
Checking Equality of Matroid Linear

Representations and the Cycle Matching

Problem

(Extended Abstract)

T.C. Vijayaraghavan

Chennai Mathematical Institute, SIPCOT IT Park Padur PO, Siruseri 603103, India
email: vijay@cmi.ac.in

Abstract. Given linear representations M1 and M2 of matroids over
a field F, we consider the problem (denoted by ECLR), of checking if
M1 and M2 represent the same matroid. We show that when F = Z2,
ECLR[Z2] is complete for ⊕L. Let M1, M2 ∈ Qm×n be two matroid
linear representations given as input. Then any set of indexes, columns
corresponding to which are linearly dependent in one representation but
are linearly independent in another is a witness that M1 and M2 represent
different matroids over Q. We show that the decision and the search
version of this problem are polynomial time equivalent.
We consider the CYCLE MATCHING problem of checking if for a pair
of undirected graphs G1 = (V1, E1) and G2 = (V2, E2) given as input
with |V1| = |V2| = n, whether any set of vertices having indexes in
X ⊆ {1, . . . , n} form a cycle in G1 if and only if the corresponding
set of vertices form a cycle in G2. We show that CYCLE MATCHING
is complete for L. Also the problem of counting the number of X ⊆
{1, . . . , n} such that vertices with indexes in X form a cycle in one of
the input graphs but not in the other is shown to be #P-complete.

1 Matroid Linear Representations and ECLR

Matroids are combinatorial objects that generalize the notions of linear inde-
pendence and dependence of vectors in a vector space. The study of computa-
tional problems related to matroids and providing efficient algorithms for solving
them is an important branch of combinatorial optimization [6]. Matroids are also
known to generalize connectivity properties between vertices in a graph. As a
result several problems on graphs have be re-cast into problems on matroids to
seek efficient algorithms for solving them. A classic example is the maximum
matching problem on bipartite graphs, which can be shown to reduce to the
problem of intersection of two linearly representable matroids [6, Section 12.5].
Efficient algorithms for the matroid intersection problem (not necessarily lin-
early representable matroids) are known and in fact the first polynomial time
algorithm for this problem was given by Edmonds in [3].

As one of the main results in this paper, we consider a problem on linearly
representable matroids denoted by ECLR. Given two linear representations, we

Electronic Colloquium on Computational Complexity, Report No. 9 (2009)

ISSN 1433-8092

want to check if they represent the same matroid. Before defining the problem
formally, we introduce necessary definitions and terminology on matroids. We
refer to [5, Chapter 1] for details and clarifications.

Definition 1. A matroid M is a pair (S, I), where S is a finite set and I is a
collection of subsets of S such that:

1. The empty set ∅ is in I.
2. If X ∈ I and Y ⊆ X then Y ∈ I.
3. If X, Y ∈ I with |X | = |Y | + 1, then there exists x ∈ X − Y such that

Y ∪ {x} ∈ I. We refer to this condition as the independence augmentation
axiom.

We say that a subset X of S is independent if X ∈ I. Any subset of S not in I
is said to be a dependent set.

Definition 2. Let M = (S, I) be a matroid, and let X ∈ I. We say that X is a
base if X 6⊆ Y , where Y ∈ I with X 6= Y . In other words, a base is a maximal
independent set of the given matroid M .

Definition 3. Let M = (S, I) be a matroid, and let X ⊆ S. We say that X is
a circuit if X 6∈ I, but every proper subset Y of X is in I. In other words, a
circuit is a minimal dependent set of the given matroid M .

Definition 4. Let M = (S, I) be a matroid and F be a field. We say that M is
linearly representable over F, if for some positive integer r there exists a matrix
A ∈ Fr×|S| such that any set of columns in A is linearly independent over F if
and only if the corresponding set of column indexes in S is in I.

It is easy to note that if a matroid M is linearly representable over a field F,
then its representation need not be unique. For instance, the matroid represented
by the n × n identity matrix In is the same as the matroid represented by any
n × n non-singular matrix over a field F. Thus the following problem seems
natural in the context of linearly representable matroids.

Equality Checking for Linear Representations (ECLR): Given two linear
representations M1, M2 over a field F, we check if M1 and M2 represent
the same matroid.

Definition 5. [1] We say that a function f : {0, 1}∗ → Z+ is in #L if there
exists a NL machine M such that f(x) is the number of accepting computation
paths of M on input x.

Definition 6. [2] We say that a language L ∈ ⊕L if there exists f ∈ #L such
that x ∈ L if and only if f(x) ≡ 1(mod 2).

