
Checking Equality of Matroid Linear Representations and the

Cycle Matching Problem∗

T.C. Vijayaraghavan
Chennai Mathematical Institute

SIPCOT IT Park, Padur PO
Siruseri 603103, India.

email:vijay@cmi.ac.in

3rd August 2009

Abstract

Given linear representations M1 and M2 of matroids over a field F, we consider the
problem (denoted by ECLR[F]), of checking if M1 and M2 represent the same matroid over
F. We show that when F = Z2, ECLR[Z2] is complete for ⊕L under logspace many-one
reductions. When F = Q, given linear representations M1, M2 ∈ Qm×n as input, any set of
indexes X ⊆ {1, . . . , n} such that columns corresponding to these indexes in X are linearly
dependent in one linear representation but are linearly independent in the other linear
representation is a witness that M1 and M2 represent different matroids over Q. We show
that the decision and the search version of this problem are polynomial time equivalent.

We consider the CYCLE MATCHING problem of checking if for a pair of undirected
graphs G1 = (V1, E1) and G2 = (V2, E2) given as input with n = |V1| = |V2|, we check if
the set of vertices having indexes in X ⊆ {1, . . . , n} form a cycle in G1 if and only if the
corresponding set of vertices having indexes in X ⊆ {1, . . . , n} form a cycle in G2 for all
X ⊆ {1, . . . , n}. We show that CYCLE MATCHING is complete for L. Also the problem
of counting the number of X ⊆ {1, . . . , n} such that vertices with indexes in X form a cycle
in one of the input graphs but not in the other is shown to be #P-complete.

1 Matroid Linear Representations and ECLR

Matroids are combinatorial objects that generalize the notions of linear independence and de-
pendence of vectors in a vector space. The study of computational problems related to matroids
and providing efficient algorithms for solving them is an important branch of combinatorial op-
timization [8]. Matroids are also known to generalize connectivity properties between vertices in
a graph. As a result several problems on graphs have been re-cast into problems on matroids to
seek efficient algorithms for solving them. A classic example is the maximum matching problem
for bipartite graphs which can be shown to reduce to the problem of intersection of two linearly
representable matroids [8, Section 12.5]. Efficient algorithms for the matroid intersection prob-
lem (not necessarily linearly representable matroids) are known and in fact the first polynomial
time algorithm for this problem was given by Edmonds in [4, 5].

As one of the main results in this paper, we consider a problem on linearly representable
matroids denoted by ECLR. Given two linear representations over a field F, the ECLR[F]

∗This article is the Revision 1 of the extended abstract available as ECCC Report TR 09-009. The previous

version was submitted to the ISAAC 2008 and STACS 2009 conferences and this revised version is based on the

comments of the referees of these conferences.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 9 (2009)

problem is to check if the input linear representations represent the same matroid. Before
defining the problem formally, we introduce necessary definitions and terminology on matroids.
We refer to [7, Chapter 1] for details and clarifications.

2 Preliminaries

2.1 Definitions

Definition 2.1. A matroid M is a pair (S,I), where S is a finite set and I is a collection of
subsets of S such that:

1. the empty set ∅ is in I.

2. if X ∈ I and Y ⊆ X then Y ∈ I.

3. if X,Y ∈ I with |X| = |Y | + 1, then there exists x ∈ X − Y such that Y ∪ {x} ∈ I. This
condition is also called the independence augmentation axiom.

We say that a subset X of S is independent if X ∈ I. Any subset of S not in I is said to be a
dependent set.

Definition 2.2. Let M = (S,I) be a matroid, and let X ∈ I. We say that X is a base if
X 6⊆ Y , where Y ∈ I with X 6= Y . In other words, a base is a maximal independent set of M .

Definition 2.3. Let M = (S,I) be a matroid, and let X ⊆ S. We say that X is a circuit if
X 6∈ I, but every proper subset Y of X is in I. In other words, a circuit is a minimal dependent
set of M .

