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Abstract

A completion of an m-by-n matrix A with entries in {0, 1, ∗} is obtained by setting all
∗-entries to constants 0 or 1. A system of semi-linear equations over GF2 has the form
Mx = f(x), where M is a completion of A and f : {0, 1}n → {0, 1}m is an operator, the
ith coordinate of which can only depend on variables corresponding to ∗-entries in the ith
row of A. We conjecture that no such system can have more than 2n−ε·mr(A) solutions,
where ε > 0 is an absolute constant and mr(A) is the smallest rank over GF2 of a com-
pletion of A. The conjecture is related to an old problem of proving super-linear lower
bounds on the size of log-depth boolean circuits computing linear operators y = Mx.
The conjecture is also a generalization of a classical question about how much larger can
non-linear codes be than linear ones. We prove some special cases of the conjecture and
establish some structural properties of solution sets.

Keywords: Boolean circuits; Partial matrix; Matrix completion; Min-rank; Matrix
rigidity; Sum-Sets; Cayley graphs; Error-Correcting Codes

1 Introduction

One of the challenges in circuit complexity is to prove a super-linear lower bound for log-depth
circuits over {&,∨,¬} computing an explicitly given boolean operator f : {0, 1}n → {0, 1}n.
Attempts to solve it have led to several weaker problems which are often of independent
interest. The problem is open even if we impose an additional restriction that the depth
of the circuit is O(log n). It is even open for linear log-depth circuits, that is for log-depth
circuits over the basis {⊕, 1}, in spite of the apparent simplicity of such circuits. It is clear
that the operators computed by linear circuits must also be linear, that is, be matrix-vector
products x → Mx over the field GF2 = ({0, 1},⊕, ·),

An important result of Valiant [27] reduces the lower bounds problem for log-depth circuits
over {&,∨,¬} to proving lower bounds for certain depth-2 circuits, where we allow arbitrary

boolean functions as gates.
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1.1 Reduction to depth-2 circuits

A depth-2 circuit of width w has n boolean variables x1, . . . , xn as input nodes, w arbitrary
boolean functions h1, . . . , hw as gates on the middle layer, and m arbitrary boolean functions
g1, . . . , gm as gates on the output layer. Direct input-output wires, connecting input variables
with output gates, are allowed. Such a circuit computes an operator f = (f1, . . . , fm) :
{0, 1}n → {0, 1}m if, for every i = 1, . . . ,m,

fi(x) = gi(x, h1(x), . . . , hw(x)).

The degree of such a circuit is the maximum, over all output gates gi, of the number of wires
going directly from input variables x1, . . . , xn to the gate gi. That is, we ignore the wires
incident with the gates on the middle layer. Let degw(f) denote the smallest degree of a
depth-2 circuit of width w computing f .

It is clear that degn(f) = 0: just put the functions f1, . . . , fn on the middle layer. Hence,
this parameter is only nontrivial for w < n. Especially interesting is the case when w =
O(n/ ln ln n):

Lemma 1 (Valiant [27]). If degw(f) = nΩ(1) for w = O(n/ ln ln n), then the operator f
cannot be computed by a circuit of depth O(ln n) using O(n) constant fanin gates.

Recently, there was a substantial progress in proving lower bounds on the size of (that is,
on the total number of wires in) depth-2 circuits. Superlinear lower bounds of the form n times
poly-log(n) where proved using graph-theoretic arguments by analyzing some superconcentra-
tion properties of the circuit as a graph [6, 14, 15, 18, 16, 2, 20, 21, 22]. Higher lower bounds of
the form Ω(n3/2) were proved using information theoretical arguments [4, 9]. But the highest
known lower bound on the degree of width w circuits has the form Ω((n/w) ln(n/w)) [20],
and is too weak to have a consequence for log-depth circuits.

A natural question therefore was to improve the lower bound on the degree at least for
linear circuits, that is, for depth-2 circuits whose middle gates as well as output gates are
linear boolean functions (parities of their inputs). Such circuits compute linear operators
fM (x) = Mx for some (0, 1)-matrix; we work over GF2. By Valiant’s reduction, this would
give a super-linear lower bound for log-depth circuits over {⊕, 1}.

This last question attracted attention of many researchers because of its relation to a
purely algebraic characteristic of the underlying matrix M—its rigidity. The rigidity RM (r)
of a (0, 1)-matrix M is the smallest number of entries of M that must be changed in order
to reduce its rank over GF2 until r. It is not difficult to show (see [27]) that any linear
depth-2 circuit of width w computing Mx must have degree at least RM (w)/n: If we set all
direct input-output wires to 0, then the resulting degree-0 circuit will compute some linear
transformation M ′x where the rank of M ′ does not exceed the width w. On the other hand,
M ′ differs from M in at most dn entries, where d is the degree of the original circuit. Hence,
RM (w) ≤ dn from which d ≥ RM (w)/n follows.

Motivated by its connection to proving lower bounds for log-depth circuits, matrix rigidity
(over different fields) was considered by many authors, [23, 1, 17, 7, 16, 20, 25, 24, 10, 11, 19,
26] among others. It is therefore somewhat surprising that the highest known lower bounds on
RM (r) (over the field GF2), proved in [7, 25] also have the form Ω((n2/r) ln(n/r)), resulting
to the same lower bound Ω((n/w) ln(n/w)) on the degree of linear circuits as that for general
depth-2 circuits proved in [20]. This phenomenon is particularly surprising, because general
circuits may use arbitrary (not just linear) boolean functions as gates. We suspect that the
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absence of higher lower bounds for linear circuits than those for non-linear ones could be not
just a coincidence.

Conjecture 1 (Linearization conjecture for depth-2 circuits). Depth-2 circuits can be lin-

earized. That is, every depth-2 circuit computing a linear operator can be transformed into

an equivalent linear depth-2 circuit without substantial increase of its width or its degree.

If true, the conjecture would have important consequences for log-depth circuits. Assum-
ing this conjecture, any proof that every depth-2 circuit of width w = O(n/ ln ln n) with
unbounded fanin parity gates for a given linear operator Mx requires degree nΩ(1) would im-
ply that Mx requires a super-linear number of gates in any log-depth circuit over {&,∨,¬}.
In particular, this would mean that proving high lower bounds on matrix rigidity is a much
more difficult task than assumed before: such bounds would yield super-linear lower bounds
for log-depth circuits over a general basis {&,∨,¬}, not just for circuits over {⊕, 1}.

As the first step towards Conjecture 1, in this paper we relate it to a purely combinatorial
conjecture about partially defined matrices—the min-rank conjecture, and prove some results
supporting this last conjecture. This turns the problem about the linearization of depth-2
circuits into a problem of Combinatorial Matrix Theory concerned with properties of comple-
tions of partially defined matrices (see, e.g., the survey [8]). Hence, the conjecture may also
be of independent interest.

Unfortunately, we were not able to prove the conjecture in its full generality. So far, we
are only able to prove that some its special cases are true. This is not very surprising because
the conjecture touches a basic problem in circuit complexity: Can non-linear gates help to
compute linear operators? This paper is just the first step towards this question.

1.2 The Min-Rank Conjecture

A completion of a (0, 1, ∗)-matrix A is a (0, 1)-matrix M obtained from A by setting all ∗’s
to constants 0 and 1. A canonical completion of A is obtained by setting all ∗’s in A to 0.

If A is an m-by-n matrix, then each its completion M defines a linear operator mapping
each vector x ∈ {0, 1}n to a vector Mx ∈ {0, 1}m. Besides such (linear) operators we also
consider general ones. Each operator G : {0, 1}n → {0, 1}m can be looked at as a sequence
G = (g1, . . . , gm) of m boolean functions gi : {0, 1}n → {0, 1}.

We say that an operator G is consistent with an m-by-n (0, 1, ∗)-matrix A = (aij) if the
ith boolean function gi can only depend on those variables xj for which aij = ∗. That is, the
ith component gi of G can only depend on variables on which the ith row of A has stars.

