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Abstract

We continue the study of robust tensor codes and expand the class of base codes that can
be used as a starting point for the construction of locally testable codes via robust two-wise
tensor products. In particular, we show that all unique-neighbor expander codes and all locally
correctable codes, when tensored with any other good-distance code, are robust and hence can
be used to construct locally testable codes. Previous works by [2] required stronger expansion
properties to obtain locally testable codes.

Our proofs follow by defining the notion of weakly smooth codes that generalize the smooth
codes of [2]. We show that weakly smooth codes are sufficient for constructing robust tensor
codes. Using the weaker definition, we are able to expand the family of base codes to include
the aforementioned ones.

1 Introduction

A linear code over a finite field F is a linear subspace C ⊆ Fn. A code is locally testable if given
a word x ∈ Fn one can verify whether x ∈ C by reading only a few (randomly chosen) symbols
from x. More precisely such a code has a tester, which is a randomized algorithm with oracle
access to the received word x. The tester reads at most q symbols from x and based on this “local
view” decides if x ∈ C or not. It should accept codewords with probability one, and reject words
that are “far” (in Hamming distance) with “noticeable” probability.

Locally Testable Codes (LTCs) were first explicitly studied by Goldreich and Sudan [9] and
since then a few constructions of LTCs were suggested (See [8] for an extensive survey of those
constructions). All known efficient constructions of LTCs, i.e. that obtain subexponential rate, rely
on some form of ”composition” of two (or more) codes. One of the simplest ways to compose
codes for the construction of LTCs is by use of the tensor product, as suggested by Ben-Sasson
and Sudan [1]. They introduced the notion of robust LTCs: An LTC is called robust if whenever
the received word is far from the code, then with noticeable probability the local view of the tester
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is far from an accepting local view (see robust definition [2]). It was shown in [1] that a code ob-
tained by tensoring three or more codes (i.e. C1 ⊗C2 ⊗C3) is robustly testable when the distances
of the codes are big enough, and used this result to construct LTCs. Then they considered the
tensor product of two codes. Given two linear codes R,C their tensor product R ⊗ C consists of
all matrices whose rows are codewords of R and whose columns are codewords of C . If R and C
are locally testable, we would like R ⊗ C to be locally testable. [1] suggested using the following
test for the testing the tensor product R ⊗ C and asked whether it is robust:

Test for R ⊗ C : Pick a random row (or column), accept iff it belongs to R (or C).

Valiant [3] showed a surprising example of two linear codes R and C for which the test above
is not robust, by exhibiting a word x that is far from R⊗C but such that the rows of x are very close
to R and the columns of x are very close to C . Additional examples give a codes whose tensor
product with itself is not robust [4] and two good codes (with linear rate) whose tensor product is
not robust [7].

Despite these examples Dinur et al. showed in [2] that the above test is robust as long as one
of the base codes is smooth, according to a definition of the term introduced there (see Definition
5). The family of smooth codes includes locally testable codes and certain codes constructed from
expander graphs with very good expansion properties. In this work we continue this line of
research and enlarge the family of base codes that result in robust tensor codes and do this by
working with a weaker definition of smoothness (Definition 4). Using the weaker definition, we
still manage to get pretty much the same results as in [2] and do this using the same proof strategy
as there. However, our weaker definition allows us to argue — in what we view as the main
technical contributions of this paper (Sections 6 and 7) — that a larger family of codes is suitable
for forming robust tensor codes. One notable example is that our definition allows us to argue that
any expander code with unique-neighbor expansion (i.e., with expansion parameter γ < 1/2 as
per Definition 3) is also weakly smooth, hence robust. We stress that unique-neighbor expansion is
the minimal requirement in terms of expansion needed to argue an expander code has good (i.e.,
constant relative) distance, so our our work shows all “combinatorially good” expander codes1

are robust. In comparison, the work of [2] required stronger expansion parameters (γ < 1/4) of
the kind needed to ensure an expander code is not merely good in terms of its distance, but can
also be decoded in linear time [10].

Another family of codes shown here to be robust under two-wise tensor products is the family
of locally correctable codes (LCCs), see Definition 7.

We end this section by pointing out that recently, tensor codes have played a role in the com-
binatorial construction by Meir [6] of quasilinear length locally testable codes. Better base codes
may result in LTCs with improved rate, hence the importance in broadening the class of base codes
that can be used to construct robust tensor codes.

Organization of the paper.

In the following section we provide the now-standard definitions regarding robust tensor codes.
In Section 3 We formally define weakly smooth codes and state our main results. In Section 4 We

1Clearly, there exist non-unique-neighbor expander codes with good distance. However, the distance of these codes
cannot be argued merely using the combinatorial structure of the underlying parity check matrix.

