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Abstract

We show that any distribution on {−1,+1}n that is k-wise independent fools any
halfspace h : {−1,+1}n → {−1,+1} with error ε for k = O(log2(1/ε)/ε2). Up to
logarithmic factors, our result matches a lower bound by Benjamini, Gurel-Gurevich,
and Peled (2007) showing that k = Ω(1/(ε2 ·log(1/ε))). Using standard constructions of
k-wise independent distributions, we obtain the first explicit pseudorandom generators
G : {−1,+1}s → {−1,+1}n that fool halfspaces. Specifically, we fool halfspaces with
error ε and seed length s = k · log n = O(log n · log2(1/ε)/ε2).

Our approach combines classical tools from real approximation theory with struc-
tural results on halfspaces by Servedio (Comput. Complexity 2007).
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1 Introduction

Halfspaces, or threshold functions, are a central class of Boolean functions h : {−1, +1}n →
{−1, +1} of the form:

h(x) = sign(w1x1 + · · · + wnxn − θ),

where the weights w1, . . . , wn and the threshold θ are arbitrary real numbers. These functions
have been studied extensively in a variety of contexts. In computer science, the work on
halfspaces dates back to the study of switching functions, see for instance the books [Der65,
Hu65, LC67, She69, Mur71]. In computational complexity, much effort has been put into
understanding constant-depth circuits of halfspaces. On the one hand this has resulted
in surprising inclusions (such as the simulation of depth-d circuits of halfspaces by depth-
(d + 1) circuits of majority gates [GHR92, GK98]), but on the other hand many seemingly
basic questions remain unsolved: for instance it is conceivable that every function in NP is
computable by a depth-2 circuit of halfspaces [HMP+93, Kra91, KW91, FKL+01]. In learning
theory, the problem of learning an unknown halfspace has arguably been the most influential
problem in the development of the field, with algorithms such as Perceptron, Weighted
Majority, Boosting, and Support Vector Machines emerging from this study. Halfspaces
(with non-negative weights) have also been studied extensively in game theory and social
choice theory, where they are referred to as “weighted majority games” and have been
analyzed as models for voting, see e.g., [Pen46, Isb69, DS79, TZ92].

In this work we make progress on a natural complexity-theoretic question about half-
spaces. We construct the first explicit pseudorandom generators G : {−1, +1}s → {−1, +1}n

with short seed length s that fool any halfspace h : {−1, +1}n → {−1, +1}, i.e. satisfy

|Ex∈{−1,+1}s [h(G(x))] −Ex∈{−1,+1}n [h(x)]| ≤ ε,

for a small ε. We actually prove that the class of distributions known as k-wise independent
has this “fooling” property for a suitable k; as pointed out below, a generator can then be
obtained using any of the standard explicit constructions of such distributions.

Definition 1.1. A distribution D on {−1, +1}n is k-wise independent if the projection of
D on any k indices is uniformly distributed over {−1, +1}k.

Theorem 1.2 (Main). Let D be a k-wise independent distribution on {−1, +1}n, and let
h : {−1, +1}n → {−1, +1} be a halfspace. Then D fools h with error ε, i.e.,

|Ex←D[h(x)] − Ex←U [h(x)]| ≤ ε, provided k ≥ C

ε2
log2

(

1

ε

)

,

where C is an absolute constant and U is the uniform distribution over {−1, +1}n.

Our Theorem 1.2 matches up to logarithmic factors a lower bound by Benjamini, Gurel-
Gurevich and Peled [BGGP07] establishing that if k = o(1/(ε2 · log(1/ε))) then there exists
a k-wise independent distribution D on {−1, +1}n such that Prx←D[

∑

i xi ≥ 0] > 1/2 + ε,
i.e. D does not fool the majority function with error ε.
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Standard explicit constructions of k-wise independent distributions over {−1, +1}n have
seed length O(k · log n) [CG89, ABI86], which is optimal up to constant factors [CGH+85].
Plugging these in Theorem 1.2, we obtain explicit pseudorandom generators G : {−1, +1}s →
{−1, +1}n that fool any halfspace h : {−1, +1}n → {−1, +1} with error ε and have seed
length s = O(log n · log2(1/ε)/ε2).

Background and comparison with previous explicit generators. The literature is
rich with explicit generators for various classes, such as small constant-depth circuits with
various gates [AW, Nis91, LVW93, Vio07, Baz07, Bra09], low-degree polynomials [NN93,
AGHP92, BV07, Lov08, Vio08], and one-way small-space algorithms [Nis92]. Many of
these classes (such as low-degree polynomials and AC0 circuits) provably cannot imple-
ment halfspaces, and it is not known how to implement an arbitrary halfspace in any
of these classes, so none of these results gives Theorem 1.2. However, some of these re-
sults [Nis92, LVW93, Vio07] give generators for the restricted class of halfspaces given by
h(x) = sign(

∑n
i=1 wixi − θ) where the weights are integers of magnitude at most poly(n).

While it is well known that every halfspace has a representation with integer weights, in
general it is not possible to represent an arbitrary halfspace with poly(n) integer weights.
Indeed, an easy counting argument (see e.g. [MT94, H̊as94]) shows that if the weights are
required to be integers then almost all halfspaces require weights of magnitude 2Ω(n), and
in fact some halfspaces require weights of magnitude 2Θ(n log n) [H̊as94]. Our result is for
the entire class of halfspaces with no restriction on the weights, and much of the richness
of halfspaces only comes in this setting; for example, the “odd-max-bit” function [Bei94],
the “universal halfspace” [GHR92], and other important halfspaces [H̊as94] all require expo-
nentially large integer weights. Moreover, even for the restricted class of halfspaces where
the weights are integers of magnitude at most poly(n), previous techniques [Nis92] give seed
length s = O(log2 n) at best, while we achieve s = O(log n) for constant error.

Other related results. Several recent papers have studied the power of k-wise indepen-
dent distributions. An exciting recent result of Braverman [Bra09], which builds on an earlier
breakthrough of Bazzi [Baz07] (simplified by Razborov [Raz08]), shows that polylog(n)-wise
independent distributions fool small constant-depth circuits, settling a conjecture of Linial
and Nisan [LN90]. Benjamini et al. [BGGP07] showed that any O(1/ε2)-wise independent
distribution D on {−1, +1}n satisfies |Prx←D[

∑

i xi ≥ 0] − 1/2| ≤ ε, i.e., such distributions
fool the majority function. (We discuss [BGGP07] in more detail shortly. Here we note that
their result does not seem immediately relevant for constructing generators, because to fool
the majority function, with optimal error 0, one can just output 1n with probability 1/2 and
(−1)n with probability 1/2.) None of these results applies to general halfspaces.

The problem of constructing pseudorandom generators for halfspaces has been considered
by several authors in the recent literature. Rabani and Shpilka give an explicit construc-
tion of an ε-net, or ε-hitting set, for halfspaces [RS08]: a set of size poly(n, 1/ε) which is
guaranteed to contain at least one point where h(x) = +1 and at least one point where
h(x) = −1 for any halfspace h which takes on both values with probability at least ε under

2



the uniform distribution. However, their construction does not offer any guarantees about
the distribution of these values. [RS08] pose as a research goal “to build methodically a
theory of pseudorandom generators for geometric functions” such as halfspaces.