Definition 1. With some abuse in notation, we call a set L ⊆ {0, 1}n a solution for a partial
matrix A if there is a completion M of A and an operator G such that G is consistent with
A and Mx = G(x) holds for all x ∈ L. A solution L is linear if it forms a linear subspace of
{0, 1}n over GF2.

We are interested in how much the maximum opt(A) = maxL |L| over all solutions L for
A can exceed the maximum lin(A) = maxL |L| over all linear solutions L for A. It can be
shown (Corollary 4 below) that

lin(A) = 2n−mr(A) ,

where mr(A) is the min-rank of A defined as the smallest possible rank of its completion:

mr(A) = min{rank(M) : M is a completion of A} .
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If we only consider constant operators G, that is, operators with G(x) = b for some b ∈
{0, 1}m and all x ∈ {0, 1}n, then Linear Algebra tells us that no solution for A can have more
than 2n−r vectors, where r = rank(M) is the rank (over GF2) of the canonical completion M
of A, obtained by setting all stars to 0.

If we only consider affine operators G, that is, operators of the form G(x) = Hx⊕b where
H is an m-by-n (0, 1)-matrix, then no solution for A can have more than 2n−mr(A) vectors,
because then the consistency of G(x) with A ensures that, for every completion M of A, the
matrix M ⊕ H is a completion of A.

Remark 1. This last observation implies, in particular, that opt(A) ≤ 2n−mr(A) for all
(0, 1, ∗)-matrices A with at most one ∗ in each row: In this case each gi can depend on at
most one variable, and hence, must be a linear boolean function.

We conjecture that a similar upper bound also holds for any operator G, as long as it is
consistent with A. That is, we conjecture that linear operators are almost optimal.

Conjecture 2 (Min-Rank Conjecture). There exists a constant ε > 0 such that for every

m-by-n (0, 1, ∗)-matrix A we have that opt(A) ≤ 2n−ε·mr(A) or, equivalently,

opt(A) ≤ 2n

(
lin(A)

2n

)ε

. (1)

Remark 2. Valiant [27] reduces log-depth circuits of linear size to depth-2 circuits of width
O(n/ log log n). Hence, to have consequences for log-depth circuits, it would be enough that
the conjecture holds at least for ε = o(1/ log log n).

To illustrate the introduced concepts, let us consider the following system of 3 equations
in 6 variables:

x1 ⊕ x6 = x3 · x5

x2 ⊕ x3 ⊕ x4 = x1 · (x5 ⊕ x6) (2)

x4 = (x2 ⊕ x5) · (x3 ⊕ x6) .

The corresponding (0, 1, ∗)-matrix for this system is

A =




1 0 ∗ 0 ∗ 1
∗ 1 1 1 ∗ ∗
0 ∗ ∗ 1 ∗ ∗



 , (3)

and the system itself has the form Mx = G(x), where M is the canonical completion of A:

M =




1 0 0 0 0 1
0 1 1 1 0 0
0 0 0 1 0 0



 ,

and G = (g1, g2, g3) : {0, 1}6 → {0, 1}3 is an operator with

g1(x) = x3 · x5 ;

g2(x) = x1 · (x5 ⊕ x6) ;

g3(x) = (x2 ⊕ x5) · (x3 ⊕ x6) .
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The min-rank of A is equal 2, and is achieved by the following its completion:

M ′ =




1 0 0 0 0 1
0 1 1 1 0 0
0 1 1 1 0 0



 .

Remark 3 (Canonical completions). Recall that solutions for a given (0, 1, ∗)-matrix A are
subsets L ⊆ {0, 1}n of vectors such that Mx = G(x) for some completion M of A and some
operator G consistent with A. Since, besides the consistency, there are no other restrictions
on G, we can always assume that M is the canonical completion of A (with all stars set to 0).
Indeed, if L′ = {x : M ′x = G′(x)} is some solution for A, then the ith row m′

i of M ′ must
have the form m′

i = mi ⊕ pi, where mi ∈ {0, 1}n is the ith row of the canonical completion
M of A, and pi ∈ {0, 1}n is a vector with no 1’s in positions where the ith row of A has no
stars. We can then define an operator G = (g1, . . . , gm) by 1 gi(x) := g′i(x) ⊕ 〈pi,x〉. Since
G′ was consistent with A, the new operator G is also consistent with A. Moreover, for every
vector x ∈ {0, 1}n, we have that 〈m′

i,x〉 = g′i(x) iff 〈mi,x〉 = gi(x).

1.3 Our results

In Section 2 we prove the main consequence of the min-rank conjecture for boolean circuits:
If true, it would imply that non-linear gates are powerless when computing linear operators
Mx by depth-2 circuits (Lemmas 2 and 3).

In Sections 3 and 4 we prove some partial results supporting Conjectures 1 and 2. We
first show (Corollary 2) that every depth-2 circuit of width w computing a linear operator
can be transformed into an equivalent linear depth-2 circuit of the same degree and width at
most w plus the maximum number of wires in a matching formed by the input-output wires
of the original circuit.

We then prove two special cases of Min-Rank Conjecture. A set of (0, 1, ∗)-vectors is
independent if they cannot be made linearly dependent over GF2 by setting stars to constants
0 and 1. If A is a (0, 1, ∗)-matrix, then the upper bound opt(A) ≤ 2n−r holds if the matrix A
contains r independent columns (Theorem 1). The same upper bound also holds if A contains
r independent rows, and the sets of star positions in these rows form a chain with respect to
set-inclusion (Theorem 2).

After that we concentrate on the structure of solutions. In Section 5 we show that solutions
for a (0, 1, ∗)-matrix A are precisely independent sets in a Cayley graph over the Abelian
group ({0, 1}n,⊕) generated by a special set KA ⊆ {0, 1}n of vectors defined by the matrix
A (Theorem 3).

In Section 6 we first show that every linear solution for A lies in the kernel of some com-
pletion of A (Theorem 4). This, in particular, implies that lin(A) = 2n−mr(A) (Corollary 4),
and gives an alternative definition of the min-rank mr(A) as the smallest rank of a boolean
matrix H such that Hx 6= 0 for all x ∈ KA (Corollary 5). In Section 7 we show that non-
linear solutions must be “very non-linear”: they cannot contain linear subspaces of dimension
exceeding the maximum number of ∗’s in a row of A (Theorem 5).

In Section 8 we consider the relation of the min-rank conjecture with error-correcting
codes. We define (0, 1, ∗)-matrices A, the solutions for which are error-correcting codes, and
show that the min-rank conjecture for these matrices is true: In this case the conjecture

1As customary, the scalar product of two vectors x, y ∈ {0, 1}n over GF2 is 〈x, y〉 =
∑

n

i=1
xiyi (mod 2).
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is implied by well known lower and upper bounds on the size of linear and nonlinear error
correcting codes (Lemma 9).

2 Min-rank conjecture and depth-2 circuits

Let F be a depth-2 circuit computing a linear operator x → Mx, where M is an m-by-n
(0, 1)-matrix. Say that the (i, j)th entry of M is seen by the circuit, if there is a direct wire
from xj to the ith output gate. Replace all entries of M seen by the circuit with ∗’s, and let
AF be the resulting (0, 1, ∗)-matrix. Note that the original matrix M is one of the completions
of AF ; hence, rank(M) ≥ mr(AF ).

Proposition 1. Every linear depth-2 circuit F has width(F ) ≥ mr(AF ).

Proof. Let Mx be a linear operator computed by F . Every assignment of constants to direct
input-output wires leads to a depth-2 circuit of degree d = 0 computing a linear operator
Bx, where B is a completion of AF . This operator takes 2rank(B) different values. Hence, the
operator H : {0, 1}n → {0, 1}w computed by w = width(F ) boolean functions on the middle
layer of F must take at least so many different values, as well. This implies that the width w
must be large enough to fulfill 2w ≥ 2rank(B), from which w ≥ rank(B) ≥ mr(AF ) follows.

Lemma 2. Every depth-2 circuit F computing a linear operator can be transformed into an

equivalent linear depth-2 circuit of the same degree and width at most mr(AF ).

Together with Proposition 1, this implies that width(F ) = mr(AF ) for every optimal
linear depth-2 circuit F .

