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Abstract

We study the one-way number-on-the-forhead (NOF) comnatioic complexity of the:-layer
pointer jumping problem. Strong lower bounds for this pesbiwould have important implications
in circuit complexity. All of our results apply to myopic piarols (where players see only one layer
ahead, but can still see arbitrarily far behind them.) Femtiore, our results apply to the maximum
communication complexity, where a protocol is charged liembaximum communication sent by a
single player rather than thetal communication sent by all players.

Our main result is a lower bound ef/2 bits for deterministic protocols, independent of the
number of players. We also provide a matching upper boundedisas an(2 (n/klogn) lower
bound for randomised protocols, improving on the bounds ledkEabarti [Cha07]. In the non-
Boolean version of the problem, we give a lower bound @bg'“ ) n)(1 — o(1)) bits, essentially
matching the upper bound from Damm et al. [DJS98].

1 Introduction

Communication complexity has been an important technigyeadving lower bounds in a wide variety
of areas, including settings that do not involve commuidcatSpecifically, communication complexity
has been used to prove lower bounds on the depth of monotonétsifor undirected connectivity

[KW88], time/space tradeoffs for cell probe data strucirjt88, Mil94], and lower bounds on space
complexity in streaming algorithms [AMS99, GM07, CJP08].

We focus on the comunication complexity of the multi-partyrper jumping problem in the number-
on-the-forhead model, introduced by Chandra, Furst, aptbhi[CFL83]. A series of works [Ya090,
HG91, BT94] has shown that a strong lower bound for any eixfilioction f in this model would imply
that f ¢ ACCY. The pointer jumping problem is widely considered to be adgoandidate for such a
lower bound.

1.1 The Pointer Jumping Problem and Previous Results

There are a number of variants of the pointer jumping problhof which involve following a series of
directed edges in a graph. We study two variants of the najtgy pointer jumping variety: a Boolean
versionMpJ, and a non-Boolean versionPJ;. In these settings, there is a gra@ll, which hask + 1
layers of vertices. Laye¥ contains a single vertex,. Each layen < i < k — 1 containsn vertices. In
the Boolean version, layér contains two vertices labellgdand1. In the non-Boolean version, laygr
also containg: vertices. There are directed edgesiif for each vertex in layeito each vertex in layer
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i+ 1. The input to the pointer jumping problem is a subgraph wkarh vertex (except those in layar
has outdegreg, and the goal is to output the unique vertex in lalyeeachable from vertey. The NOF
communication version afiry, andmpJ, work as follows: there arg playerspLRy, ..., PLR;. The set

of edges from layer— 1 to layeri are written orPLR;'s forhead, and the players communicate in a fixed
orderpPLRy,...,PLR;. PLR;'S message is the output. Note that the order of the playénsgsrtant: if
the players speak in an order other tham, PLRy, ..., PLR, then an easy)(logn) protocol exists.
As mentioned previously, proving lower bounds for this peof would have important consequences in
circuit complexity. Specifically, showing a polynomial lewbound on communication for deterministic
MPJ; protocols for anyk = w(polylog n) would show thampy, ¢ ACC®. Consult the work of Beigel
and Tarui [BT94] for more details.

There are a number of other variants to the pointer jumpiglpm. All of them operate by fol-
lowing pointers on a graph similar to the multi-party versién thebipartite pointer jumping problem,
denotedsPy;, the input is a bipartite graph with directed edges betweeh ef the parts, going in both
directions. Harvey [Har08] used lower bounds #®J, to show lower bounds on the number of queries
needed to solve the matroid intersection problem. The gi@pthe tree pointer jumping problem, de-
noted TP, is ad-ary tree, withd = O(nl/k—l). Viola and Wigderson [VWO07] show lower bounds
of Q(n'/k=1/kO®)) for randomized protocols forpy,. Note that the input tapy, can be seen as a
restriction of the input tampPJ;, so this lower bound applies torJ, as well.