The problem of pseudorandom generators for halfspaces also arose in recent work by
Gopalan and Radhakrishnan [GR09] on finding duplicates in a data stream. They required
a pseudorandom distribution that allows one to estimate the influence of a variable in a
halfspace, a problem which is in fact equivalent to constructing a pseudorandom generator
for a related halfspace. They observe that Nisan’s space generator [Nis92] suffices for the
halfspaces arising in their context, but they raise the problem of constructing pseudorandom
generators for general halfspaces. Our result does not improve the space bounds for their
problem, but it does make the analysis simpler.

1.1 Techniques

Our proof combines tools from real approximation theory with structural results regarding
halfspaces. An important notion is that of an ε-regular halfspace; which is a halfspace h(x) =
sign(

∑

i wixi − θ) where no more than an ε-fraction of the 2-norm of its coefficient vector
(w1, . . . , wn) comes from any single coefficient wi. We first show that k-wise independence
fools all ε-regular halfspaces, and then use this to prove that k-wise independence fools all
halfspaces. Our proof can be broken down conceptually into three steps.

Step 1: Fooling regular halfspaces. Our starting point is Bazzi’s observation ([Baz07],
Theorem 4.2) that to establish that every k-wise independent distribution on {−1, +1}n

fools a Boolean function f : {−1, +1}n → {−1, +1} with error ε, it is sufficient to exhibit
two “sandwiching” polynomials q`, qu : {−1, +1}n → {−1, +1} of degree at most k such
that:

• qu(x) ≥ f(x) ≥ q`(x) for all x ∈ {−1, +1}n; and

• EU [qu(x) − f(x)],EU [f(x) − q`(x)] ≤ ε.

Using classical tools from real approximation theory, we give a self-contained proof of
the existence of univariate polynomials of degree K(ε) := Õ(1/ε2) which, roughly speaking,
provide a good sandwich approximator to the univariate function sign(t) under the normal
distribution on R. This is useful for us because of the following simple but crucial insight:
for any regular halfspace h(x) = sign(w ·x− θ), the argument w · x− θ is well-approximated
by a normal random variable (a precise error-estimate for this approximation is given by
the Berry-Esséen theorem). For any ε-regular halfspace, we can thus plug w · x− θ into our
univariate polynomials, and obtain low-degree sandwich polynomials for h. This establishes
that K(ε)-wise independence fools all ε-regular halfspaces.

Of course, there are halfspaces sign(w · x− θ) that are far from being ε-regular and have
w ·x−θ distributed very unlike a Gaussian. To tackle general halfspaces, we use the notion of
the ε-critical index of a halfspace, which was (implicitly) introduced in [Ser07] and has since
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played a useful role in several recent results on halfspaces [OS08, MORS09, DS09]. Briefly,
assuming that the weights w1, . . . , wn are sorted by absolute value, the ε-critical index is the
first index ` so that the weight vector (w`, w`+1, . . . , wn) is ε-regular. The previous Step 1
handled halfspaces that are regular, corresponding to ` = 1. We now proceed by analyzing
two cases, based on whether or not 1 < ` < L(ε), or ` ≥ L(ε), for L(ε) := Õ(1/ε2). In both
cases, it is convenient to think of the variables as partitioned into a “head” part consisting the
first L(ε) variables and corresponding to the largest weights, and of a “tail” part consisting
of the rest.

Step 2: Fooling halfspaces with small critical Index (` < L(ε)). We argue that for
every setting of the head variables, the ε-regularity of the tail is sufficient to ensure that the
overall halfspace gives the right bias. More precisely, we assume that our distribution D is
(K(ε) + L(ε))-wise independent, and note that each setting of the ` head variables gives an
ε-regular halfspace sign(w · x − θ′) over the tail variables (with the constant θ′ depending
on the values of the head variables). Since the marginal distribution on the tail variables is
K(ε)-wise independent for every setting of the head variables, the distribution D fools all
such halfspaces.

Step 3: Fooling halfspaces with large critical index (` ≥ L(ε)). In this case, we
show that the setting of the head variables alone is very likely to determine the value of the
function. More precisely, we show that a uniform random assignment to the head variables
is very likely to yield a halfspace sign(wT · xT − θ′) over the tail variables T in which

|θ′| > ‖wT‖2/ε. (?)

Now, as long as the tail variables are pairwise independent, by Chebyshev’s inequality it
follows that the value wT · xT will be sharply concentrated within [−‖wT‖2, +‖wT‖2]. So,
for most settings of the head variables, we get something very close to a constant function
over the tail variables. Since a (K(ε) + 2)-wise independent distribution gives us uniform
randomness for the head variables and pairwise independence for the tail variables, bounded
independence fools these halfspaces as well.

The key idea behind the proof of (?) is that up to the critical index ` – which in this case
is large (` ≥ L(ε)) – the weights (w1, . . . , w`−1) must be decreasing fairly rapidly; this allows
us to prove strong anti-concentration for the distribution of θ′, which in turn yields (?).

Overall, the amount of independence required for all the three steps to work is:

max{K(ε), K(ε) + L(ε), K(ε) + 2} = Õ(1/ε2),

concluding this sketch of the proof of Theorem 1.2.

Univariate approximations to the sign function. As mentioned above, our approach
relies on the existence of low-degree univariate sandwich approximators to the sign function
under the normal distribution on R. Low-degree approximations to the sign function have
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been studied in both computer science and mathematics (see for instance [Pat92, EY07,
KS07] and the references therein). However it appears that these results do not fit all our
requirements. Below we discuss how our approach relates to the work of Benjamini et al.
[BGGP07] and Eremenko and Yuditskii [EY07].

Benjamini et al. prove that O(1/ε2)-wise independence suffices to fool the majority func-
tion, using machinery from the theory of the classical moment problem. However, their proof
seems to be tailored quite specifically to the majority function, where the moments can be
understood in terms of Krawtchouk polynomials and known bounds on such polynomials
can be applied, so it seems difficult to extend their approach to general halfspaces (or indeed
even to slight variants of the majority function).

Bazzi’s condition on the existence of degree-k sandwiching polynomials mentioned above
is in fact both necessary and sufficient for all k-wise independent distributions to fool a
function f. Thus the [BGGP07] theorem implies the existence of O(1/ε2)-degree multivariate
sandwich polynomials for the majority function; symmetrization then implies that there exist
univariate polynomials which, roughly speaking, provide good sandwich approximation to
the function sign(t) under the binomial distribution. This is similar in spirit to the result
we establish (mentioned in Step 1 above) about univariate polynomial approximators, but
there is a crucial difference: since the binomial distribution is supported only on the integers
{−n, . . . , n}, it seems difficult to infer much about the behavior of the univariate polynomial
implicit in [BGGP07] on values outside of {−n, . . . , n}. Hence, it is unclear whether these
polynomials can be used for general (or even regular) halfspaces.

