
The Maximum Communication Complexity of Multi-Party
Pointer Jumping

Joshua Brody∗

Department of Computer Science, Dartmouth College
Hanover, NH 03755, USA

Abstract

We study the one-way number-on-the-forhead (NOF) communication complexity of thek-layer
pointer jumping problem. Strong lower bounds for this problem would have important implications
in circuit complexity. All of our results apply to myopic protocols (where players see only one layer
ahead, but can still see arbitrarily far behind them.) Furthermore, our results apply to the maximum
communication complexity, where a protocol is charged for themaximum communication sent by a
single player rather than thetotal communication sent by all players.

Our main result is a lower bound ofn/2 bits for deterministic protocols, independent of the
number of players. We also provide a matching upper bound, aswell as anΩ (n/k log n) lower
bound for randomised protocols, improving on the bounds of Chakrabarti [Cha07]. In the non-
Boolean version of the problem, we give a lower bound ofn(log(k−1) n)(1 − o(1)) bits, essentially
matching the upper bound from Damm et al. [DJS98].

1 Introduction

Communication complexity has been an important technique in proving lower bounds in a wide variety
of areas, including settings that do not involve communication. Specifically, communication complexity
has been used to prove lower bounds on the depth of monotone circuits for undirected connectivity
[KW88], time/space tradeoffs for cell probe data structures [Ajt88, Mil94], and lower bounds on space
complexity in streaming algorithms [AMS99, GM07, CJP08].

We focus on the comunication complexity of the multi-party pointer jumping problem in the number-
on-the-forhead model, introduced by Chandra, Furst, and Lipton [CFL83]. A series of works [Yao90,
HG91, BT94] has shown that a strong lower bound for any explicit functionf in this model would imply
that f 6∈ ACC

0. The pointer jumping problem is widely considered to be a good candidate for such a
lower bound.

1.1 The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jumping problem, all of which involve following a series of
directed edges in a graph. We study two variants of the multiplayer pointer jumping variety: a Boolean
versionMPJk and a non-Boolean version̂MPJk. In these settings, there is a graphGn

k , which hask + 1
layers of vertices. Layer0 contains a single vertexv0. Each layer1 ≤ i ≤ k − 1 containsn vertices. In
the Boolean version, layerk contains two vertices labelled0 and1. In the non-Boolean version, layerk
also containsn vertices. There are directed edges inGn

k for each vertex in layeri to each vertex in layer

∗Work supported in part by NSF grant CCF-0448277

1

Electronic Colloquium on Computational Complexity, Report No. 17 (2009)

ISSN 1433-8092




i+1. The input to the pointer jumping problem is a subgraph whereeach vertex (except those in layerk)
has outdegree1, and the goal is to output the unique vertex in layerk reachable from vertexv0. The NOF
communication version ofMPJk andM̂PJk work as follows: there arek playersPLR1, . . . , PLRk. The set
of edges from layeri−1 to layeri are written onPLRi’s forhead, and the players communicate in a fixed
orderPLR1, . . . , PLRk. PLRk ’s message is the output. Note that the order of the players isimportant: if
the players speak in an order other thanPLR1, PLR2, . . . , PLRk, then an easyO(log n) protocol exists.
As mentioned previously, proving lower bounds for this problem would have important consequences in
circuit complexity. Specifically, showing a polynomial lower bound on communication for deterministic
MPJk protocols for anyk = ω(polylog n) would show thatMPJk 6∈ ACC

0. Consult the work of Beigel
and Tarui [BT94] for more details.

There are a number of other variants to the pointer jumping problem. All of them operate by fol-
lowing pointers on a graph similar to the multi-party version. In thebipartite pointer jumping problem,
denotedBPJk, the input is a bipartite graph with directed edges between each of the parts, going in both
directions. Harvey [Har08] used lower bounds forBPJk to show lower bounds on the number of queries
needed to solve the matroid intersection problem. The graphfor the tree pointer jumping problem, de-
notedTPJk, is ad-ary tree, withd = O(n1/k−1). Viola and Wigderson [VW07] show lower bounds
of Ω(n1/k−1/kO(k)) for randomized protocols forTPJk. Note that the input toTPJk can be seen as a
restriction of the input toMPJk, so this lower bound applies toMPJk as well.