We consider the ECLR problem when F = Z2. Using results on linear al-
gebraic subroutines such as computing a maximal set of linearly independent
vectors and solving systems of linear equations over Z2 from [2] and properties
of ⊕L from [4] we show that ECLR[Z2] is ⊕L-complete under logspace many-one
reductions.

Note 1. In this paper, we deal with checking if two linear representations repre-
sent the same matroid. However, note that a notion of equivalence of two linear
representations is also known [5, Section 6.3]. We say that two linear represen-
tations M1 and M2 are equivalent if we can obtain M2 from M1 using any of
the following operations: elementary row operations, multiplying a column of
M1 by a non-zero element of the base field F, replacing each entry of M1 by its
image under some automorphism of F and permuting columns of M1 (moving
indexes along with their columns). It is not hard to note that M1 and M2 can
be equivalent even if they do not represent the same matroid. Also two linear
representations representing the same matroid need not be equivalent. We once
again emphasise that we are interested in the ECLR problem which checks if
the matroids represented by the input linear representations are equal, rather
than their equivalence. We hope this terminology is not misleading. We are also
unaware of any reference where the ECLR problem has been previously taken
up for study.

Theorem 1. Given matrices M1, M2 ∈ Zm×n
2 of full row rank, we say that M1

and M2 are related (denoted by M1 ∼ M2) if there exists an invertible matrix
X ∈ Zm×m

2 such that XM1 = M2. Then,

1. ∼ is an equivalence relation, and
2. M1 and M2 represent the same matroid M over Z2 if and only if M1 ∼ M2.

Proof. 1. It is easy to note that the above relation is reflexive: for any matrix
M ∈ Zm×n

2 we can take X to be Im, the m × m identity matrix. Also
∼ is symmetric, since XM1 = M2 for an invertible matrix X if and only if
M1 = X−1M2. Transitivity follows, since given M1, M2 and M3, if M1 ∼ M2

and M2 ∼ M3 then there exists invertible matrices X1, X2 ∈ Zm×m
2 with

X1M1 = M2 and X2M2 = M3. Now let X3 = X2X1. Then X3 ∈ Zm×m
2 and

is invertible. Moreover X3M1 = M3 which implies M1 ∼ M3.

2. Let M1, M2 ∈ Zm×n
2 of full row rank representing the same matroid M .

We can identify the lexicographically least base (refer Definition 2) of the
matroid M from these matrices. Let Y1 and Y2 be the sub matrices of M1

and M2 corresponding to this base. Also Y1 and Y2 are invertible. Thus there
exists an invertible matrix X ∈ Zm×m

2 such that XY1 = Y2. More precisely
we have X = Y2Y

−1
1 . Now any column in M2 can be written as a Z2-linear

combination of columns in Y2 in a unique way. Also given any set of linearly
independent vectors over Z2, there is exactly one vector in their Z2 span
when all the coefficients are non-zero. Moreover M1 and M2 represent the
same matroid. Thus any set of columns form a circuit in M1 if and only if
the corresponding set of columns form a circuit in M2 also. As a result we
have XM1 = M2 whenever M1 and M2 represent the same matroid.
Conversely if for M1, M2 ∈ Zm×n

2 we have M1 ∼ M2, then M1 and M2

represent the same matroid. This is a consequence of the fact that the set
of vectors obtained from the product of an invertible matrix with any set of
linearly independent vectors is also linearly independent.

Remark 1. In fact this property regarding the number of equivalence classes
holds true for all linear representations over any field F whose characteristic
is 2. As we observe in the next result that this property is crucial in solving
ECLR[Z2]. However when considering linear representations of matroids with
more than one element over a field F of characteristic not equal to 2, the number
of such equivalence classes is more than one. It remains unknown even if there
is a polynomial time algorithm to solve the ECLR problem when the input is
over such a field of characteristic not equal to 2.

Theorem 2. ECLR[Z2] is ⊕L-complete.