The remarkable(n'/*~1 /k°*)) bound of Viola and Wigderson is tight fary, for all constant
k and is the best known lower bound farg,. Unfortunately, it says nothing wheln = w(logn).
There are several stronger lower boundsnier, in restricted settings. There are also two nontrivial
upper bounds. In the non-Boolean case, the trivial protocol cOgtslog n) bits and ha®LR; sending
PLRy the input on his forhead, giving him all the input and allogvimim to output the answer. Damm,
Junka, and Sgall [DJS98] give a deterministic protocolex;, which has cosO(n log™*) n) for k <
log*n andO(n) for k > log*n.! Their protocol is particularly interesting, because itéstricted in
two different ways. Firstly, players do not see the layers . ,i — 1 “behind” them as they normally
would. Instead, they see only the result of following thenpeis up to layei. Damm et al. call this a
conservative protocol and give a deterministic lower bound for such prote that matches their upper
bound up to a constant factor. Secondly, the players in thipol of Damm et al. are restricted in what
inputs they see “ahead” of them: instead of seeing layers, ..., k, PLR; sees only layef + 1. Such
a protocol is callednyopic. Gronemeier [Gro06] coined this term and gav@(az(l—e)/k logn) lower
bound fore-error protocols. Chakrabarti improved this lower bounf{e /%) and proved a lower bound
of Q(nlog®*~Y n) for myopicMPJ, protocols. Both bounds apply to randomsed protocols. Giiiti
also gives lower bounds &®(n/k2?) and Q(nlog*~Y n) for randomized conservative protocols for
MPJ, andMPJ, respectively.

For mpPJ,, Brody and Chakrabarti [BCO08] give a deterministic proidoo mpJ;, with cost
O (n(kloglogn/log n)'~¥/*=1) which disproved a long-standing conjecture that essgntiathing
nontrivial could be done fompPJ; protocols. This is currently the only nontrivial protocatdwn for
MPJ;. Their protocol showed thatpry, is a deeper problem than origionally expected, and its commu
nication complexity, even in the deterministic settingnaéns an open and vexing problem. Improving
either the upper or lower bounds remains an interesting dficlidt task.

1.2 Our Results

The protocol of Damm et al. is both myopic and conservative, Holds only formPJ,. The MPJ,
protocol of Brody and Chakrabarti is neither. Our main reshibws that there are no nontrivial myopic
protocols formpJ,. Specifically, we have

We uselog® to denote thésth iterated logarithm ofe.



Theorem 1. In any deterministic myopic protocol for MPJ,, some player PLR; must communicate at
least n/2 bits.

Using this result, we provide an exact bound on thi@l communication cost of myopispPJ,
protocols.

Corollary 2. A deterministic myopic protocol for MPJ, must communicate at least n bitsin total.

This shows that the best myopwrJ,, protocol is the trivial one whereLr,_; sendsPLR,, the last
layer of input, and other players communicate nothing. Aetdnspection of the proof of Theorem 1
shows that there exists a decreasing functionZ™ — R, with limy_,., #(k) = 1/2, such that in
any deterministic protocol fanprJ,, some player must communicate at leaSt)n bits. Our next result
shows that this lower bound on the maximum communicationyaipit protocols is essentially tight.

Theorem 3. For all £ > 3, there exists a deterministic myopic protocol for MPJ; in which each player
sends (1 + o(1))¢(k)n bits.

Our technique uses a round elimination lemma on a genedakzesion ofvPJ, in which there are
m < n vertices in the first layer of the graph. This method can als@plied tomPJ, protocols.
Recall that Damm et al. gave a deterministic myopic protémolpPJ, where each player sends at most
nlog®*=Y n bits. Our technique gives a lower bound that nearly matdtiss t

Theorem 4. In any deterministic myopic protocol for MPJ,, some player must communicate at least
n(log® Y n —log™ n) bits.