Proof. Let x → Mx be the operator computed by F , and let A = AF be the (0, 1, ∗)-matrix
of F . We can construct the desired linear depth-2 circuit computing Mx as follows. Take a
completion B of A with rank(B) = mr(A). By the definition of completions, the ith row bi

of B has the form bi = ai ⊕pi, where ai is the ith row of A with all stars set to 0, and pi is a
(0, 1)-vector having no 1’s in positions, where this row of A has non-stars. The ith row mi of
the original (0, 1)-matrix M is of the form mi = ai ⊕ m′

i, where m′
i is a (0, 1)-vector which

coincides with mi in all positions, where the ith row of A has stars, and has 0’s elsewhere.
Take any r = mr(A) linearly independent rows b1, . . . , br of B, and add r linear gates

computing the scalar products 〈b1,x〉, . . . , 〈br,x〉 over GF2 on the middle layer. Join these
linear gates with all input and all output gates. Note that the ith output gate can compute
both scalar products 〈pi,x〉 and 〈m′

i,x〉 by only using existing direct wires from inputs
x1, . . . , xn to this gate. Hence, using the r linear gates 〈b1,x〉, . . . , 〈br,x〉 on the middle layer,
the ith output gate can also compute the whole scalar product

〈mi,x〉 = 〈ai,x〉 ⊕ 〈m′
i,x〉 = 〈bi,x〉 ⊕ 〈pi,x〉 ⊕ 〈m′

i,x〉 .

We have thus constructed an equivalent linear depth-2 of the same degree and of width
r = mr(AF ).

By Lemma 2, the main question is: How much the width of a circuit F can be smaller than
the min-rank of its matrix AF ? Ideally, we would like to have that width(F ) ≥ ε · mr(AF ):
then the width of the resulting linear circuit would be at most 1/ε times larger than that of
the original circuit F .
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In F has no direct input-output wires, then AF = M , and we have that

width(F ) ≥ rank(M) . (4)

The argument is the same as in the proof of Proposition 1. Since the operator Mx takes
2rank(M) different values, the operator H : {0, 1}n → {0, 1}w computed by w = width(F )
boolean functions on the middle layer of F must take at least so many different values, as
well; hence, the width w must be large enough to fulfill 2w ≥ 2rank(M).

Lemma 3. For every depth-2 circuit F computing a linear operator in n variables, we have

that

width(F ) ≥ n − log2 opt(AF ) .

Hence, the Min-Rank Conjecture implies that width(F ) ≥ ε · mr(AF ).

Proof. Let M be an m-by-n (0, 1)-matrix. Take a depth-2 circuit F of width w computing Mx,
and let A = AF be the corresponding (0, 1, ∗)-matrix. Let H = (h1, . . . , hw) be an operator
computed at the gates on the middle layer, and G = (g1, . . . , gm) an operator computed at
the gates on the output layer. Hence,

Mx = G(x,H(x)) for all x ∈ {0, 1}n.

Fix a vector b ∈ {0, 1}w for which the set

L = {x ∈ {0, 1}n : Mx = G(x, b)}

is the largest one; hence, |L| ≥ 2n−w. Note that the operator G′(x) := G(x, b) must be
consistent with A: its ith component g′i(x) can only depend on input variables xj to which
the ith output gate gi is connected. Hence, L is a solution for A, implying that opt(A) ≥
|L| ≥ 2n−w from which the desired lower bound w ≥ n − log2 opt(A) on the width of F
follows.

Corollary 1. Conjecture 2 implies Conjecture 1.

Proof. Let F be a depth-2 circuit computing a linear operator in n variables. Assuming
Conjecture 2, Lemma 3 implies that ε ·mr(AF ) ≤ n− log2 opt(AF ) ≤ width(F ). By Lemma 2,
the circuit F can be transformed into an equivalent linear depth-2 circuit of the same degree
and width at most mr(AF ) ≤ width(F )/ε.

Hence, together with Valiant’s result, the min-rank conjecture implies that a linear oper-
ator Mx requires a super-linear number of gates in any log-depth circuit over {&,∨,¬}, if
every depth-2 circuit for Mx over {⊕, 1} of width w = O(n/ ln ln n) requires degree nΩ(1).

Finally, let us show that the only “sorrow”, when trying to linearize a depth-2 circuit, is
the possible non-linearity of output gates—non-linearity of gates on the middle layer is no
problem.

Lemma 4. Let F be a depth-2 circuit computing a linear operator. If all gates on the output

layer are linear boolean functions, then F can be transformed into an equivalent linear depth-2
circuit of the same degree and width.
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Proof. Let M be an m-by-n (0, 1)-matrix, and let F be a depth-2 circuit of width w computing
Mx. Let H = (h1, . . . , hw) be the operator H : {0, 1}n → {0, 1}w computed by the gates on
the middle layer. Assume that all output gates of F are linear boolean functions. Let B be
the m-by-n adjacency (0, 1)-matrix of the bipartite graph formed by the direct input-output
wires, and C be the m-by-w adjacency (0, 1)-matrix of the bipartite graph formed by the
wires joining the gates on the middle layer with those on the output layer. Then

Mx = Bx ⊕ C · H(x) for all x ∈ {0, 1}n,

where C · H(x) is the product of the matrix C with the vector y = H(x). Hence,

C · H(x) = Dx (5)

is a linear operator with D = M ⊕ B. Write each vector x = (x1, . . . , xn) as the linear
combination

x =

n∑

i=1

xiei (6)

of unit vectors e1, . . . ,en ∈ {0, 1}n, and replace the operator H computed on the middle layer
by a linear operator

H ′(x) :=
n∑

i=1

xiH(ei) (mod 2) . (7)

Then, using the linearity of the matrix-vector product, we obtain that (with all sums mod 2):

C · H(x) = D ·
(∑

xiei

)
by (5) and (6)

=
∑

xiDei linearity

=
∑

xiC · H(ei) by (5)

= C ·
( ∑

xiH(ei)
)

linearity

= C · H ′
(∑

xiei

)
by (7)

= C · H ′(x) by (6) .

Hence, we again have that Mx = Bx ⊕ C · H ′(x), meaning that the obtained linear circuit
computes the same linear operator Mx.

3 Bounds on opt(A)

Recall that opt(A) is the largest possible number of vectors in a solution for a given (0, 1, ∗)-
matrix A. The simplest properties of this parameter are summarized in the following propo-
sition.

Proposition 2. Let A be an m-by-n (0, 1, ∗)-matrix. If A′ is obtained by removing some rows

of A, then opt(A′) ≥ opt(A). If A = [B,C] where B is an m-by-p submatrix of A for some

1 ≤ p ≤ n, then

opt(B) · opt(C) ≤ opt(A) ≤ opt(B) · 2n−p .
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Proof. The first claim opt(A′) ≤ opt(A) is obvious, since addition of new equations can only
decrease the number of solutions in any system of equations.

To prove opt(A) ≤ opt(B) · 2n−q, take an optimal solution LA = {x : Mx = G(x)} for A;
hence, |LA| = opt(A). Fix a vector b ∈ {0, 1}n−p for which the set

LB = {y ∈ {0, 1}p : (y, b) ∈ LA}

is the largest one; hence, |LB| ≥ opt(A)/2n−p. The completion M of A has the form M =
[M ′,M ′′], where M ′ is a completion of B and M ′′ is a completion of C. If we define an
operator G′ : {0, 1}p → {0, 1}m by

G′(y) := G(y, b) ⊕ M ′′b ,

then M ′y = G′(y) for all y ∈ LB. Hence, LB is a solution for B, implying that opt(A) ≤
|LB | · 2n−p ≤ opt(B) · 2n−p.

To prove opt(A) ≥ opt(B) · opt(C), let LB = {y ∈ {0, 1}p : M ′y = G′(y)} be an optimal
solution for B, and let LC = {z ∈ {0, 1}n−p : M ′′z = G′′(z)} be an optimal solution for C.
For any pair x = (y,z) ∈ LB × LC , we have that Mx = G(x), where M = [M ′,M ′′] and
G(y,z) := G′(y) ⊕ G′′(z). Hence, the set LB × LC ⊆ {0, 1}n is a solution for A, implying
that opt(B) · opt(C) = |LB × LC | ≤ opt(A), as claimed.

