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Abstract

We show that the asymptotic complexity of uniformly generated
(expressible in First-Order (FO) logic) propositional tautologies for
the Nullstellensatz proof system (NS) as well as for Polynomial Cal-
culus, (PC) has four distinct types of asymptotic behavior over fields of
finite characteristic. More precisely, based on some highly non-trivial
work by Krajicek, we show that for each prime p there exists a func-
tion I(n) € Q(log(n)) for NS and I(n) € Q(log(log(n)) for PC, such
that the propositional translation of any FO formula (that fails in all
finite models), has degree proof complexity over fields of characteristic
p, that behave in 4 mutually distinct ways:

(i) The degree complexity is bound by a constant.

(ii) The degree complexity is at least I(n) for all values of n.

(iii) The degree complexity is at least I(n) except in a finite number
of regular subsequences of inifinite size, where the degree is constant.

(iv) The degree complexity fluctuates between constant and I(n)
(and possibly beyond) in a very particular way.

We leave it as an open question whether the classification remains
valid for I(n) € n®*(M) or even for I(n) € Q(n). Finally, we show that
for any non-empty proper subset A C {(i), (i3), (i), (iv)} the decision
problem of whether a given input FO formula ¢ has type belonging
to A - is undecidable.
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1 Introduction

1.1 Weak propositional proof systems

A large number of problems in computer science including verification, knowl-
edge representation, planning and automated theorem proving are linked to
the following decision problem: Given a propositional formula 1) in m boolean
variables as input, decide if the formula is a tautology. Mathematically this
problem is trivial since essentially we can decide the question by exhaustively
testing each of the 2™ possible 0/1 truth assignments. However, from a prac-
tical computational point of view this is not feasible if m is large, so it is
important to find methods that are more efficient than exhaustive search. In
the case where the formula 1 is a tautology we would like this to be verified
by some feasible and reliable procedure. This could be done, for example, by
providing a proof of ¢ in a suitable proof system. Such approach is, however,
only feasible if there exists a ‘short’ proof (or in general a short ’certificate’)
that proves (or in general 'witnesses’) the fact that ¥ is a tautology. A key
problem in propositional proof complexity concerns this issue. The big open
question is whether it is in general possible to do better than exhaustive
testing. Is there a propositional proof system where, for example, it is always
possible to provide proofs (certificates) that contain less than p(m) symbols
for some fixed polynomial p?

Cook and Reckhow [14] put forward a program (for proving NP # co-
NP) where the idea is to obtain super-polynomial for stronger and stronger
propositional proof systems. Cook and Reckhow noticed that showing NP
# co-NP is equivalent to proving super polynomial lower bounds for any
propositional proof system (where the axioms and rules are given in a manner
that can be computed in polynomial time).

Proof systems where proving super-polynomial lower bounds seems to
be well beoynd current techniques are often refered to as strong proposi-
tional proof systems [22]. On the other hand propositional proof systems
(like resolution) for which super-polynomial (or exponential) lower bounds
are known - are referred to as weak propositional proof systems. Examples of
strong propositional proof systems include proof systems like Natural deduc-
tion (tree-like or dag-like), Gentzen’s system LK (with cuts) as well as the so
called Frege-proof systems.

Despite being inefficient for some classes of tautologies, weak proposi-
tional proof systems play a very important role in many areas of computer



science. The resolution proof system, for example, is quite a weak system,
however many theorem provers and algorithms are based on this proof sys-
tem (usually in the form of the Davis-Putnam algorithm). In fact the DLL-
algorithm - the undisputed most popular sat solving algorithm - is based on
an even weaker proof system: regular resolution. It has been shown that
regular resolution for some classes of tautologies is performing exponentially
worse than resolution (for a recent result in this direction see [36]).

The main reason for this success of weak proof systems is that although
strong propositional proof systems sometimes allow shorter proofs than the
weak propositional system, in general it seems to be computationally hard to
find these shorter proofs. In fact, in general, for some classes of tautologies it
might (asymptotically) be computationally harder to find short proofs of the
propositions in some given strong system, than to find the (longer) proofs of
the propositions in a weak proof system.

Weak systems often allow us to get quite a clear idea about what are
sensible (and what are less sensible) proof strategies. However, in many
cases it seems very unclear how one can algorithmically (in a feasible manner)
utilise the strength of the strong propositional system.

An important part of our motivation for studying weak systems (espe-
cially after a good lower bound have already been obtained for the system)
is to understand - in as clear terms as possible - the proof systems’ ability
(or lack of ability) to handle various general classes of tautologies.

1.2 Related results

In [12] Cook introduced a general method of translating statements of Bounded
Arithmetic into polynomial size families of propositional formulas, in such a
way that theorems translate into tautology families with small proofs in a
particular proof system (extended Frege). Later in [27] Paris and Wilkie
introduced the idea of basing the translation on an uninterpreted function
(relation) symbol, while fixing an interpretation of all the other symbols.
The Paris-Wilkie translation can be seen as a special case of the translation
of ¥F formulas that Cook and Nguyen introduce in [13].

The method of translation we consider in this paper can be viewed as a
special case of the Paris-Wilkie translation where all relations and symbols
are unintepreted. In the general translation each LF formula 7 of Bounded
Arithmetic is translated into a sequence n[n| of propositional propositions.
Our main result is not valid in this general translation. It is crucial for our



result that function and relation symbols are all unintepreted, and that there
are no special build-in relations (functions) with a predefined interpretation.

Let © denote the class of first order formulae in predicate logic (FO
formulae ) that have no finite models. Then the translation of each 1) € ©
leads to a sequence ¥[n] of unsatisfiable proposition formulae. Informally,
the proposition ¥[n| states that 1 has no model of size n. The general idea
is for a given weak propositional system to characterize the class of ¢ for
which the sequence ¥[n] has short (or requires long) proofs.

In [23, 25] Krajicek initiated the study of how particular weak proposi-
tional proof systems are coping with uniform systems of polynomial equa-
tions corresponding to unsatisfiable propositions. For a given propositional
proof system R (commonly presented as a refutation system where the aim is
to refute a proposition), Krajicek’s approach was to provide a general model
theoretic criteria that together with a general increasing function f : N — N
(e.g. a function of super polynomial growth rate), would ensure that any FO
sentence ¥ € O that satisfies the model theoretic criteria would lead to a se-
quence ¥ [n] of unsatisfiable propositions, that asymptotically would require
any R-refutation to have complexity at least f(n).

Maybe the most basic model theoretic principle is that a given FO sen-
tence 1 € O is valid in some infinite model. In [31] Riis showed that ¢ is
valid in some infinite model if and only if 1)[n] (represented as a statement
expressed in uninterpreted relational symbols) is independent (i.e. without
proof or refutation) in the system 73 (a) of bounded arithmetic.

From a combinatorial perspective (disregarding certain technical issues
related to forcing in non-standard models of Bounded Arithmetic) the if-
direction was later improved by Krajicek [23], when he showed that any
FO sentence 1 € © that holds in some infinite model, leads to a sequence
Y[n] that requires exponential size (2°(vV") tree-like resolution refutations.
The pigeonhole principle is violated in some infinite models, thus Krajicek’s
criteria immediately made it possible to "explain” why various versions of
the pigeonehole principle are hard for tree-resolution.

For a fixed field F', Krajicek showed in [25, 24] that if there is an infinite
model equipped with a suitable Euler structure in which ¢ is valid, then [n]
requires Nullstellensatz (NS) refutations of degree Q(log(n)) and requires

"We use the notions FO formulae and FO sentence interchangeable since we adopt the
common convention that a formula with free variables is valid in a model when its valid
for all interpretations of the free variables



Polynomial Calculus (PC) refutations of degree Q(loglog(n)).

Informally Kraijcek’s criteria capture in some sense the class of FO sen-
tences that lead to such hard tautologies with respect to the propositional
system in focus. This informal interpretation is reflected in Krajicek’s ter-
minology when he in [26] says that his model theoretic criterion (different
for different propositional proof systems) ”corresponded” to the proof sys-
tem. Kraijcek’s showed in [26, 24] that the NS and PC refutation systems
over a finite prime field £, has a covering class of Euler structures with a
suitable Grothendieck ring (Krajicek’s terminology). It should be empha-
sised that this correspondence is not ”"exact” in the sense that the notion
exactly identify the class of FO formula ¢ for which ¢ [n] has constant degree
NS-refutations (PC-refutations).

A related, but different approach was introduced by Riis [32] suggesting
that (weak) propositional proof systems in general might have so-called com-
plexity gaps. Riis showed that the tree-resolution propositional proof system
have a complexity gap and that Krajicek’s model theoretic criterion for tree-
resolution is in fact a characterisation. More specifically, for any formula 1) in
predicate logic there are two disjoint possibilities: Fither the sequence 1[n|
has polynomial size tree-resolution refutations or the sequence 1 [n] requires
full exponential size 24" tree-resolution refutations. Furthermore, case (2)
applies if and only if ¢ is valid in some infinite model (the refutations tree-
resolution complexity is set to oo if the formula ¢)[n] is satisfiable).

Notice, that the number of boolean variables in ¢ generally is n® for some
¢ > 1 that depends on ¢. Thus it is possible for the refutation complexity
to be as bad as 2. Danchev and Riis showed in [17] that for tree-like
resolution there are no complexity gaps above 22(1°87) [ the same paper
Riis and Danchev tried - with limited success - to improve this result. Based
on our effort we conjectured that in fact for any formula 1 in predicate logic
there are three distinct cases: (1) v¥[n] has polynomial size tree-resolution
refutations (2) the sequence ¢[n] has size 20 tree-resolution refutations
but require tree-resolutions of 2™ (3) w[n] requires size 2218 tree-
resolution refutations. This conjecture is still open.

In [35] it was shown that the statement GT,, that (falsely) asserts that
there is a directed acyclic ordering on n nodes has size n* (dag-like) resolution
refutations. Contrary to that in [5] it was shown that GT,, require exponential
tree-resolution refutation. This last statement also follows from [32], since
there exits an infinite linear ordering (e.g. (Z, <)) with no minimal element.
From this difference between resolution and tree-resolution it follows that if



there is a model theoretic criterion for full sequential (dag-like) resolution it
must be different from that for tree-resolution. However, Danchev and Riis
showed in [18] that the characterisation for tree-resolution remains valid for
full dag-like resolution provided we consider "relativised” FO formula ¢ in
predicate logic (for definition see [18]) . This answered an open question by
Krajicek and showed that for each relativised FO formula ¢ there are two
disjoint possibilities: (1) the sequence ¥[n] has polynomial size resolution
refutations (2) the sequence v[n] requires full exponential size resolution
refutations. Furthermore, case (2) applies if and only if ¢ is valid in some
infinite model.

It is an open question whether for any FO-formula 1 are two disjoint
possibilities: (1) the sequence ¥ [n] has polynomial size resolution refutations
OR (2) the sequence 1[n| requires exponential size resolution refutations. If
this question can be answered positively we expect this to be difficult to prove
since an exponential lower bound for the weak-pigeon hole principle (stating
there is no map from n to 2n) would follow just from a non-polynomial lower
bound. So far one of the deepest and technically most involved theorems
in resolution proof complexity has been the exponential lower bound on the
weak pigeon-hole principle [29]. Also another difficulty is that it is not clear
that there is a simple model theoretic criterion that exactly captures the class
of 1 for which 1 [n| requires exponential size resolution refutations.

More recently two new dichotomy results have been published. To give
the flavor of these theorems we state them, but ask the reader to consult
[15, 16] for precise definitions of the involved concepts.

Theorem A : (S. Dantchev and B. Martin) (Improvement of [15])

Given a FO sentence 1 which fails in all finite structures, consider its
translation into a propositional CNF' contradiction Cy ,,, where n is the
size of the finite universe. Then either 1 or 2 holds:

(1) There exists a constant r such that Cy,,, has rank-r Lovasz-Schrijver
refutation for every n.