Finally, we give a randomized bound on the maximum commtioicaf randomized myopi®PJ;
protocols. Chakrabarti gave a lower boundXf. /%) on thetotal communication of randomizedpJ,
protocols. This immediately yields a lower bound$®fn /k?) on themaximum communication. We
give a similar but incomparable result.

Theorem 5. In any randomized myopic protocol for MPJ;, some player must communicate at least
Q(n/klogn) bits.

While this improves on the bound of Chakrabarti only for log n players, we emphasize that this
is precisely the setting which would yield lower bounds irtait complexity.

1.3 Organization

The rest of the paper is organized as follows. In Section 2ntreduce notation and formally define
the pointer jumping problem. In Section 3 we prove Theorenamd 4 and Corollary 2. We prove
Theorem 3 in Section 4 and Theorem 5 in Section 5.

2 Preliminaties and Notation

For the rest of the paper, “protocols” will be assumed to herdainistic one-way NOF protocols unless
otherwise qualified. LeP be ak-player protocol in which playei's message has length. Most of
our results concern thaaximum communication of a protocol. We defirest(P) := maxj<;<j ;. A
~-bit protocol is a protocoP with cost(P) = v. We also definecost(P) := ¢1 + ... + ¢ to be the
total communication cost of a protocol.

We now formally define the problemsrJ,,, ;. andM/P\Jm,k in a recursive fashion. We definerJ,, o :
[m] x {0,1}™ — {0, 1} asMPJ,, 2(i, x) := z;, wherex; denotes théth bit of the stringz. In a similar
fashion, we defin@1Py,, » : [m] x [n]™ — [n] asMPI,, (4, f2) := fa(i). Fork > 3 we then define



MPJ, i : [m] x [n][m] X ([n][”])k_3 x {0,1}" — {0,1} andﬁP\Jmk s [m] x [n][m] X ([n][”])k_2 — [n]

as follows:

MPJm,k(i7f27f37 cee 7fk717x) = MP‘Ll,k*l(fQ(i)vf?n' .. 7fk717x)7 for k Z 3
MF‘]?n,k(’i’vaf?n' .. 7fk) = W‘]n,kfl(fé(i)?f?n' .- 7fk)7 for k Z 3.

It will be helpful, at times, to view strings if0, 1}" as functions fronin| to {0, 1} and use functional
notation accordingly. Unrolling the recursion in the abdedinitions, we see that, fér > 2,

MP‘]m,k‘(/L'af2a"'afk—1)x) = .Iofk_10°°’0f2(’i); MF?‘Jm,k(/L'7f2a"'afk) = fk.OOf2('L) (1)

The most natural formulation of this problem has= n. In this case, we drop from the notation.
Previous work on multiplayer pointer jumping consideretyanrJ, andmpPJ;. In the next section, we
prove Theorem 1 by performing round eliminationmnJ,, ;. and shrinkingn at each step.

For many of our results, we shall make use of the followinguseges of numbers, all of which are
parameterized by somiec R* (possibly dependent omandk) to be specified later. Let, := 0, and
for ¢ > 0, leta, := 02%~!. For all¢ > 0, letm, := n2-%. Note thatmy = n. Also, let¢(k) be the
leastd such thaty,_1 > 1.

3 Proof of the Main Theorem

We now prove the lower bound on myopieJ,, protocols. We repeat the main theorem here for conve-
nience:

Theorem 6. (Precise restatement of Theorem 1). Let P be a myopic protocol for MPJ;. Then, cost(P) >
n/2.

We prove this theorem by viewingprJ, as a special instance ofPJ,, , and by using a round
elimination lemma. First, we note thatrJ,, 5 is just theINDEX problem onm bits. The one-way
communication complexity aNDEX is well known; we state it here in terms @PJ,, ».

Fact 7. If P isa protocol for MPJ,, 2, then cost(P) > m.