The remarkableΩ(n1/k−1/kO(k)) bound of Viola and Wigderson is tight forTPJk for all constant
k and is the best known lower bound forMPJk. Unfortunately, it says nothing whenk = ω(log n).
There are several stronger lower bounds forMPJk in restricted settings. There are also two nontrivial
upper bounds. In the non-Boolean case, the trivial protocol costsO(n log n) bits and hasPLR1 sending
PLR2 the input on his forhead, giving him all the input and allowing him to output the answer. Damm,
Junka, and Sgall [DJS98] give a deterministic protocol for̂MPJk which has costO(n log(k) n) for k ≤
log∗ n andO(n) for k > log∗ n.1 Their protocol is particularly interesting, because it is restricted in
two different ways. Firstly, players do not see the layers1, . . . , i − 1 “behind” them as they normally
would. Instead, they see only the result of following the pointers up to layeri. Damm et al. call this a
conservative protocol and give a deterministic lower bound for such protocols that matches their upper
bound up to a constant factor. Secondly, the players in the protocol of Damm et al. are restricted in what
inputs they see “ahead” of them: instead of seeing layersi + 1, . . . , k, PLRi sees only layeri + 1. Such
a protocol is calledmyopic. Gronemeier [Gro06] coined this term and gave aΩ(n(1−ε)/k log n) lower
bound forε-error protocols. Chakrabarti improved this lower bound toΩ(n/k) and proved a lower bound
of Ω(n log(k−1) n) for myopic M̂PJk protocols. Both bounds apply to randomsed protocols. Chakrabarti
also gives lower bounds ofΩ(n/k2) and Ω(n log(k−1) n) for randomized conservative protocols for
MPJk andM̂PJk respectively.

For MPJk, Brody and Chakrabarti [BC08] give a deterministic protocol for MPJk with cost
O
(
n(k log log n/ log n)1−1/(k−1)

)
, which disproved a long-standing conjecture that essentially nothing

nontrivial could be done forMPJk protocols. This is currently the only nontrivial protocol known for
MPJk. Their protocol showed thatMPJk is a deeper problem than origionally expected, and its commu-
nication complexity, even in the deterministic setting, remains an open and vexing problem. Improving
either the upper or lower bounds remains an interesting and difficult task.

1.2 Our Results

The protocol of Damm et al. is both myopic and conservative, but holds only forM̂PJk. The MPJk
protocol of Brody and Chakrabarti is neither. Our main result shows that there are no nontrivial myopic
protocols forMPJk. Specifically, we have

1We uselog(k) to denote thekth iterated logarithm ofn.

2



Theorem 1. In any deterministic myopic protocol for MPJk, some player PLRj must communicate at
least n/2 bits.

Using this result, we provide an exact bound on thetotal communication cost of myopicMPJk
protocols.

Corollary 2. A deterministic myopic protocol for MPJk must communicate at least n bits in total.

This shows that the best myopicMPJk protocol is the trivial one wherePLRk−1 sendsPLRk the last
layer of input, and other players communicate nothing. A closer inspection of the proof of Theorem 1
shows that there exists a decreasing functionφ : Z

+ → R
+, with limk→∞ φ(k) = 1/2, such that in

any deterministic protocol forMPJk, some player must communicate at leastφ(k)n bits. Our next result
shows that this lower bound on the maximum communication of myopic protocols is essentially tight.

Theorem 3. For all k ≥ 3, there exists a deterministic myopic protocol for MPJk in which each player
sends (1 + o(1))φ(k)n bits.

Our technique uses a round elimination lemma on a generalized version ofMPJk in which there are
m ≤ n vertices in the first layer of the graph. This method can also be applied toM̂PJk protocols.
Recall that Damm et al. gave a deterministic myopic protocolfor M̂PJk where each player sends at most
n log(k−1) n bits. Our technique gives a lower bound that nearly matches this.

Theorem 4. In any deterministic myopic protocol for M̂PJk, some player must communicate at least
n(log(k−1) n − log(k) n) bits.

Finally, we give a randomized bound on the maximum communication of randomized myopicMPJk
protocols. Chakrabarti gave a lower bound ofΩ(n/k) on thetotal communication of randomizedMPJk
protocols. This immediately yields a lower bound ofΩ(n/k2) on themaximum communication. We
give a similar but incomparable result.