2



prove weakly smooth codes are robust. Section 5 shows the smooth codes of [2] are also weakly
smooth. The last two sections prove that unique-neighbor expander codes, and locally correctable
codes, respectively, are weakly smooth.

2 Preliminary Definitions

The definitions appearing here are pretty much standard in the literature on tensor-based LTCs.
Throughout this paper F is a finite field and C,R are linear codes over F . For c ∈ C let

supp(c) = {i|ci 6= 0} and wt(c) = |supp(c)|. We define the distance between two words x, y ∈ Fn to

be d(x, y) = |{i | xi 6= yi}| and the relative distance to be δ(x, y) = d(x,y)
n . The distance of a code is

denoted d(C) and defined to be the minimal value of d(x, y) for two distinct codewords x, y ∈ C .

Similarly, the relative distance of the code is denoted δ(C) = d(C)
n . For x ∈ Fn and C ⊆ Fn, let

δC(x) = miny∈C{δ(x, y)} denote the relative distance of x from code C . We let dim(C) denote the
dimension of C . The vector inner product between u1 and u2 is denoted by 〈u1, u2〉. For code C let
C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0} be its dual code and let C⊥

t = {u ∈ C⊥ | wt(u) = t}. In similar
way we define C⊥

<t = {u ∈ C⊥ | wt(u) < t} and C⊥
≤t = {u ∈ C⊥ | wt(u) ≤ t}. For w ∈ Fn and

S ⊆ [n] we let w|S = (wj1, wj2 , ..., wjm) when {j1, j2, ..., jm} = S be the projection of w on subset S.
Similarly, we let C|S = {c|S | c ∈ C} to denote the projection of code C on subset S.

2.1 Tensor Product of Codes

For x ∈ Fm and y ∈ Fn we let x ⊗ y denote tensor product of x and y (i.e. the n × m matrix xyT ).
Let R ⊆ Fm and C ⊆ Fn be linear codes. We define the tensor product code R⊗C to be the linear
subspace spanned by words r ⊗ c ∈ Fn×m for r ∈ R and c ∈ C . Some immediate facts:

• The code R ⊗ C consists of all n × m matrices over F whose rows belong to R and whose
columns belong to C .

• dim(R ⊗ C) = dim(R) · dim(C)

• δ(R ⊗ C) = δ(R) · δ(C)

Let M ∈ Fm ⊗ Fn and let δ(M) = δR⊗C(M). Let δrow(M) = δR⊗F n(M) denote the distance
from the space of matrices whose rows are codewords of R. This is expected distance of a random
row in x from R. Similarly let δcol(M) = δF m⊗C(M).

2.2 Robust Locally Testable Codes

Definition 1 (Robustness). Let M be a candidate codeword for R ⊗ C . The robustness of M is
defined as ρ(M) = (δrow(M) + δcol(M))/2, i.e., it is the average distance of “local views” of the

codeword. The code R ⊗ C is robustly testable if there exists a constant α such that ρ(M)
δ(M) ≥ α for

every M .

The robustness of a Tester T is defined as ρT = minM∈R⊗C
ρ(M)

δR⊗C(M) .
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2.3 Low Density Parity Check (LDPC) Codes

The following definition is the natural generalization of a LDPC codes to fields of size > 2.

Definition 2 (LDPC codes). A check graph ([n], [m], E, F ) is a bipartite graph ([n], [m], E) over F
for a code C ⊂ Fn where each edge e = (i, j) ∈ E is labeled by some e(i,j) 6= 0 ∈ F and the
following holds (let N(j) denote the neighbors of j in the graph):

x ∈ C ⇐⇒ ∀j ∈ [m]
∑

i∈N(j)

xi · e(i,j) = 0,

where the sum
∑

i∈N(j) xi · e(i,j) is computed over F .

Clearly, any linear code C ⊆ F has a corresponding check graph ([n], [m], E, F ). Moreover if
C⊥ = span(C⊥

≤d) then without loss of generality every right hand node j ∈ [m] has degree at most
d.

Definition 3 (Expander graphs). Let c, d ∈ N and let γ, δ ∈ (0, 1). Define a (c, d)-regular (γ, δ)-
expander to be a bipartite graph (L,R,E, F ) with vertex sets L,R such that all vertices in L have
degree c, and all vertices in R have degree d; and the additional property that every set of vertices
L′ ⊂ L, such that |L′| ≤ δ|L|, has at least (1 − γ)c|L′| neighbors.

We say that a code C is an (c, d, γ, δ)-expander code if it has a check graph that is a (c, d)-
regular (γ, δ)-expander. It is well-known that if γ < 1/2 then the graph has unique-neighbor ex-
pansion, meaning that for every L′ ⊂ L there exists a set of unique neighbors R′ on the right such
that each member of R′ is a neighbor of a unique member of L′. Thus, from here on we refer to
(γ, δ)-expanders as unique-neighbor expanders. The following well-known proposition (the proof
of which is included for the sake of completeness) shows that unique-neighbor expansion of G is
sufficient to guarantee the code whose check graph is G has large distance.

