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Abstract

This paper investigates the existence of inseparable disjoint pairs
of NP languages and related strong hypotheses in computational com-
plexity. Our main theorem says that, if NP does not have measure
0 in EXP, then there exist disjoint pairs of NP languages that are
P-inseparable, in fact TIME(2n

k
)-inseparable. We also relate these

conditions to strong hypotheses concerning randomness and generic-
ity of disjoint pairs.

1 Introduction

The main objective of complexity theory is to assess the intrinsic difficulties of
naturally arising computational problems. It is often the case that a problem
of interest can be formulated as a decision problem, or else associated with
a decision problem of the same complexity, so much of complexity theory
is focused on decision problems. Nevertheless, other types of problems also
require investigation.
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This paper concerns promise problems, a natural generalization of de-
cision problems introduced by Even, Selman, and Yacobi [7]. A decision
problem can be formulated as a set A ⊆ {0, 1}∗, where a solution of this
problem is an algorithm, circuit, or other device that decides A, i.e., tells
whether or not an arbitrary input x ∈ {0, 1}∗ is an element of A. In con-
trast, a promise problem is formulated as an ordered pair (A,B) of disjoint
sets A,B ⊆ {0, 1}∗, where a solution is an algorithm or other device that
decides any set S ⊆ {0, 1}∗ such that A ⊆ S and B ∩ S = ∅. Such a set S is
called a separator of the disjoint pair (A,B). Intuitively, if we are promised
that every input will be an element of A ∪ B, then a separator of (A,B)
enables us to distinguish inputs in A from inputs in B. Since each deci-
sion problem A is clearly equivalent to the promise problem (A,Ac), where
Ac = {0, 1}∗ − A is the complement of A, promise problems are, indeed, a
generalization of decision problems.

A disjoint NP pair is a promise problem (A,B) in which A,B ∈ NP.
Disjoint NP pairs were first investigated by Selman and others in connec-
tion with public key cryptosystems [7, 15, 26, 17]. They were later inves-
tigated by Razborov [25] as a setting in which to prove the independence
of complexity-theoretic conjectures from theories of bounded arithmetic. In
this same paper, Razborov established a fundamental connection between
disjoint NP pairs and propositional proof systems. Propositional proof sys-
tems had been used by Cook and Reckhow [6] to characterize the NP versus
co-NP problem. Razborov [25] showed that each propositional proof system
has associated with it a canonical disjoint NP pair and that important ques-
tions about propositional proof systems are thereby closely related to natural
questions about disjoint NP pairs. This connection with propositional proof
systems has motivated more recent work on disjoint NP pairs by Glaßer, Sel-
man, Sengupta, and Zhang [10, 9, 12, 13]. It is now known that the degree
structure of propositional proof systems under the natural notion of proof
simulation is identical to the degree structure of disjoint NP pairs under re-
ducibility of separators [12]. Much of this recent work is surveyed in [11].
Goldreich [14] gives a recent survey of promise problems in general.

Our specific interest in this paper is the existence of disjoint NP pairs that
are P-inseparable, or even TIME(2n

k
)-inseparable. As the terminology sug-

gests, if C is a class of decision problems, then a disjoint pair is C-inseparable
if it has no separator in C. The existence of P-inseparable disjoint NP pairs
is a strong hypothesis in the sense that (1) it clearly implies P 6= NP, and
(2) the converse implication is not known (and fails relative to some oracles
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[17]). It is clear that P 6= NP ∩ coNP implies the existence of P-inseparable
disjoint NP pairs, and Grollmann and Selman [15] proved that P 6= UP also
implies the existence of P-inseparable disjoint NP pairs.

The hypothesis that NP is a non-measure 0 subset of EXP, written
µ(NP | EXP) 6= 0, is a strong hypothesis in the above sense. This hy-
pothesis has been shown to have many consequences not known to follow
from more traditional hypotheses such as P 6= NP or the separation of the
polynomial-time hierarchy into infinitely many levels. Each of these known
consequences has resolved some pre-existing complexity-theoretic question in
the way that agreed with the conjecture of most experts. This explanatory
power of the µ(NP | EXP) 6= 0 hypothesis is discussed in the early survey
papers [23, 2, 24] and is further substantiated by more recent papers listed
at [16] (and too numerous to discuss here). In several instances, the dis-
covery that µ(NP | EXP) 6= 0 implies some plausible conclusion has led to
subsequent work deriving the same conclusion from some weaker hypothesis,
thereby further illuminating the relationships among strong hypotheses.

Our main theorem states that, if NP does not have measure zero in
EXP, then, for every positive integer k, there exist disjoint NP pairs that
are TIME(2n

k
)-inseparable. Such pairs are a fortiori P-inseparable, but the

conclusion of our main theorem actually gives exponential lower bounds on
the inseparability of some disjoint NP pairs. These are the lower bounds that
most experts conjecture to be true, even though an unconditional proof of
such bounds may be long in coming.