Theorem 5. In any randomized myopic protocol for MPJk, some player must communicate at least
Ω(n/k log n) bits.

While this improves on the bound of Chakrabarti only fork ≥ log n players, we emphasize that this
is precisely the setting which would yield lower bounds in circuit complexity.

1.3 Organization

The rest of the paper is organized as follows. In Section 2 we introduce notation and formally define
the pointer jumping problem. In Section 3 we prove Theorems 1and 4 and Corollary 2. We prove
Theorem 3 in Section 4 and Theorem 5 in Section 5.

2 Preliminaties and Notation

For the rest of the paper, “protocols” will be assumed to be deterministic one-way NOF protocols unless
otherwise qualified. LetP be ak-player protocol in which playeri’s message has length̀i. Most of
our results concern themaximum communication of a protocol. We definecost(P) := max1≤i≤k `i. A
γ-bit protocol is a protocolP with cost(P) = γ. We also definetcost(P) := `1 + . . . + `k to be the
total communication cost of a protocol.

We now formally define the problemsMPJm,k andM̂PJm,k in a recursive fashion. We defineMPJm,2 :
[m] × {0, 1}m → {0, 1} asMPJm,2(i, x) := xi, wherexi denotes theith bit of the stringx. In a similar
fashion, we definêMPJm,2 : [m] × [n][m] → [n] as M̂PJm,2(i, f2) := f2(i). For k ≥ 3 we then define
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MPJm,k : [m]× [n][m] ×
(
[n][n]

)k−3
×{0, 1}n → {0, 1} andM̂PJm,k : [m]× [n][m] ×

(
[n][n]

)k−2
→ [n]

as follows:

MPJm,k(i, f2, f3, . . . , fk−1, x) := MPJn,k−1(f2(i), f3, . . . , fk−1, x) , for k ≥ 3

M̂PJm,k(i, f2, f3, . . . , fk) := M̂PJn,k−1(f2(i), f3, . . . , fk) , for k ≥ 3 .

It will be helpful, at times, to view strings in{0, 1}n as functions from[n] to{0, 1} and use functional
notation accordingly. Unrolling the recursion in the abovedefinitions, we see that, fork ≥ 2,

MPJm,k(i, f2, . . . , fk−1, x) = x ◦ fk−1 ◦ · · · ◦ f2(i) ; M̂PJm,k(i, f2, . . . , fk) = fk ◦ · · · ◦ f2(i) . (1)

The most natural formulation of this problem hasm = n. In this case, we dropn from the notation.
Previous work on multiplayer pointer jumping considered only MPJk andM̂PJk. In the next section, we
prove Theorem 1 by performing round elimination onMPJm,k and shrinkingm at each step.

For many of our results, we shall make use of the following sequences of numbers, all of which are
parameterized by someδ ∈ R

+ (possibly dependent onn andk) to be specified later. Leta0 := 0, and
for ` > 0, let a` := δ2a`−1. For all ` ≥ 0, let m` := n2−a` . Note thatm0 = n. Also, letφ(k) be the
leastδ such thatak−1 ≥ 1.

3 Proof of the Main Theorem

We now prove the lower bound on myopicMPJk protocols. We repeat the main theorem here for conve-
nience:

Theorem 6. (Precise restatement of Theorem 1). Let P be a myopic protocol for MPJk. Then, cost(P) >
n/2.

We prove this theorem by viewingMPJk as a special instance ofMPJm,k and by using a round
elimination lemma. First, we note thatMPJm,2 is just theINDEX problem onm bits. The one-way
communication complexity ofINDEX is well known; we state it here in terms ofMPJm,2.

Fact 7. If P is a protocol for MPJm,2, then cost(P) ≥ m.

The structure of our proof is as follows. We assume the existence of a protocol forMPJk in which
each player sends at mostδn bits. In the round elimination step, we show how to turn a protocol for
MPJm,k into a protocol forMPJm′,k−1 with the same cost, and withm′ < m. Repeating this step
k − 2 times, transforms theδn-bit protocol forMPJk into a δn-bit protocol forMPJm,2 with m > δn,
contradicting Fact 7.

The following simple definition and lemma provide the combinatorial hook that will permits the
round elimination step.

