Using more variables in the geometric generator

Yoav Tzur*

September 29, 2009

Abstract

We present an explicit construction of an ε-bias generator that outputs m bits using a seed shorter than $\frac{k}{k-1} \log m+k \log (1 / \varepsilon)+k \log (k-1)$ bits, for any integer $k \geq 2$. This generator is a generalization of the geometric generator considered in [ECCC, TR09-018], which can be obtained as the special case $k=2$.

Setting $k=\left\lceil\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}+1\right\rceil$ yields a seed of length at most $\log m+$ $2 \sqrt{\log m \cdot \log (1 / \varepsilon)}+2 \log (1 / \varepsilon)+\tilde{O}(\sqrt{\log m})$. Specifically, if $\varepsilon \geq 2^{- \text {poly } \log \log m}$ (e.g., if $1 / \varepsilon$ is polylogarithmic in m, or even constant), the seed length is $\log m+\tilde{O}(\sqrt{\log m})$.

We use the notations and definitions of [Tzu]. We generalize the geometric generator (defined in Proposition 7 of [Tzu]) to use more variables. The construction of [Tzu] is obtained as a special case by setting $k=2$. Recall that this construction is closely related (but not identical) to the powering construction of [AGHP].

Construction 1. For $n, k, t \in \mathbb{N}$, set $\ell=\binom{t+k-1}{k-1}$. We define $\tilde{G}_{k}^{(t)}: G F\left(2^{n}\right)^{k} \rightarrow$ $G F\left(2^{n}\right)^{\ell}$ as the mapping that on input k elements $\tilde{a}, \tilde{b}_{1}, \ldots, \tilde{b}_{k-1} \in G F\left(2^{n}\right)$, outputs all elements $\tilde{a} \cdot M\left(\tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)$ for M some monomial of total degree at most t.

We first show that indeed, the number of monomials of $k-1$ variables of degree at most t is exactly $\binom{t+k-1}{k-1}$. First, the number of monomials in $k-1$ variables b_{1}, \ldots, b_{k-1} of total degree exactly t can be thought of as the number of ways to choose t elements to multiply from the $k-1$ different elements b_{1}, \ldots, b_{k-1}, ignoring order, which is $\binom{t+k-2}{k-2}$. If we want all monomials of total degree at most t, we add the constant 1 as a k-th variable, to get $\binom{t+k-1}{k-1}$.

We now follow the proof strategy of [Tzu] to establish resilience against $G F\left(2^{n}\right)$-linear tests:

Proposition 2. For every $n, k, t \in \mathbb{N}$, the generator $\tilde{G}_{k}^{(t)}$ is $\frac{t}{2^{n}}$-resilient to $G F\left(2^{n}\right)$-linear tests.
*Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel. Email: yoav.tzur@weizmann.ac.il. This research was partially supported by the Israel Science Foundation (grant No. 1041/08).

Proof. Fix a nontrivial $G F\left(2^{n}\right)$-linear combination, $\bar{c}=\left(\tilde{c}_{1}, \ldots, \tilde{c}_{\ell}\right) \in G F\left(2^{n}\right)^{\ell}$. For a seed $\left(\tilde{a}, \tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right) \in G F\left(2^{n}\right)^{k}$, the linear combination applied to the output of $G_{k}^{(t)}$ gives:

$$
\left\langle\bar{c}, \tilde{G}_{k}^{(t)}\left(\tilde{a}, \tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)\right\rangle=\sum_{i=1}^{\ell} \tilde{c}_{i} \cdot\left[\tilde{G}_{k}^{(t)}\left(\tilde{a}, \tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)\right]_{i}=\tilde{a} \cdot \sum_{i=1}^{\ell} \tilde{c}_{i} \cdot M_{i}\left(\tilde{b}_{1}, \ldots \tilde{b}_{k-1}\right)
$$

with $\left(M_{i}\right)_{i=1}^{\ell}$ enumerating all monomials of $k-1$ variables of degree at most t. This defines a $(k-1)$-variate polynomial $p\left(\tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)=\sum_{i=1}^{\ell} \tilde{c}_{i} \cdot M_{i}\left(\tilde{b}_{1}, \ldots \tilde{b}_{k-1}\right)$ of degree at most t. For every fixed $\left(\tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right) \in G F\left(2^{n}\right)^{k-1}$ that is not a root of p, the expression $\tilde{a} \cdot p\left(\tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)$ is uniformly distributed in $G F\left(2^{n}\right)$, when \tilde{a} is uniformly distributed in $G F\left(2^{n}\right)$. Thus the statistical distance between the uniform distribution and the distribution induced by the expression $\left\langle\bar{c}, \tilde{G}_{k}^{(t)}\left(\tilde{a}, \tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)\right\rangle$ over a uniformly selected seed $\left(\tilde{a}, \tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)$ is at $\operatorname{most} \operatorname{Pr}_{\tilde{b}_{1}, \ldots, \tilde{b}_{k-1}}\left[p\left(\tilde{b}_{1}, \ldots, \tilde{b}_{k-1}\right)=0\right]$, which is at most $\frac{t}{2^{n}}$ since a (multivariate) polynomial of degree t can have at most t roots.

