
Balanced Hashing, Color Coding and Approximate Counting

(Extended Abstract)

Noga Alon ∗ Shai Gutner †

Abstract

Color Coding is an algorithmic technique for deciding efficiently if a given input graph con-
tains a path of a given length (or another small subgraph of constant tree-width). Applications
of the method in computational biology motivate the study of similar algorithms for counting
the number of copies of a given subgraph. While it is unlikely that exact counting of this type
can be performed efficiently, as the problem is #W [1]-complete even for paths, approximate
counting is possible, and leads to the investigation of an intriguing variant of families of per-
fect hash functions. A family of functions from [n] to [k] is an (ε, k)-balanced family of hash
functions, if there exists a positive T so that for every K ⊂ [n] of size |K| = k, the number of
functions in the family that are one-to-one on K is between (1 − ε)T and (1 + ε)T . The family
is perfectly k-balanced if it is (0, k)-balanced.

We show that every such perfectly k-balanced family is of size at least c(k)nbk/2c, and that
for every ε > 1

poly(k) there are explicit constructions of (ε, k)-balanced families of hash functions

from [n] to [k] of size e(1+o(1))k log n. This is tight up to the o(1)-term in the exponent, and
supplies deterministic polynomial time algorithms for approximately counting the number of
paths or cycles of a specified length k (or copies of any graph H with k vertices and bounded
tree-width) in a given input graph of size n, up to relative error ε, for all k ≤ O(log n).

Keywords: Approximate counting of subgraphs, color-coding, derandomization, expanders,
perfect hashing, k-wise independence.

∗Schools of Mathematics and Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel and IAS, Princeton,

NJ, 08540, USA. Research supported in part by the Israel Science Foundation, by a USA-Israel BSF grant, by NSF

grant CCF 0832797 and by the Ambrose Monell Foundation. Email: nogaa@tau.ac.il
†School of Computer Science, Tel-Aviv University, Tel-Aviv, 69978, Israel. Email: gutner@tau.ac.il

Electronic Colloquium on Computational Complexity, Report No. 12 (2009)

ISSN 1433-8092

1 Introduction

1.1 Motivation and background

Color Coding is an algorithmic technique for deciding efficiently if a given input graph contains
a path or a cycle of a given length, or any other prescribed subgraph of bounded tree-width.
Focusing, for simplicity, on paths, the method supplies a deterministic algorithm for deciding, in
time 2O(k)|E| log |V |, whether or not a given input (directed or undirected) graph G = (V,E)
contains a (simple) path on k vertices. The basic approach, introduced in [8], is very simple. One
first gives a randomized algorithm, and then converts it into a deterministic one. The randomized
algorithm works by first coloring the vertices of G randomly by k colors. Call a path on k vertices
(a k-path, for short) colorful if its vertices get all the distinct k colors. It is not difficult to check
in time O(k2k|E|), using dynamic programming, if there is a colorful path. As the probability of
a k-path to become colorful in a random coloring is k!/kk > e−k, repeating the above procedure
some Cek times provides a randomized algorithm in which the probability not to find a path in
case one exists is smaller than e−C . The crucial point in the derandomization of this algorithm
is the observation that known constructions of families of hash functions given by [22] following
[14], supply an explicit family of 2O(k) log |V | colorings of the vertices of G by k colors, so that the
members of every set of k vertices get distinct colors in at least one of the colorings. Thus one can
simply run the dynamic programming algorithm for each of these colorings, getting a deterministic
algorithm for the problem.

The above technique has found several recent applications in computational biology (see [23],
[24], [25], [17]), where it has been applied for detecting signaling pathways in protein interaction
networks. These applications suggest the problem of counting, or approximating the number of
k-paths (or other graphs of bounded tree-width) in a given graph. As using dynamic programming
it is easy to count precisely the number of colorful k-paths in a given graph with colored vertices,
the existence of efficient randomized approximation algorithms for counting follows quite easily by
following the same approach; this is done in [2].

In order to derandomize the randomized counting (or approximate counting) procedures, one
needs a strengthening of the usual notion of hash functions. This is given in the following definition.
A family of functions from [n] to [`] is an (ε, k)-balanced family of hash functions, if for every
S ⊂ [n], |S| = k, the number of functions that are one-to-one on S is between (1− ε)T and (1+ ε)T
for some constant T > 0. The family is perfectly k-balanced if it is (0, k)-balanced, that is, it is
(ε, k)-balanced for ε = 0.

Note that with a perfectly k-balanced family one can count precisely the number of k-paths in
a graph on n vertices: we simply count, by dynamic programming, the number of colorful k-paths
for each of the functions (considered as a coloring of the vertices), sum the results and divide by
T . Similarly, an (ε, k)-balanced family will enable us to approximate the number of paths up to a
relative error of ε. This suggests the study of the smallest possible size of such families, and the
problem of constructing explicitly such families.

1.2 Related work

The problem of counting paths and cycles in graphs has been considered by various researchers. In
[9] the authors describe an O(|V |ω) algorithm for counting the number of cycles of size at most 7,
where ω < 2.38 is the exponent in fast matrix multiplication. The method of this paper does not
extend to longer paths, and indeed Flum and Grohe [13] proved that the problem of counting exactly

1

the number of paths and cycles of length k in both directed and undirected graphs, considered as
a problem parameterized by k, is #W [1]-complete. This implies that it is unlikely that there is an
f(k) · nc-time algorithm for counting the precise number of paths or cycles of length k in a graph
of size n for any computable function f : N → N and constant c. The best known algorithms for
computing exactly the number of k-paths in an n vertex graph run in time nk/2+O(1), see [11], [26].