Definition 2.4. Let M = (S,I) be a matroid and F be a field. We say that M is linearly
representable over F, if for some positive integer r there exists a matrix A ∈ Fr×|S| such that
any set of columns in A is linearly independent over F if and only if the subset of S corresponding
to this set of columns form an independent set in I.

Definition 2.5. [1] We say that a function f : {0, 1}∗ → Z+ is in #L if there exists a NL
machine M such that f(x) is the number of accepting computation paths of M on input x.

Definition 2.6. [2] We say that a language L ∈ ⊕L if there exists f ∈ #L such that x ∈ L if
and only if f(x) ≡ 1(mod 2).

Note 1. We follow the Ruzzo-Simon-Tompa oracle access mechanism [1] in allowing non-
deterministic Turing machines to query oracles. According to this mechanism a non-
deterministic Turing machine is allowed to write its queries in the oracle tape in a deterministic
manner only.

2.2 Basic results

We now recall some basic results from [7] required to prove our results.

Lemma 2.7. [7, Lemma 1.2.2] If X1 and X2 are two distinct bases of a matroid M = (S,I)
then there exists x, y ∈ S such that x ∈ X1 − X2 and y ∈ X2 − X1 such that (X1 − x) ∪ {y} is
also a base of M . This result is also called the base exchange axiom of a matroid.

Theorem 2.8. [7, Theorem 1.2.3] Let S be a set and let B be a collection of subsets of S such
that B is non-empty and elements of B satisfy the base exchange axiom stated in Lemma 2.7.
Now if I is the collection of all subsets of B for all B ∈ B then M = (S,I) is a matroid.

2

As a consequence of the above theorem we obtain the following result.

Corollary 2.9. Let M1 = (S,I1) and M2 = (S,I2) be two matroids such that any subset B ⊆ S

is a base in M1 if and only if B is a base in M2. Then both M1 and M2 are the same matroid.

3 ECLR: A problem on matroid linear representations

If M is a matroid linearly representable over a field F then its linear representation need not
be unique. For example the matroid represented by the n×n identity matrix In is the same as
the matroid represented by any other n × n non-singular matrix over a field F. This naturally
raises the question of whether there is an efficient algorithm that can decide if two input linear
representations over a field F represent the same matroid. We denote this problem as ECLR[F]
(surprisingly it seems that this problem has not been investigated so far).

Equality Checking for Linear Representations (ECLR): Given two linear representa-
tions M1,M2 over a field F, the ECLR[F] problem is to check if M1 and M2 represent
the same matroid.

Note 2. While we deal with checking if two linear representations represent the same matroid,
note that a notion of equivalence of two linear representations is also known [7, Section 6.3].
We wish to emphasize that in our ECLR problem we check if the matroids represented by the
input linear representations are the same and not if they are equivalent as defined in [7].

Let M = (S,I) be a matroid such that every element of S is in at least one independent
set in I. In Theorem 3.1 to be proved, we show that if M is linearly representable by a matrix
A ∈ Fm×n over a field F then M is also linearly representable by a submatrix B ∈ Fr×n of A

such that r = rank (B) = rank (A).

Theorem 3.1. Let F be a field and let A ∈ Fm×n be a linear representation of the matroid
M = (S,I) over F. We assume that every element of S is in at least one independent set in I.
Also if r = rank (A) and B ∈ Fr×n is a submatrix of A such that r = rank (B) then B is also
a linear representation of the matroid M .

Proof: We have assumed that every element of S is in at least one independent set in I of the
matroid M . Therefore every column of the linear representation A has at least one non-zero
element from F. When r = rank (A) = n the result immediately follows since B is a r × r

non-singular submatrix of A over F. We therefore assume r < n = |S|.

Claim 1. The matrix B ∈ Fr×n does not contain any column containing only zeroes.

