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Abstract

A small-biased distribution of bit sequences is defined as one with-
standing GF (2)-linear tests for randomness, which are linear combina-
tions of the bits themselves. We consider linear combinations over larger
fields, specifically, GF (2n) for n that divides the length of the bit se-
quence. Indeed, this means that we partition the bits to blocks of length
n and treat each block as the representation of a field element. Various
properties of the resulting field element can then be tested. We show that
the latter GF (2n)-linear tests are at least as powerful as the GF (2)-linear
tests. This holds even for a very limited final test of the resulting field
element (e.g., checking only the first bit). This is shown constructively
in the sense that we show for each linear combination over GF (2), an
explicit linear combination over GF (2n) whose first bit (for instance) has
the same bias.
One corollary of the above is that the generator producing a random

geometric series over GF (2n), namely (a, b) 7→ (ai · b)`i=0, is
`

2n
-biased.

Given the technical nature of the current work, we start with the formal
setting (Section 1), to be followed by a discussion (Section 2). The proof of the
main result appears in section 3.

1 Formal Setting

We start with the notion of ε-bias, introduced in [7], which refers to GF (2)-linear
tests:

Definition 1 (ε-bias). For ε > 0, k, ` ∈ N, a generator G : {0, 1}k → {0, 1}` is
called ε-biased if for every nontrivial GF (2)-linear combination α ∈ {0, 1}`,

Pr
s∈{0,1}k

[〈G(s), α〉 = 0] =
1

2
± ε.
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(For two vectors x, y, we denote by 〈x, y〉 their inner product xT y.)
The bits of G(s), for s uniformly distributed in {0, 1}k, are called ε-biased.

In order to introduce GF (2n)-linear tests and study them, we will use the
following notation:

Notation. For a vector a ∈ {0, 1}n, we will usually denote by ã the GF (2n)
element represented by a. When writing an expression in GF (2n) elements
(denoted by a tilde), the arithmetic will usually be that of GF (2n); otherwise
(when elements are without a tilde), we treat them as vectors in {0, 1}n and use
the arithmetic of the vector space (over GF (2)).

Definition 2 (ε-resilience under GF (2n)-linear tests). For ε > 0, n, k, ` ∈ N,
a generator G : {0, 1}k·n → {0, 1}(`+1)·n is called ε-resilient under GF (2n)-
linear tests if for every nontrivial GF (2n)-linear combination, b̃i ∈ GF (2

n) for

i = 0...`, the distribution induced by the sum
∑`
i=0 b̃i · g̃i(s) over a random seed

s is ε-close to the uniform distribution over GF (2n), where gi(s) denotes the
i-th block of length n in the output G(s) and g̃i(s) is the GF (2

n) element it
represents. That is, for every set B ⊆ GF (2n), it holds that

∣

∣

∣

∣

∣

Pr
s

[

∑̀

i=0

b̃i · g̃i(s) ∈ B

]

−
|B|

2n

∣

∣

∣

∣

∣

≤ ε. (1)

A weaker definition that only considers a specific set B is:

Definition 3 ((ε, B)-resilience under GF (2n)-linear tests). For ε > 0, n, k, ` ∈
N and B ⊆ GF (2n), a generator G : {0, 1}k·n → {0, 1}(`+1)·n is called (ε, B)-
resilient under GF (2n)-linear tests if for every nontrivial GF (2n)-linear combi-
nation, b̃i ∈ GF (2

n) for i = 0...`, Equation (1) holds.

So a generator is ε-resilient under GF (2n)-linear tests if and only if, for any
B ⊆ GF (2n), the generator is (ε, B)-resilient under GF (2n)-linear tests. If we
consider only all sets B that are linear subspaces of co-dimension 1, i.e. sets of
the form Γ = {ã : γTa = 0} for some nonzero vector γ ∈ {0, 1}n, we actually
require the n bits representing the resulting field element to be ε-biased. This
case is referred to as ε-linear-resilience:

Definition 4 (ε-linear-resilience underGF (2n)-linear tests). For ε > 0, n, k, ` ∈
N, a generator G : {0, 1}k·n → {0, 1}(`+1)·n is called ε-linear-resilient under
GF (2n)-linear tests if for every nonzero vector γ ∈ {0, 1}n, it holds that G is
(ε,Γ)-resilient under GF (2n)-linear tests, where Γ = {ã : γTa = 0} ⊆ GF (2n).
That is, for every nontrivial GF (2n)-linear combination, b̃i ∈ GF (2

n) for i =

0...`, the distribution induced by
∑`
i=0 b̃i · g̃i(s) over a random seed s is ε-biased

when viewed as the sequence of bits representing the resulting GF (2n)-element.

