y.

It remains to prove Inequality B.8. We fix w and remove it from the notation, letting B(x) =
Bw(x). Define inductively Bi(x) as the event that fO(x) queries a hard z /∈ Zi in the i’th query
but all prior queries j are either easy or in Zj . Since Zi ⊆ Zi+1, we have that B(x) ⊆

⋃p
i=1Bi(x).
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By averaging:

Pr
R

[

Pr
x

[B(x)] > 1
p

]

≤ Pr
R

[

Pr
x

[

p
⋃

i=1

Bi(x)

]

> 1
p

]

≤ Pr
R

[

∃i, Pr
x

[Bi(x)] >
1
p2

]

≤

p
∑

i=1

Pr
R

[

Pr
x

[Bi(x)] >
1
p2

]

We claim that for each i, PrR[Prx[Bi(x)] > 1/p2] ≤ 2−3n, which we prove using a case analysis.
Showing this concludes the proof of the lemma since p(n)2−3n ≤ 2−2n.

The case analysis roughly goes as follows: either the probability that Qi makes a light query
(i.e. a query not in Zi) is small, in which case the probability it makes a light and hard query is
also small, or the probability that Qi makes a light query is large, in which case the conditional
probability of each individual light query is not too large, and in this case we can show that it
is unlikely over the choice of oracle that many light queries are hard.

Formally, let NotInZi(x) be the event that fO’s i’th query is not in Zi conditioned on all queries
j < i being either in Zj or easy. (The only difference between NotInZi and Bi is that in Bi we
also demand the query be hard.) We have that

Pr
R

[Pr
x

[Bi(x)] > 1/p2] = Pr
R

[{

Pr
x

[Bi(x)] > 1/p2
}

∧
{

Pr
x

[NotInZi(x)] ≥ 1/p2
}]

+ Pr
R

[{

Pr
x

[Bi(x)] > 1/p2
}

∧
{

Pr
x

[NotInZi(x)] < 1/p2
}]

Clearly the second term is 0 because Bi(x) ⊆ NotInZi(x).

To bound the first term, notice that we can inductively fix R up until the i’th query as follows:
let R0 be a fixing of all the values of the oracle with auxiliary input in Z0. Let R1 be a fixing
of all the responses of the oracle for queries in Z1 conditioned on R0. Inductively, let Ri be a
fixing of all the responses of the oracle for queries in Zi conditioned on Ri−1 and the event that
fO(x)’s first i− 1 queries are either easy or in Zi−1. Thus, we have:

Pr
R

[{

Pr
x

[Bi(x)] > 1/p2
}

∧
{

Pr
x

[NotInZi(x)] ≥ 1/p2
}]

= ERi−1 Pr
R

[{

Pr
x

[Bi(x)] > 1/p2
}

∧
{

Pr
x

[NotInZi(x)] ≥ 1/p2
}

| Ri−1

]

≤ ERi−1 Pr
R

[{

Pr
x

[Bi(x) | NotInZi(x)] > 1/p2
}

|
{

Pr
x

[NotInZi(x)] ≥ 1/p2
}

∧Ri−1

]

where in the last line we used the fact that Bi(x) implies NotInZi(x). Now for each such
fixing of Ri−1, notice that because each individual light i’th query z has probability at most
1/(100np6) and the probability that the i’th query is light is at least 1/p2, the probability that
the i’th query is z conditioned on NotInZi(x) is at most 1/(100np4). Each i’th query is hard
independently with probability at most 1/p4 over the choice of oracle (because Z0 contains all
queries of length up to 8 log p, the oracle is random only on longer inputs), so by a generalized
Chernoff bound (Lemma A.4) (the universe is {0, 1}n, D is the distribution of the i’th query
conditioned on NotInZi(x), and F is the choice of hard instances), the probability that a larger
than 1/p2 fraction of the queries not in Z are hard is 2−3n.
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We now show that in fact we can rule out relativizing reductions but also ∀∃ semi-black-box
reductions. Such a reduction guarantees that for every concept class F that is hard to learn
with non-negligible advantage, there exists an oracle algorithm fF (the algorithm itself that
can depend on F ) such that for every efficient inverting algorithm AF , there exists an efficient
family of oracle circuits CF

n learning learning F . Theorem 1.2 already rules out such proofs
because since F = {Rz} is hard to learn, in particular so is QBFR∗ . Since O is a QBFR∗ oracle,
this means we have a concept class that is hard to learn but relative to which AIOWF do not
exist.

Theorem B.5. There exists no ∀∃ semi-black-box reduction from non-uniform hardness of
learning to AIOWF.