However, the problem of approximating these numbers is more tractable. Arvind and Raman
(see [10]) obtained a randomized fixed-parameter tractable algorithm to approximately count the
number of copies of k-paths (or any fixed subgraph with bounded tree-width) within a large graph.
A similar approximation appears in [2].

In an earlier paper [4] we considered deterministic approximation counting algorithms for this
problem. To this end, we introduced the notion of (ε, k)-balanced families of hash functions and
used them to exhibit a deterministic polynomial time algorithm for approximating the number
of paths of length k up to any k ≤ O(log n

log log log n) in a graph with n vertices. This was done

by constructing explicitly (ε, k)-balanced families from [n] to [k], where the size of the family is
2O(k log log k) log n and the time for construction is 2O(k log log k)n log n. The main open problem raised
in [4] is to find such a construction of size 2O(k) log n (in time 2O(k)nO(1)), which is optimal, even for
standard (non-balanced) families of hash functions, and will supply polynomial time deterministic
approximation algorithms for counting the number of paths of length k in a given graph of size n,
for all k ≤ O(log n). This problem is settled in the present paper.

1.3 The new results

The results of Flum and Grohe mentioned above suggest that there is no perfectly k-balanced
family of hash functions from [n] to [k] of size f(k)nO(1). We prove a stronger result, showing that
every perfectly k-balanced family of hash functions from [n] to [`] is of size at least c(k, `)nbk/2c,
where c(k, `) is a positive constant depending only on k and `. We also observe that this is not
far from being tight, as for every n > k there is a perfectly k-balanced family of functions from [n]
to [k] of size

(
n

k−1

)
. This shows that the Color Coding approach cannot supply an algorithm for

counting k-paths in an n vertex graph in time o(nbk/2c).
Our main positive result is an explicit construction, for every 1

poly(k) < ε ≤ 1, of an (ε, k)-

balanced family of hash functions from [n] to [k] of size ek+O(log3 k) log n. The running time of

the procedure that provides the construction is ek+O(log3 k)n log n. Note that the size of the family
is optimal up to the error term O(log3 k) in the exponent, as there is a known lower bound of
Ω(ek log n/

√
k) for the size of any family of hash functions from [n] to [k], (even if it is not balanced

and the only requirement is that every set of size [k] is mapped in a one-to-one fashion at least
once).

This supplies deterministic approximation algorithms for counting the number of simple k-
paths in a graph G = (V,E) up to a relative error of ε = 1

poly(k) in time 2O(k)|E| log |V |. Similar

results hold for counting approximately the number of copies of any graph of size k with constant
tree-width. Note that this is polynomial for all k ≤ O(log n), and it is unlikely that one can do
better, as this would imply the existence of a 2o(n)-time algorithm for the Hamilton path problem,
contradicting the Exponential Time Hypothesis of [18, 19].

2

1.4 Methods and organization

Our lower bound for the size of perfectly balanced families are proved by Linear Algebra tools,
combining the basic approach of [1] in the proof of the lower bound for the size of sample spaces
supporting k-wise independent random variables with two additional ideas.

The construction of (ε, k)-balanced families combines several ingredients. Two of them are
rather standard and are based on nearly pairwise independent random variables and on the method
of conditional expectations. The third one is more challenging, and combines the approach of [21]
with an iterative construction based on properties of expanders. It is convenient to apply here
(some version of) the expanders of [5], though other expanders could have been used as well.

Since our main motivation is the application for the subgraph approximate counting problem
using Color Coding, there is no reason to provide explicit constructions of (ε, k)-balanced families
of functions which are more efficient than the time of writing these functions down, as anyway our
counting algorithm will have to go through these functions. We thus describe the constructions in
this way, without trying to describe separately which parts of them admit more efficient descrip-
tions. It is worth noting, however, that the part of our construction which applies the method of
conditional expectations indeed requires the time stated in its description.

The rest of this extended abstract is organized as follows. In section 2 we describe the main in-
gredients of the construction: balanced families of hash functions and balanced splitters, a modified
version of a notion introduced in [21]. Section 3 contains the results concerning perfectly balanced
families of hash functions. The explicit construction of expanders presented in section 4 is used in
section 5 for constructing small sample spaces supporting a certain relaxed version of nearly k-wise
independent random variables. This is used to obtain a construction of what we call balanced
(n, k, `)-splitters, which is later applied in section 6 as a crucial ingredient in the construction of
balanced families of hash functions. The constructions, together with the color coding technique,
are used for designing algorithms for approximately counting the number of copies of subgraphs of
bounded tree-width in given graphs. We conclude with some remarks and open problems. Due to
space limitations, some of the proofs are given in the appendix.

2 The ingredients of the construction

In this section we formally define the notions of balanced families of hash functions and balanced
splitters. For a positive integer n, denote by [n] the set {1, . . . , n}. For any k, 1 ≤ k ≤ n, the

family of k-sized subsets of [n] is denoted by
([n]

k

)
. As usual, k mod ` denotes the unique integer

0 ≤ r < ` so that k = q` + r, for some integer q.

Definition 2.1. Suppose that 1 ≤ k ≤ ` ≤ n and ε ≥ 0. A family of functions from [n] to [`]
is an (ε, k)-balanced family of hash functions if there exists a constant T > 0, such that for every

S ∈
([n]

k

)
, the number of functions that are one-to-one on S is between (1− ε)T and (1 + ε)T . The

family is perfectly k-balanced if it is (0, k)-balanced.