(2) There exists a positive constant a such that for every n, every
Sherali-Adams refutation of Cy,, is of rank at least n®.

Furthermore, 2 holds if and only if 1 has an infinite model.

To fully appreciate this gap, one should notice that each rank k Lovasz-
Schrijver refutation can be converted into a rank k& Sherali-Adams refutation.
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In Danchev’s original paper only a poly-logarithmic bound were given for
this result.

Theorem B : (S. Dantchev, B. Martin, S. Szeider)([16])

Given a FO sentence 1, which fails in all finite models. Consider the
sequence of parametrised contradictions (Cyn i )nen is a translation of
Y. Then exactly of one the following three alternatives is valid:

(1) Cyni has a polynomial size tree-like resolution refutations of a size
bound by a polynomial independent in n that does not depend on k.

(2a) Cynx has a parametrisised tree-like resolution refutation of size
BEn® for some constants a and B which depends of 1 only.

(2b) There exists a constant v, 0 < v < 1 such that for every n > k,
every parametrised tree-like resolution refutation of Cy 1 s of size at
least n*".

Furthermore, case (2) (i.e. case (2a) or case (2b)) occur if ¢ holds in
some infinite model. Furthermore, (2b) holds if and only if 1 has an
infinite model whose induced hyper-graph has no finite dominating set.

1.3 Algebraic proof complexity

The Nullstellensatz (NS) proof system [3] and Polynomial Calculus (PC)
[11] are two of the most popular algebraic proof systems. These systems
have been studied quite intensively since their introduction in the mid 1990s.
Both systems are used to establish the truths of tautologies using reasoning
about polynomials over a field, based on Hilberts Nullstellensatz. One nice
feature of algebraic proofs is that small degree proofs can be found quickly
by for example using a modification of the Grobner basis algorithm [28].

Let F be a fixed (algebraically closed) field. For a given a (finite) col-
lection T' = {p1,p2,...,pa} C Flx1, 29, ..., 1z, of polynomials the task is to
show that the polynomials have no common root, i.e to show that there is
no (a,as,...,a,) € F* such that p(ai,as,...,a,) =0 for each p € I'.

One version of Hilbertz Nullstellensatz states that the polynomials in I'
have no common root if and only if the identity polynomial 1 belongs to the
ideal generated by the polynomials in I'. In other worlds there exists for each



polynomial p; € I" a polynomial r; € F[zy, 2o, ..., z,] such that

A

> rpi=1

J=1

The expression Z;‘:lrjpj = 1 constitutes a Nullstellensatz proof. The de-
gree of the proof is defined as the maximal degree of the polynomials 7;p;,
J = 1,2,....X before terms in r;p; are cancelled out [i.e. the degree is
mag; (deg(r;) + deg(p;))].

The question of the degree of the polynomials r; has been studied in
the context of the efficient Nullstellensatz by Brownawell [6], Kollar [21]
and Caniglia et. al. [10]. The general optimal degree bounds are doubly
exponential in the number of variables. In the context of propositional proof
complexity we can think of each polynomial in I" as a premise and as 1
representing the contradiction. From this perspective a Nullstellensatz proof
is then an indirect proof (a refutation) that shows that the premises (which
state that the polynomials p € T" have a common zero), lead to a contradiction
(1=0).

In most applications in propositional logic each variable xy, zo, ..., x, is
assumed to be boolean i.e. to take 0/1-values. From this perspective true is
1, false is 0, =z is the same as 1 — x, a conjunction z A y is the same as the
product xy and a disjunction x V y is the same as x + y — xy. As explained
in [7] each propositional formula (%) then corresponds to an algebraic term
t(Z) such that ¢ (Z) and ¢(Z) has the same assignments of (0/1-values to the
variables Z. For each boolean variable x the equation 22 — z is assumed to
belong to T 2. In general if all solutions are 0/1-solutions we do not need
to assume that F' is algebraically closed. In fact Buss noticed (Theorem 9
in [7]) that when the polynomials ¢ take only 0/1 values on 0/1 inputs, all
results valid over commutative rings.

Polynomial calculus (PC) resembles more a traditional proof system. The
idea behind PC is to show that 1 belongs to the ideal generated by the
polynomials in I". This is done in a logic style derivation using the following

2Qccasionally, the fourier basis is used and the variables are assumed to take —1/1
values (and the underlying field is assumed to have characteristic # 2). In this case for
each variable x the equation 22 — 1 is assumed to belong to I'. In this paper we will not
consider the fourier basis since the natural translation of a FO sentence in general does
not lead to a polynomials of constant degree



two rules

q p

cut
o (cut)
and
q .
— (weakening)
rq

where ¢, p are polynomials and r is any monomial. We have adopted the
terminology cut and weakening since these are the logical inference rules that
naturally corresponds to these rules. Given the set I' of polynomials, a PC
refutation of I' is a sequences qi,q2,...,qs = 1 of polynomials where each
polynomial is either a premise (i.e. belongs to I') or can be deduced by
an application of either a cut or a weakening. The degree of the proof is
the maximal degree of the polynomials ¢, ¢, ..., qs. It does not affect the
validity or degree of derivations if we allow r to be a proper polynomial in
the weakening rule, but in this case the degree of rq has to be calculated
before terms are cancelled out.

The NS proof system as well as PC are sound over any commutative ring
and in the case polynomials that takes 0/1 values on 0/1 inputs the NS proof
system as well as PC are complete over any commutative ring [7].

Finally, we would like to pay attention to the F-PC refutation system
defined in [19] partly based on a suggestion in [28]. As noticed by a number
of authors, the definition of PC does not constitute a Cook-Reckhow proof
system since no specific rules are given for how one is allowed to handle
the polynomial expressions. This can be mended by considering the F-PC
refutation system that P-simulate any Frege propositional proof system [19]
and is thus a strong refutation system. The degree of a F-PC proof (defined
as the largest degree of a polynomial that appear in the derivation), remains
unchanged if we consider the PC refutation as taken part in the F-PC system.

1.4 The translation procedure

The translation of a FO formula % to a sequence of t[n] of propositional
formula (polynomial equations) is carried out in two steps.

The first step is to convert v into a special quantifier free formula 1)’ on
conjunctive normal form (i.e. as a conjunction of disjunctions).



The second step is to use the Paris-Wilkie translation an translate ¢’ to a
sequence 1[n| of propositions in propositional logic. Each function and rela-
tion symbol in ¢’ is unintepreted. In our setting where we consider algebraic
proof systems, so the translation is modified to a sequence of polynomial
equations.

Let L = L(f1, fay ooy [y ooy R1, Ray .oy Ry, ....) be a fixed first order lan-
guage with an unlimited (i.e. countable infinite) number of function symbols
of each arity, as well as an unlimited number of relation symbols of each
arity. We let Varpo = {z1, 22, ...., z,, ....} denote a countable infinite set of
variables and let FO(L, Var,) denote the class of first order formula in the
language L and (free) variables in Varpo.

We consider a special subset S (S for special) of FO(L, Var ) formulae
that is a conjunction of disjunctions that each is an atomic (or negation of
an atomic) formula on one of the following two forms:

R(vy,vs, ..., vx) for some k-ary relation symbol R € L
with k € {1,2,....,; } and vy, ve, ..., vx € Varpo (I)

Vg1 = f(v1, 09, ..., v%) for some k-ary function symbol f € L
with £ = {0,1,2,....} and vy, va, ..., Vg, Vgy1 € Vargo (11)

As usual 0-ary function symbols are called constants and an atomic formula
involving a constant ¢ is of the form v = ¢ for some v € Varpo. Atomic
formula of the form v; = v; are also included in (II).

Using the Paris-Wilkie translation it is straight forward to translate any
quantifier free formula in S into a sequence of polynomial equations. The
degree of the polynomial equations is bound from above by a constant that is
independent of n. The conversion of a general FO-formula into a quantifier
free formula in S and the point that this translation procedure leads to
polynomial equations of bounded degree was discussed in [34] as well as in

126].

Example

Consider the unsatisfiable FO-sentence

Y =:VeIyVzR(z,y, z) A JxVyIz—R(z,y, 2) (C1)
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This example was also considered in [32]. The first step in the translation is
to convert ¢ into a quantifier free formula that belongs to S. To this end,
we introduce Skolem Functions and get

V' =: R(z, f(x),2) NR(c.y,9(y)) (C2)
This formula is still not in S so we modify it further and get
1/)// — (_|y _ f($) \/R(CL’, V. Z)) A (—|u =cV—w= g(’l}) V —|R(’LL, v, w)) (C?))

that is the required formula in S.

The second step is for each n € N to convert the formula " into a propo-
sitional formula (system of polynomial equations) that states that essentially
claim (incorrectly) that ¢’ is satisfiable in a model of size n. The polynomial
equations t[n| has variables in f;; 4,5 € {1,2,...,n}, ¢; j € {1,2,..,n},
gi; 1,7 €{1,2,....,n} and ryx 4,5,k € {1,2,...,n} (i.e. consists of poly-
nomials that each contains potentially n? + 2n? + n distinct variables). The
formula 1" translate into the polynomial equations:

fi17i2(1 —_ ril,’iQ,’i3) = 0 fOl" il,ig, ig € {1, 2, e ,TL} (Eq 1)

ci4gi5,i6Ti4,i5,i6 =0 for i4, i5,i6 S {1, 2, e ,7’L} (Eq 2)

O e)-1=0 (Eq 3)

J

O fis)—1=0forie{1,2,...,n} (Eq 4)
J

(ng)—l:OforiE{1,2,...,n} (Eq 5)
J

7’1'21’1-2’1-3 — Ty in,is — 0 for il,ig,ig € {1* 2, Ce ,n} (Eq 6)

fijfie =0fori,j #k e {1,2,...,n} (Eq 7)

gijgik = 0 for 4,7 # k € {1,2,...,n} (Eq 8)

cej=0fori#je€{l,2,....,n} (Eq 9)

The FO-formula ¢ (as well as ¢ and ") fail in ALL models (finite as well
as infinite). We will show (Proposition A and Lemma 7) that this ensures
that the system of polynomial equations has constant (independent of n)

11



degree NS-refutations. As it happens the system ¢[n| of equations in the
example has a degree 4 NS-refutation for each value of n:

D (g fig(L=rig)] + Y (fi)leigiuriir] + D (=eifi) [ gix) = 1]

i’j7k i!j7k Z’J

+Z(—Ci)[(z fii) =0+ (DO ) -1 =1 (D1)

2

Notice that only Eql-Eqb were needed for this derivation.

2 The main result

To state the main result in more generality we define the refutation de-
gree complexity of a system of satisfiable polynomial equations as
infinite. This allows us to discuss the refutation degree complexity of a
sequence [n| without requiring that each [n| is unsatisfiable.

The main result can be stated as follows:

Theorem 1 : For each prime p and for each FO formula i there exists a
non-decreasing function l(n) € Q(log(n)) for NS (andl(n) € Q(log(log(n))
for PC), such that the propositional translation of v (a collection of
polynomial equations) leads to sequence [n| of polynomial equations
with a refutation degree refutation complexity d(n) over fields of char-
acteristic p, that behaves in one of 4 distinct ways:

T1) The degree refutation complexity d(n) is bound by a constant ¢ <
oo (with possible finitely many exceptions where the degree complezity
is 00).

T2) The degree refutation complexity d(n) is at least [(n) for all values
of n.

T3) The degree complexity d(n) is at least [(n) except in a finite number
of reqular subsequences of inifinite size, where the degree is constant.

Furthermore, membership of each subsequence is uniquely (with possible

finitely many exceptions) determined the value of n modulo p* for some
k.

T4) The degree refutation complexity d(n) assumes arbitrary big values
with d(n) < l(n) and for each specific n where d(n) is strictly less than

12



l(n), there exists v such that d(m) = d(n) for all m > n with m = n
modulo p”.