Let A be an m-by-n (0, 1, ∗)-matrix. The min-rank conjecture claims that the largest
number opt(A) of vectors in a solution for A can be upper bounded in terms of the min-rank
of A as opt(A) ≤ 2n−ε·mr(A). The claim is obviously true if the min-rank of A is “witnessed”
by some its (0, 1)-submatrix.

Proposition 3. If A is an m-by-n (0, 1, ∗)-matrix, then opt(A) ≤ 2n−rank(B) for every (0, 1)-
submatrix B of A.

Proof. Let B be a p-by-q (0, 1)-submatrix of A. Since B has no stars, only constant operators
can be consistent with B. Hence, if L ⊆ {0, 1}q is a solution for B, then there must be a
vector b ∈ {0, 1}p such that Bx = b for all x ∈ L. This implies |L| ≤ 2q−rank(B). Together
with Proposition 2, this yields opt(A) ≤ 2q−rank(B) · 2n−q = 2n−rank(B).

The max-rank Mr(A) of a (0, 1, ∗)-matrix A is a maximal possible rank of its completion.
A cover of A is a set X of its lines (rows and columns) covering all stars. Let cov(A) denotes
the smallest possible number of lines in a cover of A.

Lemma 5. For every m-by-n (0, 1, ∗)-matrix A, we have that

opt(A) ≤ 2n−Mr(A)+cov(A) .

Proof. Given a cover X of the stars in A by lines, remove all these lines, and let AX be the
resulting (0, 1)-submatrix of A. It is known (see [5]) that

Mr(A) = min
X

rank(AX) + |X| ,

where the minimum is over all covers X of A. (For (0, ∗)-matrices A this equality is the
well-known Frobenius–König theorem stating that cov(A) is the largest number of ∗-entries
of A, no two on the same line). Fix a set X of lines achieving this minimum. For such a
choice of X, Proposition 3 yields opt(A) ≤ 2n−rank(AX), where rank(AX) = Mr(A) − |X| ≥
Mr(A) − cov(A).
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Given a depth-2 circuit F , let m(F ) denote the largest number of wires in a matching
formed by direct input-output wires.

Corollary 2. Every depth-2 circuit F computing a linear operator can be transformed into

an equivalent linear depth-2 circuit F ′ of the same degree and

width(F ′) ≤ width(F ) + m(F ) .

Proof. Let AF be the (0, 1, ∗)-matrix of F . By Lemmas 3 and 5, we have that width(F ) ≥
Mrk(AF ) − cov(AF ) where, by Frobenius–König theorem, cov(AF ) = m(F ). By Lemma 2,
the circuit F can be transformed into an equivalent linear depth-2 circuit of the same degree
and width at most mr(AF ) ≤ Mrk(AF ) ≤ width(F ) + m(F ).

4 Row and column min-rank

We are now going to show that the min-rank conjecture holds for a stronger version of min-
rank—row min-rank and column min-rank.

If A is a (0, 1, ∗)-matrix of min-rank r then, for every assignment of constants to stars,
the resulting (0, 1)-matrix will have r linearly independent columns as well as r linearly
independent rows. However, for different assignments these columns/rows may be different.
It is natural to ask whether the min-rank conjecture is true if the matrix A has r columns
(or r rows) that remain linearly independent under any assignment of constants to stars?

Namely, say that (0, 1, ∗)-vectors are dependent if they can be made linearly dependent
over GF2 by setting each ∗-entry to a constant 0 or 1; otherwise, the vectors are independent.

Remark 4. The dependence of (0, 1, ∗)-vectors can be defined by adding to {0, 1} a new
element ∗ satisfying α ⊕ ∗ = ∗ ⊕ α = ∗ for α ∈ {0, 1, ∗}. Then a set of (0, 1, ∗)-vectors is
dependent iff some its subset sums up to a {0, ∗}-vector. In particular, if in each coordinate
at least one of the vectors contains at least one ∗, then the vectors cannot be independent,
just because then all vectors sum up to an all-∗ vector.

Remark 5. A basic fact of Linear Algebra, leading to Gauss-Algorithm, is that linear inde-
pendence of vectors x,y ∈ {0, 1}n implies that the vectors x+y and y are linear independent
as well. For (0, 1, ∗)-vectors this does not hold anymore. Take, for example, x = (0, 1) and
y = (1, ∗). Then x ⊕ y = (1, ∗) = y.

For a (0, 1, ∗)-matrix A, define its column min-rank mrcol(A) as the maximum number of
independent columns, and its row min-rank mrrow(A) as the maximum number of indepen-
dent rows. In particular, both mrrow(A) and mrcol(A) are at least r if A contains an r × r
“triangular” submatrix, that is, a submatrix with zeroes below (or above) the diagonal and
ones on the diagonal:

∆ =





1 ~ ~ ~

0 1 ~ ~

0 0 1 ~

0 0 0 1



 ,

where ~ ∈ {0, 1, ∗}. It is clear that neither mrcol(A) nor mrrow(A) can exceed the min-rank
of A. Later (Lemma 10 below) we will give an example of a matrix A where both mrcol(A)
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and mrrow(A) are by a logarithmic factor smaller than mr(A). The question about a more
precise relation between these parameters remains open (see Problem 1).

Albeit for (0, 1)-matrices we always have that their row-rank coincides with column-rank,
for (0, 1, ∗)-matrices this is no more true. In particular, for some (0, 1, ∗)-matrices A, we have
that mrrow(A) 6= mrcol(A).

Example 1. Consider the following (0, 1, ∗)-matrix:

A =




1 1 ∗ 1
1 0 1 ∗
1 ∗ 0 0



 .

Then mrrow(A) = mr(A) = 3 but mrcol(A) = 2. To see that mrrow(A) = 3, just observe that
the rows cannot be made linearly dependent by setting the stars to 0 or 1: the sum of all
three vectors is not a {0, ∗}-vector because of the 1st column, and the pairwise sums are not
{0, ∗}-vectors because, for each pair of rows there is a column containing 0 and 1. To see
that mrcol(A) = 2, observe that the last three columns are dependent (each row has a star).
Moreover, for every pair of these columns, there is an assignment of constants to stars such
that either the resulting (0, 1)-columns are equal or their sum equals the first column.

We first show that the min-rank conjecture holds with “min-rank” replaced by “column
min-rank”.

Theorem 1 (Column min-rank). Let A be a (0, 1, ∗)-matrix with n columns and of column

min-rank r. Then opt(A) ≤ 2n−r.

Proof. Any m-by-n (0, 1, ∗)-matrix B of column min-rank r must contain an m×r submatrix
A of min-rank r. Since opt(B) ≤ opt(A) · 2n−r (Proposition 2), it is enough to show that
opt(A) ≤ 1 for all m-by-r (0, 1, ∗)-matrices A of min-rank r.

To do this, let L be a solution for A. Then there is an operator G = (g1, . . . , gm) :
{0, 1}r → {0, 1}m such that G is consistent with A and 〈ai,x〉 = gi(x) holds for all x ∈ L
and all i = 1, . . . ,m. Here a1, . . . ,am are the rows of A with all stars set to 0.

For the sake of contradiction, assume that |L| ≥ 2 and fix any two vectors x 6= y ∈ L.
Our goal is to construct a vector c ∈ {0, 1}m and a completion M of A such that Mx =
My = c. Since M must have rank r, this will give the desired contradiction, because at most
2r−rank(M) = 20 = 1 vectors z can satisfy Mz = c.

If M is a completion of A = (aij), then its ith row must have the form mi = ai⊕pi where
pi ∈ {0, 1}n is some vector with no 1’s in positions where the ith row of A has no stars. To
construct the desired vector pi for each i ∈ [m], we consider two possible cases. (Recall that
the vectors x and y are fixed.)

Case 1: 〈ai,x〉 = 〈ai,y〉. In this case we can take pi = 0 and ci = 〈ai,x〉. Then 〈mi,x〉 =
〈mi,y〉 = 〈ai,x〉 = ci, as desired.