In contrast, we work with the best possible pointwise approximation to the function
sign(t) on the (piecewise) continuous domain [−1,−a] ∪ [a, 1]. This uniform error bound is
convenient for dealing with regular halfspaces; moreover, working with the optimal pointwise
approximator allows us to exploit various properties of optimal approximators that follow
from the theory of Chebyshev approximation, in a way that is crucial for us to obtain the
required “univariate sandwich approximators.”

We note that a recent work in approximation theory [EY07] analyzes the error achieved
by this optimal polynomial and in particular establishes the limiting behavior of the error.
For our purposes, though, we require the error to converge to the limit fairly rapidly and it
is unclear whether the results of [EY07] guarantee this. We present an error analysis which
is elementary (it only uses basic approximation theory) and moreover matches the limiting
bounds of [EY07] up to a constant factor.

Organization. In Section 3 we show how a certain univariate polynomial approximator
to sign(t) yields low-degree sandwich polynomials for ε-regular halfspaces over {−1, 1}n. In
Section 4 we construct the required univariate polynomial, which essentially gives sandwich
polynomials for sign(t) under the normal distribution. In Section 5 we show how non-regular
halfspaces can be fooled using our results for regular halfspaces, concluding the proof or our
main theorem.
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2 Preliminaries

Recall that the univariate function sign(t) takes value +1 for t ≥ 0 and −1 for t < 0.

Definition 2.1 (Halfspace). A halfspace is a Boolean function f : {−1, +1}n → {−1, +1}
which can be expressed as f(x) = sign (

∑

i wixi − θ) for some θ ∈ R, (w1, . . . , wn) ∈ Rn.

Throughout this paper we assume without loss of generality that halfspaces are normal-
ized to satisfy w2

1+· · ·+w2
n = 1. Such a representation can always be obtained by appropriate

scaling.

Definition 2.2 (Fooling a Function Class). Let f : {−1, +1}n → {−1, +1} be any function.
We say that a distribution D over {−1, +1}n fools f with error ε, or ε-fools f , if

|Ex←D[f(x)] −Ex←U [f(x)]| ≤ ε,

where U denotes the uniform distribution over {−1, +1}n. We say that D fools a class of
functions F if D fools every f ∈ F .

We require a few basic facts from probability theory: the Berry-Esséen theorem and the
standard tail bounds of Hoeffding and Chebyshev. We discuss them next.

The Berry-Esséen theorem is a version of the Central Limit Theorem with explicit error
bounds:

Theorem 2.3. (Berry-Esséen) Let X1, . . . , Xn be a sequence of independent random vari-
ables satisfying E[Xi] = 0 for all i,

√

∑

i E[X2
i ] = σ, and

∑

i E[|Xi|3] = ρ3. Let S =
(X1 + · · · + Xn)/σ and let F denote the cumulative distribution function (cdf) of S. Then

sup
x

|F (x) − Φ(x)| ≤ Cρ3/σ
3,

where Φ is the cdf of a standard Gaussian random variable (with mean zero and variance
one), and C is a universal constant. [Shi86] has shown that one can take C = .7915.

Corollary 2.4. Let x1, . . . , xn denote independent uniformly ±1 random signs and let w1, . . . , wn ∈
R. Write σ =

√

∑

i w
2
i , and assume |wi|/σ ≤ τ for all i. Then for any interval [a, b] ⊆ R,
∣

∣Pr[a ≤ w1x1 + · · · + wnxn ≤ b] − Φ([ a
σ
, b

σ
])
∣

∣ ≤ 2τ,

where Φ([c, d]) := Φ(d) − Φ(c). In particular,

Pr[a ≤ w1x1 + · · ·+ wnxn ≤ b] ≤ |b − a|
σ

+ 2τ.

For completeness we recall the Hoeffding and Chebyshev bounds:

Theorem 2.5 (Hoeffding). Fix any w ∈ Rn. For any γ > 0, we have

Pr
x←U

[w · x ≥ γ‖w‖] ≤ e−γ2/2 and Pr
x←U

[w · x ≤ −γ‖w‖] ≤ e−γ2/2.

Theorem 2.6 (Chebyshev). For any random variable X with E[X] = µ and Var[X] = σ2

and any k > 0,

Pr[|X − µ| ≥ kσ] ≤ 1

k2
.
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3 Fooling regular halfspaces

In this section we show how to fool regular halfspaces, defined next (recall all our halfspaces
are normalized to satisfy w2

1 + · · ·+ w2
n = 1).

Definition 3.1 (Regular Halfspace). A halfspace f is said to be ε-regular if it can be
expressed as f(x) = sign(w · x − θ) where for all i = 1, . . . , n, we have

|wi| ≤ ε.

An ε-regular halfspace f(x) = sign(w · x − θ) has the convenient property that the
cumulative distribution function (cdf) of w · x − θ is everywhere within ±O(ε) of the cdf of
the shifted Gaussian N(−θ, 1). This is a direct consequence of the Berry-Esséen Theorem.

Given ε > 0, we define the following parameters:

a(ε) :=
ε2

C log(1/ε)
,

K(ε) :=
4c log(1/ε)

a
+ 2 <

5c

a
log(1/ε) = O

(

log2(1/ε)/ε2
)

.

We assume without loss of generality that ε is a sufficiently small power of 2 (i.e., ε = 2−i for
some integer i). The positive constants C and c will be chosen later; but (with foresight),
we will require that C � c.

In this section we prove the following:

Theorem 3.2 (Fooling ε-regular halfspaces). Any K(ε)-wise independent distribution fools
ε-regular halfspaces with error 12ε.

To prove the theorem we construct certain “sandwiching” polynomials. We now define
such polynomials and then explain why they are sufficient for our purposes.

Definition 3.3. Let f : {−1, +1}n → {−1, +1} be a Boolean function. A pair of real-valued
polynomials q`(x1, . . . , xn), qu(x1, . . . , xn) are said to be ε-sandwich polynomials of degree k
for f if they have the following properties:

• deg(qu), deg(q`) ≤ k;

• qu(x) ≥ f(x) ≥ q`(x) for all x ∈ {−1, +1}n;

• Ex←U [qu(x) − f(x)] ≤ ε and Ex←U [f(x) − q`(x)] ≤ ε.

The following fact relates sandwiching polynomials to fooling:

Lemma 3.4 (Bazzi). Let f : {−1, +1}n → {−1, +1} be a Boolean function. Every k-wise
independent distribution ε-fools f if and only if there exist ε-sandwich polynomials of degree
k for f .

7



Figure 1: Qualitative plot of polynomial P .

We only use the “if” direction of this lemma for our proof, which follows straightforwardly
by linearity of expectation. The other direction is a consequence of LP–duality (see [Baz07]
for a proof).

To construct appropriate sandwiching polynomials, we start by exhibiting a univariate
polynomial P : R → R that approximates the function sign : R → {−1, 1} in a certain
specialized way which we discuss shortly. Let us be given an ε-regular halfspace h(x) =
sign(w ·x−θ), and assume that |θ| is small (the case where |θ| is large is simpler). We obtain
the upper sandwiching polynomial qu in Definition 3.3 by plugging into P the value w ·x− θ
scaled by a large Z ≥ 0:

qu(x) := P

(

w · x − θ

Z

)

.