For any non-empty proper subset A C {(1), (i1), (ii1), (iv)}, the decision
problem of whether a given input FO formula 1 has type belonging to A,
is undecidable. This undecidablity result remains valid if we consider
the promise decision problem where each v is selected such that it is
unsatisfiable in all finite models.

The undecidable part implies trivially that each of the 4 possibilities can
occur. The theorem shows that for a fixed field F' of finite characteristic p
(and for a suitable choice of the function [) the class of first order formulae can
be divided into 4 disjoint classes. We will later show (Theorem 10) that the
type of a FO-formula does not depend on whether we consider NS-refutations
or PC-refutations.

It turns out that a first order formula v that is unsatisfiable in all models
(including infinite models) is always of type 1 (Lemma 7). Furthermore, it
turns out that a first order formula ¢ with even a slight irregular spectrum
(i.e. where the set S for which ¢ has a model of size n cannot be determined
by properties of n modulo some powers of p) are always of type 2. Formulae
of type 3 and 4, have always a very regular spectrum where the membership
n € S of the spectrum of ¢ is in general uniquely determined by properties
of n modulo powers of p.

Finally, let us point out that the classification in Theorem 1 is highly
robust with respect to the choice of the growth-rate of the function [ (at
least as long as it satisfies the general bounds stated in the theorem). If we
replace, for example, [ with any non-decreasing function I’ € O(log(n)) for
the NS-case [or I" € O(log(log(n))) for the PC-case| that is not bound from
above by a constant ¢ < oo each FO formula 9 translates to a sequence 1[n]
that has the same type with respect to I’ as it has with respect to [.

3 Background in the representation theory of
the symmetric group

In [1, 2] Ajtai considered of a prime number p and a finite set A with n
elements. For each sequence a = (ay, as, ...., a) of length k from the elements
of A he introduced a variable z,. In general if k1, ko, ..., ks is a finite collection
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of natural numbers Ajtai introduced for each j = 1,2,...,s and for each
sequence a = (ai,as, ..., ax;) a variable z,;. Ajtai considered systems of
linear equations modulo p of the form

Zu,(f)xa = b; modulo p (A1)

for i = 1,2,...,l. More generally in [2] Ajtai considered systems of linear
equations modulo p of the form

Z Zug)]xa] = b; modulo p (A2)
j=1

a

for e = 1,2, ...,1. The system symmetric if for each permutation 7 of the set
A and for each 1 = 1,2, ..., the equation

Y ullya=b; (A3)

and in general

z; Z ugf()a),jxa,j =0b; (A4)
=

a

is also an equation of the system. Ajtai also introduced the notion of a
uniform sequence of linear equations (definition given below).

Ajtai showed that if we for n > ng, n € N consider uniform sequences
L[n] of such linear equations, then the question of whether L[n| has a so-
lution is not a matter of the magnitude of n, but rather a question of the
value of n modulo p" for some constant r (provided n is sufficiently large).
Ajtai obtained this result by showing that the representation theory of the
symmetric group developed by James [20] could be modified to fit the setup
where one is given an uniform sequence of linear equations (rather than just
a single system of linear equations).

Uniform sequence of linear equations

In many examples of systems of polynomial equations e.g. (Eql)-(Eq9),
the equations are given in a way that is intuitively quite uniform. Ajtai,
captured this notion formally as follows: Suppose that Ay C A; and assume

14



that |A; \ Ag| > k. Suppose that u; is a F-valued function defined on
AM < T'x {1,2,...,1} and b is a F-valued function defined on {1,2, ...,1} (the
values of b will be denoted by by, by, ..b;). Then Ajtai would say (and so would
Krajicek [25]) then say that a system of linear equations

Z ut(f)vacaV b; (A5)

ac Ak yel

for 7 = 1,2,...,1 is based on the quadruplet u;, Ay, Ap, b if the following holds
for each A D A;: Foralli = 1,2,....l and (a,7) € A*x T if 7 is a permutation
of A which fixes each element of Ag and 7(a) € A%, then

ul, = wi((m(a), 1) (A6)

Finally, Ajtai would say that a symmetric system F of linear equations
is induced by the quadruplet u;, Ag, A1, b (over A) if F is the symmetric hull
(or the closure under S,) of a system based on this quadruplet.

Instead of this somewhat technical definition we will give an alternative
but equivalent definition that we think is more natural.

Consider a system of equations

Z ua 'yxa ¥y = (A7)

ac Ak yeT

for + = 1,2,...,1 and for some set A;. Let Ay C A;. We say that the
system of equations in (A7) is invariant under permutations in Sa 4, (ie.
permutations 7 : A; — A; that fixes Ag point wise), if each such permutation
maps the equation to itself.

It can be shown (see [1]) that if |A; \ Ag| > k, then a system of equations
L(ny) (with n; = |A;|) where each equation is invariant under permutations
in Sa\a, (we also will refer to as permutations in Sy, _n, where [Ag| = ng
and |A;| = ny) for each each A O A; naturally lifts (via condition (A6)) to
a system L(n) of equations of the form

Z U’a 'yl'a ¥y = (A8)

ac Ak yel

for i = 1,2,...,1. Instead of defining uniformity by a quadruplet, we simply
notice that a specific system L(n;) of linear equations, that is Syy;-invariant
for each n > ng uniquely lifts to a system L(n) of linear generating equations.
This system of generators is defined by a quadruplet. And if we are given a
system of generators by a quadruplet the system is also given by a specific
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Theorems underlying our results

Like Ajtai and Krajicek we consider a set A with n elements. For each
sequence a = (aq, ag, ...., ag) of length k we introduce a variable x, and more
generally if ky, ko, ..., ks is a finite collection of natural numbers we introduce
for each j = 1,2, ..., s and for each sequence a = (ay, as, ..., ax;) variables z, ;.
For natural numbers ki, ko, ..., ks we let A,, = Ay, (K1, ko, ..., ks) denote such a
set of variables. There are Z;=1 n*i variables in A, (ky, ko, ..., ks).

Let F[A,] denote the polynomial ring over the variables in A, and let
F[A,)a denote the set of polynomials in F[A,] of degree < d. We consider
F[A,]4 a vector space over F'. In this view the one polynomial 1 is a vector
(not a scalar). The symmetric group S, acts naturally on the set of variables
in A,, via the action

7T(wa,j) - ﬂ-(x(a],ag,....,akj),j) = x(rr(m),Tr(ag),...,w(ak,j)),j

This action of the symmetric group is extend by linearity to an action on
F[A,] as well as on F'[A,]4. The space F[A,]4 (and F[A,]) can then be viewed
as a F'S,-module. The representation theory of the symmetric group pro-
vide some general structure theorems about finite F'S,, modules like F[A,,]q.
The (partial) ring structure combined with the vector space and the F'S,-
module structure, make mathematical structures like F[A,]; very rich and
interesting.

From a formal perspective [1, 2] Ajtai initiated the study of submod-
ules that in our notation are of the form F[A,];, however Ajtai’s analysis
apply with very few minor changes to F[A,]qs for d > 1. In [25] Krajicek
invenstigated F[A,]; for general d and gave explicit bounds on some of the
parameters in Ajtai’s results. Our application reley on these bounds. Direct
application of Ajtai’s results would give only a weak non-constructive version
of Theorem 1. In this version we could only conclude that the non-decreasing
function I(n) has lim, .., [(n) = oo (i.e. it could be arbitrarily slow growing).

Ajtai showed that if Q[n] C F[A,]; is a uniform sequence of linear equa-
tions (given by a quadruplet as described in the previous section) with the
property that the set Q[n| of linear equations for each n is closed under the
action of the symmetric group S,, then the question of whether the system
of equations has a solution or not, depends on n modulo p" for some constant
r and for n sufficiently large. Krajicek’s proved in [25] an efficient version
of this result by Ajtai [1, 2]. The following Theorem that can be extracted
from Krajicek’s Theorem 3.5 in [25] combined with the remark of how to
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get rid of an exponential factor in the NS-case. We suppress some of the
parameters since they are not needed for our purpose. The actual choice of
the parameters depends purely on the syntactical properties of the given FO
formula ¢ (as well the underlying field F'). In our terminology Krajicek’s
efficient version of Ajtai’s result can be stated.

Theorem X1 : (Krajicek [25]) Let F' be an algebraic closed field of char-
acteristic p. Let Qn| C F[A,] be a sequence of polynomials generated
by a quadruplet. Then there exist non-decreasing functions lyg, Lpc :
N — N with Ins(n) € Qlog(n)) and lpc(n) € Qlog(log(n)), and
constant ¢ such that:

If Q[n] for some d = d(n) with d < Iys(n) has a NS-refutation of degree
d, then there exist r € N such that p” < cd(n) and d(n) = d(m) for all
m > n with n = m modulo p".

If Q[n] for some d = d(n) with d < lpc(n) has a PC-refutation of
degree d, then there exist r € N such that and d(n) = d(m) for all
m > n with n =m modulo p".

From this we get:

Theorem X2 : Let I be a fized field of characteristic p. Let i be a
FO-formula and consider a propositional translation of v into a se-
quence Y [n| of polynomial equations. The polynomial equations express
that ¥ has no model of size n. There exists non-decreasing functions
Ins,lpc : N — N with Iys(n) € Q(log(n)) and lpc(n) € Q(log(n)) and
a constsant ¢ such that:

If [n] for some d = d(n) with d < Ixs(n) has a NS-refutation of degree
d, then there exist r € N such that d(n) = d(m) for all m > n with
n = m modulo p".

If ¥[n] for some d = d(n) with d < lpc(n) has a NS-refutation of degree
d, then there exist v € N such that d(n) = d(m) for all m > n with
n =m modulo p".

Proof: The translation of a given FO-formula v leads for each n to a system

¥[n] of polynomial equations in F[A,] where A, = A, (ki, ko, ..., k). Given
Theorem X1 if suffices to show that the sequence [n] is generated by a

17



quadruplet. This follows since the set of polynomial equations in [n| is
closed under the action of S,, and we can choose generators (for each n with
|A| = n) that are closed under the action of Sa\4,. Thus by an earlier remark
for |A\ Ag| > k = maxjk; the sequence 9[n] is generated by a quadruplet.
&

4 Proof of the main theorem (part 1)

In this section we will show how the first part of the theorem follows from
Theorem X1 and Theorem X2. For a specific uniform sequence 1[n] (or Q[n])
of polynomial equations we let h: N — N U {oo} denote the NS-refutation
(PC-refutation) degree complexity of 1[n] (Q[n]) as a function of n. Let
l,r: N — N be general functions with [ and r non-decreasing. Assume that
the functions h, [ and r satisfy the following condition:

(A) For each d if for some n > I(d) we have h(n) = d, then for all m with
m > I(d) and m = n modulo p"¥Y we have h(n) = h(m).

Notice that since [ and r are non-decreasing functions, if h(n) < d for
some n > [(d), then h(m) < d for all m > I(d) with n = m modulo p"@,

Now let us increase d and ask what can happen asymptotically when d
tends to infinity. The next lemma help link Theorem X1 and Theorem X2
with Theorem 1.