The proof of our main theorem combines known closure properties of NP
with the randomness that the µ(NP | EXP) 6= 0 hypothesis implies must be
present in NP to give an explicit construction of a disjoint NP pair that is
TIME(2n

k
)-inseparable. (Technically, this is an overstatement. The last step

of the “construction” is the removal of a finite set whose existence we prove,
but which we do not construct.) The details are perhaps involved, but we
preface the proof with an intuitive motivation for the approach.

We also investigate the relationships between the two strong hypotheses
in our main theorem (i.e., its hypothesis and its conclusion) and strong hy-
potheses involving the existence of disjoint NP pairs with randomness and
genericity properties. Roughly speaking (i.e., omitting quantitative parame-
ters), we show that the existence of disjoint NP pairs that are random implies
both the µ(NP | EXP) 6= 0 hypothesis and the existence of disjoint NP pairs
that are generic in the sense of Ambos-Spies, Fleischhack, and Huwig [1].
We also show that the existence of such generic pairs implies the existence of
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disjoint NP pairs that are TIME(2n
k
)-inseparable. Taken together, these re-

sults give the four implications at the top of Figure 2. (The four implications
at the bottom are well known.) We prove that three of these implications
cannot be reversed by relativizable techniques, and we conjecture that this
also holds for the remaining implication.

2 Preliminaries

We write N for the set of nonnegative integers and Z+ for the set of (strictly)
positive integers. The Boolean value of an assertion φ is [[φ]] = if φ then 1
else 0. All logarithms here are base-2.

We write λ for the empty string, |w| for the length of a string w, and
s0, s1, s2, . . . for the standard enumeration of {0, 1}∗. The index of a string
x is the value ind(x) ∈ N such that sind(x) = x. We write next(x) for the
string following x in the standard enumeration, i.e., next(sn) = sn+1. More
generally, for k ∈ N, we write nextk for the k-fold composition of next with
itself, so that nextk(sn) = sn+k.

A Boolean function is a function f : {0, 1}m → {0, 1} for some m ∈ N.

The support of such a function f is supp(f) =
{
x ∈ {0, 1}m

∣∣∣ f(x) = 1
}

.

We write w[i] for the ith symbol in a string w and w[i..j] for the string
consisting of the ith through jth symbols. The leftmost symbol of w is w[0], so
that w = w[0..|w|−1]. For (infinite) sequences S ∈ Σ∞, the notations S[i] and
S[i..j] are defined similarly. A string w ∈ Σ∗ is a prefix of a string or sequence
x ∈ Σ∗∪Σ∞, and we write w v x, if there is a string or sequence y ∈ Σ∗∪Σ∞

such that wy = x. A language, or decision problem, is a set A ⊆ {0, 1}∗. We
identify each language A with the sequence A ∈ {0, 1}∞ defined by A[n] =
[[sn ∈ A]] for all n ∈ N. If A is a language, then expressions like limw→A f(w)
refer to prefixes w v A, e.g., limw→A f(w) = limn→∞ f(A[0..n− 1]).

A martingale is a function d : {0, 1}∗ → [0,∞) satisfying

d(w) =
d(w0) + d(w1)

2
(2.1)

for all w ∈ {0, 1}∗. Intuitively, d is a strategy for betting on the successive
bits of a sequence S ∈ {0, 1}∞: The quantity d(w) is the amount of money
that the gambler using this strategy has after |w| bets if w v S. Condition
(2.1) says that the payoffs are fair.

4



A martingale d succeeds on a language A ⊆ {0, 1}∗, and we write A ∈
S∞[d], if lim supw→A d(w) = ∞. If t : N → N, then a martingale d is
(exactly) t(n)-computable if its values are rational and there is an algorithm
that computes each d(w) in t(|w|) time. A martingale is p-computable if it
is nk-computable for some k ∈ N, and it is p2-computable if it is 2(logn)k

-
computable for some k ∈ N.
Definition. [22] Let X be a set of languages, and let R be a language.

1. X has p-measure 0, and we write µp(X) = 0, if there is a p-computable
martingale d such that X ⊆ S∞[d]. The condition µp2

(X) = 0 is
defined analogously.

2. X has measure 0 in EXP, and we write µ(X | EXP) = 0, if µp2
(X ∩

EXP) = 0.

3. R is p-random if µp({R}) 6= 0, i.e., if there is no p-computable mar-
tingale that succeeds on R. Similarly, R is t(n)-random if no t(n)-
computable martingale succeeds on R.

It is well known that these definitions impose a nontrivial measure struc-
ture on EXP [22]. For example, µ(EXP | EXP) 6= 0.

We use the following fact in our arguments.

Lemma 2.1 [3, 18] The following five conditions are equivalent.

1. µ(NP | EXP) 6= 0.

2. µp(NP) 6= 0.

3. µp2
(NP) 6= 0.

4. There exists a p-random language R ∈ NP.

5. For every k ≥ 2, there exists an 2lognk
-random language R ∈ NP.

Finally, we note that µ(P | EXP) = 0 [22], so µ(NP | EXP) 6= 0 implies
P 6= NP.
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3 Interval Martingales

This section presents a method for constructing a class of useful martingales
that are easily controlled and analyzed.

