
Checking Equality of Matroid Linear Representations and the

Cycle Matching Problem∗

T.C. Vijayaraghavan†

26th January 2010

Abstract

Given linear representations M1 and M2 of matroids over a field F, we consider the
problem (denoted by ECLR[F]) of checking if M1 and M2 represent the same matroid over
F. When F = Z2, we show that ECLR[Z2] is complete for ⊕L under logspace many-one
reductions.

When F = Q, given linear representations M1,M2 ∈ Qm×n as input, any X ⊆ {1, . . . , n}
such that columns corresponding to indexes in X form a minimal linearly dependent set
of vectors in one linear representation but the column vectors corresponding to indexes in
X are linearly independent in the other linear representation is a witness that M1 and M2

represent different matroids over Q. We show that the decision and the search version of
this problem are polynomial time equivalent.

We define the CYCLE MATCHING problem of checking if for a pair of undirected
graphs G1 = (V1, E1) and G2 = (V2, E2) given as input with V1 = V2 = {1, . . . , n} and
n = |V1| = |V2|, whether the set of vertices in X ⊆ V1 form a cycle in G1 if and only if the
vertices in X ⊆ V2 form a cycle in G2 also, for all X ⊆ {1, . . . , n}. We show that CYCLE
MATCHING is complete for L.

Also the problem of counting the number of X ⊆ {1, . . . , n} such that vertices with
indexes in X form a cycle in one of the input graphs but not in the other is shown to be
#P-complete.

1 Matroid Linear Representations and ECLR

Matroids are combinatorial objects that generalize the notions of linear independence and de-
pendence of vectors in a vector space. The study of computational problems related to matroids
and providing efficient algorithms for solving them is an important branch of Combinatorial Op-
timization [15]. Matroids are also known to generalize connectivity properties between vertices
in a graph. As a result several problems on graphs have been re-cast into problems on matroids
to seek efficient algorithms for solving them. A classic example is the maximum matching prob-
lem for bipartite graphs which can be shown to reduce to the problem of intersection of two
linearly representable matroids [15, Section 12.5]. Efficient algorithms for the matroid intersec-
tion problem (not necessarily linearly representable matroids) are known and in fact the first
polynomial time algorithm for this problem was given by Edmonds in [6, 7].

As one of the main results in this paper, we consider a problem on linearly representable
matroids denoted by ECLR. Given two linear representations over a field F, the ECLR[F]
problem is to check if the input linear representations represent the same matroid over F.

∗This article is the Revision 2 of ECCC Report No.09(2009). Extended abstract of this article was submitted
to ISAAC 2008 and STACS 2009.
†Email:vijay@cmi.ac.in,tcvijay@imsc.res.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 9 (2009)

Before we define the problem formally, we introduce necessary definitions and terminology on
matroids. We refer to [13, Chapter 1] for details and clarifications.

2 Preliminaries

2.1 Matroids

Definition 2.1. A matroid M is a pair (S, I), where S is a finite set and I is a collection of
subsets of S such that

1. the empty set ∅ is in I,

2. if X ∈ I and Y ⊆ X then Y ∈ I,

3. if X,Y ∈ I with |X| = |Y |+ 1, then there exists x ∈ X − Y such that Y ∪ {x} ∈ I. This
condition is also called the independence augmentation axiom of a matroid.

We say that a set X ⊆ S is independent if X ∈ I. Any subset of S not in I is said to be a
dependent set.

Definition 2.2. Let M = (S, I) be a matroid and let X ∈ I. We say that X is a base if
X 6⊆ Y , for all Y ∈ I with X 6= Y . In other words a base is a maximal independent set of M .

Definition 2.3. Let M = (S, I) be a matroid, and let X ⊆ S. We say that X is a circuit if
X 6∈ I, but every proper subset Y of X is in I. In other words a circuit is a minimal dependent
set of M .

Definition 2.4. Let M = (S, I) be a matroid where S = {1, . . . , n} and let F be a field. We
say that M is linearly representable over F, if for some r ∈ N there exists a matrix A ∈ Fr×n

such that a set of columns {Ai1 , . . . , Ail} of A are linearly independent over F if and only if
{i1, . . . , il} ∈ I.

We now recall some basic results from [13].

Lemma 2.5. [13, Lemma 1.2.2] If X1 and X2 are two distinct bases of a matroid M = (S, I)
and there exists x ∈ X1 −X2 then we have y ∈ X2 −X1 such that (X1 − {x}) ∪ {y} is also a
base of M . This result is also called the base exchange axiom of a matroid.

Theorem 2.6. [13, Theorem 1.2.3] Let S be a set and let B be a collection of subsets of S such
that B is non-empty and elements of B satisfy the base exchange axiom stated in Lemma 2.5.
Now if I is the collection of all subsets of B for all B ∈ B then M = (S, I) is a matroid.

As a consequence of the above theorem we obtain the following result.

Corollary 2.7. Let M1 = (S, I1) and M2 = (S, I2) be two matroids such that any set B ⊆ S
is a base in M1 if and only if B is a base in M2 also. Then both M1 and M2 are the same
matroid.

2.2 Logspace Counting Classes

Definition 2.8. [1] Let Σ = {0, 1}. We say that a function f : Σ∗ → Z+ is in #L if there
exists a NL machine M such that f(x) is the number of accepting computation paths of M on
input x.

2

Definition 2.9. [4] Let Σ = {0, 1} and L ⊆ Σ∗. We say that a language L ∈ ⊕L if there exists
f ∈ #L such that on any input x ∈ Σ∗ we have x ∈ L if and only if f(x) ≡ 1(mod 2).

Definition 2.10. [8] Let Σ = {0, 1} and let ⊕LH1 = ⊕L. For i ≥ 2 we say that a language
L ∈ ⊕LHi if there exists a NL machine MA that access a language A ∈ ⊕LHi−1 as an oracle
such that on input x ∈ Σ∗, if f(x) denotes the number of accepting computation paths of MA

on input x then we have x ∈ L if and only if f(x) ≡ 1(mod 2).
We follow the Ruzzo-Simon-Tompa oracle access mechanism [1, 8] in allowing non-deterministic

Turing machines to query oracles. According to this mechanism a non-deterministic Turing ma-
chine is allowed to write its queries in the oracle tape in a deterministic manner only.

We also need the following result from [8].

Theorem 2.11. [8] ⊕L⊕L = ⊕L.

3 ECLR: A problem on matroid linear representations

If M is a matroid linearly representable over a field F then its linear representation need not
be unique. For example the matroid represented by the n × n identity matrix In is the same
as the matroid represented by any other n × n non-singular matrix over a field F. Therefore
the problem of deciding if two input linear representations over a field F represent the same
matroid seems very fundamental and interesting. This problem is denoted by ECLR[F] and it
is defined as follows.

Equality Checking for Linear Representations (ECLR): Given linear repre-
sentations M1,M2 ∈ Fm×n, where F is a field, the ECLR[F] problem is to decide if
the matroid represented by M1 is the same as the matroid represented by M2 over
F.

Note 1. In ECLR we deal with checking if two given linear representations over a field F repre-
sent the same matroid. However note that a notion of equivalence of two linear representations
is also known [13, Section 6.3]. We wish to emphasize that in our ECLR problem we check if
the matroids represented by the input linear representations are the same and not if they are
equivalent as defined in [13].

If we assume the basic operations in F are polynomial time computable then the most
obvious complexity upper bound for ECLR[F] is coNP. As a result the question of determining
if ECLR[F] has a polynomial time algorithm over any such field F seems very natural and
interesting. Surprisingly however ECLR[F] has not received any attention so far1 and we do
not know of any algorithmic time upper bound or complexity upper bound for this problem.

In Theorem 3.4 we show that ECLR[Z2] is ⊕L-complete. Since ⊕L ⊆ NC ⊆ P our result
initiates a rigorous study of showing that ECLR[F] ∈ P over an arbitrary field F and in settling
the complexity of this problem precisely. In view of this we pose the following question.

Open problem: Let (F,+, ◦) be a field such that given α, β ∈ F we can compute
(α + β), (α ◦ β) and α−1 using space at most O(log(|α| + |β|)). Then the question
is whether ECLR[F] ∈ NC. In other words assume that F is a field such that we
can carry out the basic operations involving elements α, β ∈ F using space at most
O(log(|α|+|β|)). If M1,M2 ∈ Fm×n are input linear representations of matroids over
F then the question is to determine if we can decide whether M1 and M2 represent
the same matroid over F in NC.

1I have defined this problem in my Ph.D. thesis [18].

3

We believe that ECLR[F] over a field F as described above indeed has a NC upper bound.
In fact we believe that if F has charcteristic 2 then ECLR[F] ∈ NC4.

3.1 Row reduction

We now prove a row reduction result on linear representations of a matroid. Let M = (S, I) be a
matroid such that every element of S is in at least one independent set in I. In Theorem 3.1 to be
proved, we show that if M is linearly representable by a matrix A ∈ Fm×n over a field F then M
is also linearly representable by a submatrix B ∈ Fr×n of A such that r = rank (B) = rank (A).

Theorem 3.1. Let F be a field and let A ∈ Fm×n be a linear representation of the matroid
M = (S, I) over F. We assume that every element of S is in at least one independent set in I.
Also if r = rank (A) and B ∈ Fr×n is a submatrix of A such that r = rank (B) then B is also
a linear representation of the matroid M .

Proof: We have assumed that every element of S is in at least one independent set in M .
When we have r = rank (A) = n it is clear that there exists a base of M that contains all the
elements in S. Also it is easy to note that this is the only base in M . But the submatrix B is
now a r× r non-singular submatrix of A over F. As a result the matroid represented by B also
contains only one base and this base contains all the elements of S. Now using Corollary 2.7 it
follows that the matroid represented by B is also M .

Before we prove the result for the case when r < n we prove the following claim.

Claim 3.2. The matrix B ∈ Fr×n does not contain any column containing only zeroes.

Proof of Claim 3.2. Assume that the claim is not true and that the ith column of B, denoted
by Bi contains only zeroes for some 1 ≤ i ≤ n. We have assumed that every element of S is
in at least one independent set in I of the matroid M . Therefore every column of the linear
representation A has at least one non-zero element from F. As a result the ith column of A,
denoted by Ai, is non-zero. Now if Bi denotes the ith column of B then since B is submatrix
of A it follows that Bi is contained in the column Ai. Moreover rank (B) = r and so there
exists a r × r non-singular submatrix B′ of B. Since we have assumed the column Bi contains
only zeros it follows that Bi is not in B′ and therefore using B′ and the column Ai we can then
obtain a (r + 1) × (r + 1) non-singular submatrix of A. But this contradicts our assumption
that r = rank (A). This shows that the column Bi in B contains at least one non-zero entry
from F which proves our claim.

Now assume that n = |S| and that r < n. We use induction on n to prove our result. Since
1 ≤ r < n it follows that n ≥ 2. Let us consider the base case when n = 2 and r = 1. Using
Claim 3.2 it follows that every column in A contains at least one non-zero entry from F. As a
result since r = 1 when the number of non-zero rows in A is 1 the row is of the form (α1, α2)
where α1, α2 ∈ F and α1 6= 0 and α2 6= 0. In this case using Claim 3.2 it follows that B is this
non-zero row. Otherwise every row in A is of the form (α, α), where α ∈ F and using Claim
3.2 it follows that there are at least 2 non-zero rows in A. As a result we get B to be one of
these non-zero rows of A and so the result is true for the case when n = 2. By extending these
arguments we can show the result to be true if r = 1 in a matroid M whenever n = |S| ≥ 2.
This proves the result for all n ≥ 1 when r = 1.

