Electronic Colloguium on Computational Complexity, Report No. 26 (2009) Eode

Arithmetic Circuit Size, Identity Testing, and Finite Auto mata

V. Arvind and Pushkar S. Joglekar

Institute of Mathematical Sciences
C.L.T Campus,Chennai 600 113, India
{arvi nd, pushkar }@nsc.res.in

Abstract. Let F(z1,z2, -, z,) be the noncommutative polynomial ring over a fi@dwhere thez;’s

are free noncommuting formal variables. Given a finite aatimm.4 with the z;’s as alphabet, we can

define polynomialsf(mod.4) and f(div .A) obtained by natural operations that we datersectingand

quotientingthe polynomialf by .A. Related to intersection, we also define Hedamard productf o g of

two polynomialsf andg.

In this paper we study the circuit and algebraic branchimy@am (ABP) complexities of the polynomials

f(modA), f(div.A), andfog in terms of the corresponding complexitiesfaiindg and size of the automa-

ton.A. We show upper and lower bound results. Our results havesqoesices in new polynomial identity

testing algorithms (and algorithms for its correspondiearsh version of finding a nonzero monomial). E.g.

we show the following:

(@) A deterministic N& identity test for noncommutative ABPs over rationals. lctfave tightly classify
the problem as complete for the logspace counting ¢lass.

(o) Randomized N&algorithms for finding a nonzero monomial in both noncomriwtaand commuta-

tive ABPs.

(c) Over monomial algebra®(z1, - - -, x,)/I we derive an exponential size lower bound for ABPs com-
puting the Permanent. We also obtain deterministic polyiabidentity testing for ABPs over such
algebras.

We also study analogous questions inthenmutativeease and obtain some results. E.g. we show over any

commutative monomial algebf@z1, - - -, z,]/I such that the ideal is generated by(n/1gn) monomi-

als, the Permanent requires exponential size monotongitsirc

1 Introduction

The basic goal of this paper is to study polynomial identitsting for polynomials given by circuits
or algebraic branching programs (ABPs), as well as its coimmeto proving circuit/ABP size lower
bounds. We consider these problems mainly in the nhoncontiveutsetting, but we also have obser-
vations in the commutative setting.

The main tool we use to study circuits and ABPs is finite autaraad its properties. To this end,
we define the notion ahtersectionof a circuit or an ABP by a finite automaton and the notion of the
quotientof a circuit/ABP by a finite automaton.

More precisely, suppos& = {z1,z,---,x,} IS a set ofn. noncommuting variables. The free
monoid X ™* consists of all words over these variables. For a fielét F(x, o, - - -, z,,) denote the
free noncommutative polynomial ring ovErgenerated by the variables K. Thus, the polynomials
in this algebra ar&-linear combinations of words ove¥.

For a given polynomiaf € F(X), let monf) = {m € X* | m is a nonzero monomial iffi}.

Definition 1. Let f € F(X) be a polynomial and4 be a finite automaton (deterministic or nondeter-
ministic) accepting a subset &f*. Thequotientof the polynomialf = > c,m, by the automaton
A is defined as the polynomial

f(modA) = Z CaMa,

ma €MONf)\L(A)

ISSN 1433-8092

whereL(.A) is the language accepted by the automaton. Similarlyjritezsectionof the polynomial
f by the automatord is the polynomial

fdivA) = > Cala.

ma €MONf)NL(A)
Note: The automatont splits the polynomiaf into two parts asf = f(mod.A) + f(div.A).

Thus, given an arithmetic circui’ (or an ABPP) computing a polynomial if(X') and a finite
automaton4 (a DFA or an NFA) we can talk of the polynomiai$(mod.A), C(div .A), P(mod.A)
and P(div A). We are interested in thexpressive poweof intersection and quotienting of circuits
and ABPs by finite automaton. In some of these cases, we asgt@lshow bounds on the circuit
(respectively, ABP) size of these intersections and quatstien terms of the sizes af' (or P) and
A. In contrast, quotienting with NFAs is much more expressiar example, the permanent can
be expressed aB(mod .A) for an ABP P and an NFAA that are polynomial size bounded. These
results are presented in Section 2 and Section 5. Additigneg define theHadamard producof two
polynomialsf andg in F(X'), which is an “algebraic” version of the intersection and waraine the
expressive power of the Hadamard produtitturns out that themoncommutativéranching program
complexity of the Hadamard produgto g is essentially the product of the branching program sizes
for f andg. We are able to use this property to givenew deterministic polynomial time identity
test for noncommutative algebraic branching programs @#shown to be deterministic polynomial
time by Raz and Shpilka [RS05]). Our identity test can alsepaeallelized to give a deterministic
NC? algorithm (in fact, we show it is complete for the logspacerting classC_L). These results
are explained in Section 2.