Clearly, for n = 1 the above three definitions (with nontrivialB in Definition
3) coincide with the notion of ε-bias.

Our main result, proven in Section 3, is the following ”reduction”:
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Theorem 5 (Main Theorem). For ε > 0, n ∈ N, and for any nonzero vector
γ ∈ {0, 1}n, if G is (ε,Γ)-resilient under GF (2n)-linear tests, where Γ = {ã :
γTa = 0}, then G is is ε-biased.

The converse of Theorem 5 is immediate, since each bit in the representation
of
∑`
i=0 b̃i · g̃i(s) is a linear combination in the bits of G(s).

1 Since both The-
orem 5 and its converse hold for any nonzero γ, we get that ε-linear-resilience
under GF (2n)-linear tests is equivalent to ε-bias. Note that this holds for any
n that divides the output length of the generator.

Since being ε-resilient underGF (2n)-linear tests implies being ε-linear-resilient
under GF (2n)-linear tests (every set Γ as in Definition 4 qualifies as a set B of
size 2n−1 in Definition 2), Theorem 5 also yields:

Corollary 6. For ε > 0, n ∈ N, a generator G that is ε-resilient under GF (2n)-
linear tests is ε-biased.

We note that the converse of Corollary 6 does not hold, but it is known that
being ε-biased implies being 2n/2 ·ε-resilient under GF (2n)-linear tests (see [6]).

2 Discussion

One concrete motivation to Definitions 2 and 4 is their role in the following
two-step methodology for constructing natural small-bias generators based on
GF (2n)-sequences: first show that the generator is resilient under GF (2n)-linear
tests (resp., linear-resilient under GF (2n)-linear tests), and next use Corollary
6 (resp., Theorem 5) to conclude that it has small bias. To demonstrate this
methodology we consider the following generator that produces random geo-
metric sequences (i.e., on seed a, b ∈ {0, 1}n, we output the sequence ãib̃ for
i = 0, 1, ..., `). We note that this generator was considered in [3], where it was
implicitly proven to have small bias (see further discussion below).

Proposition 7. For n, ` ∈ N, the generator G : {0, 1}2n→ {0, 1}(`+1)·n defined
by g̃i(a, b) = ã

i · b̃ is `
2n -resilient under GF (2

n)-linear tests, where ã, b̃ are the
GF (2n) elements represented by a, b, respectively, and gi(a, b) is the representa-
tion of g̃i(a, b).

Proof. Fix any nontrivial GF (2n)-linear combination (c̃i)
`
i=0, and any set B ⊆

GF (2n), and consider

Pr
a,b

[

∑̀

i=0

c̃i · ã
ib̃ ∈ B

]

= Pr
a,b

[(

b̃ ·
∑̀

i=0

c̃i · ã
i

)

∈ B

]

.

1If Mbi is the linear operator over {0,1}
n that performs multiplication by b̃i, then

γT
∑
`

i=0
Mbigi(s) is clearly a linear combination in the bits of G(s) = (g0(s), g1(s), ..., g`(s)).

For details regarding the matrix Mbi , see the second Notation paragraph of Section 3.
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When
∑`
i=0 c̃i · ã

i is nonzero, b̃ ·
∑`
i=0 c̃i · ã

i is uniformly distributed in GF (2n).
Thus, the statistical difference (referred to in Equation (1)) is

∣

∣

∣

∣

∣

Pr
a,b

[

∑̀

i=0

c̃i · ã
ib̃ ∈ B

]

−
|B|

2n

∣

∣

∣

∣

∣

≤ Pr
a

[

∑̀

i=0

c̃i · ã
i = 0

]

≤
`

2n
,

where the second inequality holds since the nonzero (degree ≤ `) polynomial
∑`
i=0 c̃i · x̃

i can have at most ` roots (in GF (2n)).