Proposition 1. If C is (c, d, γ, δ)-expander code over F and γ < 1
2 , then δ(C) ≥ δ.

Proof. We prove that every non-zero word in C must have weight more than δn. Indeed let
(L,R,E, F ) be check graph of C that is a (c, d)-regular (γ, δ)-expander. The proposition follows
by examining the unique neighbor structure of the graph. Let x ∈ C be such that 0 < wt(x) < δn
and L′ = supp(x) ⊆ L. But then L′ has at least (1 − γ)c|L′| > c

2 |L
′| neighbors in R. At least one

of these sees only one element of L′, so the check by this element (corresponding dual word) will
give xi · e(i,j) when xi 6= 0, e(i,j) 6= 0 and thus xi · e(i,j) 6= 0, violating the corresponding constraint
and contradicting x ∈ C .

3 Main Results

Our first main result says that codes obtained by the tensor product of a code with constant relative
distance and a unique-neighbor expander code is robust:

Theorem 2 (Unique-Neighbor Expander codes are robust). Let R ⊆ Fm be a code of distance at least
δR > 0. Let C ⊆ Fn be a (c, d, γ, δ)-expander code for some c, d ∈ N, δ > 0, and 0 < γ < 1/2. Then,

ρT ≥ min{
0.5δ · δR

2d∗
,
δR · 0.25δ

2
, 1/8}.

Where d∗ < dk, k = (log(0.5+γ)0.05) + 1.
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The above theorem extends the result of [2] where a similar result was proved for expanders
with the stronger requirement γ < 1/6. Notice the difference between γ < 1/6 and unique-
neighbor expansion (γ < 1/2) is qualitative, not merely quantitative. This is because expansion
γ < 1/4 is required to guarantee efficient decoding algorithms, as shown by Sipser and Spiel-
man in [10] whereas γ < 1/2 is sufficient for claiming the code has large distance, but does not
necessarily warrant efficient decoding.

Our next result extends [2] in a different direction by showing that locally correctable codes
are also robust. Informally, locally correctable codes allow to recover each entry of a codeword
with high probability by reading only a few entries of the codeword even if a large fraction of it is
adversely corrupted (see Definition 7).

Theorem 3 (Locally correctable codes are robust). Let R ⊆ Fm be a code of distance at least δR > 0.
Let C ⊆ Fn be a (ε, δ, q)-locally correctable code with ε > 0. Then,

ρT ≥ min{
0.5δ · δR

2(q + 1)
, 1/8}.

To prove both theorems we first define weakly smooth codes and prove that the tensor of a
weakly smooth code and another code with constant relative distance is robust. Then we show
that smooth codes are also weakly smooth. Finally we show that all unique-neighbor expander
codes (with γ < 1/2) and all locally correctable codes are weakly smooth, thus obtaining Theorems
2, 3, respectively.

3.1 Weakly Smooth codes

We are coming now to the central definition of the paper, that of a weakly smooth code. This
definition allows us to generalize the work of [2] by using pretty much the same proof as there.
In particular, in Section 5 we show that every code that is smooth according to [2] is also weakly
smooth as per Definition 4. Furthermore, using our definition we get robust tensor from a broader
family of base codes.

Both the smooth codes of [2] and our weakly smooth codes require the code retain large distance
even after a portion of its coordinates and constraints have been removed. However there are two
subtle differences between the two notions.

1. In the smooth codes setting an adversary removes a fraction of constraints and then a “Good”
player removes a fraction of indices. In our Definition 4 both the adversary and the good
player remove sets of indices.

2. In the smooth codes work with a predefined set of low weight constraints coming from a
regular bipartite graph. Our Definition 4 does not assume any graph, nor does it require
any regularity of degrees. This slackness and nonregularity will be crucial in arguing that
unique-neighbor expanders are weakly smooth.

Definition 4 (Weakly smooth codes). Let 0 ≤ α1 ≤ α′
1 < 1, 0 < α2 < 1, d∗ be constants. Code C

is (α1, α
′
1, α2, d

∗)-weakly smooth if ∀I ⊆ [n], |I| < α1n letting

Constr(I) = {u ∈ C⊥
≤d∗ | supp(u) ∩ I = ∅}

and C ′ = (Constr(I))
⊥ there exists I ′ ⊂ [n], I ⊆ I ′, |I ′| < α′

1n such that d(C ′|[n]\I′) ≥ α2n.
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The following is the main technical lemma used to show weakly smooth codes are robust. Its
proof follows in the next section.