We define theMonomial Search Problemwhich is the natural search version of polynomial
identity testing:

Given a polynomialf € F(X) (or, in the commutative casg € F[X]) of total degreel by an
arithmetic circuitC or an ABP, the problem is tfind a nonzero monomial of the polynomigl

Applying our results on intersection of noncommutative ARRerF with automata (specifically
DFAs), we give a randomizeBNC? algorithm for finding a nonzero monomial and its coefficient.
With some more work we can show the same result even for treeafamommutative ABPs.

Our result for monomial search for commutative ABPs can le@ s& an algebraic generalization
of the search version of the maximum matching problem forctvithe Mulmuley-Vazirani-Vazirani
algorithm provided aRNC? algorithm in a celebrated paper [MVV87] in which they intumed the
isolation lemma to do a parallel search. Indeed, the resuthatchings can be derived in our setting.

In general, for arithmetic circuits too, we obtain a randoedi NC reduction of the monomial
search problem to identity testing.

Arithmetic Circuit Size and Ideal Membership

Lower bounds for noncommutative computation were firstietliéh the pioneering paper of Nisan
[N91]. He studies noncommutative arithmetic circuits,niotas and algebraic branching programs.
Using a rank argument Nisan shows that the noncommutatiregreent or determinant polynomials
in the ringF(x11, - - -, x,y,) require exponential size noncommutative formulas (anc¢commutative
algebraic branching programs).

1 We call this the Hadamard product, because it is motivatatiéidadamard product of matrices associated with algebraic
branching programs [N91].

Nisan's results are over tfieenoncommutative rind@' (X '). Chien and Sinclair, in [CS04], explore
the same question over other noncommutative algebras. rEfiee Nisan's rank argument to show
exponential size lower bounds for formulas computing thenament or determinant over specific
noncommutative algebras, like the algebr& af2 matrices ovef, the quaternion algebra, and a host
of other examples.

In this paper, we apply our results on intersection of ctecand ABPs with DFAs to easily derive
similar results fomonomial algebras

Recall that an ideal (more precisely, &-sided ideal) of the noncommutative polynomial ring
F(X) is a subring that is closed under both left and right multgiion by the ring elements. We would
like to study arithmetic circuit lower bounds and identigsting in the quotient algebi& X') /I for
different classes of ideals, where the idéad given by a generating set of polynomials. For instance,
the circuit sizeC;(f) in the algebrd (X) /I is

min C(f +9).
Polynomial identity testing in the algebfd X') /I is basically testing membership of a polynomial in
the ideall. The problem is intractable in general, but for special [sl@éaan be easier.

If I is afinitely generated monomial ideaf F(X), we can design a polynomial-size DEA
that accepts precisely the monomialsinApplying this idea, we show that the Permanent (and
Determinant) in the quotient algebfd X) /I still requires exponential size ABPs. Furthermore, the
Raz-Shpilka deterministic identity tests for ABPs carrgiogasily taF (X) /1.

For commutative monomial algebras too our approach is firdinite automata. The results we
obtain are weaker. Our main result here is an exponential rei@notone circuit lower bound for
the Permanent over any monomial algefde1, =9, - - -, x,]| /I, wherel is generated by(n/lgn)
monomials.

2 Intersecting and Quotienting Circuits by DFAs

In this section we focus on the circuit and ABP size compiesiof f (mod.4) and f (div .A), in terms
of the circuit (resp. ABP) complexity of and the size of the automatot, in the case whenttl is a
deterministic finite automaton. The bounds we obtaincarestructive we will efficiently compute a
circuit (resp. ABP) forf(mod.4) and f (div .A) from the given circuit (resp. ABP) fof and.A.

We will apply these results to obtain a randomized?N@orithm for the monomial search prob-
lem for ABPs (both noncommutative and commutative).

We first recall the following complexity measures for a paymial f € F(X) from Nisan [N91].

Definition 2. [N91] For f € F(X), we denote its formula complexity BY /), its circuit complexity
by C(f), and the algebraic branching program complexity BYyf). For F = R and a polynomial
f € F(X) with