By Corollary 6, we immediately get:

Corollary 8. For n, ` ∈ N, the generator G : {0, 1}2n → {0, 1}(`+1)·n defined
by g̃i(a, b) = ã

i · b̃ is `
2n
-biased (with respect to GF (2)-linear tests).

This result can be contrasted with the similar Construction 3 in [1], in which
for i = 0...`, the element ã is raised to the i-th power, but then an inner product
with b is taken, rather than their GF (2n)-product, producing a single bit. The
construction here seems slightly more natural and simple.

As further motivation for our definitions, we note that [3] uses the construc-
tion of Proposition 7 for obtaining a graph with normalized second eigenvalue
`
2n
. Their argument implicitly shows that any ε-linear-resilient2 generator under

GF (2n)-linear tests yields a Cayley graph with normalized second eigenvalue of
2ε (The case of n = 1 was previously shown in [2]). Indeed, in [3] this is done
directly (and not by using a reduction similar to our Theorem 5). However,
Theorem 5 can be (non-constructively) derived by combining the above claim
(i.e., ε-linear-resilience under GF (2n)-linear tests implies (normalized) second
eigenvalue 2ε) with its converse for the case of n = 1. We mention that the
converse for n = 1 was known before, and can be derived for any n by reversing
the argument of [3].

3 Proof of Theorem 5

A nonconstructive proof of Theorem 5 can be understood while skipping all
preliminaries and starting with Lemma 15.

3.1 Preliminaries

To prove our main theorem, we first present some notation and known algebraic
facts that we need.

Notation. We will use the standard representation of GF (2n) as GF (2)[x]/(c(x)),
fixing an irreducible polynomial c(x) ∈ GF (2)[x] of degree n. An element

2Or even, in fact, any (ε,Γ)-resilient generator underGF (2n)-linear tests for any nontrivial
Γ ⊆ GF (2n) which is a linear subspace over {0,1} of co-dimension 1 (i.e., Γ = {ã : γT a = 0}
for some nonzero γ ∈ {0,1}n).
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ã ∈ GF (2n), represented by the bit string a = a0a1...an−1, corresponds to

pa(x) =
∑n−1
i=0 aix

i ∈ GF (2)[x]/(c(x)). Denote by C the companion matrix of
c(x), with ones under the diagonal and the coefficients c0, ..., cn−1 in the right
column:

C =











0 0 . . . c0
1 0 . . . c1
...
. . .

. . .
...

0 . . . 1 cn−1











Note that for an element b̃ ∈ GF (2n) represented by b ∈ {0, 1}n, the vector
C · b corresponds to multiplying pb by the fixed polynomial x (represented by the
bit-string e2 = 010...0) and reducing the result modulo c(x), i.e. C · b represents
the multiplication ẽ2 · b̃.

As noted earlier, we use vectors and matrices over {0, 1}, and use the tilde
when we want to refer to the GF (2n)-elements represented. However, when
needed, we will sometimes use the larger vector space GF (2n)n, and work with
matrices and vectors over GF (2n). In such cases, we will note this explicitly.

Fact 9. The eigenvalues of C (over GF (2n)) are exactly the roots of c(x).
Moreover, if c(x) has n distinct roots λ1, ..., λn ∈ GF (2

n), it is diagonalizable
as C = V −1 · diag(λ1, ..., λn) · V , with diag(λ1, ..., λn) denoting the diagonal
matrix with λi in the ii-th entry, and V being the Vandermonde matrix defined
as [V ]ij = λ

j
i+1, for i, j = 0, ..., n− 1. (Note: the entries of V are in GF (2

n).
Although the matrices in the expression have entries in GF (2n), the matrix C
is over GF (2).)

Fact 9 is a direct corollary of the transposed version of Theorem 6.13 in [5],
applying the same arguments to GF (2n) rather than to the complex field C.

