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Abstract

We prove lower bounds on the randomized two-party communication complexity of
functions that arise from read-once boolean formulae.

A read-once boolean formula is a formula in propositional logic with the property
that every variable appears exactly once. Such a formula can be represented by a tree,
where the leaves correspond to variables, and the internal nodes are labeled by binary
connectives. Under certain assumptions, this representation is unique. Thus, one can
define the depth of a formula as the depth of the tree that represents it.

The complexity of the evaluation of general read-once formulae, has attracted inter-
est mainly in the decision tree model. In the communication complexity model, many
interesting results deal with specific read-once formulae, such as DISJOINTNESS
and TRIBES. In this paper we use information theory methods to prove lower bounds
that hold for any read-once formula. Our lower bounds are of the form n(f)/c?(f),
where n(f) is the number of variables and d(f) the depth of the formula, and they are
optimal up to the constant ¢ in the denominator.

1 Introduction

A landmark result in the theory of two-party communication complexity is the linear
lower bound on the randomized communication complexity of set-disjointness proved by
Kalyanasundaram and Schnitger [KS92]. Razborov [Raz92] gave a simplified proof, and
Bar-Yossef et al. [BYJKS04] gave an elegant information theory proof, building on the
informational complexity framework of Chakrabarti et al. [CSWYO01].

Let us define a two-party boolean function to be a boolean function f together with a
partition of its variables into two parts. We usually refer to the variables in the two classes
as = and y and write f(z,y) for the function. A two-party function is associated with
the following communication problem: Given that Alice gets x and Bob gets y, compute
f(z,y).

If f is any n-variate boolean function and g is a 2-variate boolean function, we define f9
to be the two-party function taking two n bit strings 2 and y and defined to be f9(z,y) =
flg(x1,y1),---,9(xn,yn)). The disjointness communication problem can be reformulated
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as a boolean function computation problem: Alice gets x € {0,1}", Bob gets y € {0,1}"
and they want to compute (OR,,)"(z,y), where OR,, is the n-wise OR function.

Jayram et al. [JKSO03], extended the techniques for disjointness in order to prove a
linear lower bound for the randomized complexity on the function (TRIBES; ;)" where
TRIBES,; is the function taking input (z;; : 1 < i < 5,1 < j < t) and equal to
TRIBES, 1(2) = Ai_y Vi—y 2ij-

The functions OR,, and TRIBES; ; are both examples of read-once boolean functions,
functions that can be represented by boolean formulae involving V and A, in which each
variable appears (possibly negated) at most once. Such a formula can be represented by a
rooted ordered tree, with nodes labeled by V and A, and the leaves labeled by variables.
It is well known (see e.g. [HNWO93]) that for any read-once function f, f has a unique
representation (which we call the canonical representation of f) as a tree in which the
labels of nodes on each root-to-leaf path alternate between A and V. The depth of f, d(f),
is defined to be the maximum depth of a leaf in the canonical representation, and n(f) is
the number of variables.

We want to consider communication problems derived from arbitrary read-once formu-
lae. Based on the examples of OR,, and TRIBES, ; mentioned above it seems natural to
consider the function f, but in the case that f is the n-wise AND, f” trivializes (and can
be computed with a two-bit protocol), and the more interesting function to consider is fV.

Our main result says that for any read-once function f, at least one of the functions
fY and f” has high §-error communication complexity.

Theorem 1. For any read-once function f of depth at least 1,

mas{Rs(7"), Ralf)} 2 (2~ 4V5) - ).

This result is, in some sense, best possible (up to the constant 8 in the base of d(f)).
That is, there is a constant ¢ > 1, such that if f is given by a t-uniform tree of depth
d (so n = t%), then f" and fY both have randomized communication protocols using
O(n(f)/c?™)) bits. This follows from the fact (see [SW86]) that f has a randomized
decision tree algorithm using an expected number of queries O(n(f)/c¥)), and any decision
tree algorithm for f is easily converted to a communication protocol for f¥ or f” having
comparable complexity. In fact, for ¢t-uniform trees (in which each non-leaf node has ¢
children and all leaves are at the same depth), we can improve the lower bound.

Theorem 2. For any read-once function f that can be represented by a t-uniform
AND/OR tree of depth d > 1,

t(t — 1)1
44 ’

As a simple corollary of our main result we obtain a similar lower bound for the more
general class of read-once threshold functions. Recall that a t-out-of-k threshold gate is the
boolean function with k inputs that is one if the sum of the inputs is at least ¢. A threshold
tree is a rooted tree whose internal nodes are labeled by threshold gates, and whose leaves
are labeled by distinct variables (or their negations). A read-once threshold function is a
function representable by a threshold tree. We prove the following bound.

max{Rs(f"), Rs(f")} > (2 — 4V5)



Theorem 3. For any read-once threshold function f of depth at least 1,

max{Rs(/"), R(f)} = (2~ 4v3) - )

This result should be compared with the result of Heiman, Newman, and Wigderson
[HNW93] that every read-once threshold function f has randomized decision tree complex-
ity at least n(f)/ 24(f) . A lower bound on communication complexity of Y or f” gives the
same lower bound on decision tree complexity for f, however, the implication goes only one
way, since communication protocols for fV and f” do not have to come from a decision
tree algorithm for f, and can be much faster. (For example, f* when f = AND,, has
randomized decision tree complexity ©(n) but communication complexity 1.) Thus, up to
the constant in the base of the denominator, our result can be viewed as a strengthening
of the decision tree lower bound.

As we were completing this paper we learned of independent work of Jayram, Kopparty,
and Raghavendra [JKR09], also based on the informational complexity approach, that gives
a weaker lower bound of n(f)/ 22" for formulae coming from balanced trees.