The following definition is motivated by a related notion defined and used in [21].

Definition 2.2. Suppose that 1 ≤ ` < k ≤ n and ε ≥ 0, and let H be a family of functions from
[n] to [`]. For a set S ∈

([n]
k

)
, let splitH(S) denote the number of functions h ∈ H so that for every

j, 1 ≤ j ≤ k mod `, |h−1(j) ∩ S| = dk/`e, and for all k mod ` < j ≤ `, |h−1(j) ∩ S| = bk/`c.
The family H is an ε-balanced (n, k, `)-splitter if there exists a constant T > 0, such that for every

S ∈
([n]

k

)
, (1 − ε)T ≤ splitH(S) ≤ (1 + ε)T .

3

Note that if ` divides k, then in the above definition splitH(S) is the number of functions that
split S into equal parts. The splitters of [21] differ from the ones defined here, just as usual families
of hash functions differ from balanced families; in [21] it is only required that for every set S there
will be some function in H splitting it evenly, while in our splitters each S should be divided evenly
by roughly the same number of functions. The construction of balanced splitters is thus much
harder than the one of splitters in [21], and is in fact the most challenging part in the explicit
description of balanced families of hash functions.

Each function f in our explicit construction of balanced families of hash functions is the compo-
sition of members from three families. The first one is an (ε1, k)-balanced family of hash functions

from [n] to [q], where q = Θ(k2

ε). The second one is an ε2-balanced (q, k, `)-splitter from [q] to
[`], where ` = Θ(log k), and the last one is an (ε3, k/`)-balanced family of hash functions from [q]
to [k/`] (for simplicity assume for now that ` divides k). In order to define f we actually need
` members of the third family, with each of them being applied to the elements mapped by the
members of the second family to a single j ∈ [`].

3 Perfectly Balanced Families

Let n > ` ≥ k > 0 be positive integers. Recall that a family F of functions from [n] to [`] is
perfectly k-balanced, if there exists a number T > 0 so that for every set K ⊂ [n] of size |K| = k,
|{f ∈ F : |f(K)| = k}| = T . In this section we show that the size of each such family must be at
least c(k, `)nbk/2c, where c(k, `) is a positive constant depending only on k and `.

Theorem 3.1. Let F be a perfectly k-balanced family of functions from [n] to [`], where
n > ` ≥ k.
(i) If k = 2r is even then

|F| ≥
(n

r

)

(
`
r

)(
`−r
r

) .

(ii) If k = 2r + 1 is odd then

|F| ≥
(n−1

r

)

(`−1
r

)(`−r−1
r

) .

(iii) If ` = k = 2 then |F| ≥ n− 1, and equality can hold if and only if there is a Hadamard matrix
of order n. Otherwise, the smallest possible size of F is precisely n.

Proof. We describe the proof of part (i). The proofs of parts (ii) and (iii), which are similar, but
require some additional ideas, are given in the appendix.
(i) Let F be a perfectly 2r-balanced family of functions from [n] to [`].

For each R ⊂ [n] of size |R| = r, define two vectors uR and wR, each of length |F|
(`
r

)(`−r
r

)
,

whose coordinates are indexed by the set of all ordered triples (f, S1, S2), with

f ∈ F , S1, S2 ⊂ [`], |S1| = |S2| = r, and S1 ∩ S2 = ∅.

These vectors are defined as follows:

uR(f, S1, S2) = 1 if f(R) = S1, and uR(f, S1, S2) = 0 otherwise.

wR(f, S1, S2) = 1 if f(R) = S2, and wR(f, S1, S2) = 0 otherwise.

4

Note that the inner product of two such vectors uR1 and wR2 is zero if R1 ∩ R2 6= ∅. Indeed, in
this case f(R1) must have a nonempty intersection with f(R2) for all f ∈ F , and thus there is no
coordinate (f, S1, S2) as above in which both vR1 and wR2 do not vanish. Similarly, if R1 ∩R2 = ∅,
the inner product of uR1 and wR2 is precisely the number of functions f ∈ F which are one-to-one
on R1 ∪ R2. Indeed, for each such f there is a unique pair of disjoint sets S1, S2, each of size r,
so that f(R1) = S1 and f(R2) = S2, while if f maps two elements of R1 ∪ R2 to the same image,
there is no such pair. Since F is a perfectly balanced 2r-family, there exists a positive T so that
for every disjoint R1, R2 as above, the inner product of uR1 with wR2 is T .

Let U be the
(n

r

)
by |F|

(`
r

)(`−r
r

)
matrix whose rows are all vectors uR with R ⊂ [n], |R| = r,

and let W be the matrix whose rows are all vectors wR. By the above discussion, the product
U ·W t = T ·DISn,r, where DISn,r is the disjointness matrix whose rows and columns are indexed
by the r-subsets of [n], defined by DISn,r(R1, R2) = 1 if R1 ∩ R2 = ∅ and DISn,r(R1, R2) = 0
otherwise. It is well known (see, e.g., [20]) that the matrix DISn,r is nonsingular (over the reals)
for all n ≥ 2r, and as this is the case here and T is nonzero, it follows that the rank of U is at least
that of U ·W t which is

(n
r

)
. As this rank is at most the number of columns of U , we conclude that

|F|
(

`

r

)(
` − r

r

)

≥
(

n

r

)

,

completing the proof of part (i).