Case 2: 〈ai,x〉 6= 〈ai,y〉. In this case we have that gi(x) 6= gi(y), that is, the vectors x and
y must differ in some position j where the ith row of A has a star. Then we can take pi := ej

(the jth unit vector) and ci := 〈ai,x〉 ⊕ xj. With this choice of pi, we again have

〈mi,x〉 = 〈ai,x〉 ⊕ 〈pi,x〉 = 〈ai,x〉 ⊕ 〈ej,x〉 = 〈ai,x〉 ⊕ xj = ci

and, since 〈ai,x〉 6= 〈ai,y〉 and xj 6= yj,

〈mi,y〉 = 〈ai,y〉 ⊕ 〈pi,y〉 = 〈ai,y〉 ⊕ 〈ej ,y〉 = 〈ai,x〉 ⊕ xj = ci .
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Example 2. It is not difficult to verify that, for the (0, 1, ∗)-matrix A given by (3), we have
that mrcol(A) = mr(A) = 2. Hence, no linear solution of the system of semi-linear equations
(2) can have more than lin(A) = 26−2 = 32 vectors. Theorem 1 implies that, in fact, no

solution can have more than this number of vectors.

The situation with row min-rank is more complicated. In this case we are only able to
prove an upper bound opt(A) ≤ 2n−r under an additional restriction that the star-positions
in the rows of A form a chain under set-inclusion.

Recall that (0, 1, ∗)-vectors are independent if they cannot be made linearly dependent
over GF2 by setting stars to constants. The row min-rank of a (0, 1, ∗)-matrix is the largest
number r of its independent rows. Since adding new rows can only decrease opt(A), it is
enough to consider r-by-n (0, 1, ∗)-matrices A with mr(A) = r.

If r = 1, that is, if A consists of just one row, then opt(A) ≤ 2n−1 = 2n−r holds. Indeed,
since mr(A) = 1, this row cannot be a (0, ∗)-row. So, there must be at least one 1 in, say, the
1st position. Let LA = {x : 〈a1,x〉 = g1(x)} be a solution for A, where a1 the row of A with
all stars set to 0. Take the unit vector e1 = (1, 0, . . . , 0) and split the vectors in {0, 1}n into
2n−1 pairs {x,x⊕ e1}. Since the boolean function g1 cannot depend on the first variable x1,
we have that gi(x ⊕ e1) = gi(x). But 〈ai,x ⊕ e1〉 = 〈ai,x〉 ⊕ 1 6= 〈ai,x〉. Hence, at most
one of the two vectors x and x ⊕ e1 from each pair {x,x ⊕ e1} can lie in LA, implying that
|LA| ≤ 2n−1.

To extend this argument for matrices with more rows, we need the following definition.
Let A = (aij) be an r-by-n (0, 1, ∗)-matrix, and a1, . . . ,ar be the rows of A with all stars set to
0. Let Si = {j : aij = ∗} be the set of star-positions in the ith row of A. It will be convenient
to describe the star-positions by diagonal matrices. Namely, let Di be the incidence matrix
of stars in the ith row of A. That is, Di is a diagonal n-by-n (0, 1)-matrix whose jth diagonal
entry is 1 iff j ∈ Si. In particular, Dix = 0 means that xj = 0 for all j ∈ Si.

Definition 2. A matrix A is isolated if there exist vectors z1, . . . ,zr ∈ {0, 1}n such that, for
all 1 ≤ i ≤ r, we have Dizi = 0 and

〈aj ,zi〉 =

{
1 if j = i;

0 if j < i.

If D1zi = . . . = Dizi = 0, then the matrix is strongly isolated.

Lemma 6. If A is a strongly isolated r-by-n (0, 1, ∗)-matrix, then opt(A) ≤ 2n−r.

Proof. Let a1, . . . ,ar be the rows of A with all stars set to 0. We prove the lemma by
induction r. The basis case r = 1 is already proved above. For the induction step r − 1 7→ r,
let

LA = {x ∈ {0, 1}n : 〈ai,x〉 = gi(x) for all i = 1, . . . , r}
be an optimal solution for A, and let B be a submatrix of A consisting of its first r − 1 rows.
Then

LB = {x ∈ {0, 1}n : 〈ai,x〉 = gi(x) for all i = 1, . . . , r − 1}
is a solution for B. Since A is strongly isolated, the matrix B is strongly isolated as well.
The induction hypothesis implies that |LB | ≤ 2n−(r−1).
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Let z = zr be the r-th isolating vector. For each row i = 1, . . . , r − 1, the conditions
〈z,ai〉 = 0 and Diz = 0 imply that 〈(x ⊕ z),ai〉 = 〈x,ai〉 and gi(x ⊕ z) = gi(x). That is,

x ∈ LB iff x ⊕ z ∈ LB .

For the rth row, the conditions 〈z,ar〉 = 1 and Drz = 0 imply that 〈(x ⊕ z),ar〉 6= 〈x,ar〉
whereas gr(x ⊕ z) = gr(x). That is,

x ∈ LA iff x ⊕ z 6∈ LA.

Hence, for every vector x ∈ LB , only one of the vectors x and x ⊕ z can belong to LA,
implying that opt(A) = |LA| ≤ |LB |/2 ≤ 2n−r.

We are now going to show that (0, 1, ∗)-matrices with some conditions on the distribution
of stars in them are strongly isolated. For this, we need the following two facts. A projection

of a vector x = (x1, . . . , xn) onto a set of positions I = {i1, . . . , ik} is the vector

x�I= (xi1 , . . . , xik) .

A (0, 1, ∗)-vector x is independent of (0, 1, ∗)-vectors y1, . . . ,yk if no completion of x can be
written as a linear combination of some completions of these vectors.

Proposition 4. Let x,y1, . . . ,yk be (0, 1, ∗)-vectors, and I = {i : xi 6= ∗}. If x is independent

of y1, . . . ,yk, then x�I is also independent of y1�I , . . . ,yk�I .

Proof. Assume that x�I is dependent on the projections y1 �I , . . . ,yk �I . Then there is an
assignment of stars to constants in the vectors yi such that x�I can be written as a linear
combination of the projections y′

1�I , . . . ,y
′
k�I on I of the resulting (0, 1)-vectors y′

1, . . . ,y
′
k.

But since x has stars in all positions outside I, these stars can be set to appropriate constants
so that the resulting (0, 1)-vector x′ will be a linear combination of y′

1, . . . ,y
′
k, a contradiction.

Proposition 5. Let a ∈ {0, 1}n be a vector and M be an m-by-n (0, 1)-matrix of rank

r ≤ n − 1. If a is linearly independent of the rows of M , then there exists a set Z ⊆ {0, 1}n

of |Z| ≥ 2n−r−1 vectors such that, for all z ∈ Z, we have 〈z,a〉 = 1 and Mz = 0.

Proof. Let Z = {z : Mz = 0, 〈a,z〉 = 1}, and let M ′ be the matrix M with an additional
row a. Note that Z = ker(M) \ ker(M ′). Since rank(M ′) = rank(M) + 1 ≤ n, we have that
|ker(M ′)| = |ker(M)|/2, implying that

|Z| = |ker(M) \ ker(M ′)| = |ker(M)|/2 ≥ 2n−r−1 .

Lemma 7. If A is an r-by-n (0, 1, ∗)-matrix with mr(A) = r, then A is isolated.

Proof. Let a1, . . . ,ar be the rows of A with all stars set to 0. Let I ⊆ {1, . . . , n} be the set of
all star-free positions in the ith row of A, and consider an (r−1)-by-|I| (0, 1)-matrix Mi whose
rows are the projections a′

j = aj�I of vectors aj with j 6= i onto the set I. By Proposition 4,
the projection a′

i = ai�I of the ith vector ai onto I cannot be written as a linear combination
of the rows of Mi; hence, rank(Mi) ≤ |I| − 1. Since 2|I|−rank(Mi)−1 ≥ 20 = 1, Proposition 5
gives us a vector z′

i ∈ {0, 1}|I| such that 〈z′
i,a

′
i〉 = 1 and 〈z′

i,a
′
j〉 = 0 for all j 6= i. But

then zi := (z′
i,0) is the desired (0, 1)-vector: Dizi = Di · 0 = 0, 〈zi,ai〉 = 〈z′

i,a
′
i〉 = 1, and

〈zi,aj〉 = 〈z′
i,a

′
j〉 = 0 for all rows j 6= i.
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Say that an r-by-n (0, 1, ∗)-matrix A is star-monotone if the sets S1, . . . , Sr of star-
positions in its rows form a chain, that is, if S1 ⊆ S2 ⊆ . . . ⊆ Sr.