The structure of our proof is as follows. We assume the extgtef a protocol fompJ, in which
each player sends at mast bits. In the round elimination step, we show how to turn a geot for
MPJ,, ;; into a protocol formpy,, ,_; with the same cost, and with'’ < m. Repeating this step
k — 2 times, transforms thén-bit protocol formpJ, into a dn-bit protocol formpJ,, o with m > on,
contradicting Fact 7.

The following simple definition and lemma provide the conatarial hook that will permits the
round elimination step.

Definition 1. Leti € [¢] andF C [n]‘ be given. Theange of i in F, denotedRange(i, F), is defined
as:
Range(i, F) == | J {f(0)}

feF
Lemma 8. Let F C [n]* begiven. If || > m¢, then there exists i € [¢] with | Range(i, F)| > m.

Proof. We prove the contrapositive of this statement. Suppose thatge(i, F)| < m for all i € [¢].
Without loss of generality, assume tHatnge(i, ) C [m — 1] for eachi, and letG := {f : f(i) <
m — 1foralli € [£]}. Its clear thatF C G. Furthermore|G| = (m — 1)*. Hence|F| < |G| <mf. O



Lemma 9 (Round Elimination Lemma). Let £ > 3. If thereis a dn-bit protocol P for MPJ,, ;, then
thereis a dn-bit protocol Q for MPJ,,s .y withm’ = n - 279/™,

Proof. In MPJ,, , PLR;’S input is a functionfs : [m] — [n]. There arex™ such functions. SinceLRr;
sends at mosin bits, he must send the same messag®n n™ /29" distinct f,. Let F be the set of
inputs for whichPLR; sendsM. It follows that |F| > n™ /2" = gmlogn—dn — gm(ogn—dn/m) _
gmlogm’ — (/Y™ By Lemma 8, we must haviec [m] with | Range(i, F)| > m/. Fix such ani, and
let S := Range(i, F). Without loss of generality, assunte= [m/]. ?

We are now ready to construct a protocol forJ, ;. Label the player®LR,,...,PLR;. For
eachj € [m/], the players agree on@ € F such thaty;(¢) = j. Then, on inpu(j, fs, ..., fi—1,2),
players simulaté® on input(i, g;, f3, ..., fr—1, ). Clearly,cost(Q) = cost(P), and sincey; (i) = j,
we must havenprd,, i (4, g;, f3,. .., fi—1,2) = MPIy 14, f3, .- -, fr—1, ). O

Note that the reduction step in the round elimination lems®swnly the first two layers of input, so
the lemma can be applied to a much wider range of problemsjtiséxpJ,, ;.. In particular, the lemma
applies toMFTJmJC exactly as stated.

Corollary 10. Let & > 3. If thereis a dn-bit protocol P for WJm,k, then there is a dn-bit protocol Q
for MPJ, k1 Withm/ = n - 277/m,

Proof of Theorem 6. The main theorem follows by careful application of the roetfichination lemma.
SupposeP is a dn-bit myopic protocol formpJ, = MPJ,, . By the Round Elimination Lemma,
a dn-bit protocol for mpJy,,, . yields adn-bit protocol for MpJ,, .1, wherem’ = n - 9—on/me —
n - 2700/ (27%) — gy L 9=02% — 9= =, . Applying the lemma: — 2 times, we transform
P into aén-bit protocol formpy,,, , .. By Fact 7, we must havén > m;_p = n27%-2, hence
1 < §2%-2 = qi_;. Therefore, cogP) > ¢(k)n. (Recall thatp(k) is precisely the least such that
ap—1 > 1))

We complete the proof by showing thatk) > 1/2. Specifially, we claim that i# < 1/2, then
ay < 1forall £ > 0. We prove this claim by induction. In the base case= 02% < 1/2 < 1, and if
ar < 1,thenayy = 62% < (1/2) -2t =1. 0

Next, we show how to extend this to an exact lower bound forttdked communication of myopic
protocols.