For the lower sandwiching polynomial q` we will use −P (−t). The key properties of P (t)
are that (1) P (t) ≥ sign(t) for every t ∈ R, (2) P (t) gives a good (error ε) pointwise
approximation to sign(t) for t ∈ [−1/2, 1/2] except for t in the small interval [−2a, 0] where
the error is bounded by a constant, and (3) P (t) does not grow too quickly for |t| ≥ 1/2.
For a qualitative depiction of P we refer the reader to Figure 1 (this figure is not an actual
plot but rather is intended to qualitatively illustrate the guarantees on the behavior of P
on various intervals; also the parameter 1/2 is replaced by 1 − a ≥ 1/2 for later needs).
Property (1), together with the fact that scaling by Z does not change the value of the
halfspace, immediately gives the sandwiching property qu(x) ≥ h(x) in Definition 3.3. To
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establish the small-error property Ex[qu(x) − h(x)] in Definition 3.3, we reason by case
analysis. First, by our choice of parameters, the small interval [−2a, 0] remains small even
after scaling by Z, and so we use an anti-concentration argument to show that the input
t = (w · x − θ)/Z to the polynomial is unlikely to land there, and thus the contribution
towards the error Ex[qu(x) − h(x)] is negligible in this case. Also, whenever the input t to
the polynomial lands in [−1/2, 1/2] \ [−2a, 0], the contribution to the error Ex[qu(x)− h(x)]
is small because by Property (2) the polynomial approximates the sign function well there:
qu(x)− h(x) ≤ ε. Finally, the event that the input t = (w · x− θ)/Z to P has absolute value
bigger than 1/2 corresponds to the event that |w ·x−θ| ≥ Z/2. The scaling factor Z is large
and the halfspace is ε-regular, and so we can apply standard tail estimates to bound from
above this probability. Since by Property (3) the polynomial P (t) does not grow too quickly
for |t| ≥ 1/2, the contribution to the error Ex[qu(x) − h(x)] is small even in this case.

We now proceed with the formal proof. We start with recording in the following theorem
the properties of P .

Theorem 3.5. Let 0 < ε < 0.1 and let a and K be as defined above. There is a univariate
polynomial P (t) such that deg(P ) ≤ K with the following properties:

(1) P (t) ≥ sign(t) ≥ −P (−t) for all t ∈ R;

(2) P (t) ∈ [sign(t), sign(t) + ε] for t ∈ [−1/2,−2a]
⋃

[0, 1/2];

(3) P (t) ∈ [−1, 1 + ε] for t ∈ (−2a, 0);

(4) |P (t)| ≤ 2 · (4t)K for all |t| ≥ 1/2.

We defer the proof of Theorem 3.5 to Section 4 and we proceed with the proof of Theorem
3.2.

3.1 Proof of Theorem 3.2

Let h(x) = sign(w · x − θ) be an ε-regular halfspace (and recall w2
1 + · · · + w2

n = 1.) Let

Z :=
ε

2a
=

C log(1/ε)

2ε
.

We break the analysis into the following two cases, based on the magnitude of the threshold
θ.

3.1.1 |θ| is small (|θ| ≤ Z/4)

The sandwich polynomials we use are:

qu(x) := P

(

w · x − θ

Z

)

, ql(x) := −P

(

θ − w · x
Z

)

. (1)
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First, observe that for every x ∈ {−1, +1}n we have

qu(x) ≥ h(x) ≥ ql(x).

This is because from Theorem 3.5 with t = (w · x − θ)/Z we get

qu(x) ≥ sign

(

w · x − θ

Z

)

= sign(w · x − θ) = h(x) ≥ ql(x).

In the rest of this section we bound the error of the approximation.

Lemma 3.6. Ex[qu(x) − h(x)] < 10ε.

Proof. Define the random variable H(x) = (w ·x− θ)/Z. We prove the desired upper bound
by partitioning the space into three events and bounding the contribution from each:

1. S1 is the event that H(x) ∈ [−ε/Z, 0].

2. S2 is the event that |H(x)| ≤ 1/2, but S1 does not happen.

3. S3 is the event that |H(x)| > 1/2.

We have

Ex[qu(x) − h(x)] =
3
∑

i=1

Pr
x

[Si]Ex[qu(x) − h(x)|Si].

Case 1: In this case, the pointwise error is moderate – at most (2 + ε) – and we use
gaussian anti-concentration to argue that the event has small probability mass. The event
H(x) ∈ [−ε/Z, 0] implies that

w · x − θ

Z
∈ [−2a, 0] ⇒ qu(x) ≤ 1 + ε ⇒ qu(x) − h(x) ≤ 2 + ε,

using Item (3) in Theorem 3.5.
Since h is ε-regular, from Corollary 2.4 it follows that Prx[H(x) ∈ [−ε/Z, 0]] ≤ 3ε. So,

Pr
x

[S1]Ex[qu(x) − h(x)|S1] ≤ (2 + ε) · 3ε < 8ε.

Case 2: This event has high probability, but in this range we get good pointwise
approximation. The event S2 implies that

H(x) ∈ [−1/2, 1/2] \ [−2a, 0] ⇒ qu(x) ≤ h(x) + ε ⇒ qu(x) − h(x) ≤ ε,

where we used Item (2)in Theorem 3.5. So,

Pr
x

[S2]Ex[qu(x) − h(x)|S2] ≤ 1 · ε ≤ ε.

10



Case 3: Here we trade off the large magnitude of error (Item (4) in Theorem 3.5) with
the small probability of the event (bounded by the Hoeffding bound). Define the intervals

I+
j =

[

j

2
,
(j + 1)

2

)

for j = 1, 2, . . .

I−k =

(−(k + 1)

2
,
−k

2

]

for k = 1, 2, . . . .

We can write

Pr
x

[S3]Ex[qu(x) − h(x)|S3] =
∑

j≥1

Pr
x

[H(x) ∈ I+
j ]Ex[qu(x) − h(x)|H(x) ∈ I+

j ]

+
∑

k≥1

Pr
x

[H(x) ∈ I−k ]Ex[qu(x) − h(x)|H(x) ∈ I−k ]. (2)

Fix any integer j ≥ 1. If H(x) ∈ I+
j , then

j

2
≤ H(x) <

j + 1

2
.

Recalling that we have |P (t)| ≤ 2 · (4t)K for t ≥ 1/2, we get that

qu(x) = P (H(x)) ≤ 2(2j + 2)K .

Since h(x) = 1, we get

qu(x) − h(x) = q(x) − 1 ≤ 2(2j + 2)K − 1. (3)

Next we bound Prx[H(x) ∈ I+
j ] using the Hoeffding bound.