2 Notation, terminology, and preliminaries

In this section we establish notation and terms that we will use to describe the basic objects
that we will be dealing with. We list standard definitions and state some basic inequalities
in information theory. We discuss communication complexity and set up its connection
with information theory.

Definitions pertaining to rooted trees. All trees in this paper are rooted. For a tree
T we write Vp for the set of vertices, Ly for the set of leaves, Ny = |Lp| for the number of
leaves, and dp for the depth of T'. For a vertex u, path(u) is the set of vertices on a path
from wu to the root (including both the root and u).

We write T'= T} o - -- o T}, when for each j € [k], T is the subtree rooted at the j-th
child of the root of T'.

A tree is called t-uniform if all its leaves are at the same depth d, and every non-leaf
has exactly t children.

A tree is in standard form if there are no nodes with exactly one child. For example, a
standard binary tree is one where every internal node has exactly two children.

A full binary subtree of a tree T is a binary tree in standard form that is contained in
T, contains the root of T, and whose leaf-set is a subset of the leaf-set of T'. Denote by
FBSr the set of full binary subtrees of T'.

Definitions pertaining to boolean functions. Denote by [n] the set {1,...,n} of
integers. Let f : 81 x--- xS, — R be a function and suppose that, for i € [n], h; : Z; — S;.
Define 7 : Z; x --- x Z, — R, where H = (hq,...,h,), to be the function defined by
(21,0 20) = f(R1(21),- -, hn(2n)). When h; = h for all j € [n], we write f* = f™.

A tree circuit is a rooted tree in which every leaf corresponds to an input variable (or
its negation), and each gate comes from the set {AND,OR,NAND ,NOR}. An AND/OR
tree is a tree circuit with gates AND and OR. The tree circuit is read-once if the variables



occurring at leaves are distinct; all tree circuits in this paper are assumed to be read-once.
A Boolean function f is read-once if it can be represented by a read-once tree circuit. The
depth of a read-once function f, denoted d(f), is the minimum depth of a read-once tree
circuit that computes it. As mentioned in the introduction, it is well-known that every
read-once function f has a unique representation, called the canonical representation of f
whose tree is in standard form and such that the gates along any root to leaf path alternate
between A and V. It is also known that the depth of the canonical representation is d(f),
that is, the canonical representation has minimum depth over all read-once tree circuits
that represent f.

If T is any rooted tree, we write fp for the boolean function obtained by associating a
distinct variable x; to each leaf j and labeling each gate by a NAND gate. We use symbol
‘A’ for NAND.

Random variables and distributions. We consider discrete probability spaces (€2, (),
where () is a finite set and ( is a nonnegative valued function on 2 summing to 1. If
(,¢1), .-+, (2, G,) are such spaces, their product is the space (A, ), where A = Oy x -+ - x
), is the Cartesian product of sets, and for w = (w1,...,wy) € Q, v(w) = G (w1) -+ Cu(w).
In the case that all of the (€, (;) are equal to a common space (€2, () we write A = Q™ and
v=_"

We use uppercase for random variables, as in X,Y, D, and write in bold those that
represent vectors of random variables. For a variable X with range X that is distributed
according to a probability distribution p, i.e. Pr[X = z] = u(x), we write X ~ p. If X is
uniformly distributed in X, we write X €p X

Unless otherwise stated, all random variables take on values from finite sets.

Information theory. Let X,Y,Z be random variables on a common probability space,
taking on values, respectively, from finite sets X, ), Z. Let A be any event. The entropy
of X and the conditional entropy of X given A and the conditional entropy of X given Y
are respectively

ZPr ] - log Pr[X = «z],
zeX
H(X|A) = ZPr =uz|A]-logPr[X = x| A], and
zeX
H(X|Y) = ZPr HX|Y =y).

The mutual mformatzon between X and Y is
I(X;Y) =H(X) -HXY) =HY) - H(Y [ X)
and the conditional mutual information of X and Y given Z is
I(X;Y[2)=H(X|2) - (XIYZ) =HY[Z) -H(Y | X, Z)
= Z Pr[Z [(X:Y|Z=2).



We will need the following facts about the entropy. (See [CT06, Chapter 2| for proofs
and more details.)

Proposition 4. Let X,Y,Z be random variables.

1LH(X) > HX|Y) > 0.

2. If X is the range of X then H(X) <log|X]|.

3. H(X,Y) < H(X) + H(Y) with equality if and only if X and Y are independent. This
holds for conditional entropy as well. H(X,Y | Z) < H(X | Z) + H(Y | Z) with equality if
and only if X and Y are independent given Z.

The following proposition makes mutual information useful in proving direct-sum the-
orems.

Proposition 5 ([BYJKS04]). Let Z = (Z1,...,Z,),11,D be random variables. If the Z;’s
are independent given D then 1(Z; 11| D) > 377 I(Z; ; 11| D).

Proof. By definition I(Z; I1 | D) = H(Z |D)—H(Z |11, D). By Proposition 4(3), H(Z |D) =
>_;H(Z;|D) and H(Z|IL, D) < >, H(Z; [II, D). The result follows. O

Communication complexity. In this work we will be dealing with the two-party private-
coin randomized communication model [Yao79]. Alice is given z € X and Bob y € . They
wish to compute a function f : X x ) — {0,1} by exchanging messages according to a
protocol II. Let the random variable II(x,y) denote the transcript of the communication
on input (x,y) (where the probability is over the random coins of Alice and Bob) and
oyt (x, y) the outcome of the protocol. We call IT a d-error protocol for f if, for all (x,y),
Pr[llogt(z,y) = f(z,y)] > 1 — 3. The communication cost of II is max |II(z,y)|, where
the maximum is over all input pairs (z,y) and over all coin tosses of Alice and Bob. The
d-error randomized communication complezity of f, denoted Rs(f), is the cost of the best
d-error protocol for f. (See [KNO06] for more details.)