Lemma 4 (Main Lemma). Let R ⊆ Fm and C ⊆ Fn be codes of distance δR and δC . Assume C
is (α1, α

′
1 < δC , α2, d

∗)-weakly smooth and let M ∈ Fm ⊗ Fn. If ρ(M) < min{α1δR

2d∗ , δRα2

2 } then
δ(M) ≤ 8ρ(M).

4 Weakly smooth codes are robust — Proof of Lemma 4

We pretty much follow the proof of the Main Lemma in [2], but attend to the required modifi-
cations needed to carry the proof with the weaker requirement of smoothness. The main place
where we use the weakly smooth property is the Proposition 6.

Proof of Lemma 4. For row i ∈ [n], let ri ∈ R denote the codeword of R closest to the ith row of M .
For column j ∈ [m], let c(j) ∈ C denote the codeword of C closest to the jth column of M . Let MR

denote the n × m matrix whose ith row is ri, and let MC denote the matrix whose jth column is
c(j). Let E = MR − MC .

In what follows matrices MR,MC and (especially) E will be central objects of attention. We
refer to E as the error matrix. Note that δ(M,MR) = δrow(M) and δ(M,MC ) = δcol(M) and with
some abuse of notation let wt(E) be the relative weight of E, so

wt(E) = δ(MR,MC) ≤ δ(M,MR) + δ(M,MC )

= δrow(M) + δcol(M) = 2ρ(M). (1)

Our proof strategy is to show that the error matrix E is actually very structured. We do this in
two steps. First we show that its columns satisfy most constraints of the column code. Then we
show that E contains a large submatrix which is all zeroes. Finally using this structure of E we
show that M is close to some codeword in R⊗C . The following is from [2, Proposition 4], we give
the proof for the sake of completeness.

Proposition 5. Let u ∈ C⊥
d be a constraint of C with supp(u) = {i1, ..., id}. Let ei denote the ith row of

E. Suppose wt(eij ) < δR/d for every j ∈ [d]. Then uT · E = 0.

Proof. Note that ∀c ∈ C : 〈c, u〉 = 0. Let ci denote the i-th row of the matrix MC .(Recall that the
rows of MC are not necessarily codewords of any nice code - it is only the columns of MC that
are codewords of C). For every column j, we have 〈(MC)j , u〉 = 0 (since the columns of MC are
codewords of C).

Thus we conclude that uT ·MC = 0 as a vector. Clearly, uT ·MR ∈ R since each one of the rows
of MR is a codeword of R. But this implies

uT · E = uT · (MR − MC) = uT · MR − uT · MC = uT · MR − 0 ∈ R

Now we use the fact that the eij s have small weight for ij ∈ [d]. This implies that

wt(uT · E) ≤ wt(u) · (δR/d) < δR.

But R is an error-correcting code of the minimum distance δR so the only word of weight less than
δR in it is the zero codeword, yielding uT · E = 0.
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Proposition 6. There exist subsets U ⊆ [m] and V ⊆ [n] with |U |/m < δR and |V |/n < δC such that
letting V̄ = [n] \ V and Ū = [m] \ U we have for all i ∈ V̄ , j ∈ Ū that E(i, j) = 0.

Proof. Let V1 ⊆ [n] be the set of indices corresponding to rows of the error matrix E with weight
more than δR/d∗, i.e.

V1 = {i ∈ [n] | wt(ei) ≥ δR/d∗}.

Clearly, |V1| < α1n, since |V1|
n · δR

d∗ ≤ wt(E) ≤ 2ρ(M) and thus |V1|
n ≤ 2ρ(M)

δR/d∗ < α1 where the last

inequality follows from the assumption ρ(M) < α1δR

2d∗ . Let Constr(V1) = {u ∈ C⊥
≤d∗ | supp(u)∩V1 =

∅} and C ′ = (Constr(V1))
⊥. Proposition 5 implies that ∀u ∈ Constr(V1) we have uT · E = 0, i.e.

every column of E, denoted by Ej , satisfies constraint u and thus Ej ∈ C ′.
Recall that C is (α1, α

′
1 < δC , α2, d

∗)-weakly smooth. Associate the set V1 with I from Definition
4. Following this definition, there exists a set I ′ (let V = I ′), |V | = |I ′| < α′

1n such that d(C ′
[n]\I′) =

d(C[n]\V ) ≥ α2n. We notice that for every column of E, denoted by Ej , we have (Ej)|[n]\I′ ∈ C[n]\V .
Thus Ej is either zero outside V or has at least α2n non-zero elements outside V .

Let U be the set of indices corresponding to the ”heavy columns” of E that have α2n or more
non-zero elements in the rows outside V . We conclude that every column of E that is not zero
outside V is located in U . We argue that for each (i, j) ∈ V̄ × Ū we have E(i, j) = 0. This is true
since after we remove rows from V all projected nonzero columns have weight at least α2n and
thus all nonzero columns are located in U . Hence all columns of V̄ × Ū are zero columns.