We now use induction on r to complete the proof. Let us inductively assume that if M =
(S, I) is a matroid such that n = |S| ≥ 3 and that M has a linear representation A ∈ Fm×n

with 1 ≤ r = rank (A) ≤ (n−2) then M is also linearly representable by a submatrix B ∈ Fr×n

of A such that rank (B) = r.

4

Let A ∈ Fm×n be a linear representation of a matroid M = (S, I) over F such that n = |S|
and r = rank (A) = (n−1). Let B ∈ Fr×n be a submatrix of A with rank (B) = r as mentioned
in the statement. We need to show that B also represents M over F.

Since r < n using Definition 2.4 and Definition 2.2 we observe that there exists i ∈ S and
a base B of M such that i 6∈ B. We now consider the submatrix A′i of A obtained by deleting
Ai, the ith column of A, from A. It is then clear that the matroid represented by A′i also has a
base of size r. It is obvious that rank (A′i) ≤ rank (A) and so rank (A′i) = r.

Using Claim 3.2 we obtain that every column of B contains at least one non-zero element in
F. Similar to the linear representation A, let Bi denote the ith column of B and let B′i be the
submatrix of B obtained by deleting Bi from B. We have r = rank (B) and therefore similar
to A′i we also have rank (B′i) = r. It is easy to note that B′i is a submatrix of A′i. Moreover
rank (A′i) = rank (B′i) = r and the matroid represented by A′i and the matroid represented by
B′i contain (n− 1) elements. Therefore using induction on |(S − {i})| = (n− 1) it follows that
A′i and B′i represent the same matroid. Let us call this matroid Mi.

Since we have obtained A′i by deleting Ai from A, it follows that any base of M is either a
base of Mi or it can be obtained from a base of Mi by applying the base exchange axiom stated
in Lemma 2.5 to a base of Mi with the element i ∈ S. Also M does not have any other base.
But this observation obtained using Lemma 2.5 is also true for the matroid represented by B
over F and the matroid represented by the submatrix Bi of B over F. We also know that the
matroid represented by Ai and the matroid represented by Bi is Mi. As a result we obtain that
B is also a linear representation of the matroid M . This completes the proof of our result on
row reduction for a linear representation of a matroid.

3.2 ECLR[Z2] is ⊕L-complete

We consider the ECLR problem when F = Z2. Using results on linear algebraic subroutines
such as computing a maximal set of linearly independent vectors from a given set of vectors
over Z2 and a solving system of linear equations over Z2 from [4] and properties of ⊕L from [8]
we show that ECLR[Z2] is ⊕L-complete under logspace many-one reductions.

Computing the number of spanning trees modulo 2 of an arbitrary undirected graph has
been recently shown to be complete for ⊕L under logspace many-one reductions in [3]. Also in
[3] computing the permanent of an integer matrix modulo 2k for a fixed integer k > 0 is also
shown to be complete for ⊕L under logspace many-one reductions. The completeness result for
ECLR[Z2] that we obtain in Theorem 3.4 is a new addition to this list of problems complete
for ⊕L.

We first show an equivalence relation that characterizes when two linear representations over
Z2 represent the same matroid.

Theorem 3.3. Given matrices M1,M2 ∈ Zm×n
2 such that rank (M1) = rank (M2) = m, we

say that M1 and M2 are related (denoted by M1 ∼ M2) if there exists an invertible matrix
X ∈ Zm×m

2 such that XM1 = M2. Then

1. ∼ is an equivalence relation, and

2. M1 and M2 represent the same matroid M over Z2 if and only if M1 ∼M2.

Proof: Let M1,M2 ∈ Zm×n
2 such that rank (M1) = rank (M2) = m.

1. It is easy to note that the above relation is reflexive: for any matrix M ∈ Zm×n
2 we can

take X to be Im, the m × m identity matrix. Also ∼ is symmetric, since XM1 = M2

for an invertible matrix X if and only if M1 = X−1M2. Transitivity follows since given

5

M1,M2 and M3, where M3 ∈ Zm×n
2 with rank (M3) = m, if M1 ∼M2 and M2 ∼M3 then

there exists invertible matrices X1, X2 ∈ Zm×m
2 such that X1M1 = M2 and X2M2 = M3.

Now let X3 = X2X1. Then X3 ∈ Zm×m
2 and is invertible. Moreover X3M1 = M3 which

implies M1 ∼M3.

2. Let M1,M2 ∈ Zm×n
2 be linear representations having rank (M1) = rank (M2) = m rep-

resenting the same matroid M . We can identify the columns corresponding to the lex-
icographically least base containing m elements of the matroid M from these matrices.
Let Y1, Y2 ∈ Zm×m

2 be submatrices of M1 and M2 respectively corresponding to this base.
Clearly Y1 and Y2 are invertible. Thus there exists an invertible matrix X ∈ Zm×m

2 such
that XY1 = Y2. More precisely we have X = Y2Y

−1
1 . Now any column in M1 can be

written as a Z2-linear combination of columns in Y1 in a unique way. Also given any set
of linearly independent vectors over Z2, there is exactly one vector in their Z2 span when
all the coefficients of this set of vectors are non-zero. We have also assumed M1 and M2

represent the same matroid. As a result any set of columns in M1 form a circuit if and
only if the corresponding set of columns also form a circuit in M2. Therefore from these
observations it follows that XM1 = M2.

Conversely if for M1,M2 ∈ Zm×n
2 we have M1 ∼M2, then M1 and M2 represent the same

matroid. This is a consequence of the fact that the set of vectors obtained by computing
the product of an invertible matrix with a set of linearly independent vectors is also
linearly independent.

Remark 1. It follows from Theorem 3.3 that the number of equivalence classes under the rela-
tion ∼ between the linear representations of a matroid M over Z2 is only one. This observation
about the number of equivalence classes is true only for Z2. This is important since the problem
of deciding ECLR[Z2] reduces to solving a system of linear equations over Z2. It is easy to see
that when considering linear representations of a matroid M over any other field (even with
characteristic 2) number of equivalence classes under the relation ∼ defined in Theorem 3.3 is
more than one. We do not know if there is a polynomial time algorithm to solve the ECLR
problem when the input linear representations are over a field that is not Z2.

Theorem 3.4. ECLR[Z2] is ⊕L-complete.

Proof: We are given linear representations M1,M2 ∈ Zm×n
2 as input. In [4] it has been shown

that computing a maximal set of linearly independent vectors over Z2 from a given set of vectors
over Z2 is complete for ⊕L under logspace many-one reductions. As a result we can compute
rank (M1) and rank (M2) in ⊕L and check if they are equal. If rank (M1) 6= rank (M2) then
we output M1 and M2 do not represent the same matroid and stop.

Otherwise assume that r = rank (M1) = rank (M2). Now once again it follows from [4]
that we can obtain a submatrix A1 ∈ Zr×n

2 of M1 and a submatrix A2 ∈ Zr×n
2 of M2 such that

rank (A1) = rank (A2) = r in ⊕L. Since the linear representations are over Z2 using Theorem
3.1 it follows that the matroid represented by Ai is the same as the matroid represented by Mi,
for i = 1, 2 respectively.

Given these linear representations A1 and A2 using Theorem 3.3 it follows that A1 and A2

represent the same matroid if and only if there exists a non-singular matrix X ∈ Zm×m
2 such

that XA1 = A2(mod 2). Essentially this step is to solve for a system of linear equations over
Z2 which is also shown to be complete for ⊕L in [4].

It is easy to see that given the linear representations M1 and M2 as input, a logspace
machine with access to a ⊕LH3 oracle can obtain the submatrices A1 and A2 and also check for
the existence of a matrix X ∈ Zm×m

2 such that XA1 = A2 over Z2. Since rank (A1) = rank (A2)

6

in Z2 it follows that X is non-singular. Now using these observations it follows from Theorem
3.3 and Theorem 2.11 that ECLR[Z2] ∈ ⊕L. This shows the ⊕L upper bound.

Hardness for ⊕L follows from the following observation: given a matrix M ∈ Zn×n
2 checking

if M is non-singular over Z2 is hard for ⊕L [4]. Therefore given a matrix M ∈ Zn×n
2 as input

we output M and In, where In is the n×n identity matrix. Clearly (M, In) ∈ ECLR[Z2] if and
only if M is non-singular which shows the hardness for ⊕L and hence the proof is complete.

3.3 An equivalence between search and decision for ECLR[Q]

In this section we consider the ECLR problem when the input linear representations are over
Q, the set of rationals. Let M1,M2 ∈ Qm×n be the input linear representations. Given a set
of indexes, columns corresponding to which are linearly dependent in one linear representation
but are linearly independent in the other linear representation is a witness that M1 and M2

represent different matroids over Q. We show that the search and the decision version of this
problem are polynomial time equivalent. More precisely, assume that there is a polynomial time
algorithm that decides ECLR[Q] and that the input linear representations M1 and M2 represent
different matroids. The polynomial time procedure described below outputs a set of indexes
such that columns corresponding to these indexes form a circuit in Mi but the corresponding
columns do not form a circuit in Mj using ECLR(M1,M2) as an oracle, where 1 ≤ i, j ≤ 2 and
i 6= j.

Given linear representations M1,M2 ∈ Qm×n, let ECLR(M1,M2) be the function that out-
puts 1 if the matroid represented by M1 and M2 are the same, and it outputs 0 otherwise. Also

if X ⊆ S = {1, . . . , n} and j ∈ {1, 2}, let M
(X)
j denote the submatrix of Mj obtained by retain-

ing columns whose indexes are in X and deleting any other column whose indexes is not in X.

We denote the matroid so obtained from Mj by (S, I(X)
j), where I(X)

j = {X ∩ I|for all I ∈ Ij}.
We start by assuming that M1 and M2 represent different matroids.

Let i = 1, X = {1, . . . , i}, and Y = ∅. We query the ECLR(M
(X)
1 ,M

(X)
2) oracle for

increasing values of i until the oracle outputs 0 for the smallest 1 ≤ i ≤ n. Once we obtain
this element i ∈ S we re-initialize X = {1, . . . , (i − 1)} and Y = Y ∪ {i}. If the columns
corresponding to elements in Y form a circuit in Mk but are linearly independent in Ml, where
1 ≤ k, l ≤ 2 with k 6= l, then we output Y and stop.

Otherwise if the set Y does not witness that the input linear representations represent differ-

ent matroids then we find the smallest j ∈ {1, . . . , (i−1)} such that the ECLR(M
(X′∪Y)
1 ,M

(X′∪Y)
2)

oracle outputs 0, where X ′ = {1, . . . , j}. Once we obtain this j ∈ S we once again re-initialize
X = X ′ and Y = Y ∪ {j}. Whenever we augment a new element to Y , we also check if the
columns corresponding to elements in Y form a circuit in Mk but are linearly independent in
Ml, where 1 ≤ k, l ≤ 2 with k 6= l. We iterate this step of augmenting elements to Y until we
obtain the desired set Y ⊆ {1, . . . , i} ⊆ S that forms a circuit in one linear representation but
not in the other and hence witnesses that the input linear representations represent different
matroids over Q.