We let ≤ and < denote the standard ordering of {0, 1}∗. An interval in
{0, 1}∗ is a set of the form

[u, v) =
{
z ∈ {0, 1}∗

∣∣∣ u ≤ z < v
}
,

where u, v ∈ {0, 1}∗.
Definition.

1. An interval condition is an ordered pair (I, f), where I is an interval in

{0, 1}∗ and f : {0, 1}|I| → {0, 1} is a Boolean function with supp(f) 6=
∅.

2. A string w ∈ {0, 1}∗ satisfies an interval condition ([u, v), f) if |w| ≥
ind(v) and f(w[ind(u)..ind(v)− 1]) = 1.

3. A language R ⊆ {0, 1}∗ satisfies an interval condition ([u, v), f) if there
is a prefix w v R that satisfies (I, f).

We define the wager set of a martingale d to be the set

W (d) =
{
w ∈ {0, 1}∗

∣∣∣ d(w0) 6= d(w1)
}
,

i.e., the set of all strings w at which d actually bets on the next bit. It is clear
that d(w) > 0 for all w ∈ W (d) and that a martingale d is completely deter-
mined by its initial value d(λ), its wager set W (d), and the ratios d(w0)/d(w)
for w ∈ W (d).

Lemma 3.1 For each interval condition (I, f) = ([u, v), f), there is a unique
martingale dfI with the following three properties.

(i) dfI (λ) = 1.

(ii) W (dfI ) ⊆
{
w ∈ {0, 1}∗

∣∣ s|w| ∈ I }.

(iii) For all w ∈ {0, 1}ind(v),

dfI (w) =

{
2|I|

|supp(f)| if f(w[ind(u)..ind(v)− 1]) = 1

0 if f(w[ind(u)..ind(v)− 1]) = 0.
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Proof (sketch). These conditions clearly specify dfI (w) for all w satisfying
|w| < ind(u) or |w| ≥ ind(v). Propagate the values in (iii) “backwards” by
inductively defining

dfI (w) =
dfI (w0) + dfI (w1)

2
(3.1)

for all w satisfying ind(u) ≤ |w| < ind(v). The crucial things to note are
that the arithmetic mean of the values in (iii) is 1 and that (3.1) preserves

this condition at each length, so that dfI (w) = 1 holds for all w ∈ {0, 1}ind(u).
These are exactly the values dictated by (i) and (ii). 2

Definition. The interval martingale given by an interval condition (I, f)
is the martingale dfI (w) of Lemma 3.1.

Observation 3.2 If (I, f) = ([u, v), f) is an interval condition and R ⊆
{0, 1}∗ satisfies (I, f), then dfI (w) = 2|I|/|supp(f)| holds for every prefix
w v R with |w| ≥ ind(v).

We often construct a martingale from many component martingales. Here
is one way of doing this. We say that a familyM of martingales has disjoint
wagers if, for all d, d′ ∈M,

d 6= d′ =⇒ W (d) ∩W (d′) = ∅.

Definition. If M is a family of martingales with disjoint wagers, then the
product martingale ⊗d∈Md is the unique martingale d′ with the following
three properties.

(i) d′(λ) = 1.

(ii) W (d′) = ∪d∈MW (d).

(iii) For all d ∈M, w ∈ W (d), and b ∈ {0, 1},

d′(wb) = d′(w)
d(wb)

d(w)
.

Notation. If [u, v) and [u′, v′) are intervals in {0, 1}∗, then the condition
[u, v) < [u′, v′) means that v ≤ u′.
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Lemma 3.3 Assume that (I0, f0), (I1, f1), . . . are interval conditions with
I0 < I1 < . . .. Let d = ⊗∞k=0d

fk

Ik
. If R ⊆ {0, 1}∗ satisfies (Ik, fk) for all

k ∈ N, then

lim sup
w→R

d(w) ≥
∞∏
k=0

2|Ik|

|supp(fk)|
.

Proof. This follows inductively from Observation 3.2. 2

It is clear that Lemma 3.3 can be generalized to a much wider class of con-
ditions and products, but interval conditions are sufficient for our purposes
here.

4 Inseparable Disjoint NP Pairs and the Mea-

sure of NP

This section presents our main theorem, which says that, if NP does not have
measure 0 in EXP, then there are disjoint NP pairs that are P-inseparable. In
fact, for each k ∈ N, there is a disjoint NP pair that is TIME(2n

k
)-inseparable.

It is convenient for our arguments to use a slight variant of the separability
notion.
Definition. Let (A,B) be a pair of (not necessarily disjoint) languages,
and let C be a class of languages.

1. A language S ⊆ {0, 1}∗ almost separates (A,B) if there is a finite set
D ⊆ {0, 1}∗ such that S separates (A−D,B −D).

2. We say that (A,B) is C-almost separable if there is a language S ∈ C
that almost separates (A,B).

Observation 4.1 If a pair (A,B) is not C-almost separable, then (A −
D,B −D) is C-inseparable for every finite set D.