Theorem 2 (Star-monotone matrices). Let A be a (0, 1, ∗)-matrix with n columns. If A
contains an r-by-n star-monotone submatrix of min-rank r, then opt(A) ≤ 2n−r.

Proof. Since addition of new rows can only decrease the size of a solution, we can assume
that A itself is an r-by-n star-monotone matrix of min-rank r. Let a1, . . . ,ar be the rows of
A with all stars set to 0. By Lemma 7, the matrix A is isolated. That is, there exist vectors
z1, . . . ,zr ∈ {0, 1}n such that: 〈ai,zj〉 = 1 iff i = j, and Dizi = 0 for all 1 ≤ i ≤ r. Since
Sj ⊆ Si for all j < i, this last condition implies that Djzi = 0 for all 1 ≤ j < i ≤ r, that is,
A is strongly isolated. Hence, we can apply Lemma 6.

5 Solutions as independent sets in Cayley graphs

Let A = (aij) be an m-by-n (0, 1, ∗)-matrix. In the definition of solutions L for A we take a
completion M of A and an operator G(x), and require that Mx = G(x) for all x ∈ L. The
operator G = (g1, . . . , gm) can be arbitrary—the only restriction is that its ith component gi

can only depend on variables corresponding to stars in the ith row of A. In this section we
show that the actual form of operators G can be ignored—only star-positions are important.
To do this, we associate with A the following set of “forbidden” vectors:

KA = {x ∈ {0, 1}n : ∃i ∈ [m] Dix = 0 and 〈ai,x〉 = 1} ,

where Di is the incidence n-by-n (0, 1)-matrix of stars in the ith row of A, and ai is the ith
row of A with all stars set to 0. Hence, KA is a union KA =

⋃m
i=1 Ki of m affine spaces

Ki =

{
x :

(
Di

ai

)
x =

(
0

1

)}
.

For sets of vectors S, T ⊆ {0, 1}n, let

S + T = {x ⊕ y : x ∈ S,y ∈ T} .

Theorem 3. A set L ⊆ {0, 1}n is a solution for A if and only if (L + L) ∩ KA = ∅.

Proof. Observe that the sum x⊕ y of two vectors belongs to KA iff these vectors coincide on
all stars of at least one row of A such that 〈ai,x〉 6= 〈ai,y〉. By this observation, we see that
the condition (L + L) ∩ KA = ∅ is equivalent to:

∀x,y ∈ L ∀i ∈ [m] : Dix = Diy implies 〈ai,x〉 = 〈ai,y〉. (8)

We now turn to the actual proof of Theorem 3.
(⇒) Let L be a solution for A. Hence, there is a consistent with A operator G =

(g1, . . . , gm) such that 〈ai,x〉 = gi(x) for all x ∈ L and all rows i ∈ [m]. To show that then
L must satisfy (8), take any two vectors x,y ∈ L and assume that Dix = Diy. This means
that vectors x and y must coincide in all positions where the ith row of A has stars. Since gi

can only depend on these positions, this implies gi(x) = gi(y), and hence, 〈ai,x〉 = 〈ai,y〉.
(⇐) Assume that L ⊆ {0, 1}n satisfies (8). We have to show that then there exists a

consistent with A operator G = (g1, . . . , gm) such that 〈ai,x〉 = gi(x) for all x ∈ L and
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i ∈ [m]; here, as before, ai is the ith row of A with all stars set to 0. The ith row of A splits
the set L into two subsets

L0
i = {x ∈ L : 〈ai,x〉 = 0} and L1

i = {x ∈ L : 〈ai,x〉 = 1} .

Condition (8) implies that Dix 6= Diy for all (x,y) ∈ L0
i × L1

i . That is, if Si is the set of
star-positions in the ith row of A, then the projections x�Si

of vectors x in L0
i onto these

positions must be different from all the projections y�Si
of vectors y in L1

i . Hence, we can
find a boolean function gi : {0, 1}Si → {0, 1} taking different values on these two sets of
projections. This function will then satisfy gi(x) = 〈ai,x〉 for all x ∈ L.

A coset of a set of vectors L ⊆ {0, 1}n is a set v + L = {v ⊕ x : x ∈ L} with v ∈ {0, 1}n.
Since (v + L) + (v + L) = L + L, Theorem 3 implies:

Corollary 3. Every coset of a solution for a (0, 1, ∗)-matrix A is also a solution for A.

Remark 6. A Cayley graph over the Abelian group ({0, 1}n,⊕) generated by a set K ⊆
{0, 1}n of vectors has all vectors in {0, 1}n as vertices, and two vectors x and y are joined by
an edge iff x ⊕ y ∈ K. Theorem 3 shows that solutions for a (0, 1, ∗)-matrix A are precisely
the independent sets in a Cayley graph generated by a special set KA.

Remark 7. If A is an m-by-n (0, 1)-matrix, that is, has no stars at all, then KA = {x : Ax 6=
0}. Hence, in this case, a set L ⊆ {0, 1}n is a solution for A iff there is a vector b ∈ {0, 1}m

such that Ax = b for all x ∈ L. That is, in this case, ker(A) is an optimal solution.

6 Structure of linear solutions

By Theorem 3, a set of vectors L ⊆ {0, 1}n is a solution for an m-by-n (0, 1, ∗)-matrix A if
and only if (L+L)∩KA = ∅, where KA ⊆ {0, 1}n is the set of “forbidden” vectors defined by

KA = {x ∈ {0, 1}n : ∃i ∈ [m] Dix = 0 and 〈ai,x〉 = 1} ;

here D1, . . . ,Dm are diagonal n × n (0, 1)-matrices corresponding the stars in the matrix A,
and a1, . . . ,am are the rows of A with all stars set to 0. Thus, linear solutions are precisely
vector subspaces of {0, 1}n avoiding the set KA. Which subspaces these are?

Each subspace of {0, 1}n is a kernel ker(H) = {x : Hx = 0} of some (0, 1)-matrix H.
Hence, linear solution for A are given by matrices H such that Hx 6= 0 for all x ∈ KA; in this
case we say that the matrix H separates KA from zero. By the span-matrix of a (0, 1)-matrix
H we will mean the matrix Ĥ whose rows are all linear combinations of the rows of H.

Lemma 8. Let A be a (0, 1, ∗)-matrix. Then

(i) Every completion M of A separates KA from zero.

(ii) A (0, 1)-matrix H separates KA from zero iff Ĥ contains a completion of A.

Proof. (i) For the sake of contradiction, assume that some vector x ∈ KA lies in the kernel of
some completion M of A. Then Mx = 0, Dix = 0 and 〈ai,x〉 = 1 for some i. The ith row
of M has the form mi = ai ⊕ pi where Dipi = pi. Since Dix = 0, we have that 〈pi,x〉 = 0.
Hence, 〈mi,x〉 = 〈ai,x〉 ⊕ 〈pi,x〉 = 〈ai,x〉 = 1, a contradiction with Mx = 0.
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(ii) To prove (⇐), suppose that some completion M of A is a submatrix of Ĥ. Let x ∈ KA.
By (i), we know that then Mx 6= 0, and hence, also Ĥx 6= 0. Since Hx = 0 would imply
Ĥx = 0, we also have that Hx 6= 0.

To prove (⇒), suppose that H separates KA. Then, for every row i ∈ [m] and every
vector x ∈ {0, 1}n, Hx = 0 and Dix = 0 imply that 〈ai,x〉 = 0.

Claim 1. Let a ∈ {0, 1}n and M be a (0, 1)-matrix with n columns. If for every x ∈ {0, 1}n,

Mx = 0 implies 〈a,x〉 = 0, then a is a linear combination of rows of M .