C Proofs of lemmas of Section 4

Lemma 4.2 (Restated). If Red reduces L to SDR with probability 1 over R, then PrR[Red succeeds on L≥n]
approaches 1 as n→∞.

Proof. Let An be the event that Red succeeds on L≥n. We know by hypothesis that 1 =
PrR[Red reduces L to LSDR] ≤ PrR[

⋃∞
i=1Ai]. Since An ⊆ An+1, we have that:

Pr

[

∞
⋃

i=1

Ai

]

=
∞

∑

i=1

Pr[Ai ∧Ai−1] Pr[An] =
n

∑

i=1

Pr[Ai ∧Ai−1]

therefore it follows that Pr[An]→ Pr[
⋃∞

i=1Ai] = 1 as n→∞.

Lemma 4.3 (Restated). If there exists a constant n0 such that Red succeeds on L≥n0 with
probability ≥ 99/100 over the choice of R, then in fact L ∈ AM ∩ coAM.

Proof. We have by hypothesis that Red that efficiently maps each input x to a pair of oracle
circuits (XR, Y R) such that, with probability 99/100 over the choice of R, for every x ∈ L, |x| ≥
n0 reduces to circuits such that ∆(XR, Y R) > 99/100 and each x /∈ L, |x| ≥ n0 reduces to
circuits such that ∆(XR, Y R) < 1/100 (we identify the circuit XR with the output distribution
of XR on uniform input).

We describe the following efficient randomized reduction Red′ that produces circuits (without
oracle gates) (X ′, Y ′) and claim that for every x, with probability 98/100, x ∈ L reduces to
circuits satisfying ∆(X ′, Y ′) > 98/100 and x /∈ L reduces to circuits satisfying ∆(X ′, Y ′) <
2/100. Red′ runs Red to produce (XR, Y R), and then flips its own random coins to generate
a “fake” R′ for inputs of up to length 6 log p where p ≥ max{|XR|, |Y R|}. This can clearly be
done in polynomial time. Red′ then hardwires this fake R′ into XR, Y R to obtain X ′, Y ′.

We prove that Red′ satisfies the claim. Let B(r) be the bad event that XR(r) queries a hard
instance z of length > 6 log p, and Bi(r) be the event that the i’th oracle query of XR(r) queries
a hard instance z of length > 6 log p. We see that:

Pr
R,r

R
←U`

[B(r)] = Er Pr
R

[B(r)] ≤ Er

p
∑

i=1

Pr
R

[Bi(r)] ≤ 1/p2

since over the randomness of R, the probability that any query of length > 6 log p is hard is at
most 1/p3.
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Now by Markov, we have that PrR[Pr
r

R
←U`

[B(r)] > 1/p] < 1/p. Let R′ be identical to R for all

inputs of length ≤ 6 log p and zero on longer inputs. Notice that for good R where B(r) occurs
with probability ≤ 1/p, we have that ∆(XR,XR

′

) ≤ 1/p. But constructing the distribution
XR

′

for a random R′, is exactly the same as the distribution of X ′ constructed by Red′!

Therefore, for each x with probability 99/100 − 1/p ≥ 98/100 we get a pair of circuits (X ′, Y ′)
satisfying ∆(X ′, Y ′) ≥ 98/100 for x ∈ L and ∆(X ′, Y ′) ≤ 2/100 for x /∈ L. This is an instance
of SD (with slightly different parameters, but which is still in SZK).

Finally, SD and SD can both be decided by AM protocols [AH91, For87], so this puts L ∈
AM ∩ coAM.

Using the above techniques we can also prove Theorem 1.3.

Theorem 1.3 (Restated). If there exists a semi-black-box proof that constructs a ZK protocol
for a language L based on non-uniform hardness of learning, then in fact L ∈ AM ∩ coAM.

Proof. Recall the oracle we use: R : {0, 1}n × {0, 1}n → {0, 1} is chosen such that for each
z ∈ {0, 1}n, with probability 1/2n/2, Rz is a function drawn from the distribution R described
below (call such z hard instances) and with probability 1− 1/2n/2 we set Rz ≡ 0. The overall
oracle is just R (rather than an oracle for QBFR∗ , as in Theorem 4.1).

The distribution R over functions {0, 1}n → {0, 1} is defined as follows: on input x ∈ {0, 1}n,
if the first n/2 bits of x are not identically zero then output a random bit. If the first n/2 bits
of x are all 0 then let ϕ be the second n/2 bits of x and interpret ϕ as a QBFR∗ formula, and
output whether ϕ is satisfiable. We already argued that such R is well-defined.

First we show that F = {Rz}z∈{0,1}∗ is hard to learn with advantage ε = 2− log2 n even for
non-uniform circuits.

Claim C.1. With probability 1 over R, learning F is hard for circuits relative to R.