Remarks:

(i) A well known conjecture (c.f., e.g., [15]) asserts that for n > 2 there is a Hadamard matrix
of order n iff n is divisible by 4. It is easy to see that if there is such a matrix that n is indeed
divisible by 4. The converse is not known, but there are many infinite families of known Hadamard
matrices, showing that the (n − 1)-bound in part (iii) of the theorem is tight in many cases.
(ii) It is easy to see that for every n > k there is a perfectly k-balanced family F of functions
from [n] to [k] of size |F| =

(n
k−1

)
. Indeed, for each subset R = {r1, r2, . . . , rk−1} of [n], with

r1 < r2 < . . . < rk−1 let fR denote the function defined by fR(ri) = i for all 1 ≤ i ≤ k − 1, and
fR(j) = k for all j ∈ [n] − R. It is not difficult to check that the family of all these functions fR is
perfectly k-balanced (with T = k).
(iii) The lower bounds in Theorem 3.1 hold for weighted families as well, even if the weight weight(f)
of some of the functions f is negative, as long as there is a real T 6= 0 so that for every K ⊂ [n],
|K| = k, the total weight of functions which are one-to-one on K is exactly T . To see this, repeat
the proof above, modifying the definition of the vectors uR to be

uR(f, S1, S2) = weight(f) if f(R) = S1, and uR(f, S1, S2) = 0 otherwise,

keeping the definition of the vectors wR as before.

4 Expanders

In this section we describe a special case of the Cayley expanders of [5] that suffices for our purposes.
The following are standard definitions and observations concerning eigenvalues and expanders

(c.f., e.g., [7],[16]).
Let G = (V,E) be a d-regular graph and let A = AG = (auv)u,v∈V be its adjacency matrix.

Since G is d-regular, the largest eigenvalue of A is d, corresponding to the all 1 eigenvector. Let

5

λ = λ(G) denote the largest absolute value of an eigenvalue other than the first one. For two (not
necessarily disjoint) subsets B and C of V , let e(B,C) denote the number of ordered pairs (u, v),
where u ∈ B, v ∈ C and uv is an edge of G. The following useful bound is the Expander Mixing
Lemma (c.f., e.g., [7], page 146).

Proposition 4.1. Let G be a d-regular graph with n vertices and set λ = λ(G). For every two sets
of vertices B and C of G, where |B| = bn and |C| = cn, we have

|e(B,C) − bcdn| ≤ λ
√

bc n.

We need the following explicit expanders, described, for example, in [6], following [5].

Theorem 4.2. For every two positive integers d and k satisfying 4k < 2d there is an explicit
construction of a 4k-regular graph Gd,k on 2d vertices so that λ(Gd,k) ≤ d · 2k.

Note that this construction is applicable for a wide range of parameters, that is, the number
of vertices of the expander can be any power of 2, whereas the degree can be any power of 4. For
completeness, we include the construction in the appendix.

5 Partially independent variables

In this section we introduce a certain relaxation of almost k-wise independence and describe an
appropriate explicit construction, which will give the main building block required in the construc-
tion of balanced families of hash functions of optimal size. For notational convenience, we give the
following definitions related to the probabilities implied by a multinomial distribution.

Definition 5.1. Suppose that 1 ≤ ` ≤ k and k = k1 + k2 + · · · + k`, where ki ≥ 0 for every i.
Define m(k1, . . . , k`) to be the following probability:

(
k

k1,k2,...,k`

)

`k
=

k!

k1!k2! · · · k`!`k
.

For random variables X1, . . . ,Xk, let Yi denote the number of variables Xj that are equal to i.
Define M(X1, . . . Xk; k1, . . . k`) to be the event that Yi = ki for every i, 1 ≤ i ≤ `.

We now construct probability distributions which are uniform over a set of strings of length q in
the alphabet [`]. In the standard notion of almost k-wise independence, it is required that in any k
positions, each substring of length k appears with probability close to `−k. Here we are interested
in a weaker condition. Our objective is to construct small probability spaces of the following type.

Definition 5.2. A sequence X1, . . . Xq of random variables that take values from [`] is (ε, k)-
partially-independent if for any p ≤ k positions i1 < · · · < ip and any ` values k1, . . . , k` such that
k1 + · · · + k` = p, we have

|Pr[M(Xi1 , . . . Xip ; k1, . . . k`)] − m(k1, . . . , k`)| < ε.

Observe that we require the property to hold for any p variables, where 1 ≤ p ≤ k. This
is needed since the fact that the property is satisfied for a value p does not imply that it holds
for p′ < p. Furthermore, requiring that it applies for every value p ≤ k is crucial for the cor-
rectness of our recursive construction. To demonstrate the definition, here is what it means for

6

` = 2. A sequence X1, . . . Xq of random Boolean variables (taking values from {0,1}) is (ε, k)-
partially-independent if for any p ≤ k positions i1 < · · · < ip and any r, 0 ≤ r ≤ p, we have
∣
∣Pr[Xi1 + · · · + Xip = r] −

(
p
r

)
2−p

∣
∣ < ε.

Theorem 5.3. For any ` ≤ k ≤ q and 0 < ε ≤ 1, a sample space of size
(

qk`

ε

)O(log q)
that supports

q variables that take values from [`] and are (ε, k)-partially-independent can be constructed in time
(

qk`

ε

)O(log q)
.