Communication complexity lower bounds via information theory. The infor-
mational complexity paradigm, introduced by [CSWYO01], and used in [SS02, BYJKS02,
CKS03, BYJKS04, JKS03] provides a way to prove lower bounds on communication com-
plexity via information theory. We are given a two-party function f and we want to show
that any d-error randomized communication protocol II for f requires high communication.
We introduce a probability distribution over the inputs to Alice and Bob. We then analyze
the behavior of II when run on the random distribution of inputs. The informational com-
plexity is the mutual information of the string of communicated bits (the transcript of II)
with Alice and Bob’s inputs, and provides a lower bound on the amount of communication.

More precisely, let Q = (€,() be a probability space over which are defined random
variables X = (Xy,..., X,,) and Y = (Y7,...,Y,,) representing Alice and Bob’s inputs. The
information cost of a protocol II with respect to ( is defined to be I(X,Y ; II(X,Y)), where
II(X,Y) is a random variable following the distribution of the communication transcripts
when the protocol II runs on input (X,Y) ~ (. The d-error informational complexity of
f with respect to ¢, denoted IC¢ s5(f), is ming I(X, Y ; II(X,Y)), where the minimum is
over all §-error randomized protocols for f.



Mutual information may be easier to handle if one conditions on the appropriate random
variables. To that end, [BYJKSO04] introduced the notion of conditional information cost of
a protocol II with respect to an auxiliary random variable. Let (£2,() be as above, and let
D be an additional random variable defined on 2. The conditional information cost of I1
conditioned on D with respect to ¢, is defined to be I(X,Y ; II(X,Y) | D), where II(X,Y)
is as above and ((X,Y),D) ~ (. The d-error conditional informational complexity of f
conditioned on D with respect to ¢, denoted IC; s(f|D), is ming I(X, Y ; II(X,Y) | D),
where the minimum is over all d-error randomized protocols for f.

Informational complexity provides a lower bound on randomized communication com-
plexity, as shown by the following calculation. By definition of mutual information
I(X,Y;II(X,Y)|D) = H(II(X,Y) |D) - H(II(X,Y) | X,Y,D). Applying in turn parts
(1) and (2) of Proposition 4 gives that, for any d-error protocol II, I(X,Y ; II(X,Y) | D) <
H(I(X,Y)) < Ry(f).

Communication problems associated to boolean functions. If f is an arbitrary
n-variate boolean function, and ¢ is a 2-variate boolean function, we denote by f9 the
two-party boolean function given by f9(z,y) = f(g1(x1,91), -, gn(Tn,yn)). Our goal is to
prove Theorems 1 and 2, which say that for any read-once boolean function f, fV or f/ is
large. To do this it will be more convenient to consider f” for functions f that come from
trees using only NAND gates.

Theorem 6. 1. Let T be a tree in standard form with dp > 1.
_ N
Rs(f7) > (4 —8V5) - ir

2. If T is, in addition, a t-uniform tree of depth d > 1 then

t(t — 1)dr=1
gdr

Rs(fp) > (2 — 4V0) -

To deduce Theorems 1 and 2 from this, we use the following lemma.

Proposition 7. Let f be a read-once formula. Then there is a tree T in standard form
such that (1) Rs(fr) < max{Rs(f"), Rs(f")}, (2) Nr = n(f)/2, and (3) dr < d(f).

Proof. Let C be the representation of f in canonical form. Define tree circuits Cy and Cs as
follows. C is obtained by deleting all leaves that feed into A gates, and introducing a new
variable for any node that becomes a leaf after this pruning. Let Cy be obtained similarly
by deleting all leaves that feed into V gates. Let f; and fs, respectively, be the functions
computed by C7 and Cs. Let 71 and T5 be the trees underlying C'; and Cs respectively.
We take T' to be whichever of 77 and T» has more leaves. Clearly conditions (2) and (3)
above will hold. Condition (1) follows immediately from the following claim.

Claim 8. (1) Rs(f") > Rs(f). (2) Rs(f{") = Rs(f3,)- (3) Rs(f") > Rs(fy). (4)
Rs(fy) = Rs(f7,)-



To prove the first part of the claim, it suffices to observe that any communication
protocol for f” can be used as a protocol for f{*. Given inputs (z,y) to f]* Alice and Bob
can construct inputs (2/,y’) to f” such that f*(z',y") = f\(x,y), as follows. If j is a leaf
of C that is also a leaf of C; then Alice sets 3:; = x; and Bob sets y; = yj. Suppose j is
a leaf of C that is not a leaf of Cy. If the parent p(j) of j is a leaf of C; then Alice sets
) = xp(j) and Bob sets y; = yp(;). If p(j) is not a leaf of C1, then Alice sets 2; = 1 and
Bob sets yj; = 1. Tt is easy to verify that f"(2',y') = f{'(z,y).

To prove the second part of the claim, we observe that f{* = fﬁ if the top gate of

Cpis V and f] = - f;l if the top gate of C is A. In either case, they have identical
communication complexity.
The proofs of parts 3 and 4 follow similarly. O

Notice that if T is a uniform tree, then one of 77 and T above will have Np leaves.
Thus, in the case of uniform trees we have Ny = n(f) and save a factor of 2.