Lemma 2 : Leth: N — NU{oco} and letl,r : N — N be general functions
with | and r non-decreasing, that satisfy (A). Then exactly one of the
following 4 possibilities holds:

{h(n) < co:n € N} is finite (T1)

{h(n) < 0o :n € N} is infinite and
{h(n) < oo :n>I(h(n))} is empty (T2

{h(n) < 0o :n € N} is infinite and
{h(n) < 0o :n>I(h(n))} is finite and non-empty (T3)
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{h(n) < 0o :n € N} is infinite and
{h(n) < oco:n>I(h(n))} is infinite (T4)

The four cases corresponds to the four cases in Theorem 1. Theorem 1
follows by spelling out the concrete consequences of each of the four cases in
conjunction with the conditions in (A):

Lemma 2A : Let h,l,7 : N — N be function that satisfies (/). Then
exactly one of the following four mutually exclusive cases occurs:

There exits dy € N such that

h(n) < dy holds for alln € N with n > l(dy) (T17)

For all values of d € N
if n > U(d) then h(n) > d for alln € N (T27)

N = 51 USy can be written as a disjoint union

of two infinite sets Sy and Sy such that there ezists
dy € N with h(n) < dy for all n € Sy with n > [(dy)
and for all d € N and n € Sy with n > 1(d), h(n) > d (T3")

For arbitrarily large values of d € N,
h(n) = d holds for some n € N with n > l(d) (T47)

Proof: Directly from Lemma 2A using the properties of (A). &

Let h(n) denote the minimal degree of a NS (or PC) refutation of v,
where 9 is a general FO formula. Then according to Krajicek’s results h
satisfies A with {(n) and 7(n) having 1(n), ¢"™ € Q(log(n)) for the NS case,
and having [(n), ¢"™ € Q(log(log(n))) for the PC case. This shows the major
part of Theorem 1.
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5 Case 1,2 and 3

We will now show that each of the four possibilities in Theorem 1 can appear.
Most sequences of propositional formula that so far have been considered in
the literature have been of type T1 or type T2.

Type T1

In example 1, calculation D1 showed that a specific predicate contradiction
had a proposional translation of NS-refutation degree 4 i.e. a complexity
behaviour of type T1.

It turns out (Lemma 7) that:

Proposition A : A predicate formula v that fails in all sufficiently large
finite models as well as in all infinite models, always translate to a se-
quence Yy, of propositional formula that has NS-refutation (PC-refutation)
degree complexity of type T1 (i.e. that has constant degree NS-refutations
(PC-refutations)).

For a detailed example illustrating this proposition see section 7.
The converse of Proposition A is not valid:

Proposition B : There exists propostions of type T1 that are satisfiable in
infinite models.

An example of this the bijective pigeonhole principle stating that there is no
bijective map from {1,2,...,n} to {1,2,...,n — 1} is valid in some infinite
models yet the principle is of type T1. This version of the pigeon-hole consists
of the conjunction of the following four FO-sentences that together claim that
there exits a point n, and a binary relation R that defines a bijection from
the universe to the universe except for some point c.

VzIy(y # ¢ A R(z,y))

Vz,y, 2((R(z,y) A R(z,2)) — y = 2)
Vy3zR(z,y)
Var, T2, y((R(z1,y) A R(22,y)) — 71 = 72)
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Translated into polynomial equations we get after a few cosmetic changes
(and letting ¢ = n) the following system of polynomial equations:

n—1
Q= (Y rig)—1=0foriec{l,2,...,n} (T1.1)
k=1
Q =(» r;)—1=0forje{l,2,...,n—1} (T1.2)
k=1
vk =Ty =0fori,j #£ke{l.2,....n} (T1.3)
Qfmj =1y, Ty = 0 for iy #£i0,j € {1,2,...,n} (T1.4)
v=ry—ry=0fori,je{l,2,...,n} (T1.5)

This system of polynomial equations has no solution since a solution
would define a bijection from {1,2,...,n} to {1,2,...,n — 1}. The system
has a NS-refutation of degree 2

3
3
,_.

ZQZ ZQI ZZTM Tik) |=1 (D2)
k=1

J=1 =1 1

B
Il

Notice that the derivation only uses (T1.1) and (T1.2). The calculation
show that the system of equations has constant NS-refutation degree com-
plexity (PC-refutation degree complexity) i.e. is of type T1.

Type T2

Satisfiable formula (by definition) always leads to propositions of degree com-
plexity oo i.e propositions of type T2. The pigeon-hole principle can be used
as a "genuine” example that leads to a sequence of unsatisfiable propositions
of NS-refutation (PC-refutation) degree complexity of type T2. To see this
consider the conjunction of PHP1 and PHP2

Vaey(y # ¢ A R(x,y)) (PHP1)

Va,y, 2((R(z,y) N R(z,2)) — y = 2) (PHP2)
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We get (after a few cosmetic changes where we let n = ¢) the following system
of polynomial equations:

n—1
Qi =) my)—1=0forie{l,2,...,n} (T2.1)
j=1
vk = xgrge =0fori,j # ke {1,2,... n} (T2.2)
so=a —xy =0fori,j e {1,2,...,n} (T2.3)

The polynomial equations in T2.3 are not needed since they have a con-
stant NS-derivation from equations in T2.1 and T2.2. The polynomial equa-
tions in T2.1, T2.2 and T2.3 have no common solution since a common zero
would violate the Pigeon-hole principle. According to Razborov [30] these
equations require NS-refutation degree (PC-refutation degree) n/2. Thus
the system of equations has NS-refutation degree complexity (PC-refutation
degree complexity) of type T2.

The class T2 is very rich and many distict problems belongs to this class.
The Spectrum Sy, of a FO-formula ¢ is defined as

Sy = {n € N : 9 has a model of size n}

It is well know that any set U C N with complexity that belongs to NEXP,
is the spectrum of some FO-formula . Any FO-formula ¢ with irregular
spectrum is of type T2. More specifically, any FO-formula with a spectrum
with a complement that does not contain a residue class modulo p” is for
type T2.

One way to construct a general sequence [n] of unsatisfiable propositions
of type T2, is to select a finite collection Uy, Us, ..., U, of sets of complexity in
NEXP and with N_, U; = (), with each U; being irregular (i.e. with no residue
class modulo p” in its complement). Then there exist FO-formula v, ..., %,
with these spectra. Translation of the conjunction ¢ := A;¢; leads to a
sequence 1[n| of unsatisfiable propositions that can be shown (see Lemma 3
below) to be of type T2.

Type T3

For a problem of type T3 consider the negation of the counting modulo p
principle (where p is the characteristic of the underlying field) in conjunction
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with the negation of the pigeonhole principle for arbitrary functions (the two
principle are expressed using two disjoint set of variables). More specifically
the translation of the violation of the counting modulo p principle can be
stated as follows [25]:

Let n > p > 2. For each p-element subset e C {1,2,...,n} introduce a
variable z.. Then consider the polynomial equations:

Qe = 22 — 2z, = 0 for each variable z, (T3.1)
Qe.f = zezg = 0 for every e, f such that e N f # D and e # f  (T3.2)
Q; = (Z 2e) —1=0foreachie {1,2,...,n} (T3.3)

et

For n = k modulo p with k #4 0 and k € {1,2,...,p — 1} we have:

SRET) SRR ) SR

edt A ed1

—k7 (p(D_z) — k) = kT (0—k) =1 (D3)
Thus for each n # 0 modulo p the polynomial equations in (T3.3) (the
equations in (T3.1) and (T3.2) are not needed) has a NS-refutation (PC-
refutation) of degree 1 over field of characteristic p that refutes the polynomial
equations Q. = 0,Q. s = 0 and @; = 0. Notice that the derivation (D3) in
fact only use the equations in (T3.3). The equations are satisfiable for n = 0
modulo p i.e. they have refutation degree complexity oo.
If we want an example of a sequence of type T3, where the polynomial
equations are unsatisfiable for all values of n we can add to (T3.1),(T3.2)
and (T3.3) the equations:

Q= zy)—1=0forie{l,2,....n} (T3.4)
j=1
G = wygrie = 0 for i, j # k € {1,2,...,n} (T3.5)

The pigeonhole principle require PC refutation degree n/2 according to
Razborov [30]. This suggest that when the conjunction of the counting mod-
ulo p principle and the general pigeonhole principle are combined, the result-
ing system has complexity of type T3.

23



To show this we need to to observe/show that combining two systems of
polynomial equations in disjoint set of variables, cannot lead to a composed
system with refutation degree complexity strictly lower that the maximal
degree complexity of each of the system on their own. This follows the next
Lemma. We we also use this lemma for the undecidability result.

Lemma 3 : Let I' and A be two collections of polynomials in disjoint set
of variables. Assume that I is unsatisfiable (i.e. that the polynomials
in T have no common zero) and assume that A is satisfiable (i.e. that
the polynomials in A have a common zero). Then the collection T' has
a NS-refutation (PC-refutation) of degree d if and only if T’ UA has a
NS-refutation (PC-refutation) of degree d.

Proof: Assume Xp crQ, Py + Xpjea@QsPs = 1 is a NS-derivation of degree
d. The polynomials in A has a common zero 7. Since the set of variables are
disjoint, it follows that ¥ p crQ Py +XpeaQsF5(7) = Xp, erQ+ P, defines the
1 polynomial in the variables associated to I'. In other words Xp cr@, P, = 1.
This shows the ”if” direction for NS-refutations.

Assume P, P, ..., P;,...,1is a PC-derivation ' U A F; 1. Let 77 be a
common zero of the polynomials in I', and substitute 77 into the variables
associated with I'. We get a PC-derivation of polynomials in the variables
associated with A of the formal 1 polynomial. This derivation has degree
< d. This shows the ”if” direction for PC-refutations.

The "only if” case is trivial for NS-refutations (let @), = 0 for each P, €
I'). The "only if’ case is even more trivial for PC-refutations (view a PC-
refutation of A as a PC-refutation of AUT). )

6 The fluctuating case

We now show that case 4, the fluctuating case is non-empty. The idea is to
consider a weak version of the bijective pigeonhole principle that states that
there is no bijection from n to 2n. The violation of this principle can be
written as a conjunction of the following propositions:

VeIyR(z,y) vV S(z,y) (F1)
Vy3dzR(z,y) (F2)
VydxS(z,y) (F3)
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Vo, y,2(y # 2 — = R(z,y) V - R(x, 2)) (F4)
Vo, y,2(y # 2z — =S(z,y) V-S(z, 2)) (F5)
Va,y,z2(y # z — ~R(x,y) V =5(z,y)) (F6)
Vry, 2o, y(21 # T2 — ~R(71,y) V 2 R(72,)) (F7)
Vi, 2o, y(21 # T2 — 28(71,y) V =S (22,9)) (F8)

The translation of this system of propositions leads after a few cosmetic
changes to the following system of polynomial equations:

QL= (inj) +(Zyij) —1=0forie{1,2,...n} (T4.1)

Q3= (> xy)—1=0forje{1,2,...n} (T4.2)
Q=D yy)—1=0forje{l.2,...n} (T4.3)
L=z = 0fori,j £ k€ {1,2,...n} (T4.4)
?jk =Y =0 fori,j #ke{l,2,...n} (T4.5)
?jk =y = 0 for i, j, k€ {1,2,... n} (T4.6)
Tri= g =0forij £ ke{l,2,...n} (T4.7)
Q?jk =Yy = 0 for i, j #k € {1,2,... n} (T4.8)

The equations xfj —z;5 = 0 and yfj — vy;; that are a part of the trans-
lation procedure are superfluous since they follow by a (constant degree)
NS-derivation (PC-derivation) from the other equations. In order to see this
consider for each i,j € {1,2,...,n} the equations Q7 = 0 and y;Q} = 0,
combined with the equations zjk =0 and ijk where 7,5,k € {1,2,...,n}.

We will show that over any field F' of finite characteristic p, this system
of equations has NS-refutation (PC-refutation) degree complexity that is
asymptotically of the fluctuating type.

Notice, that there are 5n® —4n? + 3n equations. These equations have no
solution since a solution could be used to define a bijection from {1,2,... n}
to {1,2,... 2n} violating a ‘weak’ version of the pigeonhole principle. Thus
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for each n the constant polynomial 1 belongs to the ideal generated by poly-
nomials Q}, ?, e ?jk. Further, there exist polynomials PZ-I,P]?, . ng
such that ¥,P'Q; + X;PPQ% + ... 4+ Sy P Q% = 1. Let dp(n) denote
the maximal degree of a summand in this expression, and let dyg(n) denote
the equations NS-degree complexity i.e. the smallest value of d,(n) when P
range over all possible choices of polynomials P}, Pj2, e Pg-k.