Clearly, |U |
m < δR, since |U |

m · α2 ≤ wt(E) ≤ 2ρ(M) and thus |U |
m ≤ 2ρ(M)

α2
< δR, where the last

inequality follows from the assumption ρ(M) < δRα2

2 .

We now use a standard property of tensor products to claim MR, MC and M are close to a
codeword of R ⊗ C . Recall that M ∈ Fn×m and that δ(MC ,MR) ≤ 2ρ(M). We reproduce the
following proof from [2, Proposition 6] for the sake of completeness.

Proposition 7. Assume there exist sets U ⊆ [m] and V ⊆ [n], |U |/m < δR and |V |/n < δC such that
MR(i, j) 6= MC(i, j) implies j ∈ U or i ∈ V . Then δ(M) ≤ 8ρ(M).

Proof. First we note that there exists a matrix N ∈ R ⊗ C that agrees with MR and MC on V̄ ×
Ū (See [1, Proposition 3]). Recall also that δ(M,MR) = δrow ≤ 2ρ(M). So it suffices to show
δ(MR, N) ≤ 6ρ(M).We do so in two steps. First we show that δ(MR, N) ≤ 2ρ(MR). We then show
that ρ(MR) ≤ 3ρ(M) concluding the proof.

For the first part we start by noting that MR and N agree on every row in V̄ . This is the case
since both rows are codewords of R which may disagree only on entries from the columns of U ,
but the number of such columns is less that δRm. Next we claim that for every column j ∈ [m] the
closest codeword of C to the MR(·, j), the jth column of MR, is N(·, j), the jth column of N . This
is true since MR(i, j) 6= N(i, j) implies i ∈ V and so the number of such i is less than δCn. Thus for
every j, we have N(·, j) is the (unique) decoding of the jth column of MR. Averaging over j, we
get that δcol(MR) = δ(MR, N). In turn this yields ρ(MR) ≥ δ(MR)/2 = δ(MR, N)/2. This yields
the first of the two desired inequalities.

Now to bound ρ(MR), note that for any pair of matrices M1 and M2 we have ρ(M1) ≤ ρ(M2)+
δ(M1,M2). Indeed it is the case that δrow(M1) ≤ δrow(M2) + δ(M1,M2) and δcol(M1) ≤ δcol(M2) +
δ(M1,M2). When the above two arguments are combined it yields ρ(M1) ≤ ρ(M2) + δ(M1,M2).
Applying this inequality to M1 = MR and M2 = M we get ρ(MR) ≤ ρ(M) + δ(MR,M) ≤ 3ρ(M).
This yields the second inequality and thus the proof of the proposition.
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The Main Lemma 4 follows immediately from the two last propositions.

5 Smooth codes are also weakly so

We now show that our Definition 4 is indeed a generalization of smooth codes of Dinur et al. [2].
In what follows F2 denotes the two-element field and C(R0) is a code defined by constraints in
R \ R0 (For further information and definitions see [2].). Recall the definition of smooth code:

Definition 5 (Smooth Codes). A code C ⊆ Fn
2 is (d, α, β, δ)-smooth if it has a parity check graph

B = (L,R,E) where all the right vertices R have degree d, the left vertices have degree c =
d|R|/|L|, and for every set R0 ⊆ R such that |R0| ≤ α|R|, there exist a set L0 ⊆ L, |L0| ≤ β|L| such
that the code C(R0)|[n]\L0

has distance at least δ.

Claim 8. If C ⊆ Fn
2 is a (d, α, β, δ)-smooth code then it is (α1, α

′
1, α2, d

∗)-weakly smooth with α1 = α
d ,

α′
1 = β, α2 = δ, d∗ = d.

Proof. Let R be a set of constraints of degree d and let I ⊆ [n], |I| < α1n = αn
d be the index set from

Definition 4. Remove all d-constraints that touch at least one index in I . Let R0 be a set of removed
constraints from R. We have left degree c = d|R|

n , so, we removed at most c · α1n = d|R|α1 = α|R|
constraints. Let Constr(I) = {u ∈ C⊥

d | supp(u) ∩ I = ∅} be the set of constraints in R \ R0 (low

weight dual words). We notice that C(R0) = (Constr(I))
⊥. Let I ′ ⊆ [n], |I ′| < βn = α′

1n be index
set from smooth codes definition (Definition 5) that should be thrown out in order to remain with
good distance, i.e. d(C(R0)|[n]\I′) ≥ δn = α2n. Clearly I ⊆ I ′ as otherwise d(C(R0)|[n]\I′) = 1.

Thus from the definition of smoothness, letting C ′ = (Constr(I))
⊥ we have d(C ′|[n]\I′) ≥ α2n

which proves that C is (α1, α
′
1, α2, d

∗)-weakly smooth.