Pr[H(x) ∈ I+
j ] ≤ Pr

x

[

w · x − θ ≥ jZ

2

]

≤ Pr
x

[

w · x ≥ jZ

4

]

≤ e−j2Z2/32 (4)

where the second inequality uses the fact that |θ| ≤ Z/4.
The analysis of the intervals I−k is similar (except h(x) = −1). For H(x) ∈ I−k we get

|H(x)| ≤ k + 1

2
⇒ qu(x) ≤ 2(k + 1)K ⇒ qu(x) − h(x) ≤ 2(2k + 2)K + 1. (5)

Similarly, the Hoeffding bound gives

Pr[H(x) ∈ I−k ] ≤ Pr
x

[

w · x − θ ≤ −kZ

2

]

≤ Pr
x

[

w · x ≤ −kZ

4

]

≤ e−k2Z2/32. (6)

11



Plugging equations (3), (4), (5), (6) back into (2), we get

Pr
x

[S3]Ex[qu(x) − h(x)|S3] ≤
∑

j≥1

2(2j + 2)K − 1

ej2Z2/32
+
∑

k≥1

2(2k + 2)K + 1

ek2Z2/32

= 4
∑

j≥1

(2j + 2)K

ej2Z2/32

< 4
∑

j≥1

ej(2K−Z2/32)

where the last inequality follows by noting that, for j ≥ 1, (2j + 2)K < e2Kj and ej2Z2/32 ≥
ejZ2/32. But now observe that

2K − Z2

32
<

C log2(1/ε)

ε2

(

10c − C

128

)

.

For a suitable choice of C � c, we have that 10c − C/128 ≤ −1, so

Pr
x

[S3]Ex[qu(x) − h(x)|S3] < 4
∑

j

e−jC
log2(1/ε)

ε2 < ε.

Thus overall, we have Ex[qu(x) − h(x)] ≤ 10ε.

The lower sandwich bound follows by symmetry:

Lemma 3.7. Ex[h(x) − ql(x)] < 10ε.

Proof. Since ql(x) ≤ h(x) for every x, we also have −h(x) ≤ −ql(x). Thus

−ql(x) = P

(

θ − w · x
Z

)

is an upper sandwich for the function −h(x) = sign(θ − w · x). As this does not change the
magnitude of θ, we can apply the analysis of Lemma 3.6 to conclude that

Ex[h(x) − ql(x)] = Ex[−ql(x) − (−h(x))] < 10ε.

3.1.2 |θ| is large (|θ| > Z/4)

We assume for simplicity that θ ≥ Z/4 (the case when θ is negative is handled similarly).
The sandwich polynomials we use are:

ru(x) = P

(

w · x − Z/4

Z

)

, rl(x) = −1. (7)
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Lemma 3.8. h(x) ≥ rl(x) for all x ∈ {−1, +1}n. Further, Ex[h(x) − rl(x)] ≤ 2ε.

Proof. Note that Ex[h(x)−rl(x)] = 2 Prx[h(x) = 1]. For large enough C we have Prx[h(x) =
1] = Prx[w · x ≥ θ] < e−Z2/32 < ε.

Lemma 3.9. ru(x) ≥ h(x) for all x ∈ {−1, +1}n. Further, Ex[ru(x) − h(x)] ≤ 12ε.

Proof. Observe that ru(x) is the upper sandwich polynomial for the halfspace h′(x) = sign(w·
x − Z/4) as specified in Section 3.1.1. Thus we have

ru(x) ≥ h′(x) ≥ h(x)

hence
Ex[ru(x) − h(x)] = Ex[ru(x) − h′(x)] + Ex[h

′(x) − h(x)].

By Lemma 3.6, Ex[ru(x)−h′(x)] ≤ 10ε whereas by the Hoeffding bound Ex[h
′(x)−h(x)] ≤ 2ε

which completes the proof.

4 Proof of Theorem 3.5

This section contains our proof of Theorem 3.5. The key step is to exhibit a low-degree
univariate polynomial that approximates sign(t) well when |t| ∈ [a, 1] and is well-behaved
even for larger values of |t| to be compatible with the sandwich condition. We phrase this as
a problem in univariate approximation. The solution we use is a low-degree polynomial p(t)
which is an optimal pointwise approximator to sign(t) on [−1,−a] ∪ [a, 1]. Such an optimal
polynomial exists and we prove that it is well-behaved for large |t|, using ideas from classical
approximation theory. However, it seems difficult to construct this polynomial explicitly and
bound its error.

Recent work by [EY07] analyzes the error achieved by such a polynomial and in particular
establishes the limiting behavior of the error function. For our purposes, though, we require
the error to converge to the limit fairly rapidly and it is unclear whether the results of [EY07]
guarantee this.

Instead, we bound the error by constructing a small error approximator q(t) using Jack-
son’s theorem together with standard amplification ideas. While q(t) might not be well-
behaved for large value of t, we only use it to bound from above the error of p(t) on
[−1,−a] ∪ [a, 1]. Our approach has the advantage of being self-contained and elementary
(using only standard ingredients from basic approximation theory) and matches the limiting
bounds of [EY07] up to a constant factor.

For a bounded continuous function f : [−1, 1] → R, we define its modulus of continuity
ωf(δ) as

ωf(δ) := sup{|f(x) − f(y)| : x, y ∈ [−1, 1]; |x − y| ≤ δ}.
A classical result of Dunham Jackson from the early twentieth century bounds the error of
the best degree-` approximation to f .
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Theorem 4.1. (Jackson’s Theorem) [Che66] For f as above and any integer ` ≥ 1,
there exists a polynomial J(t) with deg(J) ≤ ` so that

max
t∈[−1,1]

|J(t) − f(t)| ≤ 6ωf

(

1

`

)

.

Recall the parameter a = ε2

C log(1/ε)
from the previous section. We now define the following

parameter:

m :=
c log(1/ε)

a
.

It will be crucial for us that m is even (see in particular the last paragraph of the proof
of Theorem 4.5.); for this condition to be satisfied, it is of course enough that c is even. (We
also note that the parameters K and m are such that K = 4m + 2.)

Lemma 4.2. For a, m as above, there is a polynomial q(t) of degree at most 2m such that

max
|t|∈[a,1]

|q(t) − sign(t)| ≤ ε2.

Proof. Define the continuous and piecewise linear function f(x) as

f(x) =

{

sign(t) a ≤ |t| ≤ 1

t/a |t| ≤ a.

Thus f(x) increases linearly from −1 to 1 in the range [−a, a]. A simple calculation shows
that ωf(

1
`
) = 1/(a`). Taking ` ≥ 25/a, Jackson’s theorem implies the existence of a polyno-

mial J(t) of degree at most ` such that

max
a≤|t|≤1

|J(t) − sign(t)| ≤ max
t∈[−1,1]

|J(t) − f(t)| ≤ 6

a`
<

1

4
.

Our goal is to bring the error down to ε2. Rather than using Jackson’s theorem for this
(which would require degree Õ(ε−4)), we use the degree-k amplifying polynomial

Ak(u) :=
∑

j≥ k
2

(

k

j

)(

1 + u

2

)j (
1 − u

2

)k−j

. (8)

This polynomial has the following properties (easily proved via elementary calculation
and also following from the Chernoff bound):

Claim 4.3. The polynomial Ak(u) satisfies:

1. If u ∈ [3/5, 1], then 2Ak(u) − 1 ∈ [1 − 2e−k/6, 1].

2. If u ∈ [−1,−3/5], then 2Ak(u) − 1 ∈ [−1,−1 + 2e−k/6].
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We define the polynomial

q(t) := 2Ak

(

4

5
J(t)

)

− 1

where k = 15 log(1/ε). Scaling J(t) by 4
5

ensures that the argument to Ak lies in the range
[−1,−3/5] ∪ [3/5, 1] whenever |t| ≤ a. Applying Claim 4.3 with k = 15 log(1/ε) gives

max
|t|∈[a,1]

|q(t) − sign(t)| < 2e−k/6 < ε2.