Before proving our main theorem, we sketch the intuitive idea of the
proof. We want to construct a disjoint NP pair (A,B) that is P-inseparable.
Our hypothesis, that NP does not have measure 0 in EXP, implies that
NP contains a language R that is p-random. Since we are being intuitive,
we ignore the subtleties of p-randomness and regard R as a sequence of
independent, fair coin tosses (with the nth toss heads iff sn ∈ R) that just
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happens to be in NP. If we use these coins to randomly put strings in A or
B but not both, we can count on the randomness to thwart any would-be
separator in P.

The challenge here is that, if we are to deduce A,B ∈ NP from R ∈ NP,
we must make the conditions “sn ∈ A” and “sn ∈ B” depend on the coin
tosses in a monotone way; i.e., adding a string to R must not move a string
out of A or out of B.

This monotonicity restriction might at first seem to prevent us from en-
suring that A and B are disjoint. However, this is not the case. Suppose
that we decide membership of the nth string sn in A and B in the following
manner. We toss 2 log n independent coins. If the first log n tosses all come
up heads, we put sn in A. If the second log n tosses all come up heads, we
put sn in B. If our coin tosses are taken from R, which is in NP, then A
and B will be in NP. Each string sn will be in A with probability 1

n
, in B

with probability 1
n
, and in A∩B with probability 1

n2 . Since
∑∞

n=1
1
n

diverges
and

∑∞
n=1

1
n2 converges, the first and second Borel-Cantelli lemmas tell us

that A and B are infinite and A ∩ B is finite. Since A ∩ B is finite, we can
subtract it from A and B, leaving two disjoint NP languages that are, by the
randomness of the construction, P-inseparable.

What prevents this intuitive argument from being a proof sketch is the
fact that the language R is not truly random, but only p-random. The proof
that A ∩B is finite thus becomes problematic. There is a resource-bounded
extension of the first Borel-Cantelli lemma [22] that works for p-random
sequences, but this extension requires the relevant sum of probabilities to be
p-convergent, i.e., to converge much more quickly than

∑∞
n=1

1
n2 .

Fortunately, in this particular instance, we can achieve our objective with-
out p-convergence or the (classical or resource-bounded) Borel-Cantelli lem-
mas. We do this by modifying the above construction. Instead of putting
the nth string into each language with probability 1

n
, we put each string

x into each of A and B with probability 2−|x| so that x is in A ∩ B with
probability 2−2|x|. By the Cauchy condensation test, the relevant series have
the same convergence behavior as those in our intuitive argument, but we
can now replace slow approximations of tails of

∑∞
n=1

1
n2 with fast and exact

computations of geometric series.
We now turn to the details.

Construction 4.2 1. Define the functions u, v : {0, 1}∗ → {0, 1}∗ by the
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recursion
u(λ) = λ,
v(x) = next|x|(u(x)),
u(next(x) = next|x|(v(x)).

2. For each x ∈ {0, 1}∗, define the intervals

Ix = [u(x), v(x)), Jx = [v(x), u(next(x))).

3. For each R ⊆ {0, 1}∗, define the languages

A+(R) =
{
x
∣∣∣ Ix ⊆ R

}
, B+(R) =

{
x
∣∣∣ Jx ⊆ R

}
,

A(R) = A+(R)−B+(R), B(R) = B+(R)− A+(R).

Note that each |Ix| = |Jx| = |x|. Also, Iλ = Jλ = ∅ (so λ ∈ A+(R) ∩
B+(R)), and

I0 < J0 < I1 < J1 < I00 < J00 < I01 < . . . ,

with these intervals covering all of {0, 1}∗.
A routine witness argument gives the following.

Observation 4.3 1. If R ∈ NP, then A+(R), B+(R) ∈ NP.

2. If R ∈ NP and |A+(R)∩B+(R)| <∞, then (A(R), B(R)) is a disjoint
NP pair.

We now prove two lemmas about Construction 4.2.

Lemma 4.4 Let k ∈ N. If R ⊆ {0, 1}∗ is 2(logn)k+2
- random, then (A+(R), B+(R))

is not TIME(2n
k
)-almost separable.

Proof. Let k ∈ N, and assume that (A+(R), B+(R)) is TIME(2n
k
)-almost

separable. It suffices to show that R is not 2(logn)k+2
- random.

By our assumption, there is a language S ∈ TIME(2n
k
) that almost

separates (A+(R), B+(R)). Then there exists a positive integer l such that
S separates (A+(R)− {0, 1}<l, B+(R)− {0, 1}<l).

For each string x ∈ {0, 1}∗, define the interval condition (Kx,NAND|x|),
where

Kx =

{
Jx if x ∈ S
Ix if x 6∈ S
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and NANDm : {0, 1}m → {0, 1} is defined by

NANDm(u) =

{
1 if u 6= 1m

0 if u = 1m

for all u ∈ {0, 1}m. We generally omit the subscript from NAND, writing
this interval condition as (Kx,NAND).