6 Unique-Neighbor Expander Codes are weakly smooth

As explained in Section 3.1 Dinur et al. [2] showed that expander codes with γ < 1
6 are smooth

and thus result in robust tensor product. In this section we show that it is possible to obtain robust
tensor codes from expander code with the weaker assumption γ < 1

2 . We first define the gap
property (Definition 6) and prove that it implies weak smoothness. Then we show that unique-
neighbor expander codes have the gap property.

Definition 6 (Gap property). Code C has a (α, δ, d)-gap property if ∀J ⊆ [n], |J | < αn letting

Constr(J) = {u ∈ C⊥
≤d | supp(u) ∩ J = ∅} and C ′ = (Constr(J))

⊥ we have that ∀c ∈ C ′|[n]\J either
wt(c) < 0.1δn or wt(c) > 0.8δn.

Claim 9. If C has (α, δ, d)-gap property then it is (α,α + 0.3δ, 0.5δ, d)-weakly smooth.

Proof. Clearly, C has no codewords of weight between 0.1δn and 0.8δn. To see this take J = ∅
and then gap property implies that ∀w ∈ Fn if 0.1δn ≤ wt(w) ≤ 0.8δn then 〈w, u〉 6= 0 for some
u ∈ C⊥

≤d.
Let S = {c ∈ C | 0 < wt(c) < 0.1δn} be a set of all non-zero low weight codewords. Let JS be

the union of supports of non-zero low weight words, i.e. JS =
⋃

c∈S supp(c) and for any set A ⊆ C
let JA =

⋃
c∈A supp(c). We show that |JS | < 0.3δn.
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Assume the contrary, i.e. |JS | ≥ δ · 0.3n. Then there exists S′ ⊆ S, such that 0.2δn < |JS′ | <
0.3δn. To see this remove low weight words one by one from S, each time decreasing S at most by
0.1δn.

Consider a random linear combination of codewords from S′. The expected weight of the
above is more than 0.1δn but can not exceed 0.3δn, thus there exists such a linear combination
of low weight codewords that produces a codeword with weight more than 0.1δn but less than
0.3δn. Contradiction.

Thus for the rest of the proof we assume |JS | < 0.3δn. We are ready to show that C is (α,α +
0.3δn, 0.5δn, d)-weakly smooth. Let I ⊂ [n], |I| < αn be arbitrarily chosen set. Let Constr(I) =

{u ∈ C⊥
≤d | supp(u) ∩ I = ∅} and C ′ = (Constr(I))

⊥.
¿From the definition of the gap property and from the above it follows that ∀c ∈ C ′|[n]\I either

wt(c) < 0.1δn and thus supp(c) ⊆ JS or wt(c) > 0.8δn.
Let I ′ = JS ∪ I and then |I ′| ≤ |JS | + |I| < αn + 0.3δn. We claim that d(C ′|[n]\(I∪JS)) =

d(C ′|[n]\(I′)) ≥ 0.5δn. To see this assume c′ ∈ C ′|[n]\I , c′′ = c′|[n]\(I∪JS), c′′ ∈ C ′|[n]\(I∪JS) such that
0 < wt(c′′) < 0.5δn but then 0 < wt(c′′) ≤ wt(c′) ≤ |JS | + wt(c′′) < 0.8δn and thus c′ is a low
weight word, i.e. supp(c′) ⊆ JS . Hence c′′ = c′|[n]\(I∪JS) = 0, contradicting wt(c′′) > 0.

Proposition 10. Let C be a linear code over F . If u1 ∈ C⊥
<f and u2 ∈ C⊥

<g and i ∈ supp(u1) ∩ supp(u2)

then exists u3 ∈ C⊥
<f+g such that supp(u3) ⊆ (supp(u1) ∪ supp(u2)) \ {i}.

Proof. Let a ∈ F be ith entry in u1 and b ∈ F be ith entry in u2. Then u3 = a−1u1 + b−1u2 ∈ C⊥
<f+g

has desired properties.

Claim 11. Let C be a (c, d, γ, δ)-expander code over F with constant γ < 1
2 . Let w ∈ Fn with 0 <

wt(w) < δn with I = supp(w). Then at least a 0.95-fraction of indices i ∈ I have ui ∈ C⊥
<d∗ where

d∗ < dk, k = (log0.5+γ(0.05)) + 1 such that supp(ui) ∩ I = {i}.