Corollary 11. For all m < n, any myopic protocol P for MPJ,, ,, must have tcost(P) > m.

Proof. We prove this by induction oh. The base casaprJ,, » is trivial. For the general case, assume
that for allm < n, any protocol formpJ,, 1 requiresm bits, and suppose there is a proto@ol
for MPJ,, . wherePLR; sendsm; bits. The reduction in Lemma 9 gives a proto@lfor MpPJ,, ;.1
wherem’ = n - 279/m = p.2=m1/m_ By the induction hypothesigcost(Q) > m’. Therefore,
tcost(P) > my + m'. Next, note that

mi+m <m < mp+n-27""<m 2
& n<2™/™(m = my) (3)
< n<2m(l —a). 4

wherea = m//m € [0, 1]. The functionf(z) = 2*(1 — z) is decreasing on ait € [0, 1], so it achieves
its maximal value af (0) = 1. Hence inequality (4) becomes< m. However, by assumptiom; < n,
so this cannot be true. Therefore; + m’ > m, completing the proof. O

2gpecifically, ifS # [m/], then fix a permutatiom € S, that maps (a subset of) Sfa']. In Q, players agree og; such
thatm(g;(¢)) = 7 and simulateP on input(s, g;, fsom, ..., fi—1, ). f3(4) = f3(7(g;(i))) = f3 om(g;(¢)), and the rest of
the proof follows.



Our main theorem shows that no matter how many players apdvet, someone must send at least
»(k)n > n/2 bits. For specifid;, the constant factor can be improved. For examplg;-ait protocol
for MPJ; gives ajn-bit protocol formpJg,, » with m = n-2-%. By Lemma 7, we must have- 279 < dn,
or §2° > 1. Solving foré gives a lower bound of 0.6412n.

Next we give a similar theorem forpJ;.

Theorem 12. (Restatement of Theorem 4). Fix 2 < k < log*n, and let P be a myopic protocol for
MPJ. Then, cost(P) > n(log® 1 n — log® n) bits.

As in the lower bound proof fompJ,, we begin with an easy lower bound ﬁap\am,g.
Fact 13. In any deterministic protocol for WJ,M, PLR; communicates at least m log n bits.
Theorem 12 is a direct consequence of the following lemma:

Lemma 14. 1f § = log®* =Y n — log® n, then a; < log® = n —log*+ =D pforal 1 < j < k. In
particular, a;_1 < logn — loglog n.

Proof. (by induction) Forj = 1, a; = a1 = § = log® Y n —log® n = log® =) n — logk+1=7) p,
For the induction step, we have

aj—1 < log(k+1_j) n— log(k+2_j) n
10g(k_j) n
= log 7log(k+1_j) -

ai 1Og(k*j) n
Therefore2%-1 < Tog T 1" and

a; = §2%

_ log(k*j)n
k—1 k
= (log( 'n - log( )n> <1Og(k+1j) n

log(k_l) n log(k_j) n log(k) n log(k_j) n

< 1Og(k‘*j) n — 10g(k+1*j) n

where the last inequality is because the positive term s tleanlog*~7) n, and the negative term is
greater tharog*+1=7) n, for all 2 < j < k. O

Proof of Theorem 12. Letd = log®* Y n — log® n. Suppose we have a protocol fiapJ, in which
each player send®: bits. By Corollary 10, we have é-bit protocol formpP3,,, , ». By Fact 13, such
a protocol costs at least;_5 logn bits. Hence, we must have

on >my_ologn < on>n2” % 2logn
& 02%-2 >logn
& ap—1 > logn

However, we know by Lemma 14 that | < logn —loglog n < logn, SO we have a contradiction.
O



4 An upper bound for Myopic protocols

The analysis for the lower bound in the previous section giges insight as to what myopic protocols
can do. Specifically, in a protocol fanprJy,, ., we'd like PLR;’S message to giveLR, enough informa-
tion so thatPLRy, ..., PLR; can run a protocol fompJ,, ,_; for somem’ < m. To do this, we need
PLR;'s messages to partition his input space so that for eactsohbssages/; and for each < i < m,
the range sizéRange(i, M7)| is small.

