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Abstract
We present an explicit construction of an e-bias generator that outputs
m bits using a seed shorter than %5 logm+ klog(1/e) + klog(k — 1) bits,
for any integer k > 2. This generator is a generalization of the geometric
generator considered in [ECCC, TR09-018], which can be obtained as the
special case k = 2.

Setting k = { 101;5717/”5 + 1-‘ yields a seed of length at most logm +

2y/logm - log(1/e)+2log(1/)+O(y/Tog m). Specifically, if ¢ > 27 Pelyloglogm
(e.g., if 1/¢ is polylogarithmic in m, or even constant), the seed length is
log m + O(v/logm).

We use the notations and definitions of [Tzu]. We generalize the geometric
generator (defined in Proposition 7 of [Tzu]) to use more variables. The con-
struction of [Tzu] is obtained as a special case by setting k£ = 2. Recall that this
construction is closely related (but not identical) to the powering construction
of [AGHP].

Construction 1. Forn,k,t € N, set{ = (tzlizl) We define é,(:) :GF(2M)F —
GF(2")¢ as the mapping that on input k elements a,br,... by_q € GF(2m™),
outputs all elements a - M(by,...,bg_1) for M some monomial of total degree
at most t.

We first show that indeed, the number of monomials of k¥ — 1 variables of
degree at most t is exactly (H,;]i;l) First, the number of monomials in k£ — 1
variables by, ...,bi_1 of total degree exactly t can be thought of as the number
of ways to choose t elements to multiply from the & — 1 different elements
bi,...,bk_1, ignoring order, which is (t‘};]if) If we want all monomials of total
degree at most t, we add the constant 1 as a k-th variable, to get (tzljzl)

We now follow the proof strategy of [Tzu] to establish resilience against

GF(2™)-linear tests:

Proposition 2. For every n,k,t € N, the generator C:',(:) s ﬁ-resilient to
GF(2™)-linear tests.
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Proof. Fix a nontrivial GF(2")-linear combination, ¢ = (¢y, ..., &) € GF(2")".
For a seed (&,by,...,b5_1) € GF(2"), the linear combination applied to the
output of G;ct) gives:
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with (M;){_, enumerating all monomials of k — 1 variables of degree at most ¢.
This defines a (k—1)-variate polynomial p(by, ..., bp_1) = Zle &i-M;(by, .. . bp_1)
of degree at most ¢. For every fixed ~(131, o be1) € GF(2")k~1 that is not a
root of p, the expression @ - p(by, ..., bx—1) is uniformly distributed in GF(2"),
when @ is uniformly distributed in GF(2"). Thus the statistical distance be-
tween the uniform distribution and the distribution induced by the expression

<E, ég)(d,gl,...,l;k,l)> over a uniformly selected seed (d,l;l,...,i)k,l) is at

most Pry 7 [p(by,...,br_1) = 0], which is at most £ since a (multivariate)
polynomial of degree ¢ can have at most ¢ roots. O

By Corollary 6 in [Tzu], we get that the binary version G,(:) has small bias:

Corollary 3. For everyn, k,t € N, the generator G,(:) : {0,1}™* — {0, 1}”'(tﬁil)

is a 2%—bia5 generator.

We analyze the parameters we have obtained: using a seed of nk bits we

output m =n - (H,;]:l) bits with bias ¢ = 2% Combining the two, we get

n n k—1
men. (TR (e-2 k-1 S o(k=1)(n—log(1/e)—log(k—1))
k-1 = k—1 :

using the inequality (7) > (£)*. This gives that n < 15 logm + log(1/e) +
log(k — 1), so the seed length nk is at most % logm +klog(1/e) + klog(k—1).

We have thus established

Theorem 4. For every e € (0,1) and integers m > 0 and k > 2, there exists an
explicit e-bias generator that generates m output bits with seed length at most
= logm + klog(1/e) + klog(k — 1) bits.

The expression %= logm + klog(1/¢) is minimized when k =  /; Olg(gf/ns) + 1.

Clearly, if logm < log(1/¢), then the minimal k = 2 (which is the original geo-
metric generator) yields the shortest seed. However, when log m is significantly
greater than log(1/e¢), it is clear that a larger k would give a shorter seed (since
the expression % decreases as k increases). Since k must be an integer (and

at least 2), we set k = [ lolg(gly/ns) + 1—‘, and get a seed of length at most
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bounded by

1 1 ~
1+ — logm—i—( Ogm+2>log(1/5)+0(\/logm),

logm log 1/e
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which can be simplified to

logm + 2+/logm - log(1/¢) + 2log(1/¢) + O(y/log m).
We have established

Corollary 5. For every ¢ € (0,1) and m € N there exists an explicit e-bias
generator that generates m output bits with a seed of length at most logm +
2¢/logm - log(1/e)+21log(1/)+O(y/Togm). Specifically, if e > 2~ polyloglogm >
2*O(Vlogm), this is logm + O(y/Togm).

Comparison to other generators. The standard explicit constructions of
[AGHP)] use a seed of length 2log m + 2log(1/e), which is longer than the above
if m is significantly greater than 1/e (explicitly, if /logm > 24/log(1/e) +
poly loglog m, i.e. m'=°(1) > ¢=%). We note that a construction of [NN] achieves
a shorter seed when m is significantly greater than 1/e: they obtain logm +
O(log(1/€)); however, our construction is simpler and more natural (as are the
constructions of [AGHP]).

Note that if the output length m is exponential in a “security parameter” n
(for example, but not necessarily, the field size), then ¢ > 27 Polyloglosm peang
e > 2~ polvloen  For instance, to get 2" bits with bias 1/ poly(n), we only need
n+ 0(\/77) bits of seed, as opposed to 2n bits in the original construction.
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