Therefore the semi-black-box proof gives us that L ∈ ZKR.

Second, we show that AIOWF do not exist relative to R.

Claim C.2. With probability 1 over R, there exist no AIOWF against uniform adversaries
relative to R.

Using Theorem 2.3 and the fact that AIOWF do not exist, we deduce that there is an efficient
reduction Red such that with probability 1 over R, Red reduces L to SDR.

By Lemma 4.2 there exists n0 such that Red succeeds on L≥n0 with probability 99/100 over the
choice of R, and then we can use the reduction to SD to place L ∈ AM ∩ coAM:

Claim C.3. If for some constant n0 the reduction Red succeeds on L≥n0 with probability 99/100
over the choice of R, then L ∈ AM ∩ coAM.

Proof of Claim C.1. As before, it suffices to show that for any efficient circuit C we have
PrR

[

CR learns F on length n
]

≤ 2−2Ω(n)
. We use the same notation as the proof of Lemma 3.3.

Let Aε
z denote the event that CR learns Rz with advantage ε, and let Bε4

z be the event that
PrS,x[CR(S, x) queries Rz] > ε4. Here, “CR(S, x) queriesRz” means CR makes a queryR(z, x)

23



for some x, or CR queries R(z′, 0n′/2ϕ) where |z′| = n′ > 2|z| and ϕ is a QBFR∗ formula con-
taining a Rz gate.

We have that

Pr
F

[CR learns F on length n] ≤ Pr
F

[

∃z hard of length n, Aε
z ∧B

ε4

z

]

+ Pr
F

[

∧

z hard

Bε4

z

]

(C.1)

To bound the first term, fix a hard instance z and let R′ denote a fixing of the entire oracle
R except for Rz and all R(z′, 0n′/2ϕ) where |z′| = n′ > 2|z| and ϕ contains a Rz gate. With
such a fixing, CR

′
can be viewed as a deterministic procedure for learning Rz, which is a

random function, except on inputs of the form x = 0n/2ϕ. But the probability that CR
′

will
be challenged with such a x is 2−n/2, which means such x contribute a negligible to CR

′

’s
advantage. Therefore, we we can still apply Lemma B.2 to bound the first term by 2−2Ω(n)

.

To bound the second term, we can show as in the proof of Lemma 3.3 that any CR of size
p(n) that queries z with greater than ε4 can be transformed into a procedure I that solves the
R-inversion problem making O(p(n)n/ε4) queries (defined in Definition B.3; notice here also
that R is the distribution defined in Definition 4.5, not U2n). We omit this transformation,
which is identical to the previous one, except to point out that I can sample R(n′) for all
lengths n′ < n by itself because it is unbounded and so can decide QBFR∗ instances with Rz′

gates where |z′| < n without querying F . Therefore, it suffices to show that the R-inversion
procedure cannot be solved with O(p(n)n/ε4) queries. But again this follows almost identically
to the proof of Lemma B.4. The two differences are first that R(n) depends on R(n′) for n′ < n,
which can be safely ignored by conditioning on any setting of F on inputs of length < n, and
second that R(n) is uniform on the set of functions {0, 1}n → {0, 1} where inputs of the form

0n/2ϕ are decided according to QBFR∗ (there are 22n−2n/2
= 2Ω(2n) such functions) rather than

uniform over the set of all functions {0, 1}n → {0, 1}. The reader is left to check that the proof
of Lemma B.4 still holds if U2n is replaced by any distribution that is uniform on a set of size
2Ω(2n).

Proof of Claim C.2. For every efficiently computable fR : {0, 1}n × {0, 1}` → {0, 1}m, we give
an family of circuits CR that for every w ∈ {0, 1}n guarantees

Pr
x

R
←U`

[CR(y) ∈ (fRw )−1(y) | y = fRw (x)] > 1/2

In fact, the circuits C do exactly the same thing as the uniform inverter A in the proof of
Lemma 3.4 except that in order to get access to a PSPACER∗ oracle, we hardwire into C
a hard instance z′ of length n′ = O(p(n)2). Using z′, C gets access to Rz′ , and it can use
Rz′(0

n′/2ϕ) to decide QBFR∗ instances ϕ of size up to n′/2 = O(p(n)2). This is sufficient for C
to implement the strategy of A from the proof of Lemma 3.4, and the lemma follows.

Proof of Claim C.3. We reduce L to SD using the same argument as in the proof of Lemma 4.3.
The only point to check is that in order to describe R on all inputs up to length 6 log p =
O(log n), we need to be able to decide QBFR∗ formulas of size up to 3 log p = O(log n). But we
can do this in polynomial time by brute force because the formulas are so short, and so the
same argument follows.
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