It turns out that just such a protocol is possible, and thectmmunication cost matches our lower
bound up tol + o(1) factors. To aid in the analysis of this protocol, we need tiling covering
lemma.

Definition 2. We say a subsét C [m]¢ is isomorphic tdm/]? and writeT = [m/]?if T =Ty x - - - x Ty
for setsTy, ..., T; C [m], each of sizen'.

Lemma 15. (Covering Lemma). For integers d,m,m’ < m € Zso, let Uy, 4 := [m]4, and Sy d =
{T CUpq:T = [m')%}. Thenthereexistsaset C C S, 4 of Size|C| < (m/m/)* - dlnm + 1 such
that UpecT = Uy, 4. We say that C coversid,, 4 and call C an m/-covering of Uy, 4.

Proof. We use the probabilistic method. Fix> (m/m’)ddln m, and pickTy, ..., T, independently
and uniformly at random frors,,, 4. Note that pickingl" in this way amounts to picking [m’]-subsets
of [m] independently and uniformly at random. Therefore, for any U,, 4, we havePrp € T| =
(m//m)?. For eachp € Un,a, 16t BAD,, == A\, ;. (p ¢ T}) be the event that is not covered by any
setT. Also, letBAD =/,  BAD, be the event thaibme p is not covered. From the probability

calculation above, and using the fact that- « < e*, we havePr[BAD,| = (1 - (m’/m)d>r <

e="(m'/m)" By the union bound, we haver[BAD] < m? Pr[BAD,] < edlnm=r(m'/m)*  Recall that
r > (m/m)* - dlnm, sodlnm — r(m'/m) < dlnm — dlnm = 0. Hence,Pr[BAD] < ¢ = 1.
Therefore, there must exist a 46, ..., 7,.} of sets isomorphic tm/]¢ that coveit,,, 4. O

Theorem 16. For all £ > 3, there exists a deterministic protocol for MPJ; in which each player sends
d(k)n(1 4+ o(1)) bits.
Proof. We prove this by construction. As a warmup, we gi@.85n)-bit max-communication protocol
for MpJ;. Later, we show how to generalize this to more tBaayers. Recall that we have3)n-bit
lower bound formpPJ;, where¢(3) ~ 0.6412 is the unique real numbersuch thatuy = 62° = 1. In
advance, the players fix[@.65n]-coveringC of [n]"l. On input(i, f», x), PLR; sendsT” € C such that
J2 € T. PLRy seesi, z andT', and sends;; for all j € Range(i, T'). PLR3 seesi, f> and recovers: s, ;
from PLRy's message.

In terms of communication costLR; senddog |C| bits. By Lemma 15|C| < (n/0.65n)" -nlnn+
1, hencePLR; sendslog |C| = nlog(1/0.65)(1 + o(1)) < 0.65n bits. PLRy sends one bit for each
j € Range(i,T). SinceT = [0.65n]™, we must have Range(i,T)| < 0.65n. Hence,PLRy sends at
most0.65n bits, and the maximum communication cost is dlstb bits.

For the general case, we construct a protdedbr mpJ; as follows. Fixd := ¢(k), and for each
0 < j < k — 2, players agree in advance orjra;1]-covering seC;, for U, ,,,. Note that by the
covering lemmalog |C;11| = m;log(n/m;11)(1 + o(1)). Also note that

mjlog(n/mjy1) = n27%log (n/n2-%+)
—n2”% log(27%+1)
n2_“jaj+1
n2~%(62%)

= in.



On input (i, f2, ..., fx_1, ), the players proceed as followsLR; seesf, € [n]" and picks
T, € C; that containgfs. PLR; communicated to the rest of the players.