Now let x ∈ {0, 1}∗ with |x| ≥ l. Since S separates (A+(R)−{0, 1}<l, B+(R)−
{0, 1}<l),

x ∈ S =⇒ x 6∈ B+(R) =⇒ Jx 6⊆ R

=⇒ Kx 6⊆ R =⇒ R satisfies (Kx,NAND),

and

x 6∈ S =⇒ x 6∈ A+(R) =⇒ Ix 6⊆ R

=⇒ Kx 6⊆ R =⇒ R satisfies (Kx,NAND).

This shows that R satisfies the interval condition (Kx,NAND) for all x ∈
{0, 1}∗ with |x| ≥ l.

Now define the martingale

d =
⊗

x∈{0,1}∗
|x|≥l

dNAND
Kx

,

where dNAND
Kx

is the interval martingale given by (Kx,NAND). Then, by
Lemma 3.3,

lim sup
w→R

d(w) ≥
∏

x∈{0,1}∗
|x|≥l

2|Kx|

|supp(NAND)|

=
∞∏
k=l

∏
x∈{0,1}k

2|x|

2|x| − 1

=
∞∏
k=l

(
2k

2k − 1

)2k

.

Since (
2k

2k − 1

)2k

=

(
1

1− 2−k

)2k

>

(
1− 2−2k

1− 2−k

)2k

= (1 + 2−k)2k → e
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as k →∞, it follows that

lim sup
w→R

d(w) =∞.

Hence d succeeds on R.
The algorithm in Figure 1 computes the martingale d. To estimate the

running time of this algorithm, note the following.

(i) Since S ∈ TIME(2n
k
), each test “x ∈ S” or “x 6∈ S” takes at most

2|x|
k ≤ 2(log |w|)k

steps.

(ii) Each ratio dNAND
Ik

(w)/dNAND
Ik

(w′) or dNAND
Jk

(w)/dNAND
Jk

(w′) can be com-

puted by calculating (from leaves to root) a tree of 2|x|+1 − 1 = O(|w|)
values.

(iii) The while loop executes fewer than |w| times.

It follows from these and simpler considerations that d(w) is computable in
O(2(log |w|)k+2

) time. Since d succeeds on R, it follows that R is not 2(logn)k+2
-

random.
2

Lemma 4.5 If R ⊆ {0, 1}∗ is p-random, then |A+(R) ∩B+(R)| <∞.

Proof. Assume that |A+(R) ∩ B+(R)| = ∞. It suffices to show that R is
not p-random.

For each string x ∈ {0, 1}∗, define the interval condition (Lx,AND2|x|),
where

Lx = Ix ∪ Jx
and ANDm : {0, 1}m → {0, 1} is defined by

ANDm(u) =

{
1 if u = 1m

0 if u 6= 1m

for all u ∈ {0, 1}m. As before, we generally omit the subscript from AND,
writing this interval condition as (Lx,AND).

Note that, for each x ∈ {0, 1}∗,

x ∈ A+(R) ∩B+(R) ⇐⇒ R satisfies (Lx,AND).
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input w ∈ {0, 1}∗;
if |w| < ind(u(0l)) then output 1 else
x := 0l; w′ := w[0..ind(u(x))− 1]; d := 1;
while |w′| ≤ |w| − 2|x| do
w′ := w[0..|w|+ 2|x| − 1];
if x ∈ S then

d := d · 2|x|

2|x|−1
· [[w′ satisfies (Jx,NAND)]]

else

d := d · 2|x|

2|x|−1
· [[w′ satisfies (Ix,NAND)]]

endif;
x := next(x)

endwhile;
if |w′| < |w| − |x| then

if x 6∈ S then d := d · d
NAND
Ix

(w)

dNAND
Ix

(w′)
endif

else
w′ := w[0..|w′|+ |x| − 1];
if x 6∈ S then

d := d · 2|x|

2|x|−1
· d

NAND
Ix

(w)

dNAND
Ix

(w′)
· [[w′ satisfies (Ix,NAND)]]

else

d := d · d
NAND
Jx

(w)

dNAND
Jx

(w′)

endif
endif;
output d
endif.

Figure 1: Algorithm for martingale d in proof of Lemma 4.4.
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It follows by Lemma 3.1 that, if x ∈ A+(R) ∩ B+(R), then dAND
Lx

= 22|x|

holds for every prefix w v R with |w| ≥ ind(v(x)). Hence, if we define the
martingale

d =
∑

x∈{0,1}∗
2−2|x|dAND

Lx

(which is well defined because d(λ) = 2 <∞), then

lim
w→R

d(w) = |A+(R) ∩B+(R)| =∞.

Hence d succeeds on R.
We now consider the complexity of computing d(w) for a given string

w ∈ {0, 1}∗. We can in time polynomial in |w| compute the least y such that
uy ≥ s|w| and compute the sum

σ1 =
∑
x<y

2−2|x|dAND
Lx

(w).

We can then compute the quantities

σ2 = 2−2|y||[y, 0|y|+1)|

and
σ3 = 2−|y|,

also in time polynomial in |w|. Since

d(w) = σ1 +
∑
x≥y
|x|=|y|

2−2|x|dAND
Lx

(w)

+
∑

x
|x|>|y|

2−2|x|dAND
Lx

(w)

= σ1 + σ2 + σ3,

this shows that d is computable in polynomial time. Since d succeeds on R,
it follows that R is not p-random. 2

We now have what we need to prove our main result.