Definition 1. Let i ∈ [`] andF ⊆ [n]` be given. Therange of i in F , denotedRange(i,F), is defined
as:

Range(i,F) :=
⋃

f∈F

{f(i)}

Lemma 8. Let F ⊆ [n]` be given. If |F| ≥ m`, then there exists i ∈ [`] with |Range(i,F)| ≥ m.

Proof. We prove the contrapositive of this statement. Suppose that|Range(i,F)| < m for all i ∈ [`].
Without loss of generality, assume thatRange(i,F) ⊆ [m − 1] for eachi, and letG := {f : f(i) ≤
m− 1 for all i ∈ [`]}. Its clear thatF ⊆ G. Furthermore,|G| = (m− 1)`. Hence,|F| ≤ |G| < m`.
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Lemma 9 (Round Elimination Lemma). Let k ≥ 3. If there is a δn-bit protocol P for MPJm,k, then
there is a δn-bit protocol Q for MPJm′,k−1 with m′ = n · 2−δn/m.

Proof. In MPJm,k, PLR1’s input is a functionf2 : [m] → [n]. There arenm such functions. SincePLR1

sends at mostδn bits, he must send the same messageM on nm/2δn distinct f2. Let F be the set of
inputs for whichPLR1 sendsM . It follows that |F| ≥ nm/2δn = 2m log n−δn = 2m(log n−δn/m) =
2m log m′

= (m′)m. By Lemma 8, we must havei ∈ [m] with |Range(i,F)| ≥ m′. Fix such ani, and
let S := Range(i,F). Without loss of generality, assumeS = [m′]. 2

We are now ready to construct a protocol forMPJm′,k−1. Label the playersPLR2, . . . , PLRk. For
eachj ∈ [m′], the players agree on agj ∈ F such thatgj(i) = j. Then, on input(j, f3, . . . , fk−1, x),
players simulateP on input(i, gj , f3, . . . , fk−1, x). Clearly,cost(Q) = cost(P), and sincegj(i) = j,
we must haveMPJm,k(i, gj , f3, . . . , fk−1, x) = MPJm′,k−1(j, f3, . . . , fk−1, x).

Note that the reduction step in the round elimination lemma uses only the first two layers of input, so
the lemma can be applied to a much wider range of problems thanjust MPJm,k. In particular, the lemma
applies toM̂PJm,k exactly as stated.

Corollary 10. Let k ≥ 3. If there is a δn-bit protocol P for M̂PJm,k, then there is a δn-bit protocol Q
for M̂PJm′,k−1 with m′ = n · 2−δn/m.

Proof of Theorem 6. The main theorem follows by careful application of the roundelimination lemma.
SupposeP is a δn-bit myopic protocol forMPJk = MPJm0,k. By the Round Elimination Lemma,
a δn-bit protocol for MPJm`,z yields aδn-bit protocol for MPJm′,z−1, wherem′ = n · 2−δn/m` =

n · 2−δn/(n2−a` ) = n · 2−δ2a` = n · 2−a`+1 = m`+1. Applying the lemmak − 2 times, we transform
P into a δn-bit protocol for MPJmk−2,2. By Fact 7, we must haveδn ≥ mk−2 = n2−ak−2 , hence
1 ≤ δ2ak−2 = ak−1. Therefore, cost(P) ≥ φ(k)n. (Recall thatφ(k) is precisely the leastδ such that
ak−1 ≥ 1.)

We complete the proof by showing thatφ(k) > 1/2. Specifially, we claim that ifδ ≤ 1/2, then
a` < 1 for all ` > 0. We prove this claim by induction. In the base case,a1 = δ2a0 ≤ 1/2 < 1, and if
a` < 1, thena`+1 = δ2a` < (1/2) · 21 = 1. 2

Next, we show how to extend this to an exact lower bound for thetotal communication of myopic
protocols.

Corollary 11. For all m ≤ n, any myopic protocol P for MPJm,k must have tcost(P) ≥ m.