Proof. We are given linear representations M1, M2 ∈ Zl×n
2 as input. In [2, Theo-

rem 10] it has been shown that computing a maximal set of linearly independent
vectors from a given set is ⊕L-complete. As a result we can obtain submatrices
M ′

1 of M1 and M ′
2 of M2 of full row rank using a ⊕L computation. Choosing a

sub matrix M ′ of full rank from a given matrix M does not affect the linear in-
dependence and dependence of columns of that matrix. In other words, columns
indexed by i1, . . . , il are linearly independent (or dependent) in M if and only
if they are linearly independent (or dependent) in M ′ also. Thus the matroid
represented by M ′

i is the same as the matroid represented by Mi, for i = 1, 2.
It then follows from Theorem 1 that M1 and M2 represent the same matroid

if and only if there exists a solution to the system XM ′
1 = M ′

2 over Z2. Checking
if a system of linear equations over Z2 is feasible is shown to be complete for
⊕L in [2, Theorem 10]. Now, we can retrieve the entries of M ′

1 and M ′
2 using

a ⊕L oracle, and check for a solution to the above system using another ⊕L

computation. Thus ECLR[Z2] is in ⊕L⊕L, which is once again ⊕L using the
result of [4]. This shows the ⊕L upper bound.

Hardness for ⊕L follows from the following observation: given a matrix A ∈
Zn×n

2 , checking if A is invertible or not is hard for ⊕L. Thus given a matrix A

as input, we output A and In, where In is the n × n identity matrix. Clearly,
(A, In) ∈ ECLR[Z2] if and only if A is invertible which completes the proof.

1.1 An equivalence between search and decision for ECLR[Q]

In this section we consider the ECLR problem when the input linear representa-
tions are over rationals, Q. Let M1, M2 ∈ Qm×n be of full row rank. Given a set
of indexes, columns corresponding to which are linearly dependent in one repre-
sentation but are linearly independent in another is a witness that M1 and M2

represent different matroids over Q. We show that the decision and the search
version of this problem are polynomial time equivalent. More precisely, assume
that there is a polynomial time algorithm that decides ECLR[Q]. Then given
linear representations M1, M2 ∈ Qm×n, let ECLR(M1, M2) be the function that
outputs 1 if the matroid represented by M1 and M2 is the same, and outputs
0 otherwise. Assume the inputs M1 and M2 represent different matroids. The
polynomial time procedure described below outputs a set of indexes such that
columns corresponding to these indexes form a circuit (refer Definition 3) in Mi,

but corresponding columns do not form a circuit in Mj, using ECLR(M1, M2)
as an oracle.

Given any X ⊆ S = {1, . . . , n} and j ∈ {1, 2}, let M
(X)
j denote the matrix

obtained from Mj by retaining columns whose indexes correspond to integers

in X . We denote the matroid so obtained from Mj by (S, I
(X)
j), where I

(X)
j =

{X ∩ I|for I ∈ Ij}. We start by assuming that M1 and M2 represent different
matroids. Let i = 1, X = {2, . . . , n}, and Y = ∅. We now query the ECLR

oracle if M
(X)
1 and M

(X)
2 represent the same matroid. If the oracle outputs 1,

then it is clear that the ith element of S, represented by the ith column in M1

and M2, is in every subset of S that forms a circuit in M
(X)
k but is linearly

independent in M
(X)
l , where 1 ≤ k, l ≤ 2 with k 6= l. In this case, we include i

in the set Y , increment i, and re-initialize X = Y ∪ {(i + 1), . . . , n}. However,

if the ECLR oracle outputs 0 upon receiving input M
(X)
1 and M

(X)
2 , it is clear

that there exists some subset of X that forms a circuit in one of the input linear
representations but is linearly independent in the other. In this case we do not
include i in Y , but just increment i, and re-initialize X = Y ∪ {(i + 1), . . . , n}.
We repeat the above procedure until i ≤ n. It is easy to note that the set Y

that we finally obtain is a set of indexes such that columns corresponding to it
form a circuit in one of the linear representations but not in the other. The steps
given above involve retaining some set of columns of the given input matrices and
querying the ECLR oracle. Clearly, these steps are polynomial time computable,
and hence the claim follows.

2 Cycle Matching Problem

The Cycle Matching Problem is defined as follows.

Cycle Matching Problem (CYCLE MATCHING): Given a pair of undi-
rected graphs G1 = (V1, E1) and G2 = (V2, E2) as input with |V1| =
|V2| = n, we check if any set of vertices having indexes in X ⊆ {1, . . . , n}
form a cycle in G1 if and only if the corresponding set of vertices form a
cycle in G2.