The steps given above involve retaining some set of columns of the given input matrices and
querying the ECLR oracle. Clearly these steps are polynomial time computable and hence the
claim follows.

4 Cycle Matching Problem

The Cycle Matching Problem is defined as follows.

CYCLE MATCHING: Given a pair of undirected graphs G1 = (V1, E1) and G2 =

7

(V2, E2) as input with V1 = V2 = {1, . . . , n} and n = |V1| = |V2|, the CYCLE
MATCHING problem is to check if the set of vertices in X ⊆ V1 form a cycle in
G1 if and only if the set of vertices in X ⊆ V2 form a cycle in G2 also, for all
X ⊆ {1, . . . , n}.

It is not hard to view the CYCLE MATCHING problem as the graph theoretic analogue of
the ECLR problem. This follows from the fact that we can associate a linearly representable
matroid over any given field F to a given simple undirected graph. The matroid so obtained is
called a cycle matroid or a graphic matroid [13, pages 11 and 12]. Here the edges of the graph
are the underlying elements and a set of edges form a cycle if and only if the corresponding
columns of the linear representation form a minimal linearly dependent set of vectors over F.
In fact the incidence matrix of a simple undirected graph G is itself a linear representation for
the cycle matroid of G over Z2. Thus it seems natural to expect a ⊕L upper bound for CYCLE
MATCHING. However as one of the main results we show that the CYCLE MATCHING
problem is in fact complete for L. We obtain the upper bound of L for CYCLE MATCHING
in Theorem 4.22. We show that CYCLE MATCHING is hard for L in Theorem 4.24.

Assume that we are given a pair of simple undirected connected graphs (G1, G2) that do
not have any cut-vertices as input to the CYCLE MATCHING problem. If (G1, G2) is a
“yes” instance of CYCLE MATCHING then it turns out that G1 and G2 are also isomorphic.
Given such a “yes” instance (G1, G2) of CYCLE MATCHING we identify a subset of the set
of all isomorphisms from G1 to G2 and call these isomorphisms as Cymatch Isomorphisms
of G1 and G2. We also say that G1 and G2 are cymatch isomorphic. The definition of a
cymatch isomorphism along with related results leading to the proof of the theorem we have
stated above is proved in Section 4.2 and Theorem 4.19. Due to the upper bound result that
CYCLE MATCHING ∈ L shown in Theorem 4.22 we are therefore able to show that it is
possible to decide if there exists a cymatch isomorphism from G1 to G2 (and also compute a
cymatch isomorphism from G1 to G2) in L in Corollary 4.23.

It should be remarked that for a cymatch isomorphism to exist between a given pair of input
graphs, every two vertices in each of the input graphs need be in at least one cycle and the input
graphs should also agree on all subsets of vertices that form a cycle (giving a rigorous proof
of this statement is the main objective for the rest of this paper). Since the condition stated
above demands the input graphs to agree on the adjacency of vertices to a large extent, it is not
surprising that there exists an isomorphism between the given input graphs when they satisfy
the condition stated above. While [12, 10, 9] prove results showing that the Graph Isomorphism
problem for certain restricted graph classes are complete for L, using our results on CYCLE
MATCHING we are able to identify yet another non-trivial class of pairs of undirected graphs2

for which we can decide Graph Isomorphism in L. (Also Köbler in [11] gives a recent survey
of results on the Graph Isomorphism problem for restricted graph classes that are decidable in
NC.)

Reingold in [16] presents a O(log n) space algorithm for the undirected st-connectivity prob-
lem and as a consequence it is also shown in [16] that SL = L. Due to this result it follows
that the list of problems in [2] that are shown to be complete for SL are also complete for L.
Therefore the results obtained in [5, 12, 10, 2, 9] give an almost complete list of problems that
are known to be L-complete. It seems that the CYCLE MATCHING problem has not received
any attention so far and our result that CYCLE MATCHING is L-complete shown in Section
4.4 and other related results we obtain are new and unknown.

2The precise statement would assume a promise on the input pair of undirected graphs (G1, G2) so that G1

and G2 are isomorphic if and only if they are cymatch isomorphic.

8

Definition 4.1. Let G1 = (V1, E1) and G2 = (V2, E2) be a pair of undirected graphs with
V1 = V2 = {1, . . . , n} and n = |V1| = |V2| such that (G1, G2) is a “no” instance of CYCLE
MATCHING. We say that a vertex x ∈ V1 causes cycle mismatch if there exists S ⊆ {1, . . . , n}
such that x ∈ S and the vertices in S form a cycle in Gi but the vertices in S do not form a
cycle in Gj, where 1 ≤ i, j ≤ 2 and i 6= j.

4.1 Preliminaries

Definition 4.2. A cut-edge in an undirected graph G is an edge whose deletion from the graph
increases the number of components in G.

Definition 4.3. A cut-vertex in an undirected graph G is a vertex whose deletion from the
graph increases the number of components in G.

Theorem 4.4. [19, Theorem 1.2.14] Given an undirected graph G, an edge is a cut-edge if and
only if it does not belongs to any cycle in G.

Corollary 4.5. Let G be a undirected graph. Then G does not contain cut-edges if and only if
for every edge in G is contained in at least one cycle in G.

Proof: Let G be an undirected graph. Now if G does not contain any cut-edge then it follows
from Theorem 4.4 that every edge in G is contained in at least one cycle in G. Conversely if
every edge in G is always contained in at least one cycle in G then once again using Theorem
4.4 it follows that any edge in G is not a cut-edge.

Note 2. If G is an undirected graph then the subgraph of G formed by those vertices which are
the end vertices of edges that are not cut-edges is unique.

Lemma 4.6. Let G = (V,E) be an undirected graph that does not contain cut-edges and isolated
vertices. Also assume that |V | ≥ 3 and let u, v ∈ V . Then there exists a cycle containing u and
v in G if and only if there exists a path connecting u and v in G′ = (V ′, E′) where V ′ = V −{w}
and E′ = E − {(w, x)|x ∈ V } for any w ∈ V − {u, v}.

Proof: Assume that there exists a cycle containing u and v in G. From this cycle we can
then obtain two paths connecting u and v. Now for any w ∈ V − {u, v} if w is not in the cycle
containing u and v then the result is obviously true. Otherwise if w is a vertex in the cycle then
we can always choose the path in G connecting u and v that does not contain w. Clearly this
path exists in G′ also.

Conversely assume that there always exists a path connecting u and v in G′ = (V ′, E′) where
V ′ = V − {w} and E′ = E − {(w, x)|x ∈ V }, for any w ∈ V − {u, v}. We use induction on the
length of a shortest path connecting u and v in G′ to prove the result. For the case when this
path in G′ is the edge (u, v), since (u, v) is not a cut-edge in G using Corollary 4.5 it follows
that there exists a cycle containing u and v in G.

Now inductively assume that if the length of the shortest path connecting u and v in G′ is
(l − 1) for l ≥ 2, then there exists a cycle containing u and v in G.

Let P be a path of length l ≥ 2 connecting u and v in G′. Let w1 be the neighbour of
u in P and let w2 be the neighbour of v in P . Since there exists a path of length less than
or equal to (l − 1) connecting u and w2 in G′, using induction on (l − 1) it follows that there
exists a cycle containing vertices u and w2 in G. Similarly there exists a cycle containing w1

and v in G. If w1 6= w2 then it is easy to construct a cycle containing u and v from the edges
(u,w1), (w2, v) and the edges in these two cycles. When w1 = w2 using our assumption about
G it follows that there exists a path connecting u and v in G′′ = (V ′′, E′′) where V ′′ = V −{w1}

9

and E′′ = E −{(w1, x)|x ∈ V }. Now using the shortest path connecting u and v in G′′ and the
edges (u,w1), (w1, v) ∈ E we can obtain a cycle containing u and v in G. This completes the
proof.

As a consequence we obtain the following result.

Corollary 4.7. Let G = (V,E) be an undirected graph that does not contain cut-edges and
isolated vertices such that |V | ≥ 3. Then G does not contain cut-vertices if and only if for any
u, v ∈ V such that u 6= v we have a cycle containing u and v.

Proof: Let G = (V,E) be an undirected graph that does not contain any cut-edge and
isolated vertices. Assume that G does not contain cut-vertices. As a result for any u, v ∈ V
and w ∈ V − {u, v} there always exists a path connecting u and v in G′ = (V ′, E′) where
V ′ = V − {w} and E′ = E − {(w, x)|x ∈ V }. Therefore using Lemma 4.6 it follows that there
exists a cycle containing u and v in G. Conversely, if for every pair u, v ∈ V there exists a cycle
containing u and v in G then there exists a path connecting u and v in G′, where G′ = (V ′, E′)
with V ′ = V − {w} and E′ = E − {(w, x)|x ∈ V } for all w ∈ V − {u, v}. As a result it follows
from Lemma 4.6 that w is not a cut-vertex. Since this is true for every subset {u, v, w} ∈ V
containing 3 distinct vertices it follows that G does not have cut-vertices.

Note 3. If G is an undirected graph then the subgraph of G formed by vertices that are not
cut-vertices is unique.

We now prove results on simple undirected connected graphs based on the degree of vertices
in it.

Lemma 4.8. Let G = (V,E) be a simple undirected connected graph that does not contain cut-
vertices. Let x1, x2, y1, y2, u, v ∈ V be such that d(x1) ≥ 3, d(x2) ≥ 3, d(y1) ≥ 3, d(y2) ≥ 3 and
d(u) = d(v) = 2. Also assume that there exists a path P1 connecting x1 and y1 which contains
u and which does not contain v. Similarly assume that there exists a path P2 connecting x2 and
y2 which contains v and which does not contain u. If apart from xi and yi every other vertex in
the path Pi is of degree 2, where 1 ≤ i ≤ 2, then there exists a cycle in G that contains x1, u, y1
and x2 but which does not contain v.

(The result is also true when we assume x1 = x2 and y1 = y2 and the paths P1 and P2 do
not have any vertex in common other than x1 and y1.)

Proof: We have assumed G to be a simple undirected connected graph and that d(xi) ≥ 3 and
d(yi) ≥ 3 for 1 ≤ i ≤ 2. As a result there exists at least 3 paths that connect xi and yi in G,
where 1 ≤ i ≤ 2. Let Q and Q′ be two paths connecting x2 and y2 such that both these paths
do not contain v. Also assume that the paths Q and Q′ do not have any vertex in common
other than x2 and y2.

Let S ⊆ V denote the set of vertices in the path P2. Then v ∈ S. Consider the subgraph of
G formed by the vertices in (V − S) ∪ {x2, y2}. Let us denote this subgraph by H. It is easy
to note that both the paths Q and Q′ exist in H also. Also we can obtain a cycle containing
x2 and y2 from the paths Q and Q′ in H. This shows that H does not contain cut-vertices.
Using Corollary 4.7 it is clear that there exists a cycle containing u and x2 in H. This cycle
also contains x1 and y1 since these vertices are the end vertices of the path P1 that contains u.
Since this cycle is in H it does not contain v and it is in G also. This completes the proof.