3 The methods of [BYJKSO04]

The authors of [BYJKS04] introduced new techniques for proving lower bounds on infor-
mation cost. In this section we summarize their method and list the results and definitions
from [BYJKSO04] that we will use.

Their methodology has two main parts. In the first part they make use of Proposition 5
to obtain a direct-sum theorem for the informational complexity of the function. This works
particularly well with functions of the form f*(x,y) = f(h(z1,41),...,h(zn,yn)). Before
stating the direct-sum theorem, we need some definitions.

Definition 9 (Sensitive input). Let f : St X -+ x Sy — R, H = (hj : Zj — ;) jem);
and z = (z1,...,2,) € St X - X S,. For j € [n|, u € S;, define z[j,u] =
(21 s 2jm1, Uy 2j41, - - - 2n).  We say that z is sensitive for f™ if (Vj € [n])(Vu €

Zj)(f7 (2l u]) = hj(w)).

For an example, consider the function DISJ,(x,y) = \/j_;(z; A y;). Any input (x,y)
such that, for all j € [n], z; A y; = 0, is sensitive.

Definition 10 (Collapsing distribution)([BYJKSO04]). Let f,H be as in Definition 9. Call
a distribution p over Zy X --- x 2, collapsing for f™, if every z in the support of ju is
sensitive.

Theorem 11 ([BYJKSO04]). Let f: 8™ — {0,1}, and h: X x Y — S. Consider random
variables X = (X1,...,X,) € X" Y = (Y1,....Y,) € Y",D = (Dy,...,Dy), and Z =
(Z1,...,Zp), where Z; = (X;,Y}, Dj) for j € [n].

Assume that {Z;} ey 5 a set of mutually independent variables, and Z; ~ ¢ for all
J € [n] (thus, Z ~ (™). If, for all j € [n], X; and Y; are independent given D;, and the
marginal distribution of (X,Y) is a collapsing distribution for f", then ICCn75(fh’D) >
n-1C¢5(h| D).



Defining a distribution ( satisfying the two requirements asked in Theorem 11, moves
the attention from ICcn 5(f" | D) to IC¢ s(h| D). For example, in [BYJKS04] it is shown
how to define ¢ when f" is DISJ,(x,y) = \/?:1(333' A yj). Then they only have to deal
with IC¢ 5(h| D), where h(z,y) =z A y.

The second part of the method is a framework for proving lower bounds on information
cost. The first step consists of a passage from mutual information to Hellinger distance.

Definition 12. (Hellinger distance.) The Hellinger distance between probability distribu-

tions P and Q on a domain Q is defined by h(P, Q) = \/% > wea (VPs — \/m)2 We write
h*(P,Q) for (h(P,Q))*.

Lemma 13 ([BYJKS04]). Let ®(z1), ®(22), and Z €r {z1,22} be random variables. If
®(2) is independent of Z for each z € {z1, 22} then I(Z; ®(Z)) > h?(®(z1), ®(22)).

The following proposition states useful properties of Hellinger distance. They reveal
why Hellinger distance is better to work with than mutual information.

Proposition 14 (Properties of Hellinger distance)([BYJKS04]).

1. (Triangle inequality.) Let P, @, and R be probability distributions over domain ); then
h(P,Q) +h(Q,R) > h(P, R). It follows that the square of the Hellinger distance satisfies a
weak triangle inequality; h?(P, Q) + h?(Q, R) > %h2(P, R).

2. (Cut-and-paste property.) For any randomized protocol 11 and for any z,x’ € X and
v,y €Y, h(Il(z,y),1(2', y)) = h(Il(z,y), Iz, y)).

3. (Pythagorean property.) For any randomized protocol 11 and for any z,2’ € X and
y,y € Y, h*((z,y), (2, y)) + h*([(z,y"), (2", y')) < 20*(I(z,y), (2, y)).

4. For any §-error randomized protocol 11 for a function f, and for any two input pairs
(z,y) and (z',y) for which f(z,y) # f(z',y'), b*(U(z,y),(z',y")) > 1 - 2V/6.

After an application of Lemma 13 we are left with a sum of Hellinger distance terms,
which we need to lower bound. Applying some of the properties 1-3 several times we can
arrive at a sum of terms different than the ones we started with. To obtain a lower bound
we would like the final terms to be such as the one in Property 4 and take advantage of
the constant lower bound.

4 Read-once boolean formulae

Let T'=1Tj o--- o7, be a tree in standard form computing a function f7. A first step
towards simplifying the informational complexity of f}, would be to apply the following
straightforward generalization of Theorem 11.

Theorem 15. Let f : S; x --- x Sy — {0,1}, and H = (hj : X; x Vj — Sj)jen)- Con-
sider random variables X = (X1,...,X,) € X1 x X,, Y = (Y7,...,Y,) € V1 x V,,D =
(D1,...,Dy), and Z = (Zy, ..., Zy), where Z; = (X;,Y;,D;) for j € [n].

Assume that {Z;}jcn) is a set of mutually independent variables, and Z; ~ (; for all
J € [n] (thus, Z ~ (i ---Cp). If, for allj € [n], X; andY; are independent given Dj, and the

8



marginal distribution of (X,Y) is a collapsing distribution for f**, then 1C¢,...c, s(f7| D) >
>=11C¢; 5(h; | Dj).

One can apply Theorem 15 to the function ffq , with f the n-bit NAND and h; = f% ,
for j € [n]. However, this won’t take as very far. The problem is that if y—the marginal
distribution of (X, Y)—is collapsing for f then the support of y is a subset of (f7*)=1(0).
Therefore, we will inherit for each subtree a distribution p; with a support inside hj_l(l).
But the support of a collapsing distribution should lie inside hj_l(O). This means that we
cannot apply Theorem 15 repeatedly. This problem arose in [JKS03] when studying the
function TRIBES, 5,(x,y) = AjL; DISTn(xk, yi) = Artq V=1 (Tksj A yj). The authors
of [JKS03] managed to overcome this problem by proving a more complicated direct-sum
theorem for a non-collapsing distribution for DISJ. Inspired by their idea, we show how
to do the same for arbitrary read-once boolean functions.