Theorem 4.6 (main theorem) If NP does not have measure 0 in EXP, then,
for every k ∈ Z+, there is a disjoint NP pair that is TIME(2n

k
)-inseparable,

hence certainly P-inseparable.
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Proof. Assume that µ(NP | EXP) 6= 0, and let k ∈ N. Then, by Lemma
2.1, there is a 2(logn)k+2

-random language R ∈ NP. By Lemma 4.4, the pair
(A+(R), B+(R)) is not TIME(2n

k
)-almost separable. Since R is certainly

p-random, Lemma 4.5 tells us that |A+(R) ∩ B+(R)| < ∞. It follows by
Observation 4.3 that (A(R), B(R)) is a disjoint NP pair, and it follows by
Observation 4.1 that (A(R), B(R)) is TIME(2n

k
)-inseparable. 2

5 Genericity and Measure of Disjoint NP Pairs

In this section we introduce the natural notions of resource-bounded mea-
sure and genericity for disjoint pairs and relate them to the existence of
P-inseparable pairs in NP. We compare the different strength hypothesis on
the measure and genericity of NP and disjNP establishing all the relations
in Figure 2.
Notation. Each disjoint pair (A,B) will be coded as an infinite sequence
T ∈ {−1, 0, 1}∞ defined by

T [n] =


1 if sn ∈ A
−1 if sn ∈ B
0 if sn 6∈ A ∪B

We identify each disjoint pair with the corresponding sequence.
Resource-bounded genericity for disjoint pairs is the natural extension

of the concept introduced for languages by Ambos-Spies, Fleischhack and
Huwig [1].
Definition. A condition C is a set C ⊆ {−1, 0, 1}∗. A t(n)-condition is
a condition C ∈ DTIME(t(n)). A condition C is dense along a pair (A,B)
if there are infinitely many n ∈ N such that (A,B)[0..n − 1]i ∈ C for some
i ∈ {−1, 0, 1}. A pair (A,B) meets a condition C if (A,B)[0..n− 1] ∈ C for
some n. A pair (A,B) is t(n)-generic if (A,B) meets every t(n)-condition
that is dense along (A,B).

We first prove that generic pairs are inseparable.

Theorem 5.1 Every t(log n)-generic disjoint pair is TIME(t(n))-inseparable.

Proof. Let (A,B) be TIME(t(n))-separable with separator S. We define
the condition

C =
{
wb
∣∣∣ b = 1 if s|w| 6∈ S, and b = −1 if s|w| ∈ S

}
.
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Then C ∈ DTIME(t(log n)), C is dense along any pair, and (A,B) does not
meet C, so (A,B) is not t(log n)-generic. 2

We can now relate genericity in disjNP and inseparable pairs as follows.

Corollary 5.2 If disjNP contains a 2(logn)k
-generic pair for every k ∈ N,

then disjNP contains a TIME(2n
k
)-inseparable pair for every k ∈ N.

Resource-bounded measure on classes of disjoint pairs is the natural ex-
tension of the concept introduced for languages by Lutz [22], and is defined
by using martingales on a three-symbol alphabet as follows.
Definition.

1. A pair martingale is a function d : {−1, 0, 1}∗ → [0,∞) such that for
every w ∈ {−1, 0, 1}∗

d(w) =
1

4
d(w0) +

3

8
d(w1) +

3

8
d(w(−1)).

2. A pair martingale d succeeds on a pair (A,B) if lim supw→(A,B) d(w) =
∞.

3. A pair martingale d succeeds on a class of pairs X ⊆ {−1, 0, 1}∞ if it
succeeds on each (A,B) ∈ X.

Our intuitive rationale for the coefficients in part 1 of this definition is
the following. We toss one fair coin to decide whether s|w| ∈ A and another
to decide whether s|w| ∈ B. If both coins come up heads, we toss a third coin
to break the tie. The reader may feel that some other coefficients, such as
1
3
, 1

3
, 1

3
are more natural here. Fortunately, a routine extension of the main

theorem of [5] shows that the value of µ(disjNP | disjEXP) will be the same
for any choice of three positive coefficients summing to 1.

When restricting martingales to those computable within a certain re-
source bound, we obtain a resource-bounded measure that is useful within a
complexity class. Here we are interested in the class of disjoint EXP pairs,
disjEXP.
Definition.

1. Let p2 be the class of functions that can be computed in time 2(logn)O(1)
.

2. A class of pairs X ⊆ {−1, 0, 1}∞ has p2-measure 0 if there is a martin-
gale d ∈ p2 that succeeds on X.
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3. X ⊆ {−1, 0, 1}∞ has p2-measure 1 if Xc has p2-measure 0.

4. A class of pairs X ⊆ {−1, 0, 1}∞ has measure 0 in disjEXP, denoted
µ(X | disjEXP) = 0, if X ∩ disjEXP has p2-measure 0.