Proof. We prove this by induction onk. The base caseMPJm,2 is trivial. For the general case, assume
that for all m ≤ n, any protocol forMPJm,k−1 requiresm bits, and suppose there is a protocolP
for MPJm,k wherePLR1 sendsm1 bits. The reduction in Lemma 9 gives a protocolQ for MPJm′,k−1

wherem′ = n · 2−δn/m = n · 2−m1/m. By the induction hypothesis,tcost(Q) ≥ m′. Therefore,
tcost(P) ≥ m1 + m′. Next, note that

m1 + m′ < m ⇔ m1 + n · 2−m1/m < m (2)

⇔ n < 2m1/m(m − m1) (3)

⇔ n < 2αm(1 − α). (4)

whereα = m′/m ∈ [0, 1]. The functionf(x) = 2x(1− x) is decreasing on allx ∈ [0, 1], so it achieves
its maximal value atf(0) = 1. Hence inequality (4) becomesn < m. However, by assumption,m ≤ n,
so this cannot be true. Therefore,m1 + m′ ≥ m, completing the proof.

2Specifically, ifS 6= [m′], then fix a permutationπ ∈ Sn that maps (a subset of) S to[m′]. In Q, players agree ongj such
thatπ(gj(i)) = j and simulateP on input(i, gj , f3 ◦ π, . . . , fk−1, x). f3(j) = f3(π(gj(i))) = f3 ◦ π(gj(i)), and the rest of
the proof follows.
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Our main theorem shows that no matter how many players are involved, someone must send at least
φ(k)n > n/2 bits. For specifick, the constant factor can be improved. For example, aδn-bit protocol
for MPJ3 gives aδn-bit protocol forMPJm,2 with m = n ·2−δ . By Lemma 7, we must haven ·2−δ ≤ δn,
or δ2δ ≥ 1. Solving forδ gives a lower bound of≈ 0.6412n.

Next we give a similar theorem for̂MPJk.

Theorem 12. (Restatement of Theorem 4). Fix 2 ≤ k < log∗ n, and let P be a myopic protocol for
M̂PJk. Then, cost(P) ≥ n(log(k−1) n − log(k) n) bits.

As in the lower bound proof forMPJk, we begin with an easy lower bound for̂MPJm,2.

Fact 13. In any deterministic protocol for M̂PJm,2, PLR1 communicates at least m log n bits.

Theorem 12 is a direct consequence of the following lemma:

Lemma 14. If δ = log(k−1) n − log(k) n, then aj ≤ log(k−j) n − log(k+1−j) n for all 1 ≤ j < k. In
particular, ak−1 ≤ log n − log log n.

Proof. (by induction) Forj = 1, aj = a1 = δ = log(k−1) n − log(k) n = log(k−j) n − log(k+1−j) n.
For the induction step, we have

aj−1 ≤ log(k+1−j) n − log(k+2−j) n

= log

(
log(k−j) n

log(k+1−j) n

)

Therefore,2aj−1 ≤ log(k−j) n

log(k+1−j) n
, and

aj = δ2aj−1

≤
(
log(k−1) n − log(k) n

)( log(k−j) n

log(k+1−j) n

)

=
log(k−1) n log(k−j) n

log(k+1−j) n
−

log(k) n log(k−j) n

log(k+1−j) n

≤ log(k−j) n − log(k+1−j) n

where the last inequality is because the positive term is less thanlog(k−j) n, and the negative term is
greater thanlog(k+1−j) n, for all 2 ≤ j < k.

Proof of Theorem 12. Let δ = log(k−1) n − log(k) n. Suppose we have a protocol for̂MPJk in which
each player sendsδn bits. By Corollary 10, we have aδn-bit protocol forM̂PJmk−2,2. By Fact 13, such
a protocol costs at leastmk−2 log n bits. Hence, we must have

δn ≥ mk−2 log n ⇔ δn ≥ n2−ak−2 log n

⇔ δ2ak−2 ≥ log n

⇔ ak−1 ≥ log n

However, we know by Lemma 14 thatak−1 ≤ log n− log log n < log n, so we have a contradiction.
2
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4 An upper bound for Myopic protocols

The analysis for the lower bound in the previous section alsogives insight as to what myopic protocols
can do. Specifically, in a protocol forMPJm,k, we’d like PLR1’s message to givePLR2 enough informa-
tion so thatPLR2, . . . , PLRk can run a protocol forMPJm′,k−1 for somem′ < m. To do this, we need
PLR1’s messages to partition his input space so that for each of his messagesMj and for each1 ≤ i ≤ m,
the range size|Range(i,M1)| is small.