Notation. Define Ma = pa(C). This is the linear operator that performs mul-
tiplication by ã on elements viewed as n-dimensional vectors over GF (2). That
is, for every b̃ ∈ GF (2n), represented by the vector b ∈ {0, 1}n, the binary repre-
sentation of the element ã·b̃ isMa ·b. To see this, write pa(C)·b =

∑

i aiC
ib, and

note that this vector represents the reduction of
∑

i aipb(x) · x
i =

∑

i,j aibjx
i+j

modulo c(x), which indeed corresponds to multiplying b̃ by ã in the field.

Fact 10. Every irreducible polynomial over a finite field has no multiplied roots.

Fact 10 appears as a note in Section XV.6 of [4], at the end of page 413.

Corollary 11. For any ã ∈ GF (2n), it holds thatMa = V
−1·diag(pa(λ1), ..., pa(λn))·

V . (Note: although the matrices in the expression have entries in GF (2n), the
matrix Ma is over GF (2).)

Proof. By Fact 10, c(x) has distinct roots. We thus write C using Fact 9

as V −1 · diag(λ1, ..., λn) · V . Observe that C
i =

(

V −1 · diag(λ1, ..., λn) · V
)i
=
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V −1 · diag(λi1, ..., λ
i
n) · V , and for ã ∈ GF (2

n) we have

Ma = pa(C)

=
n−1
∑

i=0

aiC
i

=

n−1
∑

i=0

ai · V
−1 · diag(λi1, ..., λ

i
n) · V

= V −1

(

n−1
∑

i=0

ai diag(λ
i
1, ..., λ

i
n)

)

V

= V −1 · diag(pa(λ1), ..., pa(λn)) · V.

Fact 12. Every symmetrical multinomial p(x1, ..., xn) over a field F , evaluated
on the roots λ1, ..., λn of any polynomial q(x) over F (the roots possibly in a
larger algebraic extension of F ), takes value in F .

Fact 12 is Theorem 10 in Section XV.4 of [4].

3.2 The Core of Our Proof

Using Fact 12, it follows that while the entries of V are in GF (2n), the entries
of V TV (and its inverse) are in GF (2):3

Corollary 13. The entries of V TV are all in GF (2).

Proof. The ij-th entry of V TV is
∑n−1
k=0 V

T
ikVkj =

∑n−1
k=0 λ

i+j
k+1. For any fixed

i, j this is a symmetric polynomial over GF (2), evaluated on the roots of c(x).
So by Fact 12, it takes value in the base field GF (2).

Define U = V −1 · V −1
T
. By Corollary 13, the entries of U−1 and U are in

GF (2). These matrices allow to replace MTa by Ma as follows:

Claim 14. For every a ∈ {0, 1}n, it holds that MTa = U
−1MaU .

Proof. Using the diagonalization from Corollary 11, we haveMa = V
−1 diag(pa(λ1), ..., pa(λn))V

and so

U−1MaU = V TV · V −1 diag(pa(λ1), ..., pa(λn))V · V
−1V −1

T

= V T diag(pa(λ1), ..., pa(λn))
TV −1

T

= MTa .

3Actually, Corollary 13 requires very little from the polynomial c(x): any Vandermonde
matrix V of the roots of a degree n polynomial would have the entries of V TV in the base
field.
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The following lemma captures the core of our argument. It says that the
i-th bit of the representation of ã · b̃ can be written as the inner product of
Q · a and b, where Q is a fixed matrix over GF (2). The statement generalizes
to any fixed linear combination in the representation of ã · b̃, denoted γ (where
the aforementioned case corresponds to γ = ei).

Lemma 15. For every fixed linear combination γ ∈ {0, 1}n, there exists a
matrix Qγ ∈ {0, 1}

n×n such that for every two vectors u, v ∈ {0, 1}n:

〈γ,Mu · v〉 = 〈Qγ · u, v〉 = v
TQγu.

Moreover, Qγ is invertible whenever γ is nonzero.

We present a simple nonconstructive proof as well as a constructive proof
giving an explicit expression for Qγ .