Proof. Assume, without loss of generality, that q is a power 2. Otherwise, q can be simply rounded
to the next power of 2. Assume also that ε ≤ 1

k` . If this is not the case, then ε can be replaced by
ε
k` . We recursively construct sample spaces that support an increasing number of variables. For
every t = 0, 1, . . . , log2 q, we shall construct a sample space Ct that supports 2t variables that take

values from [`] and are
(

4tε
q2 , k

)

-partially-independent. The sample space Ct will consists of strings

of length 2t over the alphabet [`].
We start with t = 0. To support one variable, it is possible to simply define a sample space

that consists of the ` strings of length 1, and there will be no error at all in this case. For our
purpose, the size of each sample space should be a power of 2, so let N0 be the result of rounding

the value 4(20q2k`

ε)4 to the next higher power of 2. The sample space consists of N0 strings, where

each string of length 1 appears either bN0
` c or dN0

` e times. Obviously N0 ≤ 8(20q2k`

ε)4 and we have

one variable which is certainly
(

1, ε
q2

)

-partially-independent.

Let D be the result of rounding the value
(

20q2k`

ε

)4
to the next higher power of 4. Suppose that

in step t, a sample space of size Nt ≤ 8Dt+1 that supports 2t variables that are
(

4tε
q2 , k

)

-partially-

independent has been constructed. We now describe step t + 1. Let G be the D-regular expander
with Nt vertices described in section 4 (note that D < Nt). It follows from Theorem 4.2 that

λ(G)

D
≤ log2 Nt√

D
≤ 3 + (t + 1) log2 D√

D
≤ (log2 D)2√

D
≤ 20

D1/4
≤ ε

q2k`
.

To every vertex of the graph G we assign one of the Nt strings of length 2t from Ct that were
constructed in step t. For every ordered pair (u, v) such that uv is an edge of G, the concatenation
of the string assigned to u followed by the string assigned to v is added to the sample space Ct+1.
The resulting sample space is of size Nt+1 = DNt.

Suppose that in step t, a sample space Ct of size Nt that supports 2t variables that are (γ, k)-

partially-independent has been constructed, where γ = 4tε
q2 . We now prove that the approximation

error is increased in step t + 1 by a multiplicative factor of at most 4, that is, the sample space
Ct+1 supports 2t+1 variables that are (4γ, k)-partially-independent. Suppose that p ≤ k and take
any p positions 1 ≤ i1 < · · · < ip ≤ 2t+1 and any ` values k1, . . . , k` such that k1 + · · ·+ k` = p. We
further assume that among the p positions selected, exactly p′ positions are in the first half of the
string. Therefore Pr[M(Xi1 , . . . Xip ; k1, . . . k`)] is equal to

∑

k′
1+···+k′

`
=p′

Pr[M(Xi1 , . . . Xip′ ; k
′
1, . . . , k

′
`) ∩ M(Xip′+1

, . . . Xip ; k1 − k′
1, . . . , k` − k′

`)].

7

We would like Pr[M(Xi1 , . . . Xip ; k1, . . . k`)] to be close to:

m(k1, . . . k`) =
∑

k′
1+···+k′

`
=p′

m(k′
1, . . . , k

′
`)m(k1 − k′

1, . . . , k` − k′
`).

Note that the number of terms in the two summations above is at most k` and that obviously
∑

k′
1+···+k′

`
=p′ m(k′

1, . . . , k
′
`) ≤ 1. Since Ct is (γ, k)-partially-independent, it follows from Proposition

4.1 that the estimation error is as follows:
∣
∣Pr[M(Xi1 , . . . Xip ; k1, . . . k`)] − m(k1, . . . k`)

∣
∣ ≤

∑

k′
1+···+k′

`
=p′

[

(m(k′
1, . . . , k

′
`) + γ)(m(k1 − k′

1, . . . , k` − k′
`) + γ) +

λ(G)

D

]

−

∑

k′
1+···+k′

`
=p′

m(k′
1, . . . , k

′
`)m(k1 − k′

1, . . . , k` − k′
`) =

∑

k′
1+···+k′

`
=p′

γ[m(k′
1, . . . , k

′
`) + m(k1 − k′

1, . . . , k` − k′
`)] + γ2 +

λ(G)

D
≤

2γ + k`

(

γ2 +
λ(G)

D

)

≤ 4γ,

where the last inequality follows from the inequalities γ ≤ ε ≤ 1
k` and λ(G)

D ≤ ε
q2k` ≤ γ

k` . After step

log2 q, the sample space constructed is (ε, k)-partially-independent, as needed.

6 Balanced Families and Approximate Counting

The following inequality is Robbins’ formula [12] (a tight version of Stirling’s formula).

Claim 6.1. For every integer n ≥ 1,
√

2πnn+1/2e−n+1/(12n+1) < n! <
√

2πnn+1/2e−n+1/(12n).

This supplies the following simple lower bound for the multinomial distribution (recall Definition
5.1).

Lemma 6.2. If k ≥ ` > 0, then

m(dk/`e, . . . , dk/`e
︸ ︷︷ ︸

k mod `

, bk/`c, . . . , bk/`c
︸ ︷︷ ︸

`−(k mod `)

) > (15k/`)−`/2.

Proof (sketch). Assume first that ` divides k. Using Robbins’ formula, we get:

m(k/`, . . . , k/`
︸ ︷︷ ︸

`

) =
k!