It turns out that just such a protocol is possible, and that the communication cost matches our lower
bound up to1 + o(1) factors. To aid in the analysis of this protocol, we need the following covering
lemma.

Definition 2. We say a subsetT ⊆ [m]d is isomorphic to[m′]d and writeT ∼= [m′]d if T = T1×· · ·×Td

for setsT1, . . . , Td ⊆ [m], each of sizem′.

Lemma 15. (Covering Lemma). For integers d,m,m′ < m ∈ Z>0, let Um,d := [m]d, and Sm′,d :=

{T ⊆ Um,d : T ∼= [m′]d}. Then there exists a set C ⊆ Sm′,d of size |C| ≤ (m/m′)d · d ln m + 1 such
that ∪T∈CT = Um,d. We say that C coversUm,d and call C an m′-covering of Um,d.

Proof. We use the probabilistic method. Fixr > (m/m′)d d ln m, and pickT1, . . . , Tr independently
and uniformly at random fromSm′,d. Note that pickingT in this way amounts to pickingd [m′]-subsets
of [m] independently and uniformly at random. Therefore, for anyp ∈ Um,d, we havePr[p ∈ T ] =

(m′/m)d. For eachp ∈ Um,d, let BADp :=
∧

1≤j≤r(p 6∈ Tj) be the event thatp is not covered by any
setTj. Also, letBAD :=

∨
p∈Um,d

BADp be the event thatsome p is not covered. From the probability

calculation above, and using the fact that1 + x ≤ ex, we havePr[BADp] =
(
1 − (m′/m)d

)r
≤

e−r(m′/m)d

. By the union bound, we havePr[BAD] ≤ md Pr[BADp] ≤ ed ln m−r(m′/m)d

. Recall that
r > (m/m′)d · d ln m, sod ln m − r(m′/m)d < d ln m − d ln m = 0. Hence,Pr[BAD] < e0 = 1.
Therefore, there must exist a set{T1, . . . , Tr} of sets isomorphic to[m′]d that coverUm,d.

Theorem 16. For all k ≥ 3, there exists a deterministic protocol for MPJk in which each player sends
φ(k)n(1 + o(1)) bits.

Proof. We prove this by construction. As a warmup, we give a(0.65n)-bit max-communication protocol
for MPJ3. Later, we show how to generalize this to more than3 players. Recall that we have aφ(3)n-bit
lower bound forMPJ3, whereφ(3) ∼ 0.6412 is the unique real numberδ such thata2 = δ2δ = 1. In
advance, the players fix a[0.65n]-coveringC of [n][n]. On input(i, f2, x), PLR1 sendsT ∈ C such that
f2 ∈ T . PLR2 seesi, x andT , and sendsxj for all j ∈ Range(i, T ). PLR3 seesi, f2 and recoversxf2(i)

from PLR2’s message.
In terms of communication cost,PLR1 sendslog |C| bits. By Lemma 15,|C| ≤ (n/0.65n)n ·n ln n+

1, hencePLR1 sendslog |C| = n log(1/0.65)(1 + o(1)) < 0.65n bits. PLR2 sends one bit for each
j ∈ Range(i, T ). SinceT ∼= [0.65n]n, we must have|Range(i, T )| ≤ 0.65n. Hence,PLR2 sends at
most0.65n bits, and the maximum communication cost is also0.65 bits.

For the general case, we construct a protocolP for MPJk as follows. Fixδ := φ(k), and for each
0 ≤ j ≤ k − 2, players agree in advance on a[mj+1]-covering setCj+1 for Un,mj

. Note that by the
covering lemma,log |Cj+1| = mj log(n/mj+1)(1 + o(1)). Also note that

mj log(n/mj+1) = n2−aj log
(
n/n2−aj+1

)

= −n2−aj log(2−aj+1)

= n2−ajaj+1

= n2−aj (δ2aj )

= δn.
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On input (i, f2, . . . , fk−1, x), the players proceed as follows.PLR1 seesf2 ∈ [n][n] and picks
T1 ∈ C1 that containsf2. PLR1 communicatesT1 to the rest of the players.