PLRy Seesi € [m), f3 € [n]", andTy. Fromi andT}, PLRy computesRy := Range(i, T1). Note
that sinceT) is an[m;] covering,| Range(i, T7)| = m4 for all . Without loss of generality, assume
Ry = [my]. Let f5 be f3 restricted to the domaii®;. Note thatf; is a function[m;] — [n], so
f3 € Upm,. PLRy picks Ty € C, that containsfs and communcates, to the rest of the players.

GeneralizingPLR; computesRk; := Range(fj_1 oo fa(i),Tj—1), which has sizen;_; because
T;j1 € Cj—1. Noting thatf; restricted toR; is an element i/, ,,,,_,, PLR; picksT; € C; that contains
fj and commicates this to the rest of the players.

PLR;_1 computesRy_; := Range(fx_20---0 fa(i), Tx—2) and sends:, for eachr € Ry_1. PLRy,
computes™ := fi_j 0 fr_o0--- 0 fo(i) and recovers;,.- from PLR;_1'S message.

For eachl < j < k — 2, PLR; sendslog|Cj;+1| = dn(1 + o(1)) bits. PLR,_; sends one bit
for eachj € Ry_1. By construction,|R;_1| < my_5. Choosingd to be the smallest real such that
02%-2 = q;._1 > 1 ensures that,_s < on.

In conclusion, we have a protocé! where each player sends(1 + o(1)) bits, whered is the
smallest real such that,_; > 1. Note that this choice af exactly matches our lower bound. O

5 Randomizing the Lower Bound

Theorems 6 and 12 give strong lower bounds for determirnstitocols fompJ, andMPJ;, respectively.
In this section, we show that our technique can also be usshaw lower bounds on the randomized
complexity ofmMPJy.

Previously, Chakrabarti [Cha07] showed randomized loveemids ofQ2(n/k) andQ(n log* ) n)
for MmpJ, andmPJ, rescpectively. The bound forpPJ, is for the maximum communication and is tight.
The bound fompJ, is for the total communication; this bound implies @tv./k?) lower bound on the
maximum communication. In contrast, we achieve:

Theorem 17. In any randomized myopic protocol for MPJ;, some player must communicate at least
Q(n/klogn) bits.

Our lower bound improves on the bound from [ChaO7ifet Q2(logn). To prove this lower bound,
we give a round elimination lemma fererror distributional protocols fanpJj,, ;. Our “base case” is a
lower bound on the-error distributional complexity ofirJ,, 5, due to Ablayev [Abl96]:

Fact 18. Any protocol for MPJ,, » that errs on at most an e-fraction of the inputs distributed uniformly
must communicate at least m (1 — H (¢)) bits.

Lemma 19 (Round Elimination Lemma). Let £ > 3. If there is a dn-bit, e-error distributional
protocol P for MPJ,, 1, then there is a dn-bit, é-error distributional protocol Q for MPJ,, ;.1 with
m' =n-2"2% and ¢ = 2ne.

Proof. For the sake of notation, we let:= (fs,..., fx—1, ), S0 the input tampPJ,, . is (7, f2,2). Let
P(i, f2, z) denote the output dP on input(i, f2, z). Let

a(i, fa,2) = { L if P(i, f2, 2) # MPY, 1 (i, f2,2)

0 otherwise

SinceP is ane-error protocol, we hav&; ¢, .[a(i, f2, 2)] = €. Now, leta(i, f2) := E.[a(i, f2, 2)],
and call(i, fo) bad if &(i, f2) > 2ne; otherwise, calli, f2) good. Clearly,E; r,[a(i, f2)] =
Ei f,.z[a(i, f2, 2)] = €, s0 by Markov’s inequality, we gédtr{(i, f2) is bad] < 1/2n. Now, let

1 if (4, f2) is bad
0 otherwise

B, f2) = {



Also, let 3(f2) = Ei[83i, f2)]. Call fo bad if 3(i, f2) > 1/n, and callf, good otherwise. Note
thatEy, B(f2)] = Ei 1,[8(i, f2)] < 1/(2n), so by another application of Markov’s inequality, we get
Pr[f2 isbad] < 1/2. Therefore,fs is good with probability at least/2.