The information cost of a protocol II that we will employ for our proof will have the
form I(X,Y; II(X,Y) |, D), where random variables I' and D are auxiliary variables that
will be used to define the distribution over the inputs.

4.1 Further definitions on trees

We now proceed with a series of definitions for objects that will be needed to finally
define a distribution ¢ for ((X,Y), (I, D)), which will give meaning to IC 5(fp |, D) =
ming I(X,Y; II(X,Y) |T', D).

Definition 16. (Valid coloring.) For our purposes, a coloring of a tree T is a partition of
Vr into two sets v = (W, Ry). The vertices of W, are said to be white and the vertices
of Ry are said to be red. A coloring is valid if it satisfies the following conditions.

1. The root is white.
2. A white node is either a leaf or exactly one of its children is red.
3. A red node is either a leaf or exactly two of its children are red.

For example, for a standard binary tree, a valid coloring paints all nodes on some root-
to-leaf path white and all the rest red. Thus, the number of valid colorings equals the
number of leaves.

Definitions related to colorings. We note some properties of valid colorings and give
further definitions of related objects. Consider a tree T' and a valid coloring v = (W,,R,).

(1) The red nodes induce a forest of binary trees in standard form called the red forest.

(2) We can define a one-to-one correspondence between the trees in the red forest and
internal white nodes of T as follows. For each white node w, its unique red child is the
root of one of the full binary trees. We let RT'(w) = RT, 7(w) denote the set of vertices in
the red binary tree rooted at the red child of w. (For convenience, if w is a leaf, RT(w) is
empty.)

(3) The principal component of + is the set of white nodes whose path to the root
consists only of white nodes. A principal leaf of v is a leaf belonging to the principal
component. Let PLp(7) denote the set of principal leaves of +.



(4) A full binary subtree S of T (i.e. S € FBSr) is said to be compatible with 7, written
S ~ ~, if S has exactly one white leaf. (Notice that, since v is valid, this leaf would have
to be a principal leaf. Thus, S ~ 7 is equivalent to saying that the restriction of v on Vg
is a valid coloring for S.)

(5) Define FBSy(y) = {S € FBS7|S ~ ~}. This set is in one-to-one correspondence
with the set PLp(v) of principal leaves. If w is a principal leaf then the set path(u) U
Uwepatn(u) RT (w) induces a tree F(u) that belongs to FBSr(7), and conversely if S is in
FBS7(7) then its unique white leaf v is principal and S = F,(u).

(6) Define the positive integers m,r = [FBSr(y)| = [PLr(y)|, mr = >, my 1, and
pr = min, m 7, where the min is over all valid colorings . (Notice that if 7' = Tjo0---0T;,
then pr = >, pr; — max; pry.)

On notation. Consider a tree T, u € Vp, and a coloring v of T. We write T,, for the
subtree of T rooted at w. Consider a vector z € V7 where each coordinate corresponds to
a leaf. We write z,, for the part of z that corresponds to the leaves of T,,. For S € FBSy we
write zg for the part of z that corresponds to the leaves of S. We treat colorings similarly.
For example, vg stands for (W, N Vg, Ry N V).

4.2 The input distribution

Given an arbitrary tree T in standard form, we now define a distribution over inputs to
Alice and Bob.

First, we associate to each standard binary tree T a special input (ap,r) defined
recursively as follows.

Definition 17. We define input (ap, Br) for a standard binary tree T'. The definition is
recursive on the depth dr of the tree.

_ [ if dr =0,
<aT7ﬂT> - { <04T15T273T16T2> Z.fT =T10T.

We will need the following property of (ar, 5r).

Proposition 18. For a standard binary tree T with dp > 0 we have f;(aT,ﬁT) =
fr@r, Br) =0 and fp(ar, Br) = fr(@r, fr) = 1.

Proof. The proof is by induction on dp. B

For dr = 1 the (unique) tree results in the function f;(azlxg,ylyg) = (z1 Ay1) A (22 A
y2). Clearly, fr(ar,fr) = fp(10,01) = 0, fr(ar, Br) = f7(01,10) = 0, fp(ar, Br) =
F7(10,10) = 1, fp(ar, Br) = fA(01,01) = 1. )

For dr > 1 we have fr(ar,fBr) = fﬁ(aTl,BTl) A fij(aTzﬁTz) =1A1 =0 (where we
applied the inductive hypothesis on 7} and T5). The rest of the cases can be verified in a
similar manner. O

An input will be determined by three independent random variables I', D, R, which are
defined as follows.

10



(i) T ranges over valid colorings « for T, according to a distribution that weights each ~
by the number of principal leaves it has. More precisely

Pr[I’ = ~] = m,1/mr.

(ii)) D = (D1, ...,Dy) €g {ALICE, BoB}?. Thus, for any d € {ALiCE,BoB}V, Pr[D =
d] = 1/2V.

(i1i) R = (Ry,...,Rn) €r {0,1}". Thus, for any r € {0,1}, Pr[R =r] = 1/2V.

The inputs X = (X3,..., Xy) and Y = (Xq,..., Xn) to Alice and Bob are determined
by values v, (dy,...,dy), and (r1,...,ry) for ', D, and R as follows.