Proof. Extend M to a matrix M ′ by adding a new row a. The condition implies that
ker(M ′) = ker(M). Hence, rank(M ′) = rank(M), implying that a must be linearly dependent
on the rows of M .

Hence, for each i, the vector ai must lie in the vector space spanned by the rows of H
and Di, that is, ai = α>

i H ⊕β>
i Di for some vectors αi and βi. In other words, the ith linear

combination α>
i H of the rows of H is the ith row ai ⊕ β>

i Di of a particular completion M

of A, implying that M is a submatrix of Ĥ, as desired.

Theorem 4. Let A be (0, 1, ∗)-matrix. A linear subspace is a solution for A if and only if it

is contained in a kernel of some completion of A.

Proof. (⇐): If a linear subspace L ⊆ {0, 1}n lies in a kernel of some completion of A, then L
is a solution for A, by Lemma 8(i).

(⇒): Let L ⊆ {0, 1}n be an arbitrary linear solution for A. Then L + L = L and
L∩KA = ∅. Take a (0, 1)-matrix H with L = ker(H). Since ker(H)∩KA = ∅, the matrix H
separates KA from zero. Lemma 8(ii) implies that then Ĥ must contain some completion M
of A. But then L = ker(H) = ker(Ĥ) ⊆ ker(M), as claimed.

Corollary 4. For any (0, 1, ∗)-matrix A we have that lin(A) = 2n−mr(A).

Proof. By Theorem 4, lin(A) is the maximum of |ker(M)| = 2n−rank(M) over all completions
M of A. Since mr(A) is the minimum of rank(M) over all completions M of A, we are
done.

Corollary 5 (Alternative definition of min-rank). For every (0, 1, ∗)-matrix A we have

mr(A) = min{rank(H) : H separates KA from zero} .

Proof. Let R be the smallest possible rank of a (0, 1)-matrix separating KA from zero. To
prove mr(A) ≥ R, let M be a completion of A with rank(M) = mr(A). By Lemma 8(i), the
matrix M separates KA form zero. Hence, R ≤ rank(M) = mr(A).

To prove mr(A) ≤ R, let H be a (0, 1)-matrix such that H separates KA form zero and
rank(H) = R. By Lemma 8(ii), the matrix Ĥ must contain a completion M of A. Hence,
mr(A) ≤ rank(M) ≤ rank(Ĥ) = rank(H) = R.
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7 Structure of general solutions

The following theorem says that non-linear solutions must be “very non-linear”: they cannot
contain large linear subspaces. Recall that in Valiant’s setting (cf. Lemma 1) we may assume
that each row of a (0, 1, ∗)-matrix contains at most s = nδ stars, where δ > 0 is an arbitrary
small constant.

Theorem 5. Let L ⊆ {0, 1}n be a solution for an m-by-n (0, 1, ∗)-matrix A, and let s be the

maximum number of stars in a row of A. If L contains an affine subspace of dimension s+1,
then some coset of L lies in a linear solution for A.

Proof. Take an arbitrary solution L′ for A, and suppose that L′ contains an affine subspace
v + W of dimension s + 1. By Corollary 3, the coset L = v + L′ of L′ is also a solution for A
and contains the vector space W .

Since L is a solution for A, W is a linear solution for A as well. Hence, by Theorem 4, W
is contained in a kernel of some completion M of A. Our goal is to show that then the entire
solution L must be contained in ker(M). To show this, we will use the following simple fact.

Claim 2. Let W ⊆ {0, 1}n be a linear subspace of dimension k+1. Then, for every k-element

subset S ⊆ [n] and for every vector y ∈ {0, 1}n, there is a vector x ∈ W such that x 6= 0 and

y�S= x�S.

Proof of Claim. For a vector y ∈ {0, 1}n and a k-element subset S ⊆ {1, . . . , n}, consider the
n − k dimensional subspace V = {x : y�S= x�S} . Then

dim (V ∩ W ) = dim V + dim W − dim (V + W ) ≥ (n − k) + k + 1 − n = 1 > 0,

and hence, |V ∩ W | ≥ 2.

Assume now that L 6⊆ ker(M), and take a vector y ∈ L \ ker(M). Since y 6∈ ker(M), we
have that 〈mi,y〉 = 1 for at least one row mi of M . Let S be the set of star-positions in the
ith row of A (hence, |S| ≤ s), and let ai be this row of A with all stars set to 0. By Claim 2,
there must be a vector x ∈ W ⊆ L ∩ ker(M) with y�S= x�S, that is, Di(x ⊕ y) = 0. But
x ∈ ker(M) implies that 〈mi,x〉 = 0. Hence, 〈mi,x⊕ y〉 = 〈mi,x〉⊕ 〈mi,y〉 = 〈mi,y〉 = 1.
Since the vector mi can only differ from ai is star-positions of the ith row of A and, due to
Di(x⊕ y) = 0, the vector x⊕ y has no 1’s in these positions, we obtain that 〈ai,x⊕ y〉 = 1.
Hence, the vector x ⊕ y belongs to KA, a contradiction with x,y ∈ L.

This completes the proof of Theorem 5.

8 Relation to codes

Let 1 ≤ r < n be integers. A (binary) error-correcting code of minimal distance r + 1 is a
set C ⊆ {0, 1}n of vectors, any two of which differ in at least r + 1 coordinates. A code is
linear if it forms a linear subspace over GF2. The question on how good linear codes are,
when compared to non-linear ones, is a classical problem in Coding Theory. We now will
show that this is just a special case of a more general “opt(A) versus lin(A)” problem for
(0, 1, ∗)-matrices, and that Min-Rank Conjecture in this special case holds true.

An (n, r)-code matrix, or just an r-code matrix if the number n of columns is not important,
is a (0, 1, ∗)-matrix with n columns and m = (r + 1)

(
n
r

)
rows, each of which consists of n − r
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stars and at most one 0. The matrix is constructed as follows. For every r-element subset S
of [n] = {1, . . . , n} include in A a block of r + 1 rows a with ai = ∗ for all i 6∈ S, ai ∈ {0, 1}
for all i ∈ S, and |{i ∈ S : ai = 0}| ≤ 1. That is, each of these rows has stars outside S and
has at most one 0 within S. For r = 3 and S = {1, 2, 3} such a block looks like

AS =





1 1 1 ∗ · · · ∗
0 1 1 ∗ · · · ∗
1 0 1 ∗ · · · ∗
1 1 0 ∗ · · · ∗



 .

A Hamming ball around the all-0 vector 0 is defined by

Ball(r) = {x ∈ {0, 1}n : 0 ≤ |x| ≤ r} ,

where |x| = x1 + · · · + xn is the number of 1’s in x.

Observation 1. If A is an r-code matrix, then KA = Ball(r) \ {0}.
Proof. It is easy to see that no vector x ∈ {0, 1}r , x 6= 0 can be orthogonal to all r + 1
vectors in {0, 1}r with at most one 0. By this observation, a vector x belongs to KA iff there
is an r-element set S ⊆ [n] of positions such that x�S 6= 0 and x�S= 0, that is, iff x 6= 0 and
x ∈ Ball(r).

Observation 2. If A is an (n, r)-code matrix, then the solutions for A are error-correcting

codes of minimal distance r + 1, and linear solutions for A are linear codes.

Proof. We have (L + L) ∩ (Ball(r) \ {0}) = ∅ iff |x ⊕ y| ≥ r + 1 for all x 6= y ∈ L, that is, iff
every two vectors x 6= y ∈ L differ in at least r + 1 positions. Hence, every solution for an
r-code matrix A is a code of minimal distance at least r + 1, and linear solutions are linear
codes.

Lemma 9. For code matrices, the min-rank conjecture holds with a constant ε > 0.