5. X ⊆ {−1, 0, 1}∞ has measure 1 in disjEXP if Xc has measure 0 in
disjEXP.

It is easy to verify that p2-measure is nontrivial on disjEXP (as proven
for languages in [22]).

In the following we consider the hypothesis that disjNP does not have
measure 0 in disjEXP (written µ(disjNP | disjEXP) 6= 0). We start by
proving that this hypothesis is at least as strong as the well studied µ(NP |
EXP) 6= 0 hypothesis.

Theorem 5.3 If µ(disjNP | disjEXP) 6= 0 then µ(NP | EXP) 6= 0.

Proof. We show that µ(NP | EXP) = 0 implies µ(disjNP | disjEXP) = 0.
The hypothesis µ(NP | EXP) = 0 has been proven to be equivalent to
µp(NP) = 0 [3]. Breutzmann and Lutz [5] have proven that the p-measure
of NP is robust with respect to certain changes in the underlying probability
distribution, for instance, µp(NP) = 0 if for every (polynomial-time com-
putable) β ∈ (0, 1) there is an (β, 1 − β)-p-martingale succeeding on NP,
that is, a function d in p such that for every w ∈ {0, 1}∗

d(w) = βd(w0) + (1− β)d(w1).

So we assume that µ(NP | EXP) = 0. Then, taking β = 1/4, there is a
(1/4, 3/4)-p-martingale d that succeeds on NP. We define the pair martingale
D : {−1, 0, 1}∗ → [0,∞) by

D(λ) = d(λ),

D(w0) = D(w)
d(w0)

d(w)
,

D(w1) = D(w)
d(w1)

d(w)
,

D(w − 1) = D(w)
d(w1)

d(w)
,
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where w ∈ {0, 1}∗ is defined by w[i] = w[i] if w[i] ∈ {0, 1} and w[i] = 1 if
w[i] = −1.

By definition, D is a p-computable pair martingale. Notice that, for a
disjoint pair (A,B), if d succeeds on A∪B then D succeeds on (A,B). Since
NP is closed under union, d does succeed on A∪B, so D succeeds on disjNP,
whence µ(disjNP | disjEXP) = 0. 2

We finish by relating measure and genericity for disjoint pairs.

Theorem 5.4 If µ(disjNP | disjEXP) 6= 0, then disjNP contains a 2(logn)k
-

generic pair for every k ∈ N.

Proof. Lorentz and Lutz prove in [21] that, for every k ∈ N, for every
p2-exact probability measure γ, the set of 2(logn)k

-generic languages has p2-
γ-measure 1. The concept of p2-exact probability measure includes cases
such as a single (polynomial-time computable) bias β ∈ (0, 1).

An easy extension of [21] to a three letter alphabet implies that for every
k ∈ N, the set of 2(logn)k

-generic pairs has p2-measure 1. This implies the
theorem. 2

6 Oracle Results

All the techniques in this and related papers relativize, that is they hold when
all machines involved have access to the same oracle A. In this section we give
relativized worlds where the converses of most of the results in this paper,
as expressed in Figure 2, do not hold. Since the implications trivially all
hold in any relativized world where P = NP [4], one cannot use relativizable
techniques to settle these converses.

We’ll work our way from the bottom up of Figure 2.

Theorem 6.1 (Homer-Selman [17], Fortnow-Rogers [8]) There exists
oracles A and B such that

• PA 6= NPA and disjNPA does not contain PA-inseparable pairs.

• PB = NPB ∩ coNPB = UPB and disjNPB does contain PB-inseparable
pairs.

The oracle constructions follow a common technique. We start out with
a base oracle O = {〈0, x〉 | x ∈ K} where K is some PSPACE-complete
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µ(disjNP | disjEXP) 6= 0

Theorem 5.3

µ(NP | EXP) 6= 0

Theorem 5.4

(∀k)disjNP contains

a 2(logn)k−generic pair

Theorem 4.6 Corollary 5.2

(∀k) disjNP contains

a TIME(2n
k
)-inseparable

pair

P 6= NP ∩ coNP disjNP contains
P-inseparable pairs

P 6= UP

P 6= NP

Grollmann & Selman [15]

Figure 2: Relations among some strong hypotheses.
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language such as the set of true quantified Boolean formula. Note we have
PO = NPO = PSPACEO for this initial oracle O.

We will continue the construction of the oracle by adding a finite number
of strings in every stage, only those whose first coordinate is 1 and only
those fulfilling a specific condition that depends on the relativized result we
are trying to prove.

Towers is the smallest set of integers such that 1 is a Tower and if m is
a Tower than 2m is a Tower. A polynomial time machine on input n that
queries a string in the oracle of Tower length m can query all strings of
smaller Tower lengths.

The following relativizable lemma follows easily from the paddability of
SAT.

Lemma 6.2 If there is a polynomial-time computable language L such that
for infinitely many n, L ∩ Σn = SAT ∩ Σn then µ(NP|EXP) = 0.

Theorem 6.3 There exists an oracle C such that PC 6= UPC but NPC is
contained in TIMEC(nO(logn)). In particular this means that relative to C,
disjNP contains P-inseparable pairs but there is a k (and in fact any real
k > 0) such that disjNP has no TIME(2n

k
)-inseparable pairs.