The equations can be simplified by relabeling the variables! Let D and R
be two finite sets with n and m elements. The equations can then be written

as:

QP (7) = (Z z;;) —1 =0 for each i € D (Eq 1)
jER

QN(Z) = (Z z;;) —1=0 for each j € R (Eq 2)
€D

Qi k(%) ==z, =0 foreach i € D, and j <k € R (Eq 3")

Qijr(Z) =2 =0 foreach i # j,i,j € D,j € R (Eq 4)

where the variables z; ; have ¢ € D and j € R.
Since xy = yx the system of equations remains equivalent if we drop the
requirement j < k and replace the third set of equations with:

Qi k(%) ==z 1, =0foreachi € D,j,k € R,j#k (Eq 3)

We denote the system of equations i.e. (Eq 1),(Eq 2), (Eq 3) and (Eq 4),
by PHPZ(bij) or sometimes by PHP™(bij).

The system PHPE(bij) contains 6n® — 4n® + 3n equations. This system
of equations has already been analyzed in Beame and Riis [4].

If we let m = 2n and let z;,4; = v;; we notice that this system of
equations is identical to the former system (still of course containing 5n3 —
4n?+3n equations). If we modify the original system by adding the equations

Q?jk =y = 0 for i, j. ke {1,2,...n} (T4.9)

to the original system of equations, we get a new system of equations that is
equivalent to the original system, but contains the very same 6n® — 4n? + 3n
equations as PHP*(bij).

Let F), denote a fixed field of characteristic p # 0. Then the system of
polynomial equations in [4] for the bijective pigeonhole principle PHPZ”Z (bij)
that states that there is no bijection from a set D with n elements to the set
R with n + p' elements.
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Proposition (Beame, Riis) Let F' be any field of characteristic p. If p' <
n, there is a NS-refutation of PHPZ“’l (bij) of degree p* — 1. On the
other hand if n > ((p + 2)' — p')/2 then any Nullstellensatz refutation
of PHP™?' (bij) must have degree at least 28 — 1.

Proof: The first part is Lemma 16 in [4] while the second part is Theorem
12 in [4]. )

We need a slight variation of this proposition. We prove an upper fluctu-
ating bound and as well as a Lower fluctuating bound and notice that these
bounds ensure a fluctuating NS-refutation degree complexity.

Fluctuating upper NS-degree bound

Consider the equations (Eql)-(Eq4). For k£ € N we have the following iden-
tities over a field of characteristic p:

Z ( Z xdlﬂ"lxd2ﬂ"2""‘Tdk—lskal[(Z xdkﬂ"k) — 1]+

di1<do<...<dp€eD T1,72e s Tk_1ER rTLER
E xdl,rlxd%w""xdk—2,Tk—2[( E : xdk—hrk—l) - 1] +o +
1,72, Tk_2ER r._1€R
E xdlaTlxd%TQ""'de—lﬂ”j—l[( E , ‘deﬂ"j)_l}+ """ +[( E , xdlﬂ"l)_l]>
T1,72ysTj—1ER r;€ER rMER

- Z ( Z Tdyr Tdyyr—2--- Ly, — 1) (Fl)

d1<d2<...<dx€D ri,r2,...,7kER

Furthermore, notice that:

Z <( Z xdl,rlxdz,m----xdk,rk) — 1) =

d1<d2<....<dj T1,72e s Tk

D
( Z Z Ty iy Tdpyra - Ly ) — (| I |) modulo p (F2)

d1<do<....<dp T1,72,.0e0,Tk

Similarly,
E ( E xdlﬂ'lxd%"“?""xdkflvrkfl[( § : xdk:ﬂ‘k) - 1]+
r1<ro<..<rx€R dj,d2,.....dx_1€ED dy€D
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Z xdl;Tlxd2;T2““Idk—277'k—2[( Z xdkflﬂ'kfl) - 1] to +

dy,d2,....,dp_2€D dx_1€D
Y CanTare i [(Y Tae) et (Y xdl,n)—u)
dl,d2,....,dj_1eD djED di1€D

= Z ( Z LdyriLdg,r—2+++Ldy,rp — 1) (F3)

r1<ro<..<rx€R di,ds,....dpr€D

Notice that

Z (( Z xdl,Tlxdz,W"”xdk-,Tk) —-1)=

r1<re<..<rr di,d2,....,dg

|R|
( Z Z xdl 1 Ty gLy ) — ( f modulo p (F4)

r1<rs<...<rg di,d2,....,

Subtracting (F2) from (F4) we notice that all the monomials cancel out
so we get:

D
Equation(F2) — Equation(F4) = (|]]j|) - (' i |) modulo p (F5)

This show that there is a degree k refutation of PHPE(bij) if

('i') - ('f') #0 modulo p (F6)

Now it is well known (see [4] for more details) that for any prime p, for
alll € N, for all n > p' € N and for all » # 0 modulo p

!
(n —;lrp) — (Zl) = r modulo p (F7)

Thus if we for r # 0 modulo p let |R| = n+rp' and |D| = n, we have shown
that over fields of chatacteristic p > 0, PHP™*"? (bij) has a NS-refutation of
degree p'. More specifically we have show that:

Proposition 4A : Let I be a field of finite characteristic p. Then for m >
n > ptm=") the polynomial equations PHP™(bij) has a NS-refutation
of degree p'™ ™ where I(m — n) is the power of the prime factor p in
the prime factorization of m — n.

This shows that we have a NS-degree upper bound for PHP?(bij) that has
a fluctuating behavior as a function of m.
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Proving degree lower bound by designs

In this section we will briefly discuss a general method for proving degree
lower bound for the NS-proof (NS-refutation) system. In an unpublished
manuscript Pudlak introduced the method and the term “design” was cho-
sen as a standard term for this type of objects. Later specific design were
constructed and used for proving specific lower bounds in [7, 8, 9, 4].

Let A, = Ay (ky, ko, ..., k) be a set of variables and let F'[A,] be the set
of polynomials over these variables. As in section 3, consider also F/[A,]q4 the
set of polynomials of degree < d.

Assume that we are given a set I' C F[A,]s. Typically of degree of
each polynomial p € ' is much smaller than d. For proving a degree lower
bound we are concerned whether the set I' of polynomials has NS-refutation
of degree d. The idea is to prove this by constructing an object we will call
a d-design D for I'. A design is a (linear) map D : F[A,]; — F that satisfies:

For py,ps € F[A,)q and A, Ay € F
D(Aip1 + Mip2) = MD(p1) + A2D(p2) (R1)
For each p € I' and for each monomial m for which mp has degree < d
D(mp) =0 (R2)

D(1) £ 0 (R3)

The point in this definition is that if there exists a d-design D for I, then
polynomials in " does not have a degree d NS-refutation. To see this notice,
that

qup = 1 implies that 1 = D(1) = D(Z qpp) = ZD(qpp) =0

pel’ pel’ pel’

From an abstract perspective a design is just a certain vector in the dual
vector space of FiA\,]q4.

Let U denote the linear vector space spanned by all weakenings of the
axioms p € I'. Or more formally let

U := span{mp : m is a monomial, p € I and deg(mp) < d}

It is not hard to show that the vector ”1” (the 1-polynomial is treated as a
vector rather than a scalar) belongs to U C F[A,]4 if and only if T has a
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NS-refutation of degree < d. Let V = span{”1”,V'}. In general dim(V') =
dim(U) or dim(V) = dim(U) 4+ 1. The first case occurs if and only if the
vector 1 belongs to U.

Let U denote the dual space of U and let V° denote the dual space of
V. In general for any linear subspace W C F[A,]q4 (e.g. W =U or W =V).
It is well known that

dim(W) + dim(W?) = dim(F[Z],)

The system I' has a degree NS-refutation if and only if V° = U°. In the
case [" has no NS-refutation of degree d, dim(U°) = dim(V°)+ 1. In this case
notice that any vector a € U° \ V° has:

a(p1 +p2) = a(p1) + a(p2) (R1)
a(mp) = 0 for each weakening of the axiom p € I’ (R2")
a(l) #0 (R3)

Notice that the collection of 3 of the form § := a+y with v € V° exactly
is the space of designs for I'. We will not need this, but notice the space
of designs is a linear side-space and notice that if it the space of designs is

non-empty it has dimension identical to the dimension of the dual of U minus
1.

A fluctuating lower NS-degree bound

In this section we show that there is a lower bound that fluctuates in a similar
fashion as the upper bound i.e. that there is a NS-degree lower bound (of 2!)
that depend on the power [ of p in the prime factorization of m — n.

We consider the specific situation of PHP™"#'(bij) where F[Z] is the poly-
nomial ring of polynomials in the variables z;; with ¢ € D and 7 € R. We
follow [4] and define a d-design D i.e. a linear map D : F[Z]; — F which
vanish on weakenings of the axioms and maps the 1-polynomial to a non-
zero. Following [4] we relate monomials and sets of edges in D x R as follows:
Given a set of edges m € D x R, we define a monomial X, := H(

i,j)Em Zi,j;
. . < €
and given a monomial X = zf' .z Tk

i1 Ty gy Lyt s With €1, €q, ... e > 1, define
wx = {(i1, /1), (2, J2) .-, (ig, Jx) }- The reader might find this identification
of monomials as edges in D x R useful.
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A d-design D for D x R is a mapping from partial matchings (i.e. sets of
disjoint edges in D x R) of size < d into F such that

D) # 0 (a)

For each partial matching = with |7| < d and ¢ € D \ dom(r)

Z D(mw U (i,5)) = D(w) modulo p (b)

jER\range(m)

For each partial matching 7 with |r| < d and j € R \ range(n)

Z D(m U (i,5)) = D(m) modulo p (c)

jeR\dom(r)

In general D vanish on set of edges that are not partial matchings (i.e.
on sets of edges that contains edges that are not disjoint). D is extended
by linearity to include all polynomials in F[Z]4. Notice that definition agree
with the general definition of design.

Lemma 4B : [f there is a d-design D for D x R (over F'), there is for each
¢ € N a d-design D' for D' x R (over F) with |D'| = |D| + ¢ and
|R'| = |R| + c.

Proof: With out loss of generality we can assume that D' = DU{d}, d,, ..., d.}
and that R" = R U {r],rh,....,r.} are disjoint unions. We consider par-
tial matching on D’ x R’ that are consistent with the partial matching
{(dy, ), (dy,7h), ...y (dL,rl)}. We define D’ of such consistent partial match-
ing D' x R' as D of the restriction of the matching to D x R. D’ vanish on
partial partitions that are inconsistent with {(d},r}), (dy, %), ... (d., 7)) }. Tt
is straight forward to check that D’ is a d-design on D’ x R’ over F. &

Lemma 4C : If there is a d-design D for D x R (over F'), there is for each
c € N a d-design D' for D' x R' (over F') with D' (R') consisting of ¢
disjoint copies of D (R).

Proof: Let Dy, D5, ..., D, be ¢ copies of D and let Ry, Rs, ..., R. be ¢ copies
of R. Without loss of generality we can assume that D' = D; U Dy U ... D,
and R’ = Ri{UR,U....UR,. D'is zero on all partial matchings, except partial
matchings of D’ x R’ which match elements in D; with R; for j =1.2,...,c.
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For these matchings D' = D1 Ds....D, i.e. the product (in the sense of the
field F') of the design evaluations on the partial matching restricted to the
pairs. Dy X Ry, Dy X Ry, ...., D. x R.. It is straight forward to check that D’
is a d-design on D' x R over F. &

Lemma 4D : [4] If there is a d-design for D x R over a field F' of charac-
teristic p, then there is a 2d + 1-design for D' x R’ with

|D'| = (p+ DID| + [R] and |R'| = |D| + (p+ 1)|R]
Proof: This is far for obvious but was proved in [4] )

Lemma 4E : Let I be a field of characteristic p > 0. Let d,v € N and
assume that

|D| > r(p+2)4" + p(%) (Assumption 1)
and that

|R| — |D| = rp“. (Assumption 2)
Then,

there ezists a 2¢ — 1-design for D x R over F (Conclusion)

Proof: There is a 1-design with m —n = rp for n > 1. Then according to
Lemma 4C, there is a 3-design for n > (p+ 1) + (1 +rp) = (p+2) + rp with
m—mn = rp?. There is a 7-design for n > (p+1)(p+2)+ ((p+2)+rp+rp?) =
(p+2)% +rp+rp? with m —n = rp3. In general there is a 2% — 1-design for
n>p+2)7 4 r(p+p?+ ... +p¢t) with m —n = rpd. &

Lemma 4F : Let F' be a field of characteristic p > 0. For any r,l € N
and for any n > (p + 2)! PHPT”’Z (bij) has no NS-refutation of degree
<2l —1.