Proof (nonconstructive). Fixing γ, the value 〈γ,Mu · v〉 is a quadratic form
in the bits of u and v and thus can be represented as vTQγu for some matrix
Qγ . For the moreover part, let d satisfy γ

Td = 1 (e.g., if the i-th bit of γ is
1, set d = ei). Then, for every nonzero u ∈ {0, 1}

n, setting vu to represent
ũ−1d̃ ∈ GF (2n), we get 〈Qγ · u, vu〉 = 〈γ,Mu · vu〉 = 〈γ, d〉 = 1 and so Qγ · u
cannot be the zero vector. This implies that the kernel of Qγ is trivial.

Proof (constructive). For U as defined above, given γ ∈ {0, 1}n, we set Qγ =

U−1MUγ . Recall that if d̃ ∈ GF (2
n) is the element represented by the vector

d = U · γ ∈ {0, 1}n, then MUγ = Md is the matrix corresponding to the linear
transformation over {0, 1}n that maps the representation a of the element ã ∈
GF (2n) to the representation of d̃ · ã ∈ GF (2n). We get:

〈γ,Muv〉 =
〈

MTu γ, v
〉

(by Claim 14) =
〈

U−1MuUγ, v
〉

(by commutativity of GF (2n)) =
〈

U−1MUγ · u, v
〉

= 〈Qγ · u, v〉 .

The moreover part follows from the invertibility of U andMUγ when γ 6= 0.

3.3 Finishing the Proof

Finally, we get to actually proving Theorem 5:

Proof of Theorem 5. Fix a nonzero γ ∈ {0, 1}n, and let G : {0, 1}k·n →
{0, 1}(`+1)·n be an (ε,Γ)-resilient generator under GF (2n)-linear tests, where
Γ = {ã : γTa = 0}. Fix an arbitrary linear combination ᾱ ∈ {0, 1}(`+1)n on the
bits of G, and parse it to ` + 1 vectors α0, ..., α` ∈ {0, 1}

n. Define a series of
GF (2n) elements b̃0, ..., b̃` ∈ GF (2

n), represented by the vectors bi = Q
−1
γ αi for
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i = 0, ..., `, where Qγ is the matrix guaranteed by Lemma 15. We get that for
any output of the generator G, denoted (g0, ..., g`) ∈ {0, 1}

(`+1)n:

∑̀

i=0

〈αi, gi〉 =
↑

Def. of bi

∑̀

i=0

〈Qγbi, gi〉 =
↑

Lemma 15

∑̀

i=0

〈γ,Mbigi〉 = γ
T
∑̀

i=0

Mbigi.

Recalling the definition of Γ, we get that

Pr
s
[〈ᾱ, G(s)〉 = 0] = Pr

s

[

∑̀

i=0

〈αi, gi(s)〉 = 0

]

= Pr
s

[

γT
∑̀

i=0

Mbigi(s) = 0

]

= Pr
s

[

∑̀

i=0

b̃i · g̃i(s) ∈ Γ

]

.

Assuming ᾱ 6= 0(`+1)·n, there exists an i such that αi 6= 0
n and so b̃i, represented

by the vector Q−1γ αi is nonzero. Now, the right hand side is bounded by the
(ε,Γ)-resilience of G under GF (2n)-linear tests, giving the same bound on the
left hand side. This completes the proof.

An interesting corollary to Lemma 15 is that any linear combination in the
bits of any b can be computed as a prefixed linear combination in the bits of
the representation of ã · b̃ for a suitable choice of ã ∈ GF (2n).

Corollary 16. For every nonzero α, γ ∈ {0, 1}n there exists b ∈ {0, 1}n such
that for every g ∈ {0, 1}n, it holds that 〈α, g〉 = 〈γ,Mb · g〉.

Proof. Set b = Q−1γ α. By Lemma 15, 〈γ,Mb · g〉 = 〈Qγ · b, g〉 = 〈α, g〉.

Corollary 16 can be seen as an interpretation for the proof of Theorem 5:
every inner product 〈αi, gi〉 is calculated as 〈γ,Mbi · gi〉 for the adequate bi
that depends on αi and γ; linearity of the inner products is then used to give
∑`
i=0 〈αi, gi〉 =

〈

γ,
∑`
i=0Mbi · gi

〉

.
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