Lemma 4.9. Let G = (V,E) be a simple undirected connected graph that does not contain
cut-vertices such that |V | ≥ 3. Let D denote the number of vertices in G that have degree at
least 3. Then

1. D = 0 if and only if G is a cycle,

10

2. D 6= 1 in G,

3. if D = 2 and we have u, v, w ∈ V such that d(u) ≥ 3, d(v) ≥ 3 and d(w) = 2 then there
always exists a cycle in G that contains u and v but which does not contain w,

4. if D ≥ 3 then for any u, v ∈ V such that d(u) ≥ 3 and d(v) ≥ 3 there always exists a cycle
in G that contains u but which does not contain v.

Proof:

1. If for a simple undirected connected graph G that does not contain cut-vertices we have
|V | ≥ 3 and D = 0 then every vertex is of degree 2 and so G is obviously a cycle.
Conversely, if G is a simple undirected connected graph that is a cycle then it does not
have any vertices having degree greater than or equal to 3. This implies D = 0.

2. Let G be a simple undirected connected graph that does not contain cut-vertices. Then
either G is a cycle in which case we have shown D = 0 or the number of vertices having
degree greater than or equal to 3 is at least 2. This shows we cannot have D = 1.

3. Since D = 2 it is clear that G is not a cycle. Also G is simple undirected and connected.
Therefore there are at least 3 paths connecting u and v. As a result we get |V | ≥ 4.
Moreover if x,w ∈ V − {u, v} since D = 2 it follows that d(x) = d(w) = 2. We can also
assume without loss of generality that x and w are in distinct paths connecting u and v.
Clearly the path connecting u and v that contains x and the path connecting u and v that
contains w do not have any vertex in common other than u and v. Now using Lemma 4.8
it follows that there exists a cycle containing u, x and v that does not contain w.

4. Assume that D ≥ 3. Let u, v, w ∈ V be such that d(u) ≥ 3, d(v) ≥ 3 and d(w) ≥ 3. Since
G is simple undirected connected we have |V | ≥ 4. Let x ∈ V −{u, v, w}. Using Corollary
4.7 we can obtain a cycle C1 that contains u and w and a cycle C2 that contains u and x.
If C1 or C2 do not contain v then the proof is complete.

Otherwise assume that both C1 and C2 contain u and v. Consider the case when there
exists at least one vertex in V − {u, v} that is in C1 and in C2. From amongst these
vertices in V − {u, v} that are common to C1 and C2 we can then choose a vertex y such
that using the edges in C1 and in C2 that connect u and y we can obtain a cycle that
contains u but which does not contain v in G.

Instead if C1 and C2 do not have any vertex in common other than u and v, using Corollary
4.7 it follows that there exists a cycle C3 in G that contains w and x. As we had observed
above we can now construct a cycle in G that contains u and which does not contain v
from the paths connecting u and w in C1, the paths connecting u and x in C2 and the
paths connecting w and x in C3. This completes the proof.

4.2 Cymatch Permutation

Definition 4.10. Let G = (V,E) be a simple undirected connected graph that does not contain
cut-vertices such that |V | ≥ 3. We define a Cymatch Permutation of V to be a permutation ψ
of V such that for u, v ∈ V and u 6= v if we have ψ(u) = v then either

1. we have d(u) = d(v) = 2 and G is a cycle containing vertices u and v, or

2. we have d(u) = d(v) = 2 and there exists x, y ∈ V with d(x) ≥ 3 and d(y) ≥ 3 such that
both u and v are contained in a path P that connects x and y in G. Moreover in this path
P apart from x and y every other vertex has degree 2, or

11

3. we have d(u) = d(v) = 2 and there exists x, y ∈ V with d(x) ≥ 3 and d(y) ≥ 3 such that
(x, u), (u, y), (y, v), (x, v) ∈ E, or

4. we have d(u) = d(v) ≥ 3 and these are the only vertices in G that have degree greater than
or equal to 3. Apart from u and v every other vertex in G has degree 2. There are at least
3 paths in G that connect u and v and every vertex in G that has degree 2 is contained in
one of these paths connecting u and v.

Otherwise if G = (V,E) contains at least 3 vertices whose degree is greater than or equal to
3 then for all x ∈ V such that d(x) ≥ 3 we have ψ(x) = x. If x, y ∈ V and d(x) 6= d(y) then we
always have ψ(x) 6= y.

Fact 4.11. Let G = (V,E) be a simple undirected connected graph that does not contain cut-
vertices such that |V | ≥ 3. Then the identity permutation on V is a cymatch permutation of
V .

Proof: Proof is obvious from Definition 4.10.

Definition 4.12. Let G = (V,E) be a simple undirected connected graph that does not contain
cut-vertices such that |V | ≥ 4. We say that a vertex v ∈ V is a δ-vertex in G if d(v) = 2 and there
exists x, u, y ∈ V with d(u) = 2, d(x) ≥ 3 and d(y) ≥ 3 such that (x, u), (u, y), (y, v), (x, v) ∈ E
in G.

Proposition 4.13. Let G = (V,E) be a simple undirected connected graph that does not contain
cut-vertices such that there are 2 vertices having degree greater than or equal to 3. If a set of
vertices S ⊆ V form a cycle in G then the number of δ-vertices in S is at most 2. Also if the
number of δ-vertices in S is 2 then |S| = 4.

Proof: Since the number of vertices in G having degree greater than or equal to 3 is 2 it is
clear that G is not a cycle. Assume that we have S ⊆ V such that vertices in S form a cycle
in G. If S does not contain any δ-vertices then the result immediately follows. Otherwise if we
have a δ-vertex v ∈ S it follows from Definition 4.10 that there exists another δ-vertex u ∈ S
such that (x, u), (u, y), (y, v), (x, v) ∈ E. Since vertices in S form a cycle it follows that the
number of δ-vertices in S is at most 2. Moreover when u, v ∈ S since S is a cycle the edges that
form the cycle are once again (x, u), (u, y), (y, v), (x, v) which implies |S| = 4.

Remark 2. In Definition 4.10 we have assumed G = (V,E) is a simple undirected connected
graph that does contain cut-vertices such that |V | ≥ 3. As a result if v ∈ V then d(v) ≥ 2.
Moreover it follows from Corollary 4.7 that given u, v ∈ V there always exists a cycle that
contains u and v in G.

a. In defining a cymatch permutation ψ, if for u, v ∈ V with u 6= v we have ψ(u) = v and
d(u) = d(v) = 2 then G is a cycle or u and v are contained in a path that connects x, y ∈ V
such that d(x) ≥ 3 and d(y) ≥ 3. Also this path contains only vertices of degree 2 apart
from x and y in G.

b. Yet another instance when a cymatch permutation ψ is such that ψ(u) = v where u, v ∈ V
with u 6= v and d(u) = d(v) = 2 is when there exists x, y ∈ V with d(x) ≥ 3 and d(y) ≥ 3
such that (x, u), (u, y), (y, v), (x, v) ∈ E. In other words we have ψ(u) = v when both u and
v are δ-vertices (Definition 4.12) connecting x and y in G. The δ-vertices case is the only
instance where a cymatch permutation maps u ∈ V with d(u) = 2 to v ∈ V with d(v) = 2
where u 6= v such that there exists x, y ∈ V with d(x) ≥ 3 and d(y) ≥ 3 connecting u and
v in G. The above two cases in (a & b) exhaust the possibility of a cymatch permutation
to map a vertex of degree 2 in G to yet another vertex of degree 2 in G.

12

c. If for u, v ∈ V with u 6= v and d(u) = d(v) ≥ 3 we have a cymatch permutation ψ such
that ψ(u) = v then G is such that there does not exist any w ∈ V with d(w) ≥ 3 where
w 6= u and w 6= v. In these instances since we assume G is simple undirected connected
it is clear that |V | ≥ 4 and that there are at least 3 paths connecting u and v. Also
every other vertex in G has degree 2 and it lies in one of the paths that connect u and
v. Moreover G does not contain cut-vertices. As a result every vertex in G is contained
in at least one cycle and every cycle contains both u and v. (Note that our assumption
that d(u) = d(v) in Definition 4.10 is redundant. In other words if we assume G is simple
undirected connected and that it does not contain cut-vertices such that there are only
2 vertices u, v ∈ V that have degree greater than or equal to 3 then we can show that
d(u) = d(v). A simple way of proving this statement is to observe that if P and P ′ are
two paths that connect u and v in G such that the end vertices of P and P ′ are also u and
v then the vertices that are common to P and P ′ are u and v only. As a result since we
assume D = 2 we need to have d(u) = d(u).)

d. Let X = {x ∈ V |d(x) ≥ 3} and D = |X|. In defining a cymatch permutation ψ the only
class of graphs where we allow ψ(x) = y for x, y ∈ X such that x 6= y is when D = 2. In
any other case if G is such that D ≥ 3 then we have ψ(x) = x for all x ∈ X. We impose
this restriction for x ∈ X so that we avoid the possibility of a cycle mismatch (Definition
4.1) that can occur due to vertices of degree 3 in G (consequence of Lemma 4.9) when the
pair (G,ψ(G)) is given as input to CYCLE MATCHING. This ensures that the definition
of a cymatch permutation in Definition 4.10 is consistent with CYCLE MATCHING.
Also note that a cymatch permutation ψ of V for a simple undirected connected graph
G = (V,E) that does not contain cut-vertices is always such that if u, v ∈ V with u 6= v
and d(x) 6= d(y) then we do not have ψ(x) = y.

Lemma 4.14. Let G = (V,E) be a simple undirected connected graph that does not contain
cut-vertices such that V = {1, . . . , n} and n = |V | ≥ 3. Let θ be a cymatch permutation of
V . Also let G′ = (V ′, E′) be a simple undirected connected graph that does not contain cut-
vertices such that V ′ = V and E′ = {(θ(u), θ(v))|(u, v) ∈ E}, where u, v ∈ V . Then for any
S = {u1, . . . ul} ⊆ V such that (ui, uj) ∈ E we have θ(S) ⊆ V ′ and (θ(ui), θ(uj)) ∈ E′, where
j = i(mod l) + 1 and 1 ≤ i ≤ l. In other words, if a set of vertices in S form a cycle in G then
the vertices in θ(S) form a cycle in G′.

Let v ∈ V . If v ∈ (S 4 θ(S))3 then v is a δ-vertex.
Also let X = {x ∈ V |d(x) ≥ 3} and D = |X|. If D = 2 then 0 ≤ |(S 4 θ(S))| ≤ 2.

Proof: (In this proof we do not explicitly mention or refer to G′ = (V ′, E′) that is obtained
by relabelling vertices of G under the cymatch permutation θ. Instead if S ⊆ V then we always
consider vertices in θ(S) and this suffices to prove our result.)

Let X = {x ∈ V |d(x) ≥ 3} and D = |X|. We prove the result based on the value of D.
When D = 0 it follows from Lemma 4.9 that G is a cycle in which case the result is true as
mentioned in Remark 2(a). It also follows from Lemma 4.9 that D 6= 1.

Let G be such that D = 2 and let X = {x, y}. Since θ is a cymatch permutation of V it
follows from Remark 2(d) that either (θ(x) = x and θ(y) = y) or (θ(x) = y and θ(y) = x).
Moreover we have noted in Remark 2(c) that when D = 2 every cycle in G contains x and y.
As a result if S ⊆ V forms a cycle then x, y ∈ S and x, y ∈ θ(S).