Proof. Let A be an (n, r)-code matrix; hence, KA = Ball(r) \ {0}. Set t := b(r − 1)/2c.
Since |x ⊕ y| ≤ 2t < r for all x,y ∈ Ball(t), the sum of any two vectors x 6= y from Ball(t)
lies in KA, implying that Ball(t) is a clique in the Cayley graph generated by KA. Since,
by Remark 6, solutions for A are independent sets in this graph, and since in any graph the
number of its vertices divided by the clique number is an upper bound on the size of any
independent set, we obtain:

opt(A) ≤ 2n/|Ball(t)| = 2n
/ t∑

i=0

(
n

i

)
, (9)

which is the well-known Hamming bound for codes. On the other hand, Gilbert-Varshamov
bound says that linear codes in {0, 1}n of dimension k and minimum distance d exist, if

d−2∑

i=0

(
n − 1

i

)
< 2n−k .

Hence,

lin(A) ≥ 2n
/ r∑

i=0

(
n

i

)
. (10)

Together with (9), this implies that the inequality (1) holds with ε about 1/2.
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The example of code matrices also shows that the gap between min-rank and row/column
min-rank may be at least logarithmic in n.

Lemma 10. If A is an (n, r)-code matrix, then mr(A) = Ω(r ln(n/r)) but both row and

column min-ranks of A do not exceed r + 1.

Proof. To prove mr(A) = Ω(r ln(n/r)), recall that KA = Ball(r) \ {0}. Hence, Corollary 5
implies that mr(A) is the smallest possible rank of a (0, 1)-matrix H such that ker(H) ∩
Ball(r) ⊆ {0}. On the other hand, for any such matrix H, its kernel L = ker(H) is a (linear)
code of minimal distance at least r+1 containing |L| = 2n−rank(H) vectors. Since, by Hamming
bound (9), no code L of distance at least r+1 can have more than N = 2n/(n/r)O(r) vectors,
we have that

rank(H) = n − log2 |L| ≥ n − log2 N = Ω(r ln(n/r)) .

To prove that mrcol(A) ≤ r + 1, suppose that A contains some m × k submatrix B of
min-rank k. Since all k columns must be independent, at least one row b of B must be ∗-free
and contain an odd number |b| of 1’s. But every row of A (and hence, also b) can contain at
most one 0, implying that |b| ≥ k − 1. Together with |b| ≤ r, this implies that k ≤ r + 1.

To prove that mrrow(A) ≤ r + 1, recall that each row of A consists of n − r stars and at
most one 0; the remaining r (or r − 1) entries are 1’s. Suppose now that A contains some set
X = {x1, . . . ,xk} of independent rows. That is, no subset of these rows can be made linearly
dependent by setting ∗’s to 0 or 1. The rows in X must be, in particular, pairwise independent.
This means that for every pair of rows in X we must have the following configuration:

(
· · · 0 · · ·
· · · 1 · · ·

)
.

Moreover, since none of the rows can have more than one 0, the following two configurations

(
· · · 0 · · ·
· · · 0 · · ·

)
and

(
· · · 0 · · · ∗ · · ·
· · · ∗ · · · 0 · · ·

)

are forbidden. Hence, there must be k = |X| different columns i1 < i2 < . . . < ik such that,
for every row xj ∈ X, we have that xj(ij) = 0 and xj+1(ij) = . . . = xk(ij) = 1. If, say, k = 4
then A must contain the following submatrix





0
1 0
1 1 0
1 1 1 0





where the entries above the diagonal belong to {1, ∗}. But then the last row xk must have at
least k − 1 ones. Since no row can have more than r ones, this implies |X| = k ≤ r + 1.

9 Conclusion and open problems

In this paper we rise a conjecture about systems of semi-linear equations and show its relation
to proving super-linear lower bounds for log-depth circuits. We then give a support for the
conjecture by proving that some its weaker versions are true. We also show that solutions are

19



independent sets in particular Cayley graphs, thus turning the conjecture in a more general
(combinatorial) setting. Using this, we prove several structural properties of sets of solutions
that might be useful when tackling the original conjecture.

We defined solutions for a given m-by-n (0, 1, ∗)-matrix A as sets L ⊆ {0, 1}n of vectors
x satisfying a system of equations

〈ai,x〉 = gi(Dix) i = 1, . . . ,m , (11)

where ai is the ith row of A with all stars replaced by 0, gi is an arbitrary boolean function,
and Di is a diagonal n-by-n (0, 1)-matrix corresponding to stars in the ith row of A. We have
also shown (see Remark 6) that solution for A are precisely the independent sets in a Cayley
graph over the Abelian group ({0, 1}n,⊕) generated by a special set of vectors

KA = {x : ∃i Dix = 0 and 〈ai,x〉 = 1} . (12)

The following two questions about possible generalizations of the min-rank conjecture natu-
rally arise:

1. What if instead of diagonal matrices Di in (11) we would allow other (0, 1)-matrices?

2. What if instead of special generating sets KA, defined by (12), we would allow other
generating sets?

The following two examples show that the min-rank conjecture cannot be fetched too far: its
generalized versions are false.

Example 3 (Bad generating sets K). Let G be a Cayley graph generated by the set K ⊆
{0, 1}n of all vectors with more than n − 2

√
n ones. If L ⊆ {0, 1}n consist of all vectors with

at most n/2 −√
n ones, then (L + L) ∩ K = ∅, that is, L is an independent set in G of size

|L| ≥ 2n−O(log n). But any linear independent set L′ in G is a vector space of dimension at
most n − 2

√
n. Hence, |L′| ≤ 2n−2

√
n, and the gap |L|/|L′| can be as large as 2Ω(

√
n).

Note, however, that there is a big difference between the set K we constructed and the sets
KA arising form (0, 1, ∗)-matrices A: generating sets KA must be almost “closed downwards”.
In particular, if x ∈ KA then all nonzero vectors, obtained from x by flipping some even
number of its 1’s to 0’s, must also belong to KA. Hence, this example does not refute the
min-rank conjecture as such.

Example 4 (Bad matrices Di). Let us now look what happens if we allow the matrices
D1, . . . ,Dm in the definition of a system of semi-linear equations (11) be arbitrary n × n
(0, 1)-matrices. A completion M of A can then be defined as a (0, 1)-matrix with rows
mi = ai + α>

i Di. Now define mr(A|D1, . . . ,Dr) as the minimal rank of such a completion of
A. Observe that this definition coincides with the “old” min-rank, if we take the Di’s to be
the diagonal matrices corresponding the stars in the ith row of A.

However, Example 3 shows that the min-rank conjecture is false in this generalized setting.
To see why, we can define appropriate matrices A,D1, . . . ,Dm such that the corresponding set
KA defined by (12) consists of vectors with more than n−2

√
n ones: for an arbitrary vector v

with more than n−2
√

n ones just define ai and Di such that the system Dix = 0, 〈ai,x〉 = 1
has v as its only solution.
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Except of the obvious open problem to prove or disprove the linearization conjecture
(Conjecture 1) or the min-rank conjecture (Conjecture 2), there are several more concrete
problems.

We have shown (Lemma 10) that the gap between min-rank and row/column min-ranks
may be as large as ln n. It would be interesting to find (0, 1, ∗)-matrices A with larger gap.

Problem 1. How large the gap mr(A)/max{mrcol(A),mrrow(A)} can be?

The next question concerns the clique number ω(GA) of (that is, the largest number of
vertices in) Cayley graphs GA generated by the sets of the sets KA ⊆ {0, 1}n of the form
(12). By Remark 6, solutions for A are independent sets in this graph. Hence, opt(A) is just
the independence number α(GA) of this graph. Since in any N -vertex graph G we have that
ω(G) · α(G) ≤ N , this yields opt(A) ≤ 2n/ω(GA). On the other hand, it is easy to see that
ω(GA) ≤ 2rank(M), where M is a canonical completion of A obtained by setting all ∗’s to 0:
If C ⊆ {0, 1}n is a clique in GA, then we must have Mx 6= My for all x 6= y ∈ C, because
otherwise the vector x ⊕ y would not belong to KA.

Problem 2. Give an upper bound on ω(GA) in terms of min-rank mr(A) of A.

Finally, it would be interesting to eliminate an annoying requirement in Theorem 2 that
the matrix A must be star-monotone.

Problem 3. If A is an r-by-n (0, 1, ∗)-matrix of min-rank r, is then opt(A) ≤ 2n−r?
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