Proof. Fix set I with |I| < δn. Let (L,R,E) be a check graph of C that is a (c, d)-regular (γ, δ)-
expander. The claim follows from examining the unique neighbor structure of the graph. We
prove this by induction on j = 1...k and show set constructions Ij satisfying

• I1 = I , Ij+1 ⊂ Ij

• |Ij+1| ≤ (1
2 + γ)|Ij |

• ∀i ∈ Ij \ Ij+1 exists ui ∈ C⊥
≤dj with supp(ui) ∩ I = {i}

We then conclude (1
2+γ)k < 0.05 and thus from the induction follows that Ik ⊂ I , |Ik| < 0.05·|I|

and ∀i ∈ I\Ik exists ui ∈ C⊥
<dk with supp(ui)∩I = {i}. And the the proof of the claim is completed.

For the base case let I1 = I . Since C is an expander and |I1| ≤ δn, I1 has at least (1 − γ)c|I1| =
( c
2 + (0.5 − γ)c)|I1| neighbors in R. Each index i ∈ I1 is asked by c constraints in R. And thus the

number of neighbors that ask at least 2 indices from I1 is bounded from above by ( c
2 )|I1|. Hence

there are at least ((1
2 − γ)c)|I1| unique neighbors in R. Since a single index can not have more than

c unique neighbors in R, the number of indices in I1 having unique neighbor is at least (1
2 − γ)|I1|.

I.e. at least (1
2 − γ)-fraction of all indices in I1 have a unique neighbor with support d = d1. Let

I2 ⊂ I1 be subset of all indices i ∈ I1 that have no unique neighbor of weight at most d1. We
constructed set I1, I2 such that
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• I1 = I , I2 ⊂ I1

• |I2| ≤ (1
2 + γ)|I1|

• ∀i ∈ I1 \ I2 exists ui ∈ C⊥
≤d1 with supp(ui) ∩ I = {i}

And this completes the base case.
Assume correctness until j − 1 and let us prove for j. Consider Ij , |Ij | ≤ |I1| ≤ δn. By

the unique neighbor expansion at least (1
2 − γ)-fraction of indices i ∈ Ij have bounded unique

neighbor, i.e. ui ∈ C⊥
d such that supp(ui) ∩ Ij = {i}. Let Ij+1 ⊂ Ij be indices i ∈ Ij that have no

bounded unique neighbor and thus |Ij+1| ≤ (1
2 + γ)|Ij |.

Fix i ∈ Ij \ Ij+1 arbitrarily. There exists ui ∈ C⊥
d such that supp(ui) ∩ Ij = {i}. Every index

l ∈ supp(ui), l 6= i is located either in [n] \ I1 or in I1 \ Ij . We handle all l ∈ I1 \ Ij using linear
combination according to Proposition 10 to obtain a constraint u′

i ∈ C⊥
≤dj such that supp(u′

i) ∩ I =
{i}. This is possible since every l ∈ I1 \ Ij is located in some If for 1 ≤ f < j and thus from
induction assumption has ul ∈ C⊥

≤dj−1 such that supp(ul) ∩ I = {l}. Since wt(ui) ≤ d we obtain

u′
i ∈ C⊥

≤dj−1·d
= C⊥

≤dj such that supp(u′
i) ∩ I = {i}. So we showed

• Ij+1 ⊂ Ij

• |Ij+1| ≤ (1
2 + γ)|Ij |

• ∀i ∈ Ij \ Ij+1 exists ui ∈ C⊥
≤dj with supp(ui) ∩ I = {i}

This yields the induction and the claim.

Corollary 12. If C is (c, d, γ, δ) expander code with γ < 1
2 then C has (0.5δ, 0.5δ, d∗) gap property where

d∗ < dk, k = (log(0.5+γ)0.05) + 1.

Proof. Let J ⊂ [n], |J | < 0.5δ be arbitrarily chosen. Let Constr(J) = {u ∈ C⊥
<dk | supp(u) ∩ J = ∅}

and C ′ = (Constr(J))
⊥. Assume by contradiction, there exists w ∈ C ′

[n]\J such that 0 < 0.1 ·

(0.5δ)n ≤ wt(w) ≤ 0.8 · (0.5δ)n. And thus there is no u ∈ Constr(J) such that |supp(u)∩ supp(w)| =
1.

Let I = J ∪ supp(w), |I| ≤ |J | + wt(w) < 0.5δn + 0.4δn < δn. We notice that supp(w) ∩
J = ∅ and |supp(w)| > 0.05 · |I|. Thus Claim 11 implies that there exists u ∈ C⊥

<dk such that
|supp(u)∩ supp(w)| = 1 and |supp(u)∩ I| = |supp(u)∩ supp(w)| = 1. Thus u ∈ Constr(J) such that
|supp(u) ∩ supp(w)| = 1. Contradiction.

Claim 13. If C is (c, d, γ, δ) expander code with γ < 1
2 then C is (0.5δ, 0.65δ, 0.25δ, d∗)-weakly smooth

where d∗ < dk, k = (log(0.5+γ)0.05) + 1.