Proof. We use the oracle construction outlined above but only by adding
exactly one string of the form 〈1, y〉 where y ∈ (0 + 1)log2m0n−log2m for each
Tower length m.

An NP machine on an input of length n could only query such a string if
m ≤ nc for some c. A deterministic machine could query all the possibilities
of y in time nc logn, find y and then use the PSPACE-complete language
encoded on the 〈0, x〉 strings to determine if the NP machine accepts.

Now consider the language

L = {1n | 〈1, y〉 ∈ C and |y| = n}

By construction L ∈ UPC and a straightforward diagonalization argument
(c.f. [4]) will create a C such that L 6∈ PC . 2

Theorem 6.4 There exists a relativized world D, relative to which for all
k, disjNP contains a TIME(2n

k
)-inseparable pair but µ(NP|EXP) = 0 and

disjNP does not contain a 2(logn)k
-generic pair.
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Proof. Call a Tower m, an even Tower if m = rr for some Tower r and an
odd Tower otherwise. We follow the oracle construction outlined above.

Let L = {x | 〈1, x〉 ∈ D}. We encode D so that for every x of length
odd-Tower m,

x ∈ SATD ⇔ x ∈ L.

This fulfills the condition of Lemma 6.2 holds and µ(NP|EXP) = 0 relative
to D. Also this implies there are no P-bi-immune sets in NP so by [1], there
are no 2(logn)-generic sets in NP and thus certainly no 2(logn)-generic pairs in
disjNP relative to D.

On the even Towers m, we promise to put in exactly one string of the
form 〈1, y〉 with y of length m. Let g(u) be the largest even Tower m such
that m ≤ u. Define the sets Ak and Bk as follows:

Ak = {1n | there is a z of length g(n2k)− 1 such that 〈1, 0z〉 ∈ D}

Bk = {1n | there is a z of length g(n2k)− 1 such that 〈1, 1z〉 ∈ D}

By construction Ak and Bk are disjoint NP sets and by a standard diag-
onalization argument we can choose the y so that for no language L in
TIMED(2n

k
), Ak ⊆ L and Bk ∩ L = ∅. 2

Theorem 6.5 There exists an oracle E relative to which for all k, disjNP
contains a 2(logn)k

-generic pair but µ(disjNP|disjEXP) = 0.

Proof. We follow the basic oracle construction procedure as above. We
will encode strings into a tuples into E beginning with 1 as 〈1, x, y〉 with
|y| = |x|2. Let

E<x = {〈1, x′, y〉 | x′ < x in lexicographic order}.

We add the requirement that for every x, we put at most one y with 〈1, x, y〉
in E.

We build E by finite extensions. In the even stages we extend the 1
side with no y strings for long stretches so we can guarantee the condition of
Lemma 6.2 hold and thus µ(NP|EXP) = 0 which implies µ(disjNP|disjEXP) =
0.

Define two sets R and S by

R = {x | There is a z 〈1, x, 0z〉 ∈ E}
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S = {x | There is a z 〈1, x, 1z〉 ∈ E}

Since we put at most one y for each x, R and S are disjoint NP sets. We will
construct E they form a generic pair.

Let M1, . . . be an enumeration of polynomial-time orcle Turing machine
accepting strings over {−1, 0, 1}∗.

In stage 2i+ 1.

1. Is the pair (R, S) dense along L(ME
i ) for every completion of E? If not

go to the next stage.

2. If so, pick a large x and an extension that defines E<x so that ua ∈
L(ME

i ) for some u ∈ {−1, 0, 1}∗ and a ∈ {−1, 0, 1} where u describes
the initial segment of (R, S) defined by E<x.

3. If a = 0, put no string 〈1, x, y〉 into E and go to the next stage.

4. If a = 1, pick a z of length |x|2 − 1 such that for no x′ ≤ x, ME
i (x)

queries 〈1, x, 0z〉. Such a z must exist by an easy counting argument.
Put 〈1, x, 0z〉 in E. Go to the next stage.

5. If a = −1 do the same but for 1z instead of 0z.

This process guarantees we have met every dense condition and thus for all
k, disjNP contains a 2(logn)k

-generic pair. 2

Conjecture 6.6 There exists an oracle H relative to which µ(NP|EXP) 6= 0
but µ(disjNP|disjEXP) = 0.

Let K be a PSPACE-compete set, R be a “random” oracle and let

H = K ⊕R = {〈0, x〉 | x ∈ K} ∪ {〈1, y〉 | y ∈ R}.

Kautz and Miltersen show in [20] that relative to H, µ(NP|EXP) 6= 0.
Kahn, Saks and Smyth [19] combined with unpublished work of Impagliazzo
and Rudich show that relative to H there is a polynomial-time algorithm
that solves languages in NP ∩ coNP on average for infinitely-many lengths
which would imply µ(NP ∩ coNP|EXP) = 0 relative to H. We conjecture
that one can modify this proof to show µ(disjNPH |disjEXPH) = 0.
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