By Corollary 6 in [Tzu], we get that the binary version $G_{k}^{(t)}$ has small bias:
Corollary 3. For every $n, k, t \in \mathbb{N}$, the generator $G_{k}^{(t)}:\{0,1\}^{n k} \rightarrow\{0,1\}^{n \cdot\binom{t+k-1}{k-1}}$ is a $\frac{t}{2^{n}}$-bias generator.

We analyze the parameters we have obtained: using a seed of $n k$ bits we output $m=n \cdot\binom{t+k-1}{k-1}$ bits with bias $\varepsilon=\frac{t}{2^{n}}$. Combining the two, we get

$$
m=n \cdot\binom{\varepsilon \cdot 2^{n}+k-1}{k-1} \geq\left(\frac{\varepsilon \cdot 2^{n}+k-1}{k-1}\right)^{k-1} \geq 2^{(k-1)(n-\log (1 / \varepsilon)-\log (k-1))}
$$

using the inequality $\binom{r}{s} \geq\left(\frac{r}{s}\right)^{s}$. This gives that $n \leq \frac{1}{k-1} \log m+\log (1 / \varepsilon)+$ $\log (k-1)$, so the seed length $n k$ is at most $\frac{k}{k-1} \log m+k \log (1 / \varepsilon)+k \log (k-1)$.

We have thus established
Theorem 4. For every $\varepsilon \in(0,1)$ and integers $m>0$ and $k \geq 2$, there exists an explicit ε-bias generator that generates m output bits with seed length at most $\frac{k}{k-1} \log m+k \log (1 / \varepsilon)+k \log (k-1)$ bits.

The expression $\frac{k}{k-1} \log m+k \log (1 / \varepsilon)$ is minimized when $k=\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}+1$. Clearly, if $\log m \leq \log (1 / \varepsilon)$, then the minimal $k=2$ (which is the original geometric generator) yields the shortest seed. However, when $\log m$ is significantly greater than $\log (1 / \varepsilon)$, it is clear that a larger k would give a shorter seed (since the expression $\frac{k}{k-1}$ decreases as k increases). Since k must be an integer (and at least 2), we set $k=\left\lceil\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}+1\right\rceil$, and get a seed of length at most

$$
\frac{\left\lceil\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}+1\right\rceil}{\left\lceil\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}\right\rceil} \cdot \log m+\left\lceil\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}+1\right\rceil \cdot \log (1 / \varepsilon)+\left\lceil\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}+1\right\rceil \log \left\lceil\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}\right\rceil,
$$

bounded by

$$
\left(1+\frac{1}{\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}}\right) \log m+\left(\sqrt{\frac{\log m}{\log (1 / \varepsilon)}}+2\right) \log (1 / \varepsilon)+\tilde{O}(\sqrt{\log m}),
$$

which can be simplified to

$$
\log m+2 \sqrt{\log m \cdot \log (1 / \varepsilon)}+2 \log (1 / \varepsilon)+\tilde{O}(\sqrt{\log m})
$$

We have established
Corollary 5. For every $\varepsilon \in(0,1)$ and $m \in \mathbb{N}$ there exists an explicit ε-bias generator that generates m output bits with a seed of length at most $\log m+$ $2 \sqrt{\log m \cdot \log (1 / \varepsilon)}+2 \log (1 / \varepsilon)+\tilde{O}(\sqrt{\log m})$. Specifically, if $\varepsilon \geq 2^{-\operatorname{poly} \log \log m} \geq$ $2^{-\tilde{O}(\sqrt{\log m})}$, this is $\log m+\tilde{O}(\sqrt{\log m})$.

Comparison to other generators. The standard explicit constructions of [AGHP] use a seed of length $2 \log m+2 \log (1 / \varepsilon)$, which is longer than the above if m is significantly greater than $1 / \varepsilon$ (explicitly, if $\sqrt{\log m}>2 \sqrt{\log (1 / \varepsilon)}+$ poly $\log \log m$, i.e. $m^{1-o(1)}>\varepsilon^{-4}$). We note that a construction of [NN] achieves a shorter seed when m is significantly greater than $1 / \varepsilon$: they obtain $\log m+$ $O(\log (1 / \varepsilon))$; however, our construction is simpler and more natural (as are the constructions of [AGHP]).

Note that if the output length m is exponential in a "security parameter" n (for example, but not necessarily, the field size), then $\varepsilon \geq 2^{- \text {poly } \log \log m}$, means $\varepsilon \geq 2^{-\operatorname{poly} \log n}$. For instance, to get 2^{n} bits with bias $1 / \operatorname{poly}(n)$, we only need $n+\tilde{O}(\sqrt{n})$ bits of seed, as opposed to $2 n$ bits in the original construction.

References

[AGHP] N. Alon, O. Goldreich, J. Hastad and R. Peralta, "Simple Constructions of Almost k-wise Independent Random Variables", Random Structures and Algorithms, vol. 3, pp. 289-304, 1992.
[NN] J. Naor and M. Naor, "Small-Bias Probability Spaces: Efficient Constructions and Applications", SIAM Journal on Computing, vol. 22, pp. 838-856, 1993.
[Tzu] Y. Tzur, " $G F\left(2^{n}\right)$-Linear Tests versus $G F(2)$-Linear Tests", Electronic Colloquium on Computational Complexity, TR 09-018, 2009.