Since θ is a cymatch permutation of V and D = 2, we use Remark 2(c) to recall the minimum
requirements about the adjacency of vertices in G. We have |V | ≥ 4 and for u, v ∈ (V −X) we

3Given two sets A and B we denote the the symmetric difference of A and B by (A4B). That is (A4B) =
(A ∪B)− (A ∩B).

13

always have d(u) = d(v) = 2. Also assume that θ(u) = v. Since θ is a cymatch permutation, as
mentioned in Remark 2(a & b) it is clear that either we have a path connecting x and y in G
that contains u and v or vertices u and v are δ-vertices in G.

For the case when we have a path connecting x and y in G that contains u and v it is clear
that when u, v ∈ S we have u, v ∈ (S ∩ θ(S)). Therefore if there are no δ-vertices in S then
θ(S) = S. This implies |(S 4 θ(S))| = 0 and so the result is true for this case.

Otherwise let us assume that u ∈ S and that u is the only δ-vertex in S. Since D = 2 if
θ(u) = v then from Remark 2(b) we get that v is also a δ-vertex in G that is adjacent to x and y.
When θ(u) = v and u = v we have θ(S) = S in which case the result is true since vertices in S
form a cycle. If u 6= v then v 6∈ S and so from Remark 2(a) it follows that θ(S−{u}) = (S−{u})
and these vertices form a path connecting x and y in G. Therefore from these observations we
get θ(S) = (S−{u})∪{v}. Since v is a δ-vertex adjacent to x and y, vertices in (S−{u})∪{v}
also form a cycle in G. In this case we therefore get 0 ≤ |(S 4 θ(S))| ≤ 1.

When D = 2 and u, v ∈ S are δ-vertices in G such that u 6= v it follows from Proposition 4.13
that vertices in S form a cycle of length 4. That is S = {x, u, y, z} and (x, u), (u, y), (y, v), (x, v) ∈
E. Now using Remark 2(b) it follows that both θ(u) and θ(v) are δ-vertices connecting x and y
in G. Moreover θ{x, y} = {x, y} and so vertices in θ(S) also form a cycle. As a result we have
0 ≤ |{u, v} ∩ θ{u, v}| ≤ 2 and so we have 0 ≤ |(S 4 θ(S))| ≤ 2. From Proposition 4.13 we also
know that the number of δ-vertices in S is at most 2 and so the result is proved for the case
when D = 2.

The proof for the case when D ≥ 3 in G is similar. We need to observe that if x ∈ X then
θ(x) = x. As a result if vertices in S ⊆ V form a cycle in G and if x ∈ (S ∩X) then θ(x) = x.
Rest of the proof for this case when D ≥ 3 is similar to the case when D = 2 and follows from
Definition 4.10, Remark 2 and Proposition 4.13. To be more precise, given S ⊆ V we need to
consider all S′ ⊂ S such that vertices in S′ have degree 2 in G and these vertices form a path
connecting vertices x and y where x, y ∈ (S ∩ X). When S′ = {u} the path so obtained is
of length 2 and when |S′| ≥ 2 the path formed by vertices in S′ has length at least 3. When
S′ = {u} and u is a δ-vertex using Remark 2(b) it follows that θ(u) = v where v is also a
δ-vertex connecting x and y. Note that when S′ = {u} it is not always necessary to have u to
be a δ-vertex. However similar to the case when D = 2 it is easy to see that θ(S′) = S′. When
|S′| ≥ 2 and the length of the path formed by the vertices in S′ is at least 3 we have θ(S′) = S′

and the proof is similar to the case when D = 2. As a result it follows that vertices in θ(S′)
once again form a path connecting x and y in G. This shows that vertices in θ(S) also form a
cycle in G.

Let v ∈ V such that v ∈ (S 4 θ(S)). We have already observed that if S′ ⊂ S such that
vertices in S′ have degree 2 in G and they form a path connecting x, y ∈ (S∩X) then θ(S′) = S′.
Moreover when S′ = {u} we may have the cymatch permutation ψ such that ψ(u) = u or that
ψ(u) = v where u, v ∈ V and u 6= v. Clearly in the latter case θ(S′) 6= S′ and we have
u, v ∈ (S4 θ(S)). But it follows from Definition 4.10 and Definition 4.12 that both u and v are
δ-vertices. This is true for all S′ ⊂ S ⊆ V such that vertices in S form a cycle in G and |S′| = 1
which completes the proof.

Definition 4.15. Let G1 = (V1, E1) and G2 = (V2, E2) be simple undirected graphs such that
V1 = V2 = {1, . . . , n}. We define an isomorphism from G1 to G2 to be a mapping θ : V1 → V2
such that for u, v ∈ V1 if u 6= v then θ(u) 6= θ(v) and ((u, v) ∈ E1 if and only if (θ(u), θ(v)) ∈
E2). When such a mapping θ : G1 → G2 exists we say that G1 and G2 are isomorphic.

Definition 4.16. Let G1 = (V1, E1) and G2 = (V2, E2) be simple undirected connected graphs
such that G1 does not contain cut-vertices and G2 does not contain cut-vertices. Also let V1 =
V2 = {1, . . . , n} and n = |V1| = |V2| ≥ 3. We define a Cymatch Isomorphism ψ from G1 to G2

14

to be an isomorphism from G1 to G2 given by the mapping ψ : V1 → V2 such that ψ is also a
cymatch permutation of V1. When such a mapping ψ : V1 → V2 exists we say that G1 and G2

are cymatch isomorphic.

We now prove results on cymatch isomorphism when a pair of simple undirected connected
graphs that do not contain cut-vertices is given as input.

Proposition 4.17. Let G1 = (V1, E1) and G2 = (V2, E2) be cycles such that V1 = V2 =
{1, . . . , n} and n = |V1| = |V2| ≥ 3. Then G1 and G2 are cymatch isomorphic.

Proof: Since G1 is a cycle on n vertices it follows from the definition of a cymatch permutation
(Definition 4.10) that any permutation θ of V1 is a cymatch permutation of V1. We also know
that any two cycles on n ≥ 3 vertices are isomorphic. As a result if ψ is an isomorphism
from G1 to G2 then ψ is also a cymatch permutation of V1. This shows that G1 and G2 are
cymatch isomorphic.

Theorem 4.18. Let G1 = (V1, E1) and G2 = (V2, E2) be simple undirected connected graphs
such that V1 = V2 = {1, . . . , n} and n ≥ 3. Also assume that G1 does not contain cut-vertices
and G2 does not contain cut-vertices. Then G1 and G2 are cymatch isomorphic if and only if
there is a cymatch permutation ψ : V1 → V2 such that for any S ⊆ V1, if the vertices in S form
a cycle in G1 then vertices in ψ(S) ⊆ V2 form a cycle in G2.

Proof: Let ψ be a cymatch isomorphism from G1 to G2. It follows from Definition 4.16 that
ψ is a cymatch permutation of V1. Moreover ψ is an isomorphism from G1 to G2. Therefore if
u, v ∈ V1 and if (u, v) ∈ E1 then (ψ(u), ψ(v)) ∈ E2. As a result if S ⊆ V1 such that vertices in
S form a cycle in G1 then ψ(S) ⊆ V2 and vertices in ψ(S) form a cycle in G2.

Conversely, let ψ be a cymatch permutation of V1 such that for any S ⊆ V1 if the vertices in
S form a cycle in G1 then the vertices in ψ(S) ⊆ V2 form a cycle in G2. It follows from Lemma
4.14 that if S ⊆ V1 and the vertices in S form a cycle in G1 then the vertices in ψ(S) also form
a cycle in G1.

When G1 and G2 are cycles on n vertices the result follows immediately from Proposition
4.17. Otherwise let Xi = {x ∈ Vi|d(x) ≥ 3} and Di = |Xi|, for 1 ≤ i ≤ 2. Assume that Di ≥ 2,
for 1 ≤ i ≤ 2. Since D1 ≥ 2 and ψ is a cymatch permutation of V1, we recall the minimum
requirements about V1 and adjacency of vertices in V1 from Remark 2(c & d). Since G1 and
G2 are not cycles and ψ is a cymatch permutation of V1 we need to have X2 = X1 and that
D2 = D1 in G2. If not, it follows from Lemma 4.9 that we get a cycle mismatch (Definition 4.1)
between G1 and G2 caused by a vertex in (X1 4X2). But this leads to a contradiction for G1

due to the result proved in Lemma 4.14 since ψ is a cymatch isomorphism from G1 to G2.
So assume that X1 = X2 and D1 = D2 ≥ 2. We now recall the proof of Lemma 4.14. Since

ψ is a cymatch permutation of V1 we have ψ(X1) = X1. In addition if D1 = 2 then ψ may be a
cycle of length 2 on X1 or an identity mapping on X1. Otherwise if D1 ≥ 3 we have ψ(x) = x
for all x ∈ X1.

Also if we have a set of vertices S′ ⊂ S ⊆ V1 such that every vertex in S′ has degree 2 and
these vertices form a path of length at least 3 connecting x, y ∈ (S∩X1) in G1 then ψ(S′) = S′.
Even though we assume ψ(S′) forms a path in G2 note that if u, v ∈ S′ and if (u, v) ∈ E1 then
we need not have (ψ(u), ψ(v)) ∈ E2. In fact we may not even have (ψ(u), ψ(v)) ∈ E1. That is,
if u, v ∈ S′ and (u, v) ∈ E1 then any of the following possibilities can occur.

• (ψ(u), ψ(v)) ∈ E1 and (ψ(u), ψ(v)) ∈ E2, or

• (ψ(u), ψ(v)) ∈ E1 and (ψ(u), ψ(v)) 6∈ E2, or

• (ψ(u), ψ(v)) 6∈ E1 and (ψ(u), ψ(v)) ∈ E2, or

15

• (ψ(u), ψ(v)) 6∈ E1 and (ψ(u), ψ(v)) 6∈ E2.

However since ψ is a cymatch permutation, as in the proof of Lemma 4.14, we always have
ψ(S′) = S′ and S′ forms a path that connects x, y ∈ X1.

When S′ = {u} such that d(u) = 2 and u is not a δ-vertex in G1 it follows from the definition
of a cymatch permutation (Definition 4.10) that ψ(S′) = S′. For the case when S′ = {u} and u
is a δ-vertex that connects vertices x, y ∈ X1 we have ψ(u) = v where v is also a δ-vertex in G1

that connects the same pair of vertices x, y ∈ X1. From our assumption on ψ it is clear that
these observations on the adjacency of vertices in ψ(S′) is true in G2 also.

We now define θ : V1 → V2 based on ψ and show that θ is a cymatch permutation of V1 that
is also an isomorphism from G1 to G2. If v ∈ V1 such that v ∈ X1 (recall that X1 = X2) or v
is such that d(v) = 2 such that v is adjacent to vertices x, y ∈ X1 then we define θ(v) = ψ(v)
(note when we have d(v) = 2 we also take care of the case of v being a δ-vertex in G1).