(i) Let Fi,..., F) be the trees of the red forest determined by ~. The inputs to subtree
Fy, for j € [k], are set to (ar;, BF;).

(11) For a white leaf j, the corresponding input (X;,Y;) is determined as follows. If
d; = ALICE then we set X; = 0 and Y; = r;; if d; = BOB then we set ¥; = 0 and
Xj =Ty.

Let (7 be the resulting distribution on (X,Y,T',D). Let ur (resp. vr) be the marginal
distribution of (X,Y) (resp. (I', D)). We will often drop subscript 7" and write ¢, u, and v.

Proposition 19. Consider a tree T and let (x,y,7,d) be in the support of (. If u is a red
node with a white parent then fr}u (X4, Yu) = 0. If u is a white node then fr}u (Xu,Yu) = 1.

Proof. The proof is by induction on dr, .

When dr, =0, u is a leaf. If u is red, the statement follows from Definition 17. If u is
white, the statement follows from the definition of the distribution. B

When dr, > 0 and u is white, then u has a red child v. By induction frﬁu (X4, ¥v) =0,

and it follows that f;u (Xu,¥u) = 1. If wis red and its parent is white then there is a tree F

rooted at u in the red forest. We claim that ffu (Xu,Yu) = fr(xp,yF). The statement then
follows by Proposition 18, because according to the definition of (7, (xp,yr) = (ar, OF).
The claim holds, because every v € Vg has only white children outside F', and—Dby the
induction hypothesis—their values do not affect the value of v (since the inputs to a A-gate
that are equal to ‘1’ are, in some sense, irrelevant to the output). O

4.3 A direct-sum theorem for read-once boolean formulae

Let T be an arbitrary tree in standard form and S € FBSy. Suppose we have a communi-
cation protocol II for f:ﬁ and we want a protocol for f§ . One natural way to do this is to
have Alice extend her input xg for S to an input x for 7', and Bob extend his input yg for
S to an input y for T, in such a way that f;(x,y) = f4(xs,ys). Then by running II on
(x,y) they obtain the desired output.

Let IT be any protocol for fr. For any S € FBSt we will construct a family of protocols
for S. Each protocol in the family will be specified by a pair (v, d) where v is a valid coloring
of T that is compatible with S, and d € {ALICE, BoB}7
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Alice and Bob plug their inputs in T, exactly where S is embedded. To generate the
rest of the input bits for T, they first use y to paint the nodes of T not in S. For a red leaf
J, the value of X; and Y; are determined by the coloring v, so Alice and Bob can each
determine X; and Y; without communication. For a white leaf j outside S they have to
look at the value of d;. If d; = ALICE, Alice sets x; = 0, and Bob uses a random bit of his
own to (independently) set his input bit y;. If d; = BoB, Bob sets y; = 0, and Alice uses
a random bit to set ;. After this prepossessing, they simulate II. Denote this protocol by
Ils [/77 d] :

To argue the correctness of IIg[y, d] for any S,~, and d, notice that any node in S has
only white children outside S (this follows from the conditions that a coloring satisfies).
From Proposition 19, we know that a white node does not affect the value of its parent.

We now define a distribution over the triples (S,~,d) so that the average of the infor-
mation cost of IIg[y,d] will be related to the information cost of II. We do this by defining
a distribution &p for triples (S,~,d),

—L— ifS~y
Sy.d) =4 mr2'T ’
¢r(S,7,d) { 0 otherwise.

This is indeed a distribution since

Syy.d S~y d Sroy

Lemma 20. Consider any protocol 11 for a tree T. Let ((X,Y),(I',D)) ~ (r and
(X", Y"),(I",D")) ~ (g; then

I(X,Y; TT|T,D) > pr - Egy.amep (X, Y'; Hsly,d] | T/, D).

Proof. We start by evaluating the right-hand side. (Recall that for v and d we write 7g
and dg for their restrictions in S € FBSy.)

(1) E(S,’yd)NfT [I(le Y/ ; HS [77 d] | Flv D/)]
2 =) &a(S7,d)) v+, d)
S,v,d ~',d’
X, Y gy, d) | TV =/, D' = )]
1 1
(3) - Z Z Z Z mp2NT | Ng2Ns
S ~,d yy~S d
' I(Xla Y/ ; HS[V? d] ‘ F, = f}/a D/ = d,)]
_ 1 M~, T
@ =D D s aaw
S yry~S d
(XY Hgly,d] | TV = s, D' = dg);

The transition from (3) to (4) needs to be justified. Look first at equation (4). Fix values
S,7, and d for the summation indices S, ~, and d respectively. Consider the corresponding
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term A = I(X',Y’; TIg[y, ] T = g,D’ = dg) in the sum. Now look at (3). Fix indices
S+, and d’ to S s, and ds respectlvely We claim that there are Ng2Vs values (v, d),
such that I(X', Y"; g[y,d] |T" =75, D" = ds) A. Indeed, any (v, d) such that v agrees
with 7 outside S, and d agrees with d outside S , contributes A to the sum in equation (3).
There are Ng such v and 2Vs such d.

Let us define j(v,.S) to be the white leaf of S which is colored white by v. Recalling
the definition of pp (Section 4.1), the last equation gives

(5) E(S,“{,d)NﬁT [I(Xla Y/ ; HS [’Ya d] ’ Pla D/)]
<L L I(XJ,'(%S)7Y}I(%5) ; s[y,d] |[T" = v5,D' = dg).