Proof of Claim 1. Assume the claim is not true and that the ith column of B, denoted by Bi

contains only zeroes for some 1 ≤ i ≤ n. However since B is a submatrix of A, the corresponding
column in A, denoted by Ai is non-zero. We have also assumed rank (B) = r and so there exists
a non-singular r× r submatrix B′ of B. Using B′ and the column Ai we can then obtain a non-
singular (r+1)×(r+1) submatrix of A. But this contradicts our assumption that r = rank (A).
This shows that the matrix B does not contain any column that contains only zeroes which
proves our claim.

We use induction on r to prove our result. For the case when r = 1 it is easy to observe
that any row of A is of the form (α, . . . , α) where α ∈ F and there exists at least one row for
which α 6= 0. Clearly B is then one such non-zero row of A and so the result is true for the case
when r = 1.

3

Inductively assume the result to be true for all matroids having linear representations A ∈
Fm×n such that rank (A) ≤ (r − 1), where r ≥ 2.

Let A ∈ Fm×n be a linear representation of a matroid M = (S,I) over F such that r =
rank (A). Let B be a submatrix of A with rank (B) = r as mentioned in the theorem statement.
It follows from claim 1 that every column of B contains at least one non-zero element in F.
Now let B′ ∈ Fr×(n−1) be a submatrix of B obtained by removing the ith column of B for some
1 ≤ i ≤ n.

• when rank (B′) = (r − 1): If A′ ∈ Fm×(n−1) is the submatrix of A obtained by removing
the ith column of A then since rank (B) = r and since B′ is a submatrix of A′, we get
rank (A′) = rank (B′) = (r − 1). It now follows from the inductive hypothesis that the
matroid represented by A′ and the matroid represented by B′ are the same. Let this
matroid be M ′. Moreover any base of the matroid M represented by A is a base of M ′

augmented with the ith element of S (corresponding to the ith column of A) that we have
removed in order to obtain the linear representation A′. Also M does not contain any
other base. However since rank (B) = r and rank (B′) = (r − 1) it follows that any base
of the matroid represented by B is a base of M ′ augmented with the ith element of S

(corresponding to the ith column of B). Also the matroid represented by B does not
contain any other base. Now using Corollary 2.9 it follows that the matroid represented
by B is the matroid represented by A which is M .

• when rank (B′) = r: We use induction on n = |S| to prove the result. For the base case
when |S| = 1, we have rank (A) = 1 for which the result trivially holds true. When n = 2
we either have rank (A) = 1 or rank (A) = 2 and correspondingly either r = 1 or r = 2.
It is easy to see that the result is true for these cases also.

Inductively assume the result to be true for all matroids M = (S,I) such that if A is a
linear representation of M then rank (A) = r and |S| = (n − 1) where n ≥ 3.

Once again let M = (S,I) be a matroid as in the theorem statement having a linear
representation A ∈ Fm×n such that rank (A) = r and |S| = n. Now let A′ ∈ Fm×(n−1) be
the submatrix of A obtained by removing the ith column of A. Let the matroid represented
by A′ be M ′. Clearly B′ is a submatrix of A′ and so we get rank (A′) = rank (B′) = r.
Also it follows from the inductive hypothesis on |S| that B′ also linearly represents the
matroid M ′. However since rank (A) = rank (A′) = r, it follows that any base of the
matroid M is either a base of M ′ or it can be obtained from a base of A′ by applying the
base exchange axiom stated in Lemma 2.7 on the ith element of S (corresponding to the
ith column of A) which we have removed in order to obtain the linear representation A′.
Also there are no other bases in M . But since rank (B) = r and since B′ is a submatrix of
B with rank (B′) = r this observation regarding the bases is true for the matroid linearly
represented by B also. Moreover A′ and B′ linearly represent the same matroid M ′ and
since A linearly represents matroid M , using Corollary 2.9 it follows that B is also a linear
representation of the matroid M . This completes the proof of the theorem.