(k/`)!``k
> (2πk/`)−`/2e−`2/12k ≥ (2πe1/6k/`)−`/2 > (7.5k/`)−`/2.

The result for general k and ` follows similarly.
The previous Lemma shows that the events we would like to estimate have a relatively high

probability, enabling us to give the following construction.

8

Theorem 6.3. For any k ≥ ` and 0 < ε ≤ 1, an ε-balanced (q, k, `)-splitter of size
(

qk`

ε

)O(log q)

can be constructed in time
(

qk`

ε

)O(log q)
.

Proof. As implied by Theorem 5.3, we use an explicit probability space of size
(

qk`

γ

)O(log q)
that

supports q random variables that take values from [`] and are (γ, k)-partially-independent, where
γ = (15k/`)−`/2ε. We attach one of the random variables to each element of [q]. If follows from
Lemma 6.2 that the splitter achieves the required approximation.

We can now describe our main construction of balanced families of hash functions, using the
ingredients mentioned at the end of section 2. Recall that there are three ingredients in this
construction. Two of them are relatively simple, and are given in the next two propositions.

Proposition 6.4. For any 0 < ε ≤ 1, an (ε, k)-balanced family of hash functions from [n] to [q],

where q = d2k2

ε e, of size kO(1) log n
εO(1) can be constructed in time kO(1)n log n

εO(1) .

Proposition 6.5. For any 0 < ε ≤ 1, an (ε, g)-balanced family of hash functions from [m] to [g]

of size O(
eg√g log m

ε2
) can be constructed in time

(m
g

)eggO(1)m log m
ε2

.

The first proposition is proved using a standard construction of nearly pairwise independent
random variables. Here n is the number of variables, they attain values in [q], and the number of
functions is the size of the sample space. Since every two variables are equal with probability close
to 1/q, for every fixed set S of k variables, the values of the random variables in S are pairwise
distinct in at least a fraction of (1 − ε) of the functions.

The second proposition is proved using the method of conditional expectations. The details
appear in [4].

The main part of the construction is the balanced (q, k, `)-splitter described in Theorem 6.3.
The three ingredients are combined as follows. Each function f of our final family is described
by a member f1 of an (ε/6, k)-balanced family of Proposition 6.4, a member f2 of the ε2-balanced

splitter of Theorem 6.3 with ε2 = ε
6 , q = d2k2

ε2
e and ` = dlog ke, and ` members φ1, . . . , φ` of the

(ε
6` , g)-balanced family of Proposition 6.5 with m = q and g = k/`. (For simplicity we assume

here that ` divides k.) To compute the value of f on some x ∈ [n], we first apply f1 to x, getting
a value y in [q], then we apply f2 to y, getting as a result some i ∈ [`], and finally we apply φi

to y, where the final result is (i − 1)k/` + φi(y). A k-set S ⊂ [n] can be mapped in a one-to-one
manner by such an f only if it is mapped in a one-to-one manner by f1, and then only if it is split
evenly into ` parts by f2, and then only if its elements mapped to each of the ` parts are mapped
in a one-to-one manner by each of the functions φi. Since all the ingredients in the construction
are sufficiently balanced, this gives the required balanced family. The detailed computation, which
yields the following theorem, is postponed to the full version of the paper.

Theorem 6.6. For 1
poly(k) < ε ≤ 1, an (ε, k)-balanced family of hash functions from [n] to [k] of

size ek+O(log3 k) log n can be constructed in time ek+O(log3 k)n log n.

Using Color-Coding we can now approximate the number of paths and cycles (or other fixed
graphs of bounded tree-width) in a given input graph. Let G = (V,E) be a directed or undirected
graph. The algorithms use the construction of (ε, k)-balanced families of hash functions from V
to [k]. Each such function defines a coloring of the vertices of the graph. Recall that a path is

9

colorful if each vertex on it is colored by a distinct color. Using dynamic programming one can
count efficiently the exact number of colorful paths in each of these colorings. The properties of
the balanced family of hash functions then provide the following deterministic polynomial time
algorithms for approximately counting the number of paths or cycles of size k in a given input
graph of size n for all k ≤ log n . Similar results apply for approximate counting of prescribed
subgraphs of size k and bounded tree-width.

Theorem 6.7. For any 1
poly(k) < ε ≤ 1, the number of simple (directed or undirected) paths of k

vertices in a (directed or undirected) graph G = (V,E) can be approximated deterministically up to
relative error ε in time 2O(k)|E| log |V |.

Theorem 6.8. For any 1
poly(k) < ε ≤ 1, the number of simple (directed or undirected) cycles of

size k in a (directed or undirected) graph G = (V,E) can be approximated deterministically up to
relative error ε in time 2O(k)|E||V | log |V |.

7 Concluding Remarks

• The notion of balanced families of hash functions seems natural and useful, and it will be
interesting to find additional applications of it.

• An easy combination of Proposition 6.4 and Theorem 6.6 supplies, for any ε ≥ 1
k` , explicit

ε-balanced (n, k, `)-splitters of size at most eO(` log2 k) log n. In particular, for ` = 2 the size

is eO(log2 k) log n. A simple probabilistic argument shows, however, that for any fixed ε > 0
there are ε-balanced (n, k, 2)-splitters of size O(k

√
k log n), and although this is not crucial

for our application here, it will be interesting to find an explicit construction of such splitters
of size polynomial in k and log n.