Otherwise let v ∈ S′ where S′ ⊆ V1 and |S′| ≥ 2 as described above. We recall that d(v) = 2
and there exists x, y ∈ X1 such that v is contained in a path formed by vertices in S′ of length
at least 3 connecting x and y in G1. Moreover |S′| ≥ 2 and ψ(S′) = S′. Assume that the length
of the path connecting x and v in G1 formed by vertices in ({x} ∪ S′) is l. Then 1 ≤ l ≤ |S′|.
We then define θ(v) = u if the length of the path connecting ψ(x) and u in G2 formed by the
vertices in (ψ(x) ∪ S′) is l.

We have already shown that X1 = X2 and it follows from the definition of θ that θ(X1) = X2.
Also note that the only instance when we may have θ to be a non-identity mapping on X1 is
when D1 = 2. Here we may have θ to be a cycle of length 2 on X1 if ψ is a cycle of length 2
on X1. If u ∈ V1 such that d(u) = 2 and u is adjacent to vertices x, y ∈ X1 then θ(u) is also a
vertex having degree 2 in G2 that is once again adjacent to x, y ∈ X2 (note that this includes
δ-vertices in G1). Also for any S′ ⊆ V1 that contains only vertices of degree 2 such that |S′| ≥ 2
as described above, we have θ(S′) = S′ ⊆ V2. In addition, as stated in Lemma 4.14, θ also
ensures that if u, v ∈ S′ and (x, u) ∈ E1 or (u, v) ∈ E1 or (v, y) ∈ E1 then (θ(x), θ(u)) ∈ E2

or (θ(u), θ(v)) ∈ E2 or (θ(v), θ(y)) ∈ E2 respectively in G2 also. This shows that if a set of
vertices S ⊆ V1 forms a cycle in G1 then θ(S) also forms a cycle in V1. We therefore get θ
to be a cymatch permutation of V1. The above stated properties of θ also show that θ is an
isomorphism from G1 to G2. This shows that G1 and G2 are cymatch isomorphic and hence
the proof is complete.

Theorem 4.19. Let G1 = (V1, E1) and G2 = (V2, E2) be a pair of simple undirected connected
graphs such that V1 = V2 = {1, . . . n} and n = |V1| = |V2| ≥ 3. Also assume that G1 does not
contain cut-vertices and G2 does not contain cut-vertices. Then (G1, G2) is a “yes” instance of
CYCLE MATCHING if and only if there exists a cymatch permutation ψ of V1 that is also a
cymatch isomorphism from G1 to G2.

In other words, (G1, G2) is a “yes” instance of CYCLE MATCHING if and only if G1 and
G2 are cymatch isomorphic.

Proof: Let (G1, G2) be a “yes” instance of CYCLE MATCHING. We know that the identity
permutation of V1 is itself a cymatch permutation of V1 (Fact 4.11). Let us denote the identity
permutation of V1 by e. Since (G1, G2) is a “yes” instance of CYCLE MATCHING if a set of
vertices S ⊆ V1 form a cycle in G1 then vertices in S form a cycle in G2 also. Also e(S) = S for
all S ⊆ V1. Therefore using Theorem 4.18 it follows that G1 and G2 are cymatch isomorphic.

Conversely assume thatG1 andG2 are cymatch isomorphic and let θ be a cymatch isomorphism
from G1 to G2. Then it follows from the definition of a cymatch isomorphism (Definition 4.16)
that θ is a cymatch permutation of V1 that is also an isomorphism from G1 to G2. Also using
Theorem 4.18 it follows that if vertices in S ⊆ V1 form a cycle in G1 then θ(S) ⊆ V2 and θ(S)

16

forms a cycle in G2. If for all subsets of vertices S ⊆ V1 that form a cycle in G1 we have
θ(S) = S then it is immediate that (G1, G2) is a “yes” instance of CYCLE MATCHING.

Otherwise it follows from Lemma 4.14 that if v ∈ (S 4 θ(S)) then v is a δ-vertex. We
now define another permutation ψ on V1 as follows. If v ∈ V1 and v is a δ-vertex in G1 then
ψ(v) = v and for all other vertices u ∈ V1 we let ψ(u) = θ(u). Since ψ maps a δ-vertex to
itself and is defined to be θ on every other vertex in V1 it is easy to observe that ψ is also a
cymatch permutation of V1. Also ψ is an isomorphism from G1 to G2. More importantly note
that if vertices in S ⊆ V1 form a cycle in G1 then ψ(S) = S ⊆ V2 and vertices in S forms a
cycle in G2. This shows that (G1, G2) is a “yes” instance of CYCLE MATCHING.

4.3 Subroutines computable in L

We now give some subroutines that are computable in L.

Lemma 4.20. Given an undirected graph G and an edge e in G, there is a logspace algorithm
to test if e is a cut-edge in G.

Proof: Let e = (u, v) ∈ E(G). It follows from Definition 4.2, that e is a cut-edge if and only if
there is does not exist any path connecting u and v in the graph G− {e}. It is easy to obtain
G− {e} from G in logspace. We then use Reingold’s undirected st-connectivity algorithm [16]
to test if there is path connecting u and v in G − {e}. If it exists then we output e is not a
cut-edge. Otherwise we output e is a cut-edge.

Since Reingold’s undirected st-connectivity algorithm [16] uses at most O(log(|V | + |E|))
space and we need at most O(log(|V |+ |E|)) space to keep track of the edge e we can determine
if e is a cut-edge in G in L.

Using Lemma 4.20 it is clear that we can obtain the subgraph H of G that does not contain
any cut-edge in L. Moreover we also know that this subgraph H is unique (Note 2). We outline
the set of instructions as a subroutine.

CUT-EDGE FREE SUBGRAPH(G)
Input: An undirected graph G.
Output: The subgraph H of G such that H does not contain cut-edges that are in G.
Complexity upper bound: L using Lemma 4.20.
for (each e ∈ E(G))do

if (e is not a cut-edge) then
Output e.

endif
endfor

Lemma 4.21. Given an undirected graph G and a vertex v in G, there is a logspace algorithm
to test if v is a cut-vertex in G.

Proof: Let v ∈ V (G). It follows from Definition 4.3 that v is a cut-vertex if and only if there
exists vertices u and w in the graph G such that there exists a path connecting u and w in
G and that there does not exist any path connecting u and w in G − {v}. Given vertices u
and w in G, using Reingold’s undirected st-connectivity algorithm [16] we test if there exists
a path connecting u and w in G. Also once again using Reingold’s undirected st-connectivity
algorithm [16] we test if there exists a path connecting u and w in G− {v}. If for some pair of
vertices u,w ∈ V (G) such a path exists in G but it does not exist in G− {v} then we output v
is a cut-vertex in G. Otherwise we output v is not a cut-vertex in G.

Since Reingold’s undirected st-connectivity algorithm [16] uses at most O(log(|V | + |E|))
space and we need at most O(log(|V |+ |E|)) space to keep track of vertices u, v, w and obtain

17

the subgraph formed by vertices G − {v} in every stage, we can determine if v is a cut-vertex
in L.

Let G be an undirected graph and assume that we obtain the subgraph H as the output
of CUT-EDGE FREE SUBGRAPH(G). Then using Corollary 4.7 and Lemma 4.21 we can
determine if a given pair of vertices u, v ∈ V (H) are contained in a cycle in H (and therefore
in G also) in L. We outline the set of instructions in the following subroutine.

CUT-VERTEX FREE PATHS(H,u,v)
Input: An undirected graph H and vertices u, v ∈ H such that H does not contain cut-edges.
Output: “yes” if there exists a cycle containing u and v in H. Output “no” otherwise.
Complexity upper bound: L using Lemma 4.21.
if (there exists a path connecting u and v in H) then

for (each w ∈ V (H)) do
if ((w 6= u) and (w 6= v) and (w is a cut-vertex)) then

if (there exists a path connecting u and v in H − {w}) then
Output “yes” and stop.

endif
endif

endfor
Output “yes” and stop.

endif
Output “no” and stop.

Let H be an undirected graph such that H does not contain cut-edges. Also let v ∈ V (H)
be a vertex that is not a cut-vertex. Then the following subroutine outputs a subset S ⊆ V (H)
such that v ∈ S and there always exists a cycle contaning any two vertices from S in H.
Using Reingold’s undirected st-connectivity algorithm and the L upper bound obtained for
CUT-VERTEX FREE PATHS(H,u,v) we are able to show that we can output S in L.

SPLIT CUT-VERTEX GRAPHS(H,v)
Input: An undirected graph H such that H does not contain cut-edges and a vertex v ∈ V (H)
such that v is not a cut-vertex.
Output: A set of vertices S ⊆ V (H) that form a subgraph Hv of H such that v ∈ S and
there always exists a cycle containing any two vertices from S in H.
Complexity upper bound: L using the upper bound for CUT-VERTEX FREE PATHS(H,u,v).
for (each u ∈ V (H)) do

if (u 6= v) then
if (CUT-VERTEX FREE PATHS(H,u,v)=“yes”) then

Output u.
endif

endif
endfor
Output v and stop.

Remark 3. It follows from our assumption on H and using Corollary 4.7 that given two vertices
u,w ∈ S there always exists a cycle containing u and w in Hv and therefore in H also.

4.4 CYCLE MATCHING is L-complete

We now prove one of our main results that CYCLE MATCHING is in L.

Theorem 4.22. CYCLE MATCHING is in L.

18

Proof: Let G1 = (V1, E1) and G2 = (V2, E2) be the pair of undirected graphs with V1 =
V2 = {1, . . . , n} and n = |V1| = |V2| given as input to the CYCLE MATCHING problem. Let
N = (|(V1 ∪ V2)|+ |(E1 ∪ E2)|) be the size of the input graph pairs (G1, G2). We now describe
our logspace algorithm for deciding if (G1, G2) is a “yes” instance of CYCLE MATCHING.

We obtain subgraphs of G1 and G2 using the CUT-EDGE FREE SUBGRAPH(G1) and
CUT-EDGE FREE SUBGRAPH(G2) subroutines in Section 4.3. Let the subgraphs obtained
from CUT-EDGE FREE SUBGRAPH(G1) and CUT-EDGE FREE SUBGRAPH(G2) be G′1
and G′2 respectively. We then use Reingold’s undirected st-connectivity algorithm to obtain
connected components of G′1 and G′2. Assume that H1 = (V H

1 , EH
1) is a connected component

of G′1 and H2 = (V H
2 , EH

2) is a connected component of G′2. Note that whenever (V H
1 ∩V H

2) 6= ∅
then it is essential to have V H

1 = V H
2 . Otherwise since H1 and H2 are subgraphs of G′1 and

G′2, it follows from Corollary 4.5 and Note 2 that if a vertex v is in V H
1 but however v is not

in V H
2 then we get a cycle mismatch (Definition 4.1) between H1 and H2 that is caused by

v. This shows that (H1, H2) is a “no” instance of CYCLE MATCHING and since Hi is a
subgraph of Gi, for 1 ≤ i ≤ 2, we get (G1, G2) is also a “no” instance of CYCLE MATCHING.
In this case we output (G1, G2) is a “no” instance of CYCLE MATCHING and stop. Since
CUT-EDGE FREE SUBGRAPH(Gi) outputs the edges of the subgraphs G′1 and G′2 using
space at most O(logN) and Reingold’s undirected st-connectivity algorithm also uses at most
O(logN) space we can output all the connected components of G′i, for 1 ≤ i ≤ 2, in L.