3.1 ECLR[Z2] is ⊕L-complete

We consider the ECLR problem when F = Z2. Using results on linear algebraic subroutines
such as computing a maximal set of linearly independent vectors from a given set of vectors
over Z2 and a solving system of linear equations over Z2 from [2] and properties of ⊕L from [6]
we show that ECLR[Z2] is ⊕L-complete under logspace many-one reductions. Computing the
number of spanning trees modulo 2 of an arbitrary undirected graph has been recently shown
to be complete for ⊕L under logspace many-one reductions in [3]. Also in [3] computing the

4

permanent of an integer matrix modulo 2k for a fixed integer k > 0 is also shown to be complete
for ⊕L under logspace many-one reductions. The completeness result for ECLR[Z2] that we
obtain in Theorem 3.3 is a new addition to this list of problems complete for ⊕L.

We first show an equivalence relation that characterizes when two linear representations over
Z2 represent the same matroid.

Theorem 3.2. Given matrices M1,M2 ∈ Zm×n
2 such that rank (M1) = rank (M2) = m, we

say that M1 and M2 are related (denoted by M1 ∼ M2) if there exists an invertible matrix
X ∈ Zm×m

2 such that XM1 = M2. Then

1. ∼ is an equivalence relation, and

2. M1 and M2 represent the same matroid M over Z2 if and only if M1 ∼ M2.

Proof: Let M1,M2 ∈ Zm×n
2 such that rank (M1) = rank (M2) = m.

1. It is easy to note that the above relation is reflexive: for any matrix M ∈ Zm×n
2 we can

take X to be Im, the m × m identity matrix. Also ∼ is symmetric, since XM1 = M2

for an invertible matrix X if and only if M1 = X−1M2. Transitivity follows since given
M1,M2 and M3, where M3 ∈ Zm×n

2 with rank (M3) = m, if M1 ∼ M2 and M2 ∼ M3 then
there exists invertible matrices X1,X2 ∈ Zm×m

2 such that X1M1 = M2 and X2M2 = M3.
Now let X3 = X2X1. Then X3 ∈ Zm×m

2 and is invertible. Moreover X3M1 = M3 which
implies M1 ∼ M3.

2. Let M1,M2 ∈ Zm×n
2 be linear representations having rank (M1) = rank (M2) = m rep-

resenting the same matroid M . We can identify the columns corresponding to the lex-
icographically least base containing m elements of the matroid M from these matrices.
Let Y1, Y2 ∈ Zm×m

2 be submatrices of M1 and M2 respectively corresponding to this base.
Clearly Y1 and Y2 are invertible. Thus there exists an invertible matrix X ∈ Zm×m

2 such
that XY1 = Y2. More precisely we have X = Y2Y

−1
1 . Now any column in M1 can be

written as a Z2-linear combination of columns in Y1 in a unique way. Also given any set
of linearly independent vectors over Z2, there is exactly one vector in their Z2 span when
all the coefficients of this set of vectors are non-zero. We have also assumed M1 and M2

represent the same matroid. As a result any set of columns in M1 form a circuit if and
only if the corresponding set of columns in M2 also form a circuit. Therefore from these
observations it follows that XM1 = M2.

Conversely if for M1,M2 ∈ Zm×n
2 we have M1 ∼ M2, then M1 and M2 represent the

same matroid. This is a consequence of the fact that the set of vectors obtained from the
product of an invertible matrix with a set of linearly independent vectors is also linearly
independent.

Remark 1. It follows from Theorem 3.2 that the number of equivalence classes under the rela-
tion ∼ between the linear representations of a matroid M over Z2 is only one. This observation
about the number of equivalence classes is true only for Z2. This is important since the problem
of deciding ECLR[Z2] reduces to solving a system of linear equations over Z2. It is easy to see
that when considering linear representations of a matroid M over any other field (even with
characteristic 2) number of equivalence classes under the relation ∼ defined in Theorem 3.2 is
more than one. We do not know if there is a polynomial time algorithm to solve the ECLR
problem when the input linear representations are over a field that is not Z2.

Theorem 3.3. ECLR[Z2] is ⊕L-complete.