Note that if f2 is good, therPr;[(i, f2) is good] < 1/n. Furthermore, ifi, f2) were good for even a
singlei, then we would hav®r;[(i, f2)is good] > 1/n. Therefore i, f2) is good forevery i whenever
fo is good.

The rest of this lemma closely follows the deterministicsien. There are™ functionsfs : [m] —
[rn]. Since at least half the functiorfs aregood, there must be at leaat” /2 good f». SincePLR; sends
at mostin bits, he must send the same messagieon n/(2 - 2°7) distinctgood f». Let F be the set
of good inputs for whictPLR; sends)/;. It follows that|F| > 27; — gmlogn—1-dn -, gmlogn—20n _
(m’)™. By Lemma 8, we must havee [m] with | Range(i, F)| > m’. Furthermore, every € F is
good, so(i, f) is good for all f € F. Construct a protocol for MPJ,, ,_; as we did in Lemma 9. As
in Lemma 9, the cost of remains equal to the cost &, MPJ,, (i, g;, 2) = MPJ3,/ 1 _1(j, ), and that

Q(j,2) = P(i, g4, 2). Finally, we get

n

Pr{Q(i, 2) # MPI 5-1(J 2)] Pr[P(i, gj, 2) # MPIn. (i, 95, 2)]

— Prfa(i,g;,2) = 1

7,2
< 2ne
where the inequality holds becauSey;) is good for every;. O

Proof of Theorem17. Lete = 1/3 andé = 1/32, and suppose anerror randomized protocol fonpJ

exists where each player sends at nmost = Q(ﬁ) bits. By Chernoff

486 In 2(log 3+Tzk72) log(2n))
bounds, there exists ah:= ¢ (2n)_(’“‘2)-error randomized protocdP for mpPJ,, where each player
sendsin bits. By Yao’s minimax lemma, there is a deterministic poolowhere each player sends
bits that errs on aafraction of inputs, distributed uniformly.

Setayg = 0,a; = 262%-1, andm, = n2~%. Note thatag < 1/8, and ifa,—; < 1/8, then
ag = 262%-1 < 1/8, so by inductiong, < 1/8 for all £. Using Lemma 1% — 2 times, we get an-bit,
e-error protocol fompJ,,, , ». Combining this with Fact 18, we get

om>my_o(1—H(1/3)) & dn>n2"%2(1—-H(1/3))
& 622 > 1 - [(1/3)
& ap-1/2>1-H(1/3)

However, we have already seen that,/2 < 1/16 < 1 — H(1/3), so this is a contradictioriJ

6 Concluding Remarks

In this paper, we characterize the power of deterministiopit protocols fonmpJ,. We have shown
that it is essentially necessary and sufficient for eachepléy send:/2 bits of communication. When
considering the total communication of a protocol, we shioat the trivial protocol is the best myopic
protocol possible. Finally, we show how to randomize ouulte$Ve hope this provides another concrete
step towards showing thatrJ, ¢ ACCO.

Several questions relating to pointer jumping remain. mais open whethempJ, € ACCY or
not. More generally, the gap between the upper and lowerdson the communication complexity
remain large. Based on the bounds in this and other work pieas that randomization does not help
this problem much; however, that remains a conjecture. llle&vbe interesting to know if there are



any randomized protocols for any pointer jumping problewefewith any input restriction) that are
significantly better than the known deterministic lower hds.

The current lower bounds seem to rely heavily on restristitmeither the input model or which
parts of the input are seen by each player. This work reliesilyeon the fact that each player sees
only a single layer of input in front of them. The techniqueViddla and Wigderson is dependent on a
tree-structure to the inputs. Relaxing either of theseiotisins might prove fruitful.
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