Finally, by selecting c large enough, we have

deg(q) ≤ deg(J) deg(Ak) ≤
25

a
· 15 log(1/ε) <

2c

a
log(1/ε) = 2m.

We now present the “well-behaved” polynomial p(t) mentioned at the beginning of this
section. We will use Chebyshev’s classical theorem on (weighted) real polynomial approxi-
mation ([Ach56], Chapter II).

Theorem 4.4. (Chebyshev’s Theorem)[Ach56] Let f : [a, b] → R be a continuous func-
tion. Let s : [a, b] → R be a continuous function that does not vanish on [a, b]. The
polynomial r(z) of degree m that minimizes

M(m) = max
t∈[a,b]

|f(z) − s(z)r(z)|

is unique, and it is characterized by the property that there exist m + 2 points a ≤ z0 <
z1 · · · < zm+1 ≤ b such that for each zi

M(m) = |f(zi) − s(zi)r(zi)|

and the sign of the error at the zi’s alternates.

Theorem 4.5. Let a and m be as specified in Section 3. There is a univariate polynomial
p(t) where deg(p) ≤ 2m + 1 such that:

1. p(t) ∈ [sign(t) − ε2, sign(t) + ε2] for all |t| ∈ [a, 1];

2. p(t) ∈ [−(1 + ε2), 1 + ε2] for all t ∈ [−a, a];

3. p(t) is monotonically increasing on the intervals (−∞,−1] and [1,∞).

Proof. The polynomial p(t) is a best uniform approximation (such an approximation is guar-
anteed to exist [Riv74]) to the function sign(t) of degree at most 2m + 1 over the domain
[−1,−a] ∪ [a, 1]. Applying Lemma 4.2, we get

max
|t|∈[a,1]

|p(t) − sign(t)| ≤ max
|t|∈[a,1]

|q(t) − sign(t)| ≤ ε2

15



which gives Property (1).
We can assume that p(t) is odd (by replacing it with (p(t) − p(−t))/2 if needed). So we

can write p(t) = t · r(t2), where r(z) is a polynomial of degree m that minimizes

M(m) = min
r: deg(r)≤m

sup
z∈[a2,1]

|1 −
√

zr(z)|.

Invoking Chebyshev’s theorem with f(z) = 1 and s(z) =
√

z (which does not vanish
on [a2, 1]), we infer that the optimal polynomial r(z) of degree m is unique and it has an
alternating sequence of points

a2 ≤ z0 < z1 . . . < zm+1 ≤ 1

so that the error 1 −√
zr(z) achieves its maximum magnitude exactly at the points zi, and

the sign of the error alternates.
Set ti =

√
zi > 0 so that

a ≤ t0 < t1 . . . < tm+1 ≤ 1.

Let φ(t) be the error function φ(t) = p(t) − sign(t). Note that for t ≥ a, we have

φ(t) = p(t) − 1,

φ(−t) = p(−t) − (−1) = −p(t) + 1 = −φ(t).

For each ti, we have
|φ(ti)| = |φ(−ti)| = M(m).

Now consider the interval [a, 1], on which φ(t) = p(t) − 1. Note that φ′(t) is well defined
and equals p′(t) at any point in (a, 1). The points t1, . . . , tm lie in (a, 1) and they are local
maxima/minima, since φ(t) cannot increase in magnitude in the neighborhood of ti. Thus
φ′(ti) = p′(ti) = 0 for each i ∈ [m]. Similarly, we can show that φ′(−ti) = p′(−ti) = 0 for
i ∈ [m]. But deg(p′) is at most 2m, and so we have located all its roots. As we now show,
this allows us to determine the sign of p in the intervals [−∞,−1], [−a, a] and [1,∞].

Note that p(t1) is close to 1 whereas p(−t1) is close to −1, and thus p increases monoton-
ically in the interval (−t1, t1) which includes [−a, a]. Also t1 is a local maximum for p, which
shows that the tis are maxima when i is odd, and minima when i is even. Thus, since m is
even, p(tm) is a local minimum, so p(t) increase monotonically in the range (tm,∞), which
includes [1,∞). Whereas −t1 is a local minimum for p, so p(−ti) are local minima for odd i
and maxima for even i, hence p(t) is monotonically increasing in the range (−∞, tm) which
contains (−∞,−1].

Using the polynomial p(t), we now construct the polynomial P (t) which is a good “upper”
approximator to sign(t) (i.e. P (t) ≥ sign(t) for all t), thus completing the proof of Theorem
3.5.

To help the reader visualize p(t), we provide a schematic representation in Figure 2. (We
remark that, as before, this figure is not an actual plot, but rather is intended to qualitatively
illustrate the guarantees on the behavior of p on various intervals.)

Let us recall the statement of Theorem 3.5:
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Figure 2: Qualitative representation of polynomial p.

Theorem 3.5. (Restated.) Let 0 < ε < 0.1 and let a and K be as defined above. There is
a univariate polynomial P (t) such that deg(P ) ≤ K with the following properties:

(1) P (t) ≥ sign(t) ≥ −P (−t) for all t ∈ R;

(2) P (t) ∈ [sign(t), sign(t) + ε] for t ∈ [−1/2,−2a]
⋃

[0, 1/2];

(3) P (t) ∈ [−1, 1 + ε] for t ∈ (−2a, 0);

(4) |P (t)| ≤ 2 · (4t)K for all |t| ≥ 1/2.

Proof. Let p denote the polynomial of degree 2m + 1 from Theorem 4.5. Consider the
following polynomial:

P (t) =
1

2
(1 + ε2 + p(t + a))2 − 1.

Note that deg(P ) = 2 deg(p) ≤ K. We now consider the behavior of P on the relevant
intervals. We repeatedly use the inequality

1

2
(2 + 2ε2)2 − 1 = 1 + 4ε2 + 2ε4 ≤ 1 + ε

which holds since ε < 1
10

. Note that P (t) ≥ −1 holds for all t. We now analyze the behavior
of P (t) interval by interval:
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(a) t ∈ [−1 − a,−2a]. Here p(t + a) ∈ [−1 − ε2,−1 + ε2], hence P (t) ∈ [−1,−1 + ε].

(b) t ∈ (−2a, 0). Here p(t + a) ∈ [−1 − ε2, 1 + ε2], hence P (t) ∈ [−1, 1 + ε].

(c) t ∈ [0, 1 − a]. Here p(t + a) ∈ [1 − ε2, 1 + ε2], hence P (t) ∈ [1, 1 + ε].

(d) t ∈ (1 − a,∞]. Here p(t + a) ≥ 1 − ε2, hence P (t) ≥ 1.