PLR2 seesi ∈ [m], f3 ∈ [n][n], andT1. Fromi andT1, PLR2 computesR2 := Range(i, T1). Note
that sinceT1 is an [m1] covering,|Range(i, T1)| = m1 for all i. Without loss of generality, assume
R2 = [m1]. Let f∗

3 be f3 restricted to the domainR2. Note thatf∗
3 is a function[m1] → [n], so

f∗
3 ∈ Un,m1. PLR2 picksT2 ∈ C2 that containsf∗

3 and communcatesT2 to the rest of the players.
Generalizing,PLRj computesRj := Range(fj−1 ◦ · · · ◦ f2(i), Tj−1), which has sizemj−1 because

Tj−1 ∈ Cj−1. Noting thatfj restricted toRj is an element inUn,mj−2 , PLRj picksTj ∈ Cj that contains
fj and commicates this to the rest of the players.

PLRk−1 computesRk−1 := Range(fk−2 ◦ · · · ◦ f2(i), Tk−2) and sendsxr for eachr ∈ Rk−1. PLRk

computesr∗ := fk−1 ◦ fk−2 ◦ · · · ◦ f2(i) and recoversxr∗ from PLRk−1’s message.
For each1 ≤ j ≤ k − 2, PLRj sendslog |Cj+1| = δn(1 + o(1)) bits. PLRk−1 sends one bit

for eachj ∈ Rk−1. By construction,|Rk−1| ≤ mk−2. Choosingδ to be the smallest real such that
δ2ak−2 = ak−1 ≥ 1 ensures thatmk−2 ≤ δn.

In conclusion, we have a protocolP where each player sendsδn(1 + o(1)) bits, whereδ is the
smallest real such thatak−1 ≥ 1. Note that this choice ofδ exactly matches our lower bound.

5 Randomizing the Lower Bound

Theorems 6 and 12 give strong lower bounds for deterministicprotocols forMPJk andM̂PJk respectively.
In this section, we show that our technique can also be used toshow lower bounds on the randomized
complexity ofMPJk.

Previously, Chakrabarti [Cha07] showed randomized lower bounds ofΩ(n/k) andΩ(n log(k−1) n)
for MPJk andM̂PJk rescpectively. The bound for̂MPJk is for the maximum communication and is tight.
The bound forMPJk is for the total communication; this bound implies anΩ(n/k2) lower bound on the
maximum communication. In contrast, we achieve:

Theorem 17. In any randomized myopic protocol for MPJk, some player must communicate at least
Ω(n/k log n) bits.

Our lower bound improves on the bound from [Cha07] fork = Ω(log n). To prove this lower bound,
we give a round elimination lemma forε-error distributional protocols forMPJm,k. Our “base case” is a
lower bound on theε-error distributional complexity ofMPJm,k, due to Ablayev [Abl96]:

Fact 18. Any protocol for MPJm,2 that errs on at most an ε-fraction of the inputs distributed uniformly
must communicate at least m (1 − H(ε)) bits.

Lemma 19 (Round Elimination Lemma). Let k ≥ 3. If there is a δn-bit, ε-error distributional
protocol P for MPJm,k, then there is a δn-bit, ε̂-error distributional protocol Q for MPJm′,k−1 with
m′ = n · 2−2δ n

m and ε̂ = 2nε.

Proof. For the sake of notation, we letz := (f3, . . . , fk−1, x), so the input toMPJm,k is (i, f2, z). Let
P(i, f2, z) denote the output ofP on input(i, f2, z). Let

α(i, f2, z) :=

{
1 if P(i, f2, z) 6= MPJm,k(i, f2, z)
0 otherwise

SinceP is anε-error protocol, we haveEi,f2,z[α(i, f2, z)] = ε. Now, letα̂(i, f2) := Ez[α(i, f2, z)],
and call(i, f2) bad if α̂(i, f2) > 2nε; otherwise, call(i, f2) good. Clearly,Ei,f2[α̂(i, f2)] =
Ei,f2,z[α(i, f2, z)] = ε, so by Markov’s inequality, we getPr[(i, f2) is bad] < 1/2n. Now, let

β(i, f2) :=

{
1 if (i, f2) is bad
0 otherwise
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Also, let β̂(f2) = Ei[β(i, f2)]. Call f2 bad if β̂(i, f2) ≥ 1/n, and callf2 good otherwise. Note
thatEf2 [β̂(f2)] = Ei,f2[β(i, f2)] < 1/(2n), so by another application of Markov’s inequality, we get
Pr[f2 is bad] < 1/2. Therefore,f2 is good with probability at least1/2.