It is not hard to view the CYCLE MATCHING as the graph theoretic analog of
the ECLR problem. This follows from the fact that we can associate a linearly
representable matroid, defined over any given field F, to a given undirected graph.
The matroid so obtained is called a cycle matroid or a graphic matroid [5, page
12]. Here the edges of the graph are the underlying elements and a set of edges
form a cycle if and only if the corresponding columns of the linear representation
are linearly dependent over F. In fact the incidence matrix of a graph G is itself
a linear representation for the cycle matroid of G over Z2. Thus it seems natural
to expect a ⊕L upper bound for CYCLE MATCHING. However as one of the
main results we show that the problem is in fact complete for L and the proof
uses only elementary properties of the input graph.

Definition 7. A cut-edge of a graph G is an edge whose deletion from the graph
increases the number of components in G.

Theorem 3. [8, Theorem 1.2.14] Given a graph G, an edge is a cut-edge if and
only if it does not belongs to any cycle in G.

Our algorithm for the CYCLE MATCHING problem depends on identify-
ing if the edges of the input graphs are cut-edges. We use the logspace undi-
rected st-connectivity algorithm of [7] to identify such cut-edges and hence de-
cide CYCLE MATCHING.

Lemma 1. Given a graph G and an edge e in G, there is a logspace algorithm
to check if e is a cut-edge in G.

Proof. Let e = (i, j) ∈ E(G). It follows from Theorem 3, that e is a cut-edge
if and only if there is no path from vertex i to vertex j in the graph G − {e}.
Now, G − {e} can be easily constructed from G in logspace. We then use the
undirected st-connectivity algorithm of [7], to check if there is path from i to j

in G − {e}, and hence output if e is a cut-edge.

Theorem 4. CYCLE MATCHING is in L.

Proof. Given a graph G, the following procedure obtains the sub graph of G

induced by edges that are not cut-edges in G.

CUT-EDGE FREE SUBGRAPH(G)
for (each e ∈ E(G))

if (e is not a cut-edge) then

Output e.

It follows from Theorem 3 that an edge e in a graph G is a cut-edge if and only
if e is not in any cycle in G. Let H be the sub graph of G induced by edges
output by CUT-EDGE FREE SUBGRAPH(G). It is then clear that none of the
cut-edges in G are in H . Moreover, any isolated vertex formed in the process of
excluding cut-edges in G is not in H . Thus any vertex or edge is contained in a
cycle in G if and only if the same vertex or edge along with that cycle is in H

also.
For the CYCLE MATCHING problem, we are given two graphs G1 and G2

as input. We obtain sub graphs H1 of G1 and H2 of G2 as mentioned above.
From the observations made regarding H1 and H2, it is clear that (G1, G2) ∈
CYCLE MATCHING if and only if (H1, H2) ∈ CYCLE MATCHING. We also
infer that (H1, H2) ∈ CYCLE MATCHING if and only if the indexes of ver-
tices in H1 is the same as indexes of the vertices in H2. This is a consequence
of the fact that, whenever a vertex with index k exists in Hi but not in Hj ,
there is a cycle containing the vertex with index k in Hi and hence in Gi also.
However, there is no cycle containing vertex k in Hj and hence not in Gj also,
where 1 ≤ i, j ≤ 2. This would then imply (H1, H2) 6∈ CYCLE MATCHING,
equivalently (G1, G2) 6∈ CYCLE MATCHING. It is easy to note that the same

argument carries over to edges of G1 and G2 that are not cut-edges. There-
fore if (H1, H2) ∈ CYCLE MATCHING then under the identity mapping be-
tween the indexes of vertices in H1 and H2, adjacency relation between the
vertices should be preserved. In other words (H1, H2) ∈ CYCLE MATCHING
if and only if V (H1) = V (H2) and E(H1) = E(H2). Restating this, (H1, H2) ∈
CYCLE MATCHING if and only if H1 = H2. It is clear from Lemma 1 that
checking if any edge in G is a cut-edge or not is in L. To obtain H1 and H2,
we make repeated calls to this subroutine in an iterative manner. Clearly this is
logspace computable, and hence we can also check if H1 = H2 in L.

Theorem 5. CYCLE MATCHING is hard for L

Proof. The st-connectivity problem for undirected graphs has been shown to be
complete for L [7]. Thus given a directed graph G = (V, E) and vertices s, t ∈ V ,
we output G1 = (V1, E1) and G2 = (V2, E2), where V1 = V2 = V, E1 = E, and
E2 = E ∪ {(s, t)}. It is clear that if there is no path from s to t, then vertices
corresponding to any set of indexes between {1, . . . , |V |} form a cycle in G1 if
and only if they form a cycle in G2. Thus the pair (G1, G2) is an yes instance
of the CYCLE MATCHING problem. On the contrary, if there is a path from s

to t then there exists at least one set of vertices containing the edge (s, t) that
form a cycle in G2 but the corresponding set of vertices do not form a cycle in
G1. In this case the pair (G1, G2) 6∈ CYCLE MATCHING. Given the input G,
we can construct G1 and G2 easily. The fact that L is closed under complement
then completes the proof.