Proof: According to Lemma 4E, there exists a 2! — 1-design for D x R with

1—1

D] > (p+2)' > r(p+2)7" + p(E 1) and with |R| — |D| = rp'. Thus

PHPE (bij) i.e. PHP?*(bij) has no NS-refutation of degree < 2! — 1 &

Proposition 4G : Let F' be a field of finite characteristic p. Then for
m >n > (p+ 2)™ ) any NS-refutation of the polynomial equations
PHP™(bij) has degree > 2™~ — 1 where {(m —n) is the power of the
prime factor p in the prime factorization of m — n.
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Combining the fluctuating lower and upper bounds

Combining Proposition 4A and Proposition 4G we see that for m > n and
for n sufficiently large, the NS-refutation degree complexity of PHP™(bij)
always is bound from below by 2™~ — 1 and from above by p'™ ™ where
[(m—n) is the power of the prime factor p in the prime factorization of m—n.

It follows that the the weak pigeon hole principle has fluctuating com-
plexity:

Proposition 4H : Let F be a field of characteristic p > 0. Let {(n) denote
the power of p in the prime factorization of n. Then for any n with
n > (p+ 2)"™ any NS-refuation of PHP?"(bij) has a NS-refutation
degree complexity at least 2™ — 1 and at most p'™.

It follows from Theorem 10 (that is a simple consequence of a result by
Krajicek (lemma 9)), that 1, also has PC-degree refutation complexity of
the fluctuating type.

7 Proof of the main theorem (part 2)

We have shown that a given FO formula v, translates into a sequence [n]
of polynomial equations that has a NS-refutation complexity [PC-refutation
complexity| that has exactly one of four types of behaviors, 1,2, 3 and 4. Let
A C {1,2,3,4} be a proper non-empty subset. In the remaining part of the
paper we will consider the decision problem of deciding if a given first order
formula 1) leads to a sequence ¥[n] that has a complexity behavior of a type
belonging to A.

Lemma 5 : Let v be a FO-formula.

If Y s of type T1 i.e. if 1, has constant degree complexity for all but
finitely n (where the degree complexity is oo), then for any formula n
(irrespective of its type), ¥ A n is also of type T1.

If v is of type T2 i.e. if 1, has degree complexity > l(n) for all n, then
for any n the formula 1 N n has the same type as n.

Proof: Obvious given Lemma 3. &
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Finite and infinitely unsatisfiable formula

In preparation for Lemma 6 (and to help construct examples of Lemma 7)
consider the following versions of Robinson’s Arithmetical system Q where
the axioms have been modified so they define an initial segment
({0,1,2,....,¢},0,¢, 8,4, x) of natural numbers. As usual, s is the successor
function and + and x are the addition and multiplication defined the usual
way when all numbers involved are strictly smaller than c¢. The number ¢
behaves as an "absorbing” element.

s(z) # 0 (Q1)
z#0— Jy(s(y) =) (Q2)
(x#chy#c)— (s(z) =s(y) »z=y) (Q3)
r=x+0 (Q4)
(x+y#c)— (z+s(y) =s(z+y)) (Q5)
r#c—ax0=0 (Q6)
(c#zxsy)Ne# (zxy)+a) —>zxs(y)=(xxy) +z (Q7)
s(c)=cANecxxz=chxxc=cANrz+c=chct+r=c (Q8-Q12)

If we introduce a Skolem function ¢ (with s(t(z)) = z) we can convert
the FO formula @ into a quantifier free formula @ of the special form S.
In the conversion we replace vy + vy with a(vy,v2) and replace vy X vy with
m(vy,v2). Then @ is the conjunction of:

—zo = 8(21) V oz =0V —zg = 23 (Qla)
21 =0V 2z =1t(21) V21 = 5(20) (Q2a)
z1=cVzg=cV-z3=25(21)V -z =5(22)V-zg =24V 2z = 20 (Q3a)
-z =0V 21 = a2y, 22) (Q4a)
z21=cV-zg=cV-zg=a(z1,20) V23 =24 V 25 = a(21, 26)

Vozg = s(22) V —zr = s(z5)) V —zg = a(21, 22) V 25 = 238 (Qba)
—zg =m(2z1,20) V oz =0V 23 = 29 (Q6a)
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—zz =cV zg = 5(20) V25 = m(21,24) V 23 = 25 V 26 = m(21, 22)V

—z3 = a(zg,21) V —zr = m(22,24) V —28 = a(z6, 20) V 27 = 23
—zp =cV oz =58(21) V2 = 29
—zp =cV iz =m(z1,23) V21 = 22
—zp =cV oz =m(z3,21) V21 = 22
—zp =cV oz =al(zg,21) V21 = 29
—zp =cV oz =a(z,23) V2 =29
Converting this formula into polynomial equations, we get:
Si17i20i3 =0 for ig 7& i3,’i1,’éz, 7;3 S {1, 2, ce ,n}
(1 —04y)tiy45(1 = S4p4,) = 0 for iy, € {1,2,...,n}
(1 Czl)( Ci2>3i1,i35i2,i3 = 0 fOT il 7é ig, il,ig,ig € {1, 2, cees TL}
0i, (1 — @iy 454,) = 0 for dy,40 € {1,2,...,n}
(1 = iy ) Ci @iy iy i @iy i i Sig g Sig i Wiy g isg = 0
for i3 # iy and i5 # ig and iy, 49,13, ..., i3 € {1,2,....,n}
milyiz-isoiz = 0 for 7y ?é 13 and 11, 12,13 € {1, 2, ,n}
CigSiz,ia (1 — My igis ) (1 = My iy i) Qig i 15 M i Qi s = 0
for i7 7é 7;8 and il,ig,’ig, ....,7;8 S {1,2, ,n}
Ci1 Siq,ip — 0 for 7;1 7A 7;2 and ’il,ig € {1, 2, ,n}
Ciy My 43ig = 0 for il 7& /L'Q and il,ig S {1, 2, ,TL}
Ciy Mg 41,49 = 0 for il 7& /L'Q and il,ig S {1, 2, ,TL}
Ci1 Ay i3 g = 0 for il 7é ’ig and il, ig S {1, 2, ,n}
Ci1 Qg iy 4y = 0 for il 7é ’ig and il, ig S {1, 2, ,n}
Besides this we have the axioms:
D e)—1=0
J
(Z sij) —1l=0forie{1,2,..,n}
J
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() ti)—1=0forie{l.2 ....n} (Q15h)

J

(Z a;jx)—1=0fori je{l,2, ..., n} (Q16b)
k
(Z mijr) —1=0fori,j€{l,2, ... n} (Q17b)
k
c?—cj =0 for j €{1,2,....,n} (Q18b)
s;;—si;=0ford,je{1,2,...,n} (Q19b)
aij’k —a;j,=0fori, j,ke{l,2, ..., n} (Q20Db)
mi ;e —mij, =0fori, j ke{l,2, .. n} (Q21b)
cicj =0fori#j, and i, j, € {1,2,...,n} (Q22Db)
Sijsie=0for j #kand i j ke {1,2, ... n} (Q23b)
Qi Qijky = 0 for ky # ko and 4,7, k1, ke € {1,2,...,n} (Q24b)
M gy My = 0 for ky # ko and 4, 7, k1, ke € {1,2,...,n} (Q25b)

Let Q[n] denote the conjunction of Q1-Q12 and let @,, denote the con-
junction of the polynomials in Q1b-Q25b. The formula Q[n] has a model of
size n for each n so the translation i.e. the polynomials in @), are solvable.
And for each n € N each solution (zero) to @, corresponds to a model of
Robinson’s arithmetical @ modified to an initial segment {0,1,....,n — 1}
with a special maximal element c. We need @,, for the next lemma:

Lemma 6 : There is a class © of FO formulae such that membership of ©
is recursive. For each i) € O there are two exclusive possibilities:

i) ¥ is valid in all finite models

ii) ¢ is invalid in all sufficiently large finite models as well as in all
infinite models.

Furthermore, there is no decision procedure that in general decides
whether case i) or case i) applies to a given 1) € O.
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Proof: Consider the FO-formula () that is the conjunction of the axioms
Q1 — Q12. Any finite model of @) define an initial segment of the set of
the natural numbers. For any pair s and ¢ of terms (i.e. polynomials with
coefficients in the natural numbers N) add to @ the formula s = ¢V —s = t.
Let 15+ denote @ in conjunction with s = ¢V —s = t. Let © consists of the
class of all ¢;; where s,¢ are terms (polynomials) in the language of Q.
Now the FO formula v, ; holds in a model of size n if and only if s = ¢ has
no solution where all variables have values in {0, 1,...,n—2}. Consequently
the diophantine equation s = t has no solution in the natural numbers if
and only if v, is valid in all finite models. According to a variant of the
unsolvability of Hilbert’s 10th problem this decision problem is unsolvable.
(the variant states that the decision problem whether a given polynomial
with integer coefficients has a zero in the natural numbers is undecidable).
If 95, is invalid in sufficiently large finite models (i.e. if the equation
s = t has a solution over the natural numbers), the formula 1), is also invalid
in infinite (non-standard) models, since these models contain the standard
natural numbers. &
Consider the polynomial equations @),, that is the conjunction of the equa-
tions Q1b - Q25b. For a given pair of polynomials s and ¢ (expressed as terms
in the language of @) we add a system of polynomial equations Q26b that
ensures that s # ¢ holds unless s = ¢ (or t = ¢). Let us call this system of
polynomial equations @, (s,t).
As we will show Lemma 6 allows us (by use of Lemma 7) to draw the
following conclusion:

Proposition : The polynomial equations Q,(s,t) have for any pair s,t of
polynomials has either NS-refutation (PC-refutation) degree complexity
of type T1 or is satisfiable for sufficiently large values of n i.e. is of
type T2 (with degree complezity oo for all sufficiently large values of

Furthermore, Q,(s,t) has type T1 if and only if s =t has NO solution
over the natural numbers.

A concrete example

It is currently an open question if the equation

x?—kxg:xg—i-mi (*
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has a solution for distinct positive integers x1, zo, x3 and z4. Let NE(z1, 22, 23, 24)
be shorthand for the proposition that x,,zs, z3 and x4 are distinct and con-
sider the first order formula

NE(.Z'l, X2, T3, x4) —

a(m(m(m(xy, z1),m(z1,21)), 21), m(m(m(za, x2), m(xs, x9)), x2) #
a(m(m(m(zs, z3), m(xs, x3)), x3), m(m(m(zy, x4), m(x4, 24)), 74))

This can be translated into the following polynomial equations, where we for
each choice of distinct j1, jo, 73, j4 With 71, jo, js, Ju, i1, 92, .oy i13 € {1, 2, ....,n}
have a polynomial equation:

My 51,31 My i 39 TMg g1 i3 TG g2, 14 TTVig iai5 TT i, o i

M3, j3,i7 Mz iz i Mg, ja,i0 V54 54,110 V10,410,411
mlll7.74,112a13,167113a1971127113(1 0113) =0 (Q26b( ))

The polynomial equations in Q1b-Q25b together with the special polynomial
equations in Q26b(*), has models of size n if (*) has no solutions involving
natural numbers strictly less than n — 1. In fact:

Observation : The polynomial equations Q1b-Q25b and Q26b(*) has a
solution forn € N if and only if the equations in (*) has no solution
tnvolving numbers strictly less than n — 1

Thus since (*) is know to have no solutions for fairly large values of n (at
least n > 1.000.000.000) we know that the system of polynomial equations
in Q1b-Q26b(*) has a solution for all n < 1.000.000.000.