Note that iff2 is good, thenPri[(i, f2) is good] < 1/n. Furthermore, if(i, f2) were good for even a
singlei, then we would havePri[(i, f2)is good] ≥ 1/n. Therefore,(i, f2) is good forevery i whenever
f2 is good.

The rest of this lemma closely follows the deterministic version. There arenm functionsf2 : [m] →
[n]. Since at least half the functionsf2 aregood, there must be at leastnm/2 goodf2. SincePLR1 sends
at mostδn bits, he must send the same messageM1 on n/(2 · 2δn) distinct good f2. Let F be the set
of good inputs for whichPLR1 sendsM1. It follows that|F| ≥ nm

2·2δn = 2m log n−1−δn > 2m log n−2δn =
(m′)m. By Lemma 8, we must havei ∈ [m] with |Range(i,F)| ≥ m′. Furthermore, everyf ∈ F is
good, so(i, f) is good for all f ∈ F . Construct a protocolQ for MPJm′,k−1 as we did in Lemma 9. As
in Lemma 9, the cost ofQ remains equal to the cost ofP, MPJm,k(i, gj , z) = MPJm′,k−1(j, z), and that
Q(j, z) = P(i, gj , z). Finally, we get

Pr
j,z

[Q(i, z) 6= MPJm′,k−1(j, z)] = Pr
j,z

[P(i, gj , z) 6= MPJm,k(i, gj , z)]

= Pr
j,z

[α(i, gj , z) = 1]

≤ 2nε

where the inequality holds because(i, gj) is good for everyj.

Proof of Theorem 17. Let ε = 1/3 andδ = 1/32, and suppose anε-error randomized protocol forMPJk
exists where each player sends at mostt = n

48δ ln 2(log 3+(k−2) log(2n)) = Ω( n
k log n) bits. By Chernoff

bounds, there exists an̂ε := ε (2n)−(k−2)-error randomized protocolP for MPJk, where each player
sendsδn bits. By Yao’s minimax lemma, there is a deterministic protocol where each player sendsδn
bits that errs on an̂ε fraction of inputs, distributed uniformly.

Set a0 = 0, a` = 2δ2a`−1 , andm` = n2−a` . Note thata0 < 1/8, and if a`−1 < 1/8, then
a` = 2δ2a`−1 < 1/8, so by induction,a` < 1/8 for all `. Using Lemma 19k− 2 times, we get aδn-bit,
ε-error protocol forMPJmk−2,2. Combining this with Fact 18, we get

δn ≥ mk−2 (1 − H(1/3)) ⇔ δn ≥ n2−ak−2 (1 − H(1/3))

⇔ δ2ak−2 ≥ 1 − H(1/3)

⇔ ak−1/2 ≥ 1 − H(1/3)

However, we have already seen thatak−1/2 < 1/16 < 1 − H(1/3), so this is a contradiction.2

6 Concluding Remarks

In this paper, we characterize the power of deterministic myopic protocols forMPJk. We have shown
that it is essentially necessary and sufficient for each player to sendn/2 bits of communication. When
considering the total communication of a protocol, we show that the trivial protocol is the best myopic
protocol possible. Finally, we show how to randomize our result. We hope this provides another concrete
step towards showing thatMPJk 6∈ ACC

0.
Several questions relating to pointer jumping remain. It remains open whetherMPJk ∈ ACC

0 or
not. More generally, the gap between the upper and lower bounds on the communication complexity
remain large. Based on the bounds in this and other work, it appears that randomization does not help
this problem much; however, that remains a conjecture. It would be interesting to know if there are
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any randomized protocols for any pointer jumping problem (even with any input restriction) that are
significantly better than the known deterministic lower bounds.

The current lower bounds seem to rely heavily on restrictions to either the input model or which
parts of the input are seen by each player. This work relies heavily on the fact that each player sees
only a single layer of input in front of them. The technique ofViola and Wigderson is dependent on a
tree-structure to the inputs. Relaxing either of these restrictions might prove fruitful.
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