= pr mp2NT
S~ry,d

For the left-hand side we have

(6) IX,Y;I|I D)
(7) _ZVT% I[(X,Y;II|G=vD=d)

®) = Zm";% Y. I(X;,Y;TM|T =,D =d)
JEPLT (%)

(9) > 2l I(X (7, S)aYv](’yS H’P ’YaD d)

mT2NT

S~vy,d

The first inequality follows from Proposition 5 (notice that we are ignoring terms that
correspond to white, but nonprincipal leaves). The second one follows from the bijection
between FBS7 () and PLp(y) as discussed in Section 4.1.

In view of (5) and (9), to finish the proof one only needs to verify that the distributions
(X]/'(V,S)’YV]',(V,S)’HS[/%d] |F, = /757:[), = dS) and ( J(7,8)» ](fyS 1_[|F =7,D= d) are
identical. To see this, notice first that Pr[X]’.(%S) = b, |T" = v5,D" = ds] = Pr[Xj(,,5) =
b, |T'=~,D =d], because S is colored the same in both cases and j(vy, S) is the white leaf
of S. Similarly for Yj’(% s) and Yj(, g). Finally, it follows immediately from the definition
of HS[’Y? d] that Pr[HS[’%d](X/ Y/) = T‘X/( S) bx7Y/(.y S) = = by7rl = ’YS;D/ = dS] -
PI‘[H(X Y) _T| i(v,S) — bmay}(w S) _by7r 7, D= d] 0

To obtain a lower bound from this lemma, we want to lower bound pr and the infor-
mational complexity of standard binary trees. The later is done in the next section. The
following lemma shows that we can assume pp > Np /297,

Lemma 21. For any tree T with N leaves and depth d, there is a tree T with the following
properties. (1) T is in standard form, (2) Rs(T) > Rs(T), (3) pz > N/2¢.

Proof. First, we describe the procedure which applied on T produces T. IfTisa single

node we set 7 = T. Otherwise, assume T' = T o --- o T}, and denote IN; the number of
leaves in each T;. We consider two cases.
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A. If there is a j such that the leaves in T are at least N/2 then we apply the procedure
to T; to obtain T]7 set T = T]7 and remove the rest subtrees.

B. Otherwise, for each j € [n] apply the procedure on 7} to get T\j, and set T =
T1 0---0 T

Now we prove by induction on d that T has properties (1) and (3). When d = 0 and
T is a single node, pr = 1 and all properties are easily seen to be true. Otherwise, if T
was created as in case A then clearly property (1) holds. For property (3) assume T = IA}
By induction, [ N; /2471 Tt follows that ps = Pz, = N/2% (since N; > N/2). Now

suppose case B took place and T was created from fl, . ,fn. The restructuring described
in case B preserves property (1). For property (3) assume—without loss of generality—that
ps, < - < pp,. We have pp = Y2070 pp = 30 N2 > (N — N/2) /2471 = N/2¢
Finally, property (2) is true because Alice and Bob can simulate the protocol for fr
after they set their bits below a truncated tree to ‘1’. O

4.4 Bounding the informational complexity of binary trees

In this section we concentrate on standard binary trees. Our goal is to prove a lower
bound of the form I(X,Y ; II|T',D) > 2-9(7) We prove such an inequality using induc-
tion on dr. The following statement provides the needed strengthening for the inductive
hypothesis.

Proposition 22. Let T be a standard binary tree, and T, a subtree rooted at an internal
node w of T. Assume that ((Xy, Yu), Ty, Dy)) ~ (1, and (X,Y) = (aX,b,cY,d), where
a,b,c,d are fized bit-strings. Then, for any protocol 11, we have

[(Xy, You; I(X,Y) | Ty, D) > —24— - h*((aaq,b, By, d), H(a@z, b, cBr,d)).

NTuszuH

Proof. The proof is by induction on the depth dr, of T),.

When dr,, = 0 we have f; (x,y) = 2Ay. This case was shown in [BYJKS04, Section 6],
but we redo it here for completeness. First, notice that I', is constant and thus the left-
hand side can be written as 1(X,,Y,; I(X,Y)|D,). Expanding on values of D, this is
equal to

2 (1(Yy; I(a0b, ¢Y'd) | D, = ALICE) + I(X, ; II(aXyb, c0d) | D, = BoB)),

because given D,, = ALICE we have X = 0 and given D, = BOB we have Y = 0. Also,
given D,, = ALICE we have Y €r {0, 1} and thus the first term in the expression above can
be written as I(Z; II(a0b, cZd)), where Z €r {0,1}. Now we apply Lemma 13 to bound
this from below by h?(II(a0b, c0d),T1(a0b,cld)). Bounding the other term similarly and
putting it all together we get

(10) I(Xy, Yes; IN(X,Y) [ Dy)
(11) > 1 (h*(TI(a0b, c0d), TI(alb, c1d)) + h?(TI(a0b, c0d), I(alb, c0d)))
(12) > 1. h2(IL(a0b, c1d), II(alb, c0d)).

ENT,
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For the last inequality we used the triangle inequality of Hellinger distance (Proposition 14).
Since (ap,, fr,) = (1,1) this is the desired result.

Now suppose dp,, > 0 and let T,, = Ty, o Ty,. Either u; € W, (i.e. uy is white), or
ug € Wr,. Thus, expanding on I',, the left-hand side can be written as follows.

Ty

N
(13) w2t IXu, Yo 5 (aXyb, cYyd) [Ty, ur € Wr,, D)

N u
+ 3t - 1(Xy, Yo s H(aXub, €Y od) | Ty uz € Wr,, Dy).