Assume that we have obtained undirected connected graphs Hi = (V H
i , EH

i) as output from
the CUT-EDGE FREE SUBGRAPH(Gi) subroutine, where V H

1 = V H
2 and 1 ≤ i ≤ 2. We first

check if there exists a vertex that has a loop in H1 if and only if the vertex has a loop in H2 also.
Similarly we also check whether a pair of vertices in u, v ∈ {1, . . . , n} form a cycle of length 2
in H1 if and only if the pair u, v also form a cycle of length 2 in H2. If one of these conditions
is not true then we get a cycle mismatch caused by vertices having loops or cycles of length 2
between H1 and H2 and so (H1, H2) is a “no” instance of CYCLE MATCHING. Therefore in
this case we output (G1, G2) is a “no” instance of CYCLE MATCHING and stop. It is easy to
note that checking for the existence of loops and parallel edges in H1 and H2 between vertices
requires constant space and so the algorithm requires at most O(logN) space.

From now onwards we assume that the input graphs H1 = (V H
1 , EH

1) and H2 = (V H
2 , EH

2)
are simple undirected connected graphs and that both these graphs do not contain cut-edges.
We also assume that V H

1 = V H
2 . Since H1 and H2 are subgraphs of G1 and G2, using Lemma

4.21 we can identify cut-vertices in H1 and H2 using space at most O(logN). Following this
we also split Hi into subgraphs using SPLIT CUT-VERTEX GRAPHS(Hi,u) subroutine where
u ∈ V H

i , where u is not a cut-vertex in Hi, for 1 ≤ i ≤ 2. It is then clear that every subgraph of
Hi that is output is simple undirected connected and neither contains cut-edges nor cut-vertices.
Similar to the pair (H1, H2) it is also clear (as mentioned in Note 3) that if we obtain two
connected subgraphs H ′1 and H ′2 as the output of SPLIT CUT-VERTEX GRAPHS(H1,u) and
SPLIT CUT-VERTEX GRAPHS(H2,u) respectively, and if the vertex sets of H ′1 and H ′2 have a
non-empty intersection then then the vertex set of H ′1 and H ′2 is the same. Otherwise we have a
vertex that causes cycle mismatch between H ′1 and H ′2 and since H ′1 and H ′2 are subgraphs of G1

and G2 respectively, we output (G1, G2) is a “no” instance of CYCLE MATCHING and stop.
Once again given the pair (H1, H2) as input it follows from Lemma 4.21 and the complexity
upper bound for SPLIT CUT-VERTEX GRAPHS(Hi,u) that we can decide if u is not a cut-
vertex in Hi and also split Hi graphs into subgraphs H ′i, for 1 ≤ i ≤ 2, using space at most
O(logN).

Now assume that the vertex sets of H ′1 and H ′2 is the same. In order to check if (H ′1, H
′
2)

is a “yes” instance of CYCLE MATCHING we use Theorem 4.19 to verify if there exists
a cymatch permutation of V H′

1 that is also an isomorphism of G1 and G2. The proof of

19

Theorem 4.19 depends on Theorem 4.18. More precisely if we assume the existence of a
cymatch permutation θ of V H′

1 which when viewed as a mapping between V H′
1 and V H′

2 also
preserves cycles between H ′1 and H ′2 we are able to construct a cymatch isomorphism between
H ′1 and H ′2 and hence conclude (H ′1, H

′
2) is a “yes” instance of CYCLE MATCHING. A closer

examination of the proofs of Theorem 4.19 and Theorem 4.18 shows that if (H ′1, H
′
2) is a “yes”

instance of CYCLE MATCHING then we are able to construct a cymatch isomorphism between
H ′1 and H ′2 even with the identity mapping on V H′

1 as a cymatch permutation of V H′
1 .

As a result using ideas from Theorem 4.18 and Theorem 4.19 in order to verify if (H ′1, H
′
2)

is a “yes” instance of CYCLE MATCHING it suffices to do the following.

• if both H ′1 and H ′2 are cycles then output “yes” to the pair (H ′1, H
′
2).

• otherwise let Xi = {x ∈ V H′
i |d(x) ≥ 3} and Di = |Xi|, for 1 ≤ i ≤ 2. If X1 6= X2

then we get a cycle mismatch between H ′1 and H ′2 and so (H ′1, H
′
2) is a “no” instance

of CYCLE MATCHING. Since H ′1 and H ′2 are subgraphs of G1 and G2 respectively, we
output (G1, G2) is a “no” instance of CYCLE MATCHING and stop.

• assume that X1 = X2 and hence D1 = D2 ≥ 2. We then consider the subgraph of H ′1
obtained by deleting all the vertices of X1 from H ′1. Let us denoted this subgraph by H ′11.
Similarly we consider the subgraph of H ′2 obtained by deleting all vertices in X2 from H ′2.
Let us denote this subgraph by H ′22. It is easy to note that any vertex in H ′11 and H ′22
has degree 0, 1 or 2. In other words we only have isolated vertices and paths in H ′11 and
H ′22.

• for every vertex v, we check if v is an isolated vertex in H ′11 if and only if v is an isolated
vertex in H ′22 also. In addition we also check if v is adjacent to the same pair of vertices in
X1 and in X2. If one of these two conditions is not true then (H ′1, H

′
2) is a “no” instance

of CYCLE MATCHING. Since H ′1 and H ′2 are subgraphs of G1 and G2 respectively we
output (G1, G2) is a “no” instance of CYCLE MATCHING and stop. This step takes care
of δ-vertices that exist in H ′1 and H ′2. Note that this step also takes care of the case when
we obtain v to be an isolated vertex in H ′ii since (x, v), (v, y) ∈ Ei but v is not a δ-vertex
in H ′i, where d(x) ≥ 3, d(y) ≥ 3 and d(v) = 2 for 1 ≤ i ≤ 2.

• otherwise we consider paths formed by vertices in H ′11 and H ′22. If a set of vertices S ⊆ V H′
1

forms a path in H ′11 then vertices in S ⊆ V H′
2 should also form a path in H ′22. Also we

check if the end vertices of the path formed by vertices in S are adjacent to the same pair
of vertices in X1 and in X2. If one of these two conditions is not true then (H ′1, H

′
2) is

a “no” instance of CYCLE MATCHING. Since H ′1 and H ′2 are subgraphs of G1 and G2

respectively we output (G1, G2) is a “no” instance of CYCLE MATCHING and stop. This
step takes care of the case when we have a path of length at least 3 connecting vertices
in X1 and in X2 in H ′1 and H ′2 respectively.

We have assumed H ′1 and H ′2 to be simple undirected connected graphs and that both these
graphs neither contain cut-edges nor cut-vertices. The proof of correctness of the claim that
steps described above correctly decide if (H ′1, H

′
2) is a “yes” instance of CYCLE MATCHING

follows from Fact 4.11 and the proof of Theorem 4.19.
We repeat the steps described above for every pair of simple undirected connected graphs

(H ′1, H
′
2) that do not contain cut-vertices obtained from SPLIT CUT-VERTEX GRAPHS(Hi,u),

for i = 1, 2 respectively, such that both of H ′1 and H ′2 have the same vertex set. If there exists
some pair (H ′1, H

′
2) which is a “no” instance of CYCLE MATCHING then we output (G1, G2)

is a “no” instance of CYCLE MATCHING and stop. Otherwise if for all pairs of subgraphs

20

(H ′1, H
′
2) we get a “yes” output then (H1, H2) is a “yes” instance. Once again we need to repeat

this step for every pair (H1, H2) that is output by the CUT-EDGE FREE SUBGRAPH(Gi)
subroutine for 1 ≤ i ≤ 2 respectively, and check if for all pairs (H1, H2) we get a “yes” instance.
If so we output (G1, G2) is a “yes” instance of CYCLE MATCHING and stop. Otherwise if
for some pair (H1, H2) we get a “no” output then we output (G1, G2) is a ”no” instance of the
CYCLE MATCHING problem and stop.

Using results from [5] it follows that given a simple undirected graph G on n vertices we
can check if G is a cycle using at most O(logN) space. If we are given (H ′1, H

′
2) as input

then obtaining the pair of subgraphs (H ′11, H
′
22) as described above involves deleting vertices

of degree greater than or equal to 3. This is clearly computable in O(logN). Also checking
for isolated vertices in H ′ii and their neighbours in H ′i, for 1 ≤ i ≤ 2, is also computable in
O(logN). Similarly we can also check for subsets of vertices that form paths in H ′11 and H ′22
and the neighbours of the end vertices of these paths in H ′1 and H ′2 respectively using at most
O(logN) space.

We have also showed an upper bound of O(logN) in every stage to output subgraph pairs
(H ′1, H

′
2) from (H1, H2). Also note that if we have an edge (u, v) ∈ Ei then it occurs in exactly

one subgraph of Hi that is output by the SPLIT CUT-VERTEX GRAPHS(Hi,u) subroutine,
for 1 ≤ i ≤ 2. As a result it is easy to note that given (H1, H2) the number of subgraph pairs
(H ′1, H

′
2) that we output is also upper bounded by a polynomial in the size of (G1, G2). We

can keep track of these subgraph pairs that is output using at most O(logN) space. Moreover
number of subgraph pairs (H1, H2) of (G1, G2) is upper bounded by the number of components
in (G1, G2). As a result we need at most O(logN) space to keep track of these graph pairs.
Using these observations it follows that we can decide if (G1, G2) is a “yes” instance of CYCLE
MATCHING using space at most O(logN). This shows CYCLE MATCHING ∈ L.

Corollary 4.23. Let (G1, G2) be a pair of simple undirected connected graphs such that G1 and
G2 do not contain cut-vertices. Then we can decide if G1 and G2 are cymatch isomorphic is in L.
Also if G1 and G2 are cymatch isomorphic then we can also construct a cymatch isomorphism
from G1 to G2 in FL.

Theorem 4.24. CYCLE MATCHING is hard for L

Proof: Using Reingold’s undirected st-connectivity algorithm [16], given an undirected graph
G and vertices u, v in G we can decide whether there exists a path connecting u and v in G in
L. As a result it follows that the st-connectivity problem for undirected graphs is complete for
L. Now given an undirected graph G = (V,E) and vertices s, t ∈ V , we output G1 = (V1, E1)
and G2 = (V2, E2), where V1 = V2 = V, E1 = E and E2 = E ∪ {(s, t)}. It is clear that if there
does not exist any path connecting s and t in G, then the vertices corresponding to any S ⊆ V
form a cycle in G1 if and only if the vertices in S form a cycle in G2. Thus the pair (G1, G2) is
an “yes” instance of the CYCLE MATCHING problem. Otherwise if there is a path connecting
s and t in G then there exists at least one set S ⊆ V such that s, t ∈ S and the vertices in S
form a cycle in G2 but vertices in S do not form a cycle in G1. In this case the pair (G1, G2)
is a “no” instance of the CYCLE MATCHING problem. Given the input G we can construct
G1 and G2 easily (even in L-uniform AC0). The fact that L is closed under complement then
completes the proof.

4.5 A hard counting problem from CYCLE MATCHING

Definition 4.25. We say that a function f : {0, 1}∗ → Z+ is in #P if there exists a NP
machine M such that f(x) is the number of accepting computation paths of M on input x.