• Our results settle the problem of approximately counting the number of paths and cycles of
length k = Θ(log n) in an n-vertex graph in deterministic polynomial time. As mentioned in
the introduction, it is probably impossible to extend the result for larger values of k, since
even a polynomial time algorithm for deciding whether there exists one simple path of length
k where log n = o(k) would imply a sub-exponential time algorithm for the Hamiltonian cycle
problem. This follows easily by padding a graph on k vertices by n− k = 2o(k) isolated ones,
thus converting the above decision algorithm to one that decides in time 2o(k) whether a graph
on k vertices is Hamiltonian, contradicting the Exponential Time Hypothesis (ETH) [18, 19].

• Our method here, combined with the Color Coding technique, easily yields results for addi-
tional approximate counting problems for graphs. In particular, given a weighted graph G on
n vertices, we can approximate deterministically, in polynomial time, the number of minimum
(or maximum) weight paths or cycles (or copies of any prescribed subgraph of bounded tree
width) on k vertices in G up to any fixed desired relative accuracy, for all k ≤ O(log n).

References

[1] Noga Alon, László Babai, and Alon Itai. A Fast and Simple Randomized Parallel Algorithm
for the Maximal Independent Set Problem. Journal of Algorithms 7, 567–583, 1986.

10

[2] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and Süleyman Cenk
Sahinalp. Biomolecular network motif counting and discovery by color coding. In ISMB, pages
241–249, 2008.

[3] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304, 1992.

[4] Noga Alon and Shai Gutner. Balanced families of perfect hash functions and their applications.
In Lars Arge, Christian Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, ICALP,
volume 4596 of Lecture Notes in Computer Science, pages 435–446. Springer, 2007.

[5] Noga Alon and Yuval Roichman. Random Cayley graphs and expanders. Random Struct.
Algorithms, 5(2):271–285, 1994.

[6] Noga Alon, Oded Schwartz, and Asaf Shapira. An elementary construction of constant-degree
expanders. Combin. Probab. Comput., 17(3):319–327, 2008.

[7] Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience Series in Discrete
Mathematics and Optimization. John Wiley & Sons Inc., Hoboken, NJ, third edition, 2008.

[8] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM, 42(4):844–856,
July 1995.

[9] Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles. Algo-
rithmica, 17(3):209–223, March 1997.

[10] Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized
counting problems. In Prosenjit Bose and Pat Morin, editors, ISAAC, volume 2518 of Lecture
Notes in Computer Science, pages 453–464. Springer, 2002.

[11] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The fast intersection
transform with applications to counting paths. To appear.

[12] William Feller. An Introduction to Probability Theory and its Applications. Vol. I. Third
edition. Wiley, New York, 1968.

[13] Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM
Journal on Computing, 33(4):892–922, August 2004.

[14] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with O(1)
worst case access time. Journal of the ACM, 31(3):538–544, July 1984.

[15] Marshall Hall, Jr. Combinatorial Theory. Wiley-Interscience Series in Discrete Mathematics.
John Wiley & Sons Inc., New York, second edition, 1986. A Wiley-Interscience Publication.

[16] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
Bull. Amer. Math. Soc. (N.S.), 43(4):439–561, 2006.

[17] Falk Hüffner, Sebastian Wernicke, and Thomas Zichner. Algorithm engineering for color-coding
to facilitate signaling pathway detection. In David Sankoff, Lusheng Wang, and Francis Chin,
editors, APBC, volume 5 of Advances in Bioinformatics and Computational Biology, pages
277–286. Imperial College Press, 2007.

11

[18] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput. Syst.
Sci, 62(2):367–375, 2001.

[19] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci, 63(4):512–530, 2001.

[20] Stasys Jukna. Extremal combinatorics. Texts in Theoretical Computer Science. An EATCS
Series. Springer-Verlag, Berlin, 2001.

[21] Moni Naor, Leonard J. Schulman, and Aravind Srinivasan. Splitters and near-optimal deran-
domization. In 36th Annual Symposium on Foundations of Computer Science, pages 182–191,
1995.

[22] Jeanette P. Schmidt and Alan Siegel. The spatial complexity of oblivious k-probe hash func-
tions. SIAM Journal on Computing, 19(5):775–786, October 1990.

[23] Jacob Scott, Trey Ideker, Richard M. Karp, and Roded Sharan. Efficient algorithms for de-
tecting signaling pathways in protein interaction networks. Journal of Computational Biology,
13(2):133–144, 2006.

[24] Roded Sharan and Trey Ideker. Modeling cellular machinery through biological network com-
parison. Nature Biotechnology, 24(4):427–433, 2006.

[25] Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. QPath: a method for querying
pathways in a protein-protein interaction network. BMC Bioinformatics, 7:199, 2006.

[26] R. Williams. Counting weighted k-subgraphs exactly. To appear.

8 Appendix

8.1 Perfectly balanced families

Proof of Theorem 3.1, parts (ii) and (iii).

(ii) The proof is similar to that of part (i), with a few modifications. Here are the details. Let F
be a perfectly 2r + 1-balanced family of functions from [n] to [`].

For each R ⊂ [n−1] of size |R| = r define two vectors uR and wR, each of length |F|
(`−1

r

)(`−r−1
r

)
,

whose coordinates are indexed by the set of all ordered triples (f, S1, S2), satisfying

f ∈ F , S1, S2 ⊂ [`] − {f(n)}, |S1| = |S2| = r, and S1 ∩ S2 = ∅.