This shows that P (t) ≥ sign(t) for all t ∈ R. Thus we also have

P (−t) ≥ sign(−t) ⇒ sign(t) ≥ −P (−t)

which establishes Property (1). Properties (2) and (3) follow immediately from (a), (b) and
(c) above.

For Property (d), we use the following standard fact from approximation theory.

Fact 4.6. [Riv74] Let a(t) be a polynomial of degree at most d for which |a(t)| ≤ b in the
interval [−1, 1]. Then |a(t)| ≤ b|2t|d for all |t| ≥ 1.

Taking a(t) to be P (t/2), properties (2) and (3) give us that |P (t/2)| ≤ 2 for t ∈ [−1, 1].
So the fact gives |P (t/2)| < 2|2t|4m+2 for |t| ≥ 1, i.e. |P (t)| < 2|4t|4m+2 for |t| ≥ 1/2.

5 Fooling non-regular halfspaces

In this section we show how to fool halfspaces that are not regular. We proceed by case
analysis based on the critical index of the halfspace, which we define shortly. Throughout
this section we assume that the weights of the halfspace are decreasing:

|w1| ≥ |w2| . . . ≥ |wn|.

We can assume this without loss of generality because we are going to prove that, for a
suitable k, any k-wise independent distribution fools such halfspaces, and the property of
being k-wise independent is clearly invariant under permutation of the variables.

Some notation: For T ⊆ [n] we denote by σT the quantity σT :=
√
∑

i∈T w2
i . For k ∈ [n]

we also write σk for σ{k,k+1,...,n}.

Definition 5.1 (Critical index). We define the τ -critical index `(τ) of a halfspace h =
sign(w · x − θ) as the smallest index i ∈ [n] for which

|wi| ≤ τ · σi.

If this inequality does not hold for any i ∈ [n], we define `(τ) = ∞.
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Note that a halfspace is τ -regular if `(τ) = 1; in this section we handle the case `(τ) > 1.

We assume without loss of generality that ε is sufficiently small. Given ε, our threshold
for the critical index is

L(ε) :=
8 log2(10/ε)

ε2
.

We argue separately depending on whether `(ε) > L(ε) or not. Both proofs rely on the
following simple property of k-wise independent distributions.

Fact 5.2. Let D be a k-wise independent distribution over {−1, +1}n. Condition on any
fixed values for any t ≤ k bits of D, and let D′ be the projection of D on the other n − t
bits. Then D′ is (k − t)-wise independent.

The first theorem addresses the simpler case when `(ε) ≤ L(ε).

Theorem 5.3 (Fooling non-regular halfspaces with small critical index). Let h(x) be a half-
space with ε-critical index `(ε) ≤ L(ε). Then any (K(ε)+L(ε))-wise independent distribution
O(ε)-fools h.

Proof. Condition on any setting to the first `−1 variables. Each of these defines a halfspace
of the form

h′(x) = sign

(

∑

i≥`

wixi − θ′

)

where θ′ depends on the values assigned to the head. Every such halfspace is ε-regular by the
definition of ε-critical index. Also, the conditional distribution on the remaining variables
is K(ε)-wise independent by Fact 5.2. Thus, Theorem 3.2 implies that we fool h′ with error
ε. Since both the uniform distribution and D induce the same (uniform) distribution on the
first ` − 1 variables, an averaging argument concludes the proof of the theorem.

In the rest of this section we study the case of large critical index `(ε) > L(ε), and prove
the following theorem.

Theorem 5.4 (Fooling non-regular halfspaces with large critical index). Let h(x) be a half-
space with critical index `(ε) > L(ε). Any (L(ε) + 2)-wise independent distribution D fools h
with error 9ε.

To prove Theorem 5.4 we partition the coordinate set [n] into a head H consisting of
the first L(ε) coordinates, and a tail T = [n] \ H consisting of the rest. We then show
that a random setting of the head variables induces with high probability a partial sum
∑

i∈H wixi−θ which is so large in magnitude that the values of the tail variables are essentially
irrelevant, in the sense that they are very unlikely to change the sign of w · x− θ and hence
the value of the halfspace.

We will show that this statement holds both for the uniform distribution and for the
distribution D with limited independence. For the latter we will use that after restricting

19



the variables in the head we still have a 2-wise independent distribution on the tail (by
Fact 5.2), which is enough for Chebyshev’s concentration bound to apply. To show that the
partial sum is likely to be large we use ideas from [Ser07], in particular that the weights
decrease geometrically up to the critical index.

5.1 Proof of Theorem 5.4

We partition the coordinate set [n] into a head H consisting of the first L(ε) coordinates,
and a tail T = [n] \ H consisting of the rest. Any fixing of the variables in H results in a
halfspace

h′(xT ) := sign

(

∑

i∈T

wixi − θ′H

)

over the tail variables xT where
θ′H := θ −

∑

i∈H

wixi.

As discussed before, our goal is to show that, for a random setting of the head variables,
θ′H is likely to be so large in magnitude that the value of the tail sum

∑

i∈T wixi is unlikely
to influence the outcome of h(x). The key idea here is the following lemma from [Ser07]
showing that the weights decrease geometrically up to the critical index.

Lemma 5.5. For any 1 ≤ i < j ≤ ` + 1 we have

|wj| ≤ σj <
(√

1 − ε2
)j−i

σi ≤
(√

1 − ε2
)j−i

|wi|/ε.

In particular, if j ≥ i + (4/ε2) ln(1/ε) then

|wj| ≤ |wi|/3.

Proof. For any k ≤ `, we have by the definition of ε-critical index that

w2
k > ε2σ2

k.

Hence
σ2

k+1 = σ2
k − w2

k < (1 − ε2)σ2
k.

Repeating this calculation yields

σ2
j < (1 − ε2)j−iσ2

i .

To conclude the first chain of inequalities in the statement of the lemma, use again σ2
i <

w2
i /ε

2 and the obvious inequality σ2
j ≥ w2

j . The “in particular” part can be verified by
straightforward calculation, using that ε is sufficiently small.
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Now consider the set of
t := log(10/ε)

“nicely separated” coordinates (variables)

G := {ki := 1 + i ·
(

4/ε2
)

ln(1/ε) : i = 0, 1, . . . , t − 1} ⊆ H.

Observe that indeed G ⊆ H because the maximum index in G is at most 1+t·(4/ε2) log(1/ε) ≤
(4/ε2) log2(10/ε), whereas H consists of all the first L(ε) = (8/ε2) log2(10/ε) indices. The
key features of G are that we can apply the ‘in particular” part of Lemma 5.5 and prove the
following claim.

Claim 5.6. σT < ε|wkt|.

Proof. By our choice of L(ε), t, and kt, we have

L(ε) − kt ≥ 8 log2(10/ε)/ε2 − 4 log2(10/ε)/ε2 ≥ log2(1/ε)/ε2.

An application of Lemma 5.5 gives

σT <
√

1 − ε2
log2(1/ε)/ε2 |wkt|/ε ≤ ε2|wkt|/ε = ε|wkt|

where we use that ε is sufficiently small.

We now show that a random setting of H is likely to result in a value of |θ′H | which is at
least |wkt|/4. The proof relies on the following claim.