When u; is white, (Xu,, Yu,) = (ar,,,01,,), and ((Xu;, Yu, ), (Cuy; Duy)) ~ (1, - Sim-
ilarly, given that us is white, (Xu,, Yu,) = (az,,, 01, ), and ((Xuy, Yug)s (Fuys Duy)) ~
(r,,- Thus, the above sum simplifies to

N u
(14) % (X, Yo, H(aXulaTu2 b, Yy, ﬁTuQ d)|Tu;,Dy,)
Nt,,

+ N I(Xuys Yo, ; H(aozTulXWb, cﬁTuled) | Tuyy Duy)-

By induction, this is bounded from below by

N —
(15) ]\2;1 L1 p2 (H(aaTul ar,, b, CﬁTu1 ﬁTu2 d), H(aaTul ar,, b, CﬁTu1 ﬁTu2 d))

NTul 20Ty,

Nr, > —
+ NTu2 . m . h? (]'[(aOzTu1 ar,, b, CﬁTu1 /BTuz d), H(aaTul ar,, b, CﬁTu1 ﬁTu2 d)).

Applying the cut-and-paste property (Proposition 14) of Hellinger distance this becomes

(16) > o h*(Il(aar,, ar,, b, cBr,, Br,,d), M(aar, o, b, cBr,, O1.,d))
+ N m . h? (H(aaTu1 ar,, b, CﬁTu1 BTuQ d), H(CLOéTul aTuz b, CﬁTu1 BTuz d))

Now, since the square of Hellinger distance satisfies the (weak) triangle inequality (see
Proposition 14), we have

(17) > —2— - W*((aar, @r,,b, Br,, Br,,d), W(aar,, at,,b, cBr, Br,,d))-

= Np 54T, F1

Recalling the Definition 17 of (ar, fr) we get

(18) = W -h?(I(aarb, cBrd), M(aard, cBrd)).
This completes the inductive proof. O

Corollary 23. For any binary tree T in standard form

R 1
IC¢, 5(f7 T, D) > e <% _ \/3) ‘
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Proof. First apply Proposition 22 with the root of 7" as u and empty a, b, ¢, d.

IC¢p s(f72 1, D) > A h*(U(ar, By), U(@r, Br))
> 2.41dT (%hz(H(QT7BT)7H(aT7BT)) + %h2(H(aT7ﬁT)7H(aT7ﬁT)))
> Lo (1-2V5).

49T

The second inequality is an application of the Pythagorean property of Hellinger distance.
The last inequality follows from Proposition 18 and Proposition 14(4). [l
4.5 Lower bounds for read-once boolean functions

In this section we use the main lemmas we have proved to obtain bounds for read-once
boolean functions.

Corollary 24. 1. For any tree T in standard form,

_ Ny
1C¢4(f7 11.D) = (3 - V3) o
T
2. 1If, in addition, T is t-uniform,
A (t—1)r
ICcps(f71T,D) = (§ = V6) ~——.

Proof. Let 1I be a §-error protocol for f; Lemma 20 holds for any II, therefore

A > . . A )
ICCT,&(fT ‘ T, D) Z PT SenFl‘}BnST ICCS,5(fs ’ T, D)

We now use the bound from Corollary 23 to obtain

A 1
IC¢rs(f7 1T, D) = pr 4 <% _ \/g> '
For (1), we now use Lemma 21 to bound pr from below. For (2), we can compute pr
exactly to be (t — 1)dT. v

We are now ready to prove Theorem 6. Let T' = Ty o --- o T},. Apply Theorem 15
with f being the k-variate NAND, and, for each j € [k], h; and (; being ffj and (7,
respectively. Applying the first part of Corollary 24 to each of the trees T} gives the first
part of Theorem 6, and applying the second part of Corollary 24 gives the second part of
Theorem 6.
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5 Lower bound for read-once threshold functions

A threshold gate, denoted 17" for n > 1 and 1 < k < n, receives n boolean inputs and
outputs ‘1’ if and only if at least k of them are ‘1’. A threshold circuit is a rooted tree in
which every leaf corresponds to a distinct input variable, and every gate being a threshold
gate. A read-once threshold function fg is a function that can be represented by a threshold
circuit E. As before, we define fg and we want to lower bound Rg( fg), when FE is a
threshold circuit.

Proposition 25. For any threshold circuit E, there is an AND/OR tree T such that, for
g €{NV}, (1) Rs(f7) < Rs(f%), (2) Nr > Ng /2%, and (3) dp = dp.

Proof. We define T' by recursion on dg. When dg = 0 we set T' = E. Otherwise, let
E = FEio---0FE,, and assume Ng, > --- > Npg, . Suppose the gate on the root is
T7'. We consider cases on k. (1) If 1 < k < n/2, build T,...,T,_j41 recursively, set
T=Ty0- 0T, ki1, and put an V-gate on the root. (2) If n/2 < k < n, build T1,..., T}
recursively, set T'= T} o--- 0Ty, and put an A-gate on the root. (3) Otherwise, if k =1 or
k = n, the threshold gate is equivalent to an V or A-gate respectively. We build 11, ...,T,
recursively and we set T'=T} o ---oT,,. The gate on the root remains as is.

Properties (2) and (3) are easily seen to hold. For (1), it is not hard to show that a
protocol for ff, can be used to compute f#. Alice and Bob need only to fix appropriately
their inputs in the subtrees that where cut of from E. If an input bit belongs to a subtree
T; that was cut of in case (1), then Alice and Bob set their inputs in T} to ‘0’. If T; was cut
of in case (2), then Alice and Bob set their inputs in 7} to ‘1’. Afterwords, they simulate
the protocol for f%. O

The tree T in the above proposition may not be a canonical representation of some
function. However, transorming to the canonical representation will only decrease its depth,
and thus strengthen our lower bound. Thus, by this Proposition and Theorem 1 we obtain
Theorem 3 as a corollary.
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