These vectors are defined as before:

uR(f, S1, S2) = 1 if f(R) = S1, and uR(f, S1, S2) = 0 otherwise.

wR(f, S1, S2) = 1 if f(R) = S2, and wR(f, S1, S2) = 0 otherwise.

It is clear that just as before, the inner product of two such vectors uR1 and wR2 is zero if R1∩R2 6= ∅.
Similarly, if R1 ∩ R2 = ∅, the inner product of uR1 and wR2 is precisely the number of functions
f ∈ F which are one-to-one on R1 ∪ R2 ∪ {n}. Indeed, for each such f there is a unique pair of
disjoint subsets S1, S2 of [`] − {f(n)}, each of size r, so that f(R1) = S1 and f(R2) = S2, while

12

if f does not map R1 ∪ R2 ∪ {n} in a one-to-one manner, there is no such pair. As before, since
F is a perfectly balanced 2r + 1-family, there exists a positive T so that for the matrices U and
W whose rows are all vectors uR and wR, respectively, with R ⊂ [n − 1], |R| = r, the product
U ·W t = T ·DISn−1,r. The desired result follows as before, since DISn−1,r is nonsingular and yet
its rank cannot exceed the number of columns of U . This completes the proof of part (ii).

(iii) Let F be a perfectly 2-balanced family of functions from [n] to [2]. Note that by part (i),
|F| ≥ n/2, but here one can improve the constant factor and obtain a tight bound. To do so,
define, for each i ∈ [n], a vector ui of length |F|, whose coordinates are indexed by the elements
of F , where here ui(f) = (−1)f(i)−1. It is easy to check that the inner product of ui and uj is |F|
if i = j, and is |F| − 2T if i 6= j, where here T > 0 is the number of functions f ∈ F that map i
and j to distinct elements. (This number is the same for all i 6= j, as F is perfectly 2-balanced.)
We conclude that all diagonal elements of the gram matrix of the n vectors ui are |F|, while all
other elements are |F| − 2T . It is easy to check that this matrix is nonsingular unless the sum of
its elements in each row is zero, in which case it has rank n − 1. In fact, all eigenvalues of this
matrix are 2T , with multiplicity n − 1, and the sum of all entries in a row, with multiplicity 1.
(In case this sum is also 2T , then the matrix is 2T times the identity matrix, and all eigenvalues
are equal). We conclude that the length of the vectors, |F| is always at least n − 1. Equality
can hold only if the sum of elements in a row of the gram matrix is 0. In this case, |F| = n − 1
and n − 1 − 2T = −1, that is, the inner product of each two of our n vectors is −1. For each
1 ≤ i ≤ n, let ui denote the vector obtained from ui by adding to it a coordinate in which its value
is 1. Then the vectors ui are n pairwise orthogonal vectors of length n with {−1, 1} entries, that
is, they form the rows of a Hadamard matrix of order n. Thus, if there is no Hadamard matrix of
order n then any family of perfectly 2-balanced functions from [n] to [2] has at least n functions.
The family F = {f1, f2, . . . , fn} in which fi(i) = 1 and fi(j) = 2 for all j 6= i shows that this is
tight, completing the proof of the theorem.

8.2 Expanders

In this subsection we present the construction of the expanders described in Section 4. Note that
these are not bounded-degree graphs, and their degrees grow with the number of vertices, but they
suffice for our purpose. This is a special case of a construction suggested in [5], which is based on
one of the codes described in [3].

Let bin : GF (2k) 7→ {0, 1}k be a one-to-one mapping satisfying bin(0) = 0k and bin(x + y) =
bin(x)⊕ bin(y), where α⊕β means the bit-by-bit xor of the binary strings α and β. (The standard
representation of GF (2k) as a vector space satisfies the above conditions.) Given x, y ∈ GF (2k),
let < x, y > denote the bit (bin(x), bin(y))2, where (α, β)2 is the inner-product mod 2 of the
binary vectors α and β. For a fixed d and x, y ∈ GF (2k), the binary vector uxy is defined as
< x, y >< x2, y > · · · < xd, y >. For every d, k ≥ 1, we define a 4k-regular graph Gd,k with
2d vertices, as follows. The vertex set is {0, 1}d and every vertex v is adjacent to v ⊕ uxy for all
x, y ∈ GF (2k).

Proof of Theorem 4.2. Denote F = GF (2k), D = {0, 1}d, and let A be the 2d×2d adjacency matrix
of Gd,k. For every a = a1a2 · · · ad ∈ D, let va be the vector whose bth entry, where b ∈ D, satisfies

va(b) = (−1)(a,b)2 . Let pa(x) be the polynomial
∑d

i=1 aix
i and denote λa =

∑

x,y∈F (−1)<pa(x),y>.

13

We now prove that va is an eigenvector of A over R with eigenvalue λa.

(Ava)(b) =
∑

c∈D

Abcva(c) =
∑

x,y∈F

va(b⊕uxy) = va(b)
∑

x,y∈F

va(uxy) = va(b)
∑

x,y∈F

(−1)(a,uxy)2 = λava(b).

It is easy to verify that the 2d vectors {va}a∈D are orthogonal, and therefore we found all the
eigenvalues of A. It remains to bound the absolute value of λa. For a fixed x ∈ F , the term
∑

y∈F (−1)<pa(x),y> is equal to 2k if pa(x) = 0, and to zero in case pa(x) 6= 0. If a 6= 0d, then pa(x)

is a non-zero polynomial of degree at most d, and therefore has at most d roots. Thus, |λa| ≤ d ·2k,
as needed.

14

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