Proof. Follows immediately from Corollary 12 and Claim 9. Corollary 12 implies that C has
(0.5δ, 0.5δ, d∗) gap property where d∗ < dk, k = (log(0.5+γ)0.05) + 1. Claim 9 implies that C is
(0.5δ, 0.5δ + 0.15δ, 0.25δ, d∗)-weakly smooth .

Proof of Theorem 2. Let R ⊆ Fm and C ⊆ Fn be codes of distance δR and δC . Let M ∈ Fm ⊗ Fn.
Claim 13 implies that C is (0.5δ, 0.65δ, 0.25δ, d∗)-weakly smooth where d∗ < dk, k = (log(0.5+γ)0.05)+

1. Main Lemma implies that if ρ(M) < min{ (0.5δ)·δR

2d∗ , δR·(0.25δ)
2 } then δ(M) ≤ 8ρ(M).
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7 Locally correctable codes are weakly smooth

Definition 7 (Locally Correctable Code). A [n, k, d]|F | code C is called (q, ε, δ) locally correctable
code if there exists a randomized decoder (D) that reads at most q entries and the following holds:
∀c ∈ C , ∀i ∈ [n] and ∀ĉ ∈ Fn such that d(c, ĉ) ≤ δn we have

Pr[Dĉ[i] = ci] ≥
1

|F |
+ ε,

i.e. with probability at least 1
|F | + ε entry ci will be recovered correct.

Without loss of generality we assume that given ĉ ∈ Fn the ”correction” of entry i (obtaining
ci) is done by choosing random u ∈ S ⊆ C⊥

≤q+1 such that i ∈ supp(u). Formally, assume the ith

entry of u is ui, let uproj = u|[n]\{i}, ĉproj = ĉ|[n]\{i} and then ci is recovered by Dĉ[i] = 〈uproj ,ĉproj〉
ui

,
notice that ui 6= 0.

The next claim holds for every ε > 0 which can be arbitrarily close to 0 (e.g. o(1)) whereas
usually locally correctable codes are defined with ε = Ω(1).

Claim 14. If C is (ε, δ, q)-locally correctable code with ε > 0 then it is (0.5δ, 0.5δ, 0.5δ, q + 1)-weakly
smooth and its relative distance is at least δ.

Proof. We first show that ∀I ⊆ [n], |I| ≤ δn and ∀i ∈ I we have ui ∈ C⊥
≤q+1 with supp(ui)∩ I = {i}.

Assume the contrary and fix I ⊆ [n], |I| ≤ δn and i ∈ I . So, for all ui ∈ C⊥
≤q+1 with i ∈ supp(ui)∩ I

we have |supp(ui)∩ I| ≥ 2. Consider an adversary that takes c ∈ C and sets cj to random element
from F for all j ∈ I , obtaining ĉ. Clearly, ci will be recovered with probability at most 1

|F | since for

every u(i) ∈ C⊥
≤q+1 such that i ∈ supp(u(i)) the inner product 〈(u(i))|[n]\{i}, c|[n]\{i}〉 will produce a

uniformly random value in F .
We next show that d(C) ≥ δn. To see this assume c ∈ C such that 0 < wt(c) < δn. Let

I = supp(c), |I| < δn and i ∈ I . There exists u ∈ C⊥
≤q+1 with supp(u) ∩ supp(c) = {i} and thus

〈u,w〉 6= 0 implies c /∈ C .
We finally show the weak smoothness of C . Let I ⊂ [n], |I| < 0.5δn be the adversary chosen

set and let I ′ = I . Let Constr(I) = {u ∈ C⊥
≤q+1 | supp(u) ∩ I = ∅} and C ′ = (Constr(I))

⊥. We
claim that d(C ′|[n]\I) ≥ 0.5δn. This is true, since otherwise we have c′ ∈ C ′, c′[n]\I ∈ C ′|[n]\I such

that 0 < wt(c′[n]\I) < 0.5δn. But then 0 < wt(c′) < 0.5δn + |I| ≤ δn and thus exists u ∈ Constr(I)

such that |supp(u) ∩ supp(c′)| = 1 which implies 〈u, c′〉 6= 0 and c′ /∈ C ′. Contradiction. So, C is
(0.5δ, 0.5δ, 0.5δ, q + 1)-weakly smooth.

of Theorem 3. Let R ⊆ Fm and C ⊆ Fn be linear codes such that δ(R) ≥ δR. Let M ∈ Fm ⊗ Fn.
Claim 14 implies that C is (0.5δ, 0.5δ, 0.5δ, q + 1)-weakly smooth and δ(C) ≥ δ. The Main Lemma

4 implies that if ρ(M) < min{ (0.5δ)·δR

2(q+1) , δR·(0.5δ)
2 } = (0.5δ)·δR

2(q+1) then δ(M) ≤ 8ρ(M).
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