If the diophantine equation (*) has no solution over N the system Q1b-
(Q26b(*) has a solution for arbitrarily large values of n and thus belong to
type T2 in the classification. If on the other hand the system has a solution
over N, the system Q1b-Q26b(*) has no solution in sufficiently large models
(finite as well as infinite), and thus the system has a constant degree NS-
refutation (lemma 7) i.e. is of type T1.

Let us modify the equations in Q26b(*) (obtaining a system Q26b(**))
to express (the falsity) that

T + x5 # T3 + ) (**)
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for distinct x1, 22, z3 and x4. The following polynomial equations will do:

MMy 51,60 M1 i1 ,i2 T, 52,33 T i3 63,64 TTYG 3,553,435 T Vis i5,d6

T4 i Mg i is Qi i Qs io (1 — Cig ) = 0 (Q26b(**))
It is known that 133* + 134% = 59* + 158" from which it follows that the
polynomial equations Q1b-Q25b together with Q26b(**) are unsatisfiable
in models of size > 133* + 134* + 1 = 635.318.658. The equation (**)
is unsatisfiable in sufficiently large models (finite as well as infinite) that
satisfies Robinson’s arithmetical () axiomatized as an initial segment. This
is because each sufficiently large initial segment allow us to implement the
calculation 133* + 134* = 59* + 158%. We will show that this fact guarantee
that there exists a general calculation (like the calculations in D1 and D2)
that constitute a constant degree NS-refutation of Q1b-Q25b combined with
Q26h(**).

Implicit build-in axioms of equality

Before we state and show Lemma 7, we present a example that illustrate how
the axioms of equality are nicely build into the translation. Consider as an
example the FO-formula

yi=c =N = At =6 (1)

in the FO language L containing the three constants c¢t,c¢* and ¢*. This
formula is NOT a contradiction in logic without equality where = is just
treated as any other relation symbol. The presence of the basic equations for
constants and function symbols ensure that the axioms of equality is taken
properly care of.

The formula v can be converted to an equivalent proposition in S

(21%cl\/z27écz\/zl:zg)/\(zg%g\/,@%c?’\/zg:zg)

/\(z1 #c' VgV # 2) (2)

This translate into the polynomial equations:
c;.c;, =0 for iy # is, 11,10 € {1,2,....,n} (E1)

;i =0 for is # i3, 15,45 € {1,2,....,n} (E2)
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¢; i =0 for iy =iz, 11,43 € {1,2,....,n} (E3)

As usual we introduce some addition equations of each constant and function
symbols:

O ea)=1=0, O c)-1=0and (> ¢)-1=0 (E4)
k k k
These set of equations in (E1)-(E4) has the following NS-refutation:

> dlddl+) gledl + > dleld]
gk i

3,3,k with i£j

=Y~ =Yl =0 = (-1 =1 (D)

7

Example illustrating the general construction

This section is inserted as a benefit for readers that might find it useful to see
how the main ideas in the proof of Proposition A (Lemma 7), plays out in a
concrete example. The reader who is not interested in the guidance offered
by the example, is welcome to jump straight to the next section.

In the example we consider the following inconsistent formula 7,193 that
essentially states that 1 + 2 # 3. Formally,

z = a(z,¢) [\ alz, s(y)) = sla(z.y)) N\ ~a(s(e). s(s(e))) = s(s(s(c))

These equations are contradictory since

To translate the FO-formula into a sequence of propositional formula first
we convert 14023 into a special FO-formula 7j; 123 that belongs to the special
class S of FO-formula. The formula 7423 is the conjunction of

2 # c\/x = a(z, ) (Pla)
20 # 5(y) \/z3 # a(z,y) \/24 # s(z3) \/ 25 # a(x, z3) \/24 = z5 (P2a)
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26 7 c\/ 27 7 8(26) \/z8 # s(27) \/Zg # s(zs) \/z10 # a(z7, 2s) \/29 + 210
(P3a)

The inequality symbol ”#"” is not part of the language and for any choice of
terms s, t the expression t # s is short hand for -t = s.

For each n € N we convert the FO-formula 711025 (i.e. 714243 ) to a
sequence 742.3[n] of polynomial equations. The equation z; = ¢ is replaced
with a variable ¢; for each j = 1,2,...,n. And following the translation pro-
cedure we let ¢;, is 1 if and only if 7; = ¢. Otherwise ¢;, is zero. The equation
29 = $(z1) is replaced with a variable s;, ;, for each iy,is € {1,2,....,n}.
According to the translation procedure s;, ;, is 1 if and only if io = s(i1).
Otherwise s;, ;, is zero. Finally, the equation z3 = a(z1,2 ) is replaced by a
variable a;, 4,4, for each iy, is,i3 € {1,2,....,n}. According to the translation
procedure, a;, 4,4, is 1 if and only if i5 = a(iy,42). Otherwise s;, 4,4, is zero.

1 _ i
Py = ci (1 —aj,4,.5,) =0 for iy, j1 € {1,2,...,n} (P1b)
2] I S O
pjl,jg,ig,ig,i4,i5 T 902,227771,J2,23 923,24 FU]1,22,25 T

for i4 7é i5 and jl,jg, ig, i3,’i4,i5 S {1, 2, e ,’I’L} (P2b)
[3] o — C. S. . 8 . S . a. . . 70
piﬁ,i7,i8,’ig,i10 T M16916,07 917,28 918,29 17,218,210

for ig = ilO and iﬁ, ’i7,’i8, ig, ilO S {1, 2, ce ,’I’L} (P3b)

Besides these polynomial equations we include:

ptl = (Z ¢;j)—1=0 (P4b)

J

p£5]] =cc;j=0fori# jandi,je {1,2,...,n} (P5b)

pgﬁ] = (Zsi,k)—l =0forie{1,2,...,n} (P6b)
k

pﬂcm = S Sim = 0 for k # m and i, k,m € {1,2,...,n} (P7b)

pidi= (> aige) —1=0fori,je{1,2...,n} (P8b)
2

pggj]km = Q; j ;i jm =0 for k% mand i, jk,me{1,2,...,n} (P9b)
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The FO-formula 714223 (as well as f1403) fail in ALL models (finite as
well as infinite). Thus Proposition A apply and there exist a constant degree
NS-refutation of the polynomial equations P1b-P9b.

We will later in the paper show Proposition A (Lemma 7) by use of
Herbrand’s Theorem. As a preparation for this we will here illustrate how
Herbrands Theorem can be used to construct the required NS-refutation of
the polynomial equations P1b-P9b.

In general if a quantifier free formula 7(Z) with variables & fails in all
models, by the completeness theorem 7 is a logical contradiction in predicate
logic with equality. There is finite collection E of term equations (instances
of the equality axioms) such that 7 := n A E is a logical contradiction of
predicate logic (without axioms of equality). According to an obvious mod-
ification of Herbrand’s theorem (switching from a valid disjunction to an
invalid conjunction) there exists a finite conjunction

(@1) A(Z2) A oo A(Zr)

3

(the variables Z; for i = 1,2,...,r are all distinct), together with a term
unification (as introduced by Julia Robinson)

—

A= {Fl _>{fl)t_’2—>f27"'atr_>fr}
such that
A(&1) A(&2) Ao Ni(E)) = 71(E) A7) A A(E)

is a logical contradiction in the sense of propositional logic.
The following conjunctive normal form is contradictory in the sense of
propositional logic (it follows from Herbrand’s Theorem that such one exists).

a(s(c), s(c)) = s(a(s(c),¢)) (U2)
s(c) = a(s(e), c) (U3)
ma(s(c), s(s(c))) = s(s(s(c))) (U4)
—a(s(c), s(c)) = s(a(s(c),¢)) \/ s(a(s(e), s(0))) = s(s(a(s(e), ) (UB)



Va@@ﬁ®®m=4@@@m (U9)

The fact that there are 9 type of equations (P1)-(P9) as well as 9 conjuncts
in (U1)-(U9) is just a coincidence. To convert this Herbrand formula into a
NS-refutation, we first let

wime, s(0)=us=s(ur), s(s(0)) = us = s(ua), s(s(s(c))) = us = s(us)

a(s(c), ¢) = us = alug, w1), s(a(s(c),c)) = ug = s(us)
a(s(c), s(c)) = ur = alug, ug), s(a(s(c),s(c))) = us = s(ur))
s(s(a(s(c),c)) = ug = s(ug), a(s(c),5(s(¢))) = wr0 = a(us, us)

We can express the term equations as:

Ug = U Ula
U7 = Ug U2a
Uo = Uy U3a

(Ula)

(U2a)

(U3a)

U0 = Ug ( )
U7 = Ug \/ Ug = Uy (Uba)
—|u2:u5\/u4=U9 ( )
s = g\ o = (UTa)
—U10 :Us\/_'uszug\/um = Ug ( )
)

210 = UWg \/ U9 = Uy \/Ulo = Uy (U9a

Let d(v # u) denote a version of Kroneker’s § function defined as 1 if
v # w and as 0 if v = u. As shorthand notation let Y; «— (i;p # is),
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Yo « O(ir # dg), Y3 < O(ia # i5), Yo < O(iw0 # ia), Y5 < O(ir # ig),
Yo 6(ig # 1g), Y7 < 0(ig # 14), Ys < 6(i10 # ).

We can then write conditions (Ula)-(U9a) as: 1 —Y; =0, 1 =Y, = 0,
1Yy = 0, Y; = 0, Ya(1— Vs) — 0, Ya(1 — Y5) — 0, V(1 - ¥2) = 0,
Y1Ys5(1 —Yg) =0, YgY7(1 — Yy) = 0. These equations can be converted into
the following NS-refutation of the equations Ulb-US8b.

V(1= Ya)[1 =Yl + [V Va(1 o) (1= Ya) (1= Y3)[1 Va4 (1= V&) [Va(1 - )

HY[L - Ya] + Ya[Ya(1 — Yo)] + YaYa[Y(1 — V)]
LY YeYaVi Y] + VaYg[VaYa(1 - V)] = 1 (W)

Our aim is to show how to convert this derivation into a derivation of 1 from
the polynomial equations P1b-P9b.