2.1 A hard counting problem from CYCLE MATCHING

Definition 8. We say that a function f : {0, 1}∗ → Z+ is in #P if there exists
a NP machine M such that f(x) is the number of accepting computation paths
of M on input x.

Definition 9. We say that a function f : {0, 1}∗ → Z+ is polynomial time
many-one reducible to g : {0, 1}∗ → Z+, if for any input x ∈ {0, 1}∗ we can
compute f(x) from g(x) in polynomial time.

In this section, we show that given a pair of input graphs (G1, G2) with the
same number of vertices, the problem of counting the number of X ⊆ {1, . . . , n}
such that vertices corresponding to X form a cycle in one of the input graphs but
not the other is #P-complete. We first give a proof sketch of the #P completeness
of counting the number of cycles in an undirected graph. This problem is shown
to reduce to our counting problem on CYCLE MATCHING.

Given a simple undirected connected graph G = (V, E), the problem of
counting the number of cycles in G is #P-complete under polynomial time
many-one reductions. This is easy to observe. Given a graph G = (V, E): we
first replace each edge in G by a path of length |V |3 to obtain a new graph
G1 = (V1, E1). Then we replace each edge (u, v) ∈ E1 of G1 by two paths of
length 2 each. More formally, we replace each (u, v) ∈ E1 of G1 by the four

edges: (u, x), (x, v), (u, y), (y, v). Let this new graph obtained after this replace-
ment step from G1 be denoted by G2 = (V2, E2). It can be easily observed that
if there exists a Hamilton cycle in the input graph G, then correspondingly there
exists a cycle of length 2|V |3 in G2. Also any cycle in G2 is of length at most
2|V |3. It can then be observed that the newly introduced edges in G2 create an
exponential gap between the number of cycles of length 2|V |3 and the number
of cycles of length strictly less than 2|V |3. As a consequence, each bit of the
number of Hamilton cycles in G (which correspond to number of cycles of length
2|V |3 in G2) occupies a distinct position in the number of cycles of the graph
G2. To be more precise, the leading polynomially many bits of the number of
cycles in G2 gives us the number of Hamilton cycles in G. Clearly in polynomial
time we can retrieve the number of Hamilton cycles in G if the number of cycles
of the graph G2 is known. This completes the #P-completeness proof.

We return back to the counting problem defined with respect to
CYCLE MATCHING. Let G be the input graph on n vertices. Consider the
graph G′ formed by a path on n vertices. Clearly G′ does not contain any cycle.
Therefore the number of cycles in G is equal to the number of subsets of vertices
that form a cycle in G, but the corresponding subset of vertices do not form a
cycle in G′. Since the former is shown to be #P-complete we get the result.

Remark 2. Assume that (G1, G2) is a no instance of the CYCLE MATCHING
problem. Then counting the number of edges that are cut-edges in one of these
input graphs but not the other can be shown to be in #L. However, the problem
of counting the number of subsets of vertices that form a cycle in one of the input
graphs but not the other has been shown to be #P-complete. But any element
of both these sets witness the fact that (G1, G2) is not in CYCLE MATCHING.

Acknowledgments. I thank Samir Datta and Srikanth Srinivasan for useful
discussions.

References

1. Eric Allender and Mitsunori Ogihara. Relationships among PL, #L and the Deter-
minant. RAIRO - Theoretical Informatics and Applications, 30:1–21, 1996.

2. G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and Importance
of Logspace-MOD Classes. Mathematical Systems Theory, 25(3): 223-237, 1992.

3. J. Edmonds. Minimum partition of a matroid into independent subsets. J. Res.

National Bureau of Standards, 69B: 67-72, 1965.
4. U. Hertrampf, S. Reith, and H. Vollmer. A note on closure properties of logspace-

MOD classes. Information Processing Letters, 75(3): 91-93, 2000.
5. J. Oxley. Matroid Theory. Oxford University Press, 2006.
6. C. Papadimitriou and K. Steiglitz. Combinatorial Optimization, Second edition.

Dover Publications, 1998.
7. O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4): 1-24,

2008.
8. D.B. West. Introduction to Graph Theory, Second edition. Prentice-Hall of India

private limited, 2003.

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