5

Proof: We are given linear representations M1,M2 ∈ Zm×n
2 as input. In [2] it has been shown

that computing a maximal set of linearly independent vectors over Z2 from a given set of vectors
over Z2 is complete for ⊕L under logspace many-one reductions. As a result we can compute
rank (M1) and rank (M2) in ⊕L and check if they are equal. If rank (M1) 6= rank (M2) then
we output M1 and M2 do not represent the same matroid and stop.

Otherwise assume that r = rank (M1) = rank (M2). Now once again it follows from [2] that
we can obtain a submatrix M ′

1 ∈ Zr×n
2 of M1 and a submatrix M ′

2 ∈ Zr×n
2 of M2 such that

rank (M ′
1) = rank (M2)

′ = r in ⊕L. Since the linear representations are over Z2 using Theorem
3.1 it follows that the matroid represented by M ′

i is the same as the matroid represented by Mi,
for i = 1, 2 respectively.

It follows from Theorem 3.2 that M1 and M2 represent the same matroid if and only if there
exists a non-singular X ∈ Zm×m

2 such that XM ′
1 = M ′

2(mod 2). Essentially this step is to solve
for a system of linear equations over Z2 which is also shown to be complete for ⊕L in [2].

It is easy to see that a logspace machine with access to two levels of ⊕L oracle can retrieve
the entries of M ′

1 and M ′
2 and also check for a solution to the system XM ′

1 = M ′
2 over Z2.

Now using the observations on the ⊕L upper bound we have made above and the result of [6]
it follows that ECLR[Z2] ∈ ⊕L. This shows the ⊕L upper bound.

Hardness for ⊕L follows from the following observation: given a matrix M ∈ Zn×n
2 checking

if M is non-singular over Z2 is hard for ⊕L. Therefore given a matrix M as input we output
M and In, where In is the n× n identity matrix. Clearly (M, In) ∈ ECLR[Z2] if and only if M

is non-singular which shows the hardness for ⊕L and hence the proof is complete.

3.2 An equivalence between search and decision for ECLR[Q]

In this section we consider the ECLR problem when the input linear representations are over
Q, the set of rationals. Let M1,M2 ∈ Qm×n be the input linear representations. Given a set
of indexes, columns corresponding to which are linearly dependent in one linear representation
but are linearly independent in the other linear representation is a witness that M1 and M2

represent different matroids over Q. We show that the search and the decision version of this
problem are polynomial time equivalent. More precisely, assume that there is a polynomial time
algorithm that decides ECLR[Q] and that the input linear representations M1 and M2 represent
different matroids. The polynomial time procedure described below outputs a set of indexes
such that columns corresponding to these indexes form a circuit in Mi but the corresponding
columns do not form a circuit in Mj using ECLR(M1,M2) as an oracle, where 1 ≤ i, j ≤ 2 and
i 6= j.

Given linear representations M1,M2 ∈ Qm×n, let ECLR(M1,M2) be the function that out-
puts 1 if the matroid represented by M1 and M2 are the same, and it outputs 0 otherwise. Also

if X ⊆ S = {1, . . . , n} and j ∈ {1, 2}, let M
(X)
j denote the matrix obtained from Mj by retaining

columns whose indexes correspond to integers in X. We denote the matroid so obtained from

Mj by (S,I
(X)
j), where I

(X)
j = {X ∩ I|for all I ∈ Ij}. We start by assuming that M1 and M2

represent different matroids.

Let i = 1, X = {1, . . . , i}, and Y = ∅. We query the ECLR(M
(X)
1 ,M

(X)
2) oracle for

increasing values of i until the oracle outputs 0 for the smallest 1 ≤ i ≤ n. Once we obtain this
element i ∈ S we re-initialize Y = Y ∪ {i}. If the columns corresponding to elements in Y form
a circuit in Mk but are linearly independent in Ml, where 1 ≤ k, l ≤ 2 with k 6= l, we output Y

and stop.
Otherwise if the set Y does not witness that the input linear representations represent differ-

ent matroids then we find the smallest j ∈ {1, . . . , i}−Y for which the ECLR(M
(X∪Y)
1 ,M

(X∪Y)
2)

oracle outputs 0, where X = {1, . . . , j} − Y . Having obtained this j ∈ S we once again re-

6

initialize Y = Y ∪ {j} and check if the columns corresponding to elements in Y form a circuit
in Mk but are linearly independent in Ml, where 1 ≤ k, l ≤ 2 with k 6= l. We iterate this
step until we obtain the desired set Y ⊆ {1, . . . , i} ⊆ S that witnesses that the input linear
representations represent different matroids over Q.

The steps given above involve retaining some set of columns of the given input matrices and
querying the ECLR oracle. Clearly these steps are polynomial time computable and hence the
claim follows.

4 Cycle Matching Problem

The Cycle Matching Problem is defined as follows.

Cycle Matching Problem (CYCLE MATCHING): Given a pair of undirected graphs
G1 = (V1, E1) and G2 = (V2, E2) as input with n = |V1| = |V2|, we check if the set
of vertices having indexes in X ⊆ {1, . . . , n} form a cycle in G1 if and only if the
corresponding set of vertices having indexes in X ⊆ {1, . . . , n} form a cycle in G2

for all X ⊆ {1, . . . , n}.

It is not hard to view the CYCLE MATCHING as the graph theoretic analog of the ECLR
problem. This follows from the fact that we can associate a linearly representable matroid over
any given field F to a given simple undirected graph. The matroid so obtained is called a cycle
matroid or a graphic matroid [7, pages 11 and 12]. Here the edges of the graph are the underlying
elements and a set of edges form a cycle if and only if the corresponding columns of the linear
representation form a minimal linearly dependent set of vectors over F. In fact the incidence
matrix of a simple undirected graph G is itself a linear representation for the cycle matroid
of G over Z2. Thus it seems natural to expect a ⊕L upper bound for CYCLE MATCHING.
However as one of the main results we show that the problem is in fact complete for L and the
proof uses only elementary properties of the input graph.

Definition 4.1. A cut-edge of a graph G is an edge whose deletion from the graph increases
the number of components in G.

Theorem 4.2. [10, Theorem 1.2.14] Given a graph G, an edge is a cut-edge if and only if it
does not belongs to any cycle in G.

Our algorithm for the CYCLE MATCHING problem depends on identifying if the edges of
the input graphs are cut-edges. We use the logspace undirected st-connectivity algorithm of [9]
to identify such cut-edges and hence decide CYCLE MATCHING.

Lemma 4.3. Given a graph G and an edge e in G, there is a logspace algorithm to check if e

is a cut-edge in G.

Proof: Let e = (i, j) ∈ E(G). It follows from Theorem 4.2, that e is a cut-edge if and only
if there is no path from vertex i to vertex j in the graph G − {e}. Now we can easily obtain
G − {e} from G in logspace. We then use the undirected st-connectivity algorithm of [9] to
check if there is path from i to j in G − {e} and hence output if e is a cut-edge.

Theorem 4.4. CYCLE MATCHING is in L.

Proof: Given a graph G, the following procedure obtains the subgraph of G induced by edges
that are not cut-edges in G.

7

CUT-EDGE FREE SUBGRAPH(G)
for (each e ∈ E(G))

if (e is not a cut-edge) then

output e.

It follows from Theorem 4.2 that an edge e in a graph G is a cut-edge if and only if
e is not in any cycle in G. Let H be the subgraph of G induced by edges output by
CUT-EDGE FREE SUBGRAPH(G). It is then clear that none of the cut-edges in G are in
H. Moreover any isolated vertex formed in the process of excluding cut-edges in G is not in
H. Thus any vertex or edge is contained in a cycle in G if and only if the same vertex or edge
along with that cycle is in H also.

For the CYCLE MATCHING problem, we are given two graphs G1 and G2 as input. We
obtain subgraphs H1 of G1 and H2 of G2 as mentioned above. From the observations made
regarding H1 and H2, it is clear that (G1, G2) ∈ CYCLE MATCHING if and only if (H1,H2) ∈
CYCLE MATCHING. We also infer that (H1,H2) ∈ CYCLE MATCHING if and only if the
indexes of vertices in H1 is the same as indexes of the vertices in H2. This is a consequence of the
fact that whenever a vertex with index k exists in Hi but not in Hj, there is a cycle containing
the vertex with index k in Hi and hence in Gi also. However, there is no cycle containing
the vertex with index k in Hj and hence not in Gj also, where 1 ≤ i, j ≤ 2. This would
then imply (H1,H2) 6∈ CYCLE MATCHING or equivalently (G1, G2) 6∈ CYCLE MATCHING.
It is easy to note that the same argument carries over to edges of G1 and G2 that are not
cut-edges. Therefore if (H1,H2) ∈ CYCLE MATCHING then under the identity mapping
between the indexes of vertices in H1 and H2, the adjacency relation between the vertices in
H1 should be the same as the adjacency relation between the vertices in H2. In other words
(H1,H2) ∈ CYCLE MATCHING if and only if V (H1) = V (H2) and E(H1) = E(H2). Restating
this, (H1,H2) ∈ CYCLE MATCHING if and only if H1 = H2. It is clear from Lemma 4.3 that
checking if any edge in G is a cut-edge or not is in L. To obtain H1 and H2, we make repeated
calls to this subroutine in an iterative manner. Clearly this is logspace computable and hence
we can also check if H1 = H2 in L.

Theorem 4.5. CYCLE MATCHING is hard for L

Proof: The st-connectivity problem for undirected graphs has been shown to be complete for
L in [9]. Thus given a directed graph G = (V,E) and vertices s, t ∈ V , we output G1 = (V1, E1)
and G2 = (V2, E2), where V1 = V2 = V, E1 = E, and E2 = E ∪ {(s, t)}. It is clear that if there
does not exist any path between s and t in G, then the vertices corresponding to any set of
indexes between {1, . . . , |V |} form a cycle in G1 if and only if they form a cycle in G2. Thus the
pair (G1, G2) is an yes instance of the CYCLE MATCHING problem. On the contrary, if there
is a path between s and t in G then there exists at least one set of vertices containing the edge
(s, t) that form a cycle in G2 but the corresponding set of vertices do not form a cycle in G1.
In this case the pair (G1, G2) 6∈ CYCLE MATCHING. Given the input G we can construct G1

and G2 easily. The fact that L is closed under complement then completes the proof.

4.1 A hard counting problem from CYCLE MATCHING

Definition 4.6. We say that a function f : {0, 1}∗ → Z+ is in #P if there exists a NP machine
M such that f(x) is the number of accepting computation paths of M on input x.

Definition 4.7. We say that a function f : {0, 1}∗ → Z+ is polynomial time many-one reducible
to g : {0, 1}∗ → Z+, if for any input x ∈ {0, 1}∗ we can compute f(x) when we are given g(x)
as input in time polynomial in |x|.

8

In this section we show that given a pair of input graphs (G1, G2) with the same number of
vertices, the problem of counting the number of X ⊆ {1, . . . , n} such that vertices corresponding
to X form a cycle in one of the input graphs but not the other is #P-complete. We first give a
proof sketch of the #P completeness of counting the number of cycles in an undirected graph.
This problem is shown to reduce to our counting problem on CYCLE MATCHING.

Given a simple undirected graph G = (V,E) the problem of counting the number of cycles in
G is #P-complete under polynomial time many-one reductions. This is easy to observe. Given a
graph G = (V,E) we first replace each edge in G by a path of length |V |3 to obtain a new graph
G1 = (V1, E1). Then we replace each edge (u, v) ∈ E1 of G1 by two paths of length 2 each. More
formally, we replace each (u, v) ∈ E1 of G1 by the four edges: (u, x), (x, v), (u, y), (y, v). Let
this new graph obtained after this replacement step from G1 be denoted by G2 = (V2, E2). It is
easy to observe that if there exists a Hamilton cycle in the input graph G, then correspondingly
there exists a cycle of length 2|V |3 in G2. Also any cycle in G2 is of length at most 2|V |3. It can
then be observed that the edges newly introduced in G to obtain G2 create an exponential gap
between the number of cycles of length 2|V |3 and the number of cycles of length strictly less
than 2|V |3. As a consequence, each bit of the number of Hamilton cycles in G (which correspond
to number of cycles of length 2|V |3 in G2) occupies a distinct position in the number of cycles of
the graph G2. To be more precise, the leading polynomially many bits of the number of cycles in
G2 gives us the number of Hamilton cycles in G. Clearly in polynomial time we can retrieve the
number of Hamilton cycles in G if the number of cycles of the graph G2 is known. This shows
that counting the number of cycles in an undirected graph is #P-hard under polynomial time
many-one reductions. It is also easy to see that this counting problem is in #P and therefore
we get completeness for #P under polynomial time many-one reductions.

We return back to the counting problem defined with respect to CYCLE MATCHING. Let
G be the input graph on n vertices. Consider the graph G′ formed by a path on n vertices.
Clearly G′ does not contain any cycle. Therefore the number of cycles in G is equal to the
number of subsets of vertices that form a cycle in G, but the corresponding subset of vertices
do not form a cycle in G′. Since the former is shown to be #P-complete we get the result.

Remark 2. Assume that (G1, G2) is a no instance of the CYCLE MATCHING problem. Then
counting the number of pairs of vertices that form an edge which is not a cut-edge in one of
these input graphs but the corresponding pair of vertices either do not form an edge or it is
a cut-edge in the other input graph can be easily seen to be in #L. However the problem of
counting the number of subsets of vertices that form a cycle in one of the input graphs but the
corresponding set of vertices do not form a cycle in the other input graph has been shown to be
#P-complete. However any element of both these sets witnesses the fact that (G1, G2) is not in
CYCLE MATCHING.

Acknowledgments

I thank Samir Datta and Srikanth Srinivasan for useful discussions. I also thank the anony-
mous third referee of the STACS 2009 conference for correcting Remark 1 that the number of
equivalence classes under the equivalence relation ∼ shown in Theorem 3.2 is more than one
even for linear representations over a field F of characteristic 2 representing the same matroid
M if F is not Z2.

9

References

[1] Eric Allender and Mitsunori Ogihara. Relationships among PL, #L and the Determinant.
RAIRO - Theoretical Informatics and Applications, 30: 1-21, 1996.

[2] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and Importance of
Logspace-MOD Classes. Mathematical Systems Theory, 25(3): 223-237, 1992.

[3] Mark Braverman, Raghav Kulkarni, and Sambuddha Roy. Parity Problems in Planar
Graphs. Proceedings of the 22nd Annual IEEE Conference on Computational Complexity
(CCC 2007), pages 222-235, 2007.

[4] J. Edmonds. Minimum partition of a matroid into independent subsets. J. Res. National
Bureau of Standards, 69B: 67-72, 1965.

[5] J. Edmonds. Matroids and the Greedy Algorithm. Mathematical Programming, 1: 127-136,
1971.

[6] U. Hertrampf, S. Reith, and H. Vollmer. A Note on Closure Properties of Logspace-MOD
Classes. Information Processing Letters, 75(3): 91-93, 2000.

[7] J. Oxley. Matroid Theory. Oxford University Press, 2006.

[8] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity
Prentice-Hall of India Private Limited, 2001.

[9] O. Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4): 1-24, 2008.

[10] D.B. West. Introduction to Graph Theory, Second edition. Prentice-Hall of India Private
Limited, 2003.

10

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