Using this NS-refutation we get the required constant degree derivation
of 0 = 1 from the polynomials equations in P1b-P9b. The derivation is based
on the following identity:

E (CU1 Sut uz Sug,uz Susua Qug ut us Sus.ue Yuz uz ur Sur,us Sus,ug Qug,usz,uig }/5 ( 1 _}/8> [1 _YI] +

U1,U2,U3,..-+,U10

U1 Cyy Suy R Susy ,u3 Sus g Qo ,UL,U5 Sus UG Qo ,u2,u7 Su7,u8 Sug , U9 Qo ,U3,U10 Y1Yv5 []— - Yé] +
Cuuy Sy ug Sug us Suz g Qug uy us Sus us Qug g ur Sug g Sug o Qug us o (1 _Yé) (1_)/5) [1 _YvQ] +
Cuy Suy,uoSua,uz Sus,ug Qus,ut us Sus,us Cuz,us,ur Sur,ug Sus,ug Qus,usz,uio (1 _Yé) D/Q (1 _3/5)] +
Cuy Suur s Stz 1z Suus s Cuiz,un us Sus e Quuz us,ur Sur,us Sus uo Qus uz u1o Y8[ 1 — Ya]+
Cuy Suy,ua Sug,us Susus Qug ur us Sus,us Quz,ua,ur Sur,us Sus,ug Qus ,usﬂlloyé [YE% (1 - Yé)
Cun Su us Sus,us Sus s Cus,ur us Sus s Quz us,ur Sur us Sus us Gus uzuro Y3 Y8 [ Y6 (1= Y7)

Cuy Suy uz Suz us Sus ua Qua ur us Sus,us Cug uz ur Surus Sus uo Guz us,u10 Y3Y6 Y8 Y7 [Y4]

UL, U ,ye ey, U9 u10

- E : CUISULUQ Sug,ug 8“3;“4 au2au1 ;U5 SU/SaUG a'u2au27U7Su77u8 [( : : SUS,“Q) - ]‘]
UL,U2;-.-,U8 u9

- E CulSm,ugswﬂwSU3,U4aummmssus,%aumm,w[(E Sumw) - 1}
UL, U2, UT ug
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- § , Cuy Suy,ugSuz,us Sus,u4au2,u1,u53u5,u6[(§ :a’u27u2,u7) - 1}

U1 U2, UG uy
- Z Cur Suyuz Suz,uz SUS,MGUQ,M,%[(Z Sus,ug) — 1]
UL U, ... US ug
- Z Cu13u1,u23u2,u35u3,U4[(Z Qi u1,us) — 1
UL, UD - e ey UL us
- Z culsul,u23u2,u3[(z SU37U4) o 1]
w1 ,uz,u3 w4
- Z Cmsul,m[(z SU2,US) o 1]
w1 ,uz uy
- Z Cuy [(Z Suhuz) H
ul u

—[Q ) -1 =1 (D5)
uy

To summarize: Since the equations P1b-P9b are contradictory it fol-
lows from Hilbert Nullstellensatz that the polynomial equations (P1)-(P9)
can be refuted i.e. 1 can be derived by a NS-derivation from these equations.
The calculation D5 above shows that there is in fact a NS-derivation of 1 that
involves only polynomials of a degree bound by a constant (= 10) indepen-
dently of n (notice that only the equations P1,P2,P3,P4 P6 and P8 were used
in the calculation D2). According to proposition A, the fact that the original
term equations are contradictory (including in infinite models)implies that
there exists such a constant degree derivation of 1. The proof of proposition

A, proceed along very similar lines as the calculations above.

Proof of Proposition A

Lemma 7 : (Proposition A) If ¢ is an FO-formula such that v is unsat-
1sfiable in all sufficiently large finite models and is unsatisfiable in all
infinite models, then there exists for each field F' a number d € N such
that each ¥[n| has a degree d NS-refutation.

Before we prove this we will make some preperational definitions. With-
out loss of generality we can assume that 1 is a quantifier free formula in
some finite FO-language L and is on the special form S. Assume L =
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L(fY £, . et r? . r®) besides the relation symbols 7', 7% ....,r® also
contain the function symbols f!, f2,..., f", where f* has arity a, > 0.

As we already explained in the translation procedure for each function
symbol f* of arity a,, a collection

“ o, j Where d1,4o, . 40,5 € {1,2,....,n} (H1)

11,8250+ %a

of n®*1 a new (boolean) variables is introduced. As we already explained
the idea is that if M = {1,2,....,n} then

“ oy = L exactly if M |= f“(i1, 42, ... 10;) = J (H2)

11,2500 %a

The equations

O Ui i, ooy ay. ) — L= 0 for iy, s, ..., d, (H3)
J
and
il:,ig,....,iau,j ili,ig,....,iau,k =0 for .7 7é ka ila 7:27 tey iau;j; keM (H4)

ensure that f* has a unique value j € M for each iy, 1o, ...,7,, € M.

For each closed term t := f(t1,1s,...,t,) we want to assign a monomial
Xy, a "variable” v; as well as a set of variables Var(t). This assignment is
done inductively such that v; is a new variable, and such that

Xt = fot)wta) e v(tr) s Xtr Xty - X, (H5)

We define Var(t) inductively as
Var(t) = Var(t;) U Var(ts) U .... U Var(t,) U {v:} (H6)

The variable v; denote the value of the term ¢ and Var(t) consists of all
variables that denote values of sub-terms of t.

Let A be a set of closed terms and assume that A is closed under taking
sub-formula i.e. if f(¢1,ts,....,t,) € A then t1,1s,....t, € A. Then we define
a monomial

Xa= [ X (H7)
teA
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And we define
Var(A) = | Var(t) (H8)
t

An evaluation F is a map F : Var(A) — M. The idea is that each
evaluation F give each term in A a specific value in M.
The equations

(Y X{)-1=0and > X{=0 (HY)

EeMVar(d) EeMVar(A)

will play an important role in our argument.
The first equation essentially says that all the terms in A has (at least) one
value. We will show (Lemma 7A) that this equation can be written as a
NS-expression of degree |A| from the axioms in (H3).
The second equation says that if all the terms in A are defined, then a
contradiction occurs. We will show (Lemma 7B) that if for some ng € N
the FO-sentence v is contradictory in all models of size > ny Herbrand’s
Theorem allows us to choose A such that the second equation an be written
as a NS-expression bounded by a constant that is independent of n.
Combining the two equations leads to the required constant degree refu-
tation since

0=0-0= > XX-(( > XxH-1n=1 (H10)
EeMVar(d) EecMVar(d)

Lemma 7A : Let A be a set of closed terms in the language L. Assume
that A contains all sub-terms of each term t € A. Then equation

(Y XxXD-1=0 (H11)
EEMVar(A)
has a NS-derivation of degree s = |A| from the polynomial equations in

(H3)

Proof: For terms t,t' in the language of L we write ¢t < ¢’ if ¢ is a sub-term
of t'. The relation < is a partial ordering. Extend < to a total ordering.
Assume A = {ty,1s,...,t.}. Without loss of generality we can assume that
t1 <ty < ... <t,.. The Lemma now follows from the general identity:

E
Z X{tl,tz,...,tr} - 1=

EeMVar({ti:ta,..tr})
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Z X‘gl,tm---,tr—l}[( Z Xt?) - 1]+

EenmVar({ti o, tr_1}) EeMVar(tr)

Z X{tlat27---,t1‘72}[( Xtrfl) - 1] + “““ +
EeMVar({ty o, sty 2}) EemVerttr—1)

Z X{tl,tg,...,tj}[( th+]) - 1] + ..... -+
EE]\/[Var({tl’tQ ,,,,, tj}) EGJ\/Ivar(tj+1)

E
> xH-1 (H12)
EeMVar(tl)

&

Lemma 7B : Assume ¢ is a quantifier free FO-formula in L on the special
form S. Assume further that b has no models of size > ng € N i.e.
that 1 is contradictory in all models of size > ng. Then there exists a
set A of terms such that for each n > ny

> Xx{=0 (H13)

Ee]\/[Var(A)

has a NS-derivation from the propositional translation ¥[n| of 1. The
degree of the NS-derivation can be chosen independently of n.

Proof: Case 1: ¢ = (%) is unsatisfiable in ALL models: Assume 1)(Z) has
no models. According the the completeness theorem in this case 1(Z) has
a refutation in predicate logic. Actually, we can apply Herbrand’s theorem
and conclude that there there exists r such that the formula

$(E) M) A o AU (H14)
has a unification

Aty — Z1,tp — oy oo by — T) (H15)
Since we consider logic with equality, the resulting formula

(Z1 /1) Ap(T/ ) A oo AY(E /) (H16)
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is not necessarily a contradiction in propositional logic (where as usual atomic
sentences are viewed formally as propositional variables). However, for each
interpretation of the terms in A the resulting formula

P(T1) AP(T2) Ao AY(T,) (H17)

is a contradition in propositional logic.

Let A be the collection of all terms in the unifactaion as well as all sub-
terms of these terms.

Now for each evaluation E : Var — M, the monomial X¥ take the value
1 only it the evaluation F evaluate the terms in A in M. But A was chosen
such that the proposition in (H17) is a contradiction in propositional logic.
Assume the propositional formula in (H17) has a degree d NS-refuation (over
the underlying field F'). This refutation allows us for each interpretation E,
to derive XX by an expression of degree |A| + d NS-derivation.
Case 2: 1 = (&) is unsatisfiable in all models of size > ng: Add new
constants ¢!, ¢?, ...., ¢™ to the models together with the conjunction 7 of ¢¢ #
¢ fori,j € {1,2,...,n9} and 7 # j. The resulting formula ¥ A7 has no models
and thus Case 1, applies that the system (¢ A n)[n] of polynomial equations
that arise from the translation of 1) A 7 has a constant degree NS-refutation.
If we compare there polynomial equations in () An)[n] with those in ¢[n] we
notice that if we choose a specific assignment of the constants c!,c?, ..., ¢
in M such that they have distinct values (this require n > ng) the resulting
NS-derivation of 1 from the polynomials in () An)[n] become a NS-derivation
of 1 from the polynomials in ¥[n]. s

Lemma 8 : The decision problem whether a given first order formula ) leads
to a sequence Y[n] that has a complezity behavior in A - is undecidable.

Proof: Given a non-empty proper subset A C {1,2,3,4}, without loss of
generality we can assume that 1 € A (otherwise replace A with {1,2,3,4}\ A).

Since A is a proper subset, at least one of 2,3 or 4 does not belong to
A. Pick a FO formula ¢ of a type 7 not in A (i.e. type 2,3 or 4). Now for
each s r € O consider the FO formula 05z A 9. Now according to lemma 6
and lemma 7 any g g € O is either of type 1 (if it is unsatisfiable for some
n € N) or of type 2 (if it is satisfiable for all n € N). Thus, according to
lemma 5, 6s g A% is not of type 7 if and only if Oz A1) is of type 1 if and
only if fg g is of type 1, which happens if and only if the equation S = R has
a solution on N. &
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8 NS versus PC

In general the exists a sequence of polynomial equations that have con-
stant PC-refutation degree complexity, while the sequence have linear NS-
refutation degree complexity. If however, we restrict ourself to the uniform
sequences generated by a FO formula, Krajicek [25] have shown that such a
situation cannot occur.

Lemma 9 : (Theorem 5.5 [25]) Let S C N be a fized infinite set. Assume
that ¥[n] has degree d PC-refutations for eachn € S. Then there exists
a constant d° > d such that each ¥[n] with n € S, has a degree d
NS-refutation.

Theorem 10 : For an FO-formula 1, the type of 1 with respect to the NS-
refutation complezity behavior of ¥([n] is identical to the type of 1 with
respect to the PC-refutation complexity behavior of 1[n].

Proof: A direct application of lemma 9, shows that a FO-formulae of type
1,2 or 3 with respect to to NS-refutations (PC-refutations) has the same type
with respect to PC-refutations (NS-refutations). It follow then from Theorem
1 that a first order formula 1) is of type 4 with respect to NS-refutation com-
plexity if and only if it is of type 4 with respect to PC-refutation complexity.
)

9 Final remarks

The big question is whether the main result remain valid for faster growth
rates. We conjecture - in fact spend some considerable effort in trying to
prove this - that the main theorem remains valid if [ has growth rate n for
some sufficiently small € > 0 for the NS-case (and possibly for the PC-case).
Such a result would be important as it would unify many known results. 3
One consequence of Theorem 1 is that the translation of any FO formula
¥ leads to a sequence ¥[n] that asymptotically has worst case refutation

3In the preprint [33] such a complexity gap from linear to n¢ (in the worst case) was
claimed. Unfortunately, the paper was rather obscure and it turn out that the ”inducing
down” argument contains a gap. Despite considerable effort we have not been able to fix
this gap. We still conjecture that the main claim is valid, but it is now clear that new
ideas are needed in the proof.
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degree complexity that either is constant (case 1) or has growth rate Q(I(n))
(case 2,3,4). Thus according to the current version of Theorem 1, any non-
constant lower bound on the NS-refutation degree [PC-refutation degree]
automatically ”lifts” to an Q(I(n)) lower bound NS-refutation degree [PC-
refutation degree]. If Theorem 1, could be shown to be valid for [ € n®®
by the same argument, any non-constant lower bound could be lifted to a
nM_degree lower bound.

Another interesting question is if it possible to extend Krajicek’s model
theoretic approach to include model theoretical criteria that correspond to
the fluctuating NS-degree (PC-degree) refutation complexity.
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