Claim 5.7. Let v1 > v2 > · · · > vt > 0 be a sequence of numbers so that vi+1 ≤ vi/3. Then
for any two points x 6= y ∈ {−1, +1}t, we have |v · x − v · y| ≥ vt.

Proof. Let z := x − y ∈ {−2, 0, 2}t, which is not zero. Let j ≤ t be the smallest index such
that zj 6= 0. Then

|v · x − v · y| = |v · z| = |
∑

i≥j

vizi| ≥ |vjzj | −
∑

i>j

|vizi| ≥ 2(vj −
∑

i>j

vi)

≥ 2(vj −
∑

i>j

vj

3i−j
) ≥ 2(vj − vj/2) = vj ≥ vt,

using vi ≤ vj/3i−j by assumption.

We are now ready to show our intended lemma:

Lemma 5.8. Prxi:i∈H

[
∣

∣θ −
∑

i∈H wixi

∣

∣ ≤ |wkt|/4
]

≤ ε/10.
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Proof. Fix any assignment to the variables in H \ G. For this fixing, the event |θ −
∑

i∈H wixi| ≤ |wkt|/4 happens only if

∑

i∈G

wixi ∈



θ −
∑

i∈H\G

wixi − |wkt|/4, θ −
∑

i∈H\G

wixi + |wkt|/4



 ,

i.e.,
∑

i∈G wixi falls in an interval of length |wkt|/2. Applying Claim 5.7 to the weights in
G, any two possible outcomes of

∑

i∈G wixi differ by at least |wkt|. So there is at most one
setting xk1 = a1, . . . , xkt = at of the variables in G for which this event occurs. This setting
has probability at most 2−t = ε/10.

With this lemma in hand, we can show that limited independence suffices to fool half-
spaces with a large critical index.

Proof of Theorem 5.4. We compare the behavior of h(x) on D and the uniform distribution
U . In either case, the marginal distribution for the variables in H is uniform. For each setting
of these variables, we are left with a halfspace of the form h′(xT ) = sign(

∑

i∈T wixi − θ′H) on
the variables in T . The combination of Lemma 5.8 and Claim 5.6 shows that with probability
at least 1 − ε/10 we have

|θ −
∑

i∈H

wi · xi| ≥
|wkt|

4
≥ σT

4ε
. (?)

We condition on this event (?). Consider the projections U ′ and D′ of U and D on xT .
By Fact 5.2, D′ is 2-wise independent. We now argue that for both U ′ and D′, it is very
likely that h′(xT ) = −sign(θ′H) (for small enough ε). Indeed if this does not happen, then
we have

|
∑

i∈T

wixi| ≥ |θ −
∑

i∈H

wi · xi| ≥
|wkt|

4
≥ σT

4ε
.

Under the uniform distribution, by a Hoeffding bound (Theorem 2.5), the probability of
this event is bounded by

Pr
x∼U ′

[
∣

∣

∣

∣

∣

∑

i∈T

wixi

∣

∣

∣

∣

∣

≥ σT

4ε

]

≤ 2e−
1

32ε2 � 4ε.

While by Chebyshev’s inequality (Theorem 2.6) we get

Pr
x∼D′

[
∣

∣

∣

∣

∣

∑

i∈T

wixi

∣

∣

∣

∣

∣

≥ σT

4ε

]

≤ 16ε2 ≤ 4ε.

Thus, we have

|ED′ [h′(xT )] −EU ′[h′(xT )]| ≤ 2|Pr
D′

[h′(xT ) = −sign(θ′H)] − Pr
U ′

[h′(xT ) = −sign(θ′H)]| ≤ 8ε.
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To conclude, our goal was to bound from above |EU [h(x)] − ED[h(x)]|. Using the fact
that both distributions induce the uniform distribution on variables in H , and conditioning
on the event (?), we get

|EU [h(x)] −ED[h(x)]| ≤ 8ε + 2 · ε/10 < 9ε.

Our main result, Theorem 1.2, follows immediately from Theorem 3.2, Theorem 5.3 and
Theorem 5.4.

5.2 Proof of the main theorem

For completeness in this section we summarize what is needed to prove our main theorem.

Theorem 1.2 (Main). (Restated.) Let D be a k-wise independent distribution on {−1, +1}n,
and let h : {−1, +1}n → {−1, +1} be a halfspace. Then D fools h with error ε, i.e.,

|Ex←D[h(x)] − Ex←U [h(x)]| ≤ ε, provided k ≥ C

ε2
log2

(

1

ε

)

,

where C is an absolute constant and U is the uniform distribution over {−1, +1}n.

Proof. Consider the parameters K(ε), L(ε) defined in Sections 3 and 5, respectively, and
recall that they are both O(log2(1/ε)/ε2). For a given halfspace, consider its critical index
`. If ` ≤ L(ε) we apply Theorem 5.3, otherwise we apply Theorem 5.4.

6 Conclusions

We feel that Theorem 1.2 is of independent interest and may find other applications aside
from pseudorandomness. For instance, consider the problem of estimating the influence
of a variable in a halfspace [GR09]. It is easy to verify that for any halfspace h(x) =
sign(

∑n
i=1 wixi − θ) the influence of the i-th variable equals Ey←U [h

′(y)], where h′ is the
halfspace defined by h′(y) = sign(

∑

j,j 6=i wjyj − θyi + wi). Thus, one can use Õ(ε−2)-wise
independence to estimate the influence to within an additive ε. Note that, for any halfspace,
the bias and the influences together are (respectively) the Fourier coefficients at levels 0
and 1. They are collectively called the Chow parameters of a halfspace (after a theorem of
C.K. Chow showing that these numbers uniquely specify the halfspace [Cho61]) and have
been well-studied in the literature [Gol06, Ser07, OS08, MORS09]. Our result implies that
the Chow parameters of a halfspace can be estimated to within accuracy ε using bounded
independence.

Our results, together with the lower bound of [BGGP07], are essentially optimal in terms
of characterizing the degree of independence that is required to ε-fool halfspaces. However,
many natural and interesting directions remain for future work.
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One obvious goal is to construct unconditional pseudorandom generators for halfspaces
that have a better dependence on ε than our construction. The ultimate goal here is to
achieve the information-theoretic optimal possible seed length, i.e. s = O(log(n/ε)).

Another natural, though perhaps challenging, goal is to understand the degree of inde-
pendence that is required to ε-fool degree-d polynomial threshold functions over {−1, +1}n.
For constant ε and constant d, does Θ(1)-wise independence suffice to fool degree-d PTFs?
As far as we know nothing is known about this question, even for d = 2.

A third question that is related to our work is whether it is possible to derandomize
the problem of approximately counting the number of satisfying assignments for a given
halfspace. Our results give a single fixed and easily constructible set of nÕ(1/ε2) many points
which can be used to deterministically obtain a ±ε-accurate estimate of PrU [f(x) = 1] for

any halfspace f in time nÕ(1/ε2). However, there is a deterministic algorithm of [Ser07] which
takes integer weights and threshold w1, . . . , wn, θ (each poly(n) bits long) as input and runs

in time poly(n) · 2Õ(1/ε2). Can a poly(n, 1/ε)-time deterministic algorithm be obtained?
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