21

Definition 4.26. We say that a function f : {0, 1}∗ → Z is polynomial time many-one reducible
to g : {0, 1}∗ → Z, if for any input x ∈ {0, 1}∗ we can compute f(x) when we are given g(x) as
input in time polynomial in |x|.

In this section we show that given a pair of input graphs (G1, G2) with the same number of
vertices, the problem of counting the number of X ⊆ {1, . . . , n} such that vertices corresponding
to X form a cycle in one of the input graphs but not the other is #P-complete. We then conclude
the results of this paper with interesting observations on counting witnesses for “no” instances
of CYCLE MATCHING.

It is well known that counting the number of cycles in an undirected graph G is complete
for #P under polynomial time many-one reductions (we give a proof of this result in Theorem
4.27 in the Appendix). We now return to the counting problem defined with respect to CYCLE
MATCHING. Let G be the input graph on n vertices. Consider the graph G′ formed by a path
on n vertices. Clearly G′ does not contain any cycle. Therefore the number of cycles in G is
equal to the number of subsets of vertices that form a cycle in G, but these subsets do not form
a cycle in G′. This reduction is polynomial time computable and this shows that the problem
of counting the number of subsets of {1, . . . , n} such that vertices in one of the given pair of
input graphs form a cycle but these subsets of vertices do not form a cycle in the other input
graph is #P-hard under polynomial time many-one reductions. Since this problem is trivially
in #P we get #P-completeness under polynomial time many-one reductions.

Remark 4. Assume that (G1, G2) is a no instance of the CYCLE MATCHING problem. Let
F1 denote the collection of subsets of {1, . . . , n} such that if S ∈ F1 then the vertices in S form
a cycle in Gi but the vertices in S do not form a cycle in Gj for 1 ≤ i, j ≤ 2 and i 6= j. We
have shown that computing the size of F1 is #P-complete.

We have also shown that CYCLE MATCHING is in L in Theorem 4.22. We recall the
proof of Theorem 4.22 and the algorithm described in it. Given a pair of input graphs (G1, G2)
the algorithm checks for any mismatch due to loops and due to cycles of length 2 between G1

and G2. If G1 and G2 agree on the above two conditions then it obtains at most polynomi-
ally many subgraphs H ′11 and H ′22 of G1 and G2 respectively which are then used to decide if
(G1, G2) is a “no” instance of CYCLE MATCHING. When (G1, G2) is a “no” instance of
CYCLE MATCHING we may get a witness for this “no” instance from every such subgraph
pair (H ′11, H

′
22) that is output. It is easy to note that a witness for the “no” instance is an iso-

lated vertex or a path formed by vertices in H ′11 that is not in H ′22. Let F2 denote the collection
of all subsets of {1, . . . , n} such that any if S ⊆ {1, . . . , n} and S ∈ F2 then vertices in S satisfy
one of the conditions we have mentioned above (as in Theorem 4.22) and hence witnesses that
(G1, G2) is a “no” instance of CYCLE MATCHING. Clearly we can compute the size of F2 in
FL.

These two observations we have arrived at seem intriguing and surprising since in spite of
the vast difference in the computational complexity of computing the sizes of F1 and F2, any
element in F1 or any element in F2 independently witnesses the fact that (G1, G2) is a “no”
instance of CYCLE MATCHING.

Acknowledgements

I derived the motivation to obtain the results shown in this manuscript in the Microsoft Research
Theory Day Workshop held in Bangalore during December 2007. I thank Ravindran Kannan for
organising this workshop and enabling me to participate in it. I also thank Ravindran Kannan
for the sustained encouragement and support he has given me since then.

22

I thank Samir Datta and Srikanth Srinivasan for useful discussions. I also thank the anony-
mous third referee of the STACS 2009 conference for correcting Remark 1 that the number of
equivalence classes under the equivalence relation ∼ shown in Theorem 3.3 is more than one
even for linear representations over a field F of characteristic 2 representing the same matroid
M if F is not Z2.

I am grateful to Jaikumar Radhakrishnan for hosting my visit to the School of Technology
and Computer Science, TIFR during December 2009. I am also grateful to Jaikumar Radhakr-
ishnan for useful discussions during this visit and in particular for providing counter examples
and explaining that the algorithm I have described for CYCLE MATCHING in earlier versions4

is incorrect.

References

[1] Eric Allender and Mitsunori Ogihara. Relationships among PL, #L and the Determinant.
RAIRO-Theoretical Informatics and Applications, 30:1-21, 1996.

[2] Càrme Alvarez and Raymond Greenlaw. A compendium of problems complete for symmetric
logspace. Computational Complexity, 9:123-145, 2000.

[3] Mark Braverman, Raghav Kulkarni, and Sambuddha Roy. Space efficient counting in graphs
on surfaces. Computational Complexity, 18(4):601-649, 2009.

[4] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Structure and
Importance of Logspace-MOD-Classes. Mathematical Systems Theory, 25(3):223-237, 1992.

[5] Stephen Cook and Pierre McKenzie. Problems complete for Deterministic Logarithmic
Space. Journal of Algorithms, 8:385-394, 1987.

[6] J. Edmonds. Minimum partition of a matroid into independent subsets. J. Res. National
Bureau of Standards, 69B:67-72, 1965.

[7] J. Edmonds. Matroids and the Greedy Algorithm. Mathematical Programming, 1:127-136,
1971.

[8] Ulrich Hertrampf, Steffen Reith, and Heribert Vollmer. A Note on Closure Properties of
Logspace MOD Classes. Information Processing Letters, 75(3):91-93, 2000.

[9] Birgit Jenner, Johannes Köbler, Pierre McKenzie, and Jacobo Torán. Completeness results
for Graph Isomorphism. Journal of Computer and System Sciences, 66(3):549-566, 2003.

[10] Birgit Jenner, Klaus-Jörn Lange, and Pierre McKenzie. Tree Isomorphism and Some Other
Complete Problems for Deterministic Logspace. publication #1059, DIRO, Université de
Montreál, mars, 1997.

[11] Johannes Köbler. On Graph Isomorphism for Restricted Graph Classes. In Logical Ap-
proaches to Computational Barriers, Proceedings of the Second Conference on Computability
in Europe (CiE 2006), LNCS 3988, pages 241-256, 2006.

[12] Steve Lindell. A Logspace Algorithm for Tree Canonization (Extended Abstract). Pro-
ceedings of the 24th Annual ACM Symposium on Theory of Computing (STOC ’92), pages
400-404, 1992.

4Revision 1 of ECCC Report No.09(2009)

23

[13] James Oxley. Matroid Theory. Oxford University Press, 2006.

[14] Christos Papadimitriou. Computational Complexity. Addison-Wesley Publishing Company,
1994.

[15] Christos Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall of India Private Limited, 2001.

[16] Omer Reingold. Undirected connectivity in log-space. Journal of the ACM, 55(4):1-24,
2008.

[17] Leslie Valiant. Completeness for Parity Problems. Proceedings of the 11th International
Computing and Combinatorics Conference (COCOON ’05), pages 1-8, 2005.

[18] T.C. Vijayaraghavan. Classifying certain Algebraic Problems using Logspace Counting
Classes. Ph.D Thesis, The Institute of Mathematical Sciences, Homi Bhabha National
Institute, India, December 2008.

[19] Douglas West. Introduction to Graph Theory, Second edition. Prentice-Hall of India Private
Limited, 2003.

Appendix

We show that the problem of counting the number of cycles in an undirected graph G is complete
for #P under polynomial time many-one reductions. We show that the problem of counting the
number of Hamilton cycles in an undirected graph polynomial time many-one reduces to our
problem. As it is standard in reductions between graph problems [14, Chapters 9 and 18][17]
we also employ a gadget construction in our proof.

Theorem 4.27. Let G = (V,E) be an input undirected graph such that n = |V |. Then counting
the number of cycles in G is complete for #P under polynomial time many-one reductions.

Proof: Let G = (V,E) be an input undirected graph and let n denote the size of the graph
G. We know that counting the number of Hamilton cycles in G is complete for #P under
polynomial time many-one reductions [14, Theorem 18.2]. We show that the above problem is
polynomial time many-one reducible to the problem of counting the number of cycles in G.

Given a graph G = (V,E) let l denote the length of a cycle in G. Then we know that
3 ≤ l ≤ n. Also if N denotes the number of cycles in G then N = Σn

i=3mi, where mi denotes
the number of cycles of length i in G. It is easy to observe that N < 2n and therefore it follows
that mi < 2n for all 3 ≤ i ≤ n.

We now replace every edge in G by a collection of n4 paths of length 2 each to obtain another
graph G′ = (V ′, E′). It follows from the definition of G′ that every cycle in G′ has even length.
Also if we have a set of edges in G that form a cycle Cl of length l such that these edges are
incident to a set of vertices S ⊆ V in G, then l = |S| and we obtain ln

4
cycles of length 2l each

in G′ from Cl under this reduction. We also have cycles of length 4 in G′. However the number
of cycles of length 4 is bounded by a polynomial in n = |G|.

Elaborating on this observation if we have ml cycles of length l in G and we have ml+1

cycles of length (l + 1) in G, where 3 ≤ l ≤ (n− 1), then we have (ln
4
ml) cycles of length 2l in

G′ and ((l + 1)n
4
ml+1) cycles of length 2(l + 1) in G′.

Claim 4.28. If 3 ≤ l ≤ (n− 1) then (l + 1)n
4
> 2nΣl

i=3(i
n4

).

24

Proof of Claim 4.28. We use induction on l to prove the claim. When l = 3 it is easy to see
that (4n

4
) > (2n(3n

4
)) if n ≥ 3. Now assume the result to be true for some 3 ≤ l ≤ (n − 1)

and consider ((l+ 1)n
4
). Using induction on l it follows that ln

4
> 2nΣ

(l−1)
i=3 (in

4
). It is also clear

that (l + 1)n
4
> 2(ln

4
) when 3 ≤ l ≤ (n− 1) and so the claim is true.

It is clear that if N ′ denotes the number of cycles in G′ then N ′ = #(C4) + Σn
i=3(i

n4
m′i),

where #(C4) denotes the number of cycles of length 4 in G′ and m′i denotes the number of cycles
of length 2i in G′. We know that #(C4) is a polynomial in n = |G| and m′i = mi < 2n. Given

G it is also easy to compute #(C4). It is easy to note that we can upper bound Σj
i=3(i

n4
m′i) for

each 3 ≤ j ≤ n by 2p(n), where p(n) is a polynomial in n. As a result using Claim 4.28 it follows
that the binary representation of N ′ is then a concatenation of the binary representation of mi

for decreasing values of n > i ≥ 3 followed by #(C4) such that mi+1 and mi are seperated by
sufficiently many 0’s. As a result if we are given the binary representation of N ′ then we can
obtain mi for all 3 ≤ i ≤ n in time polynomial in |G|. In fact the number of Hamilton cycles
in G is the leading polynomially many bits of N ′ which can also be clearly computed in time
polynomial in |G|.

Since in time polynomial in n we can output G′ when we are given the graph G as input it
follows that counting the number of cycles in an undirected graph is #P-hard under polynomial
time many-one reductions. It is also easy to see that our counting problem is in #P from which
we obtain #P-completeness for our problem under polynomial time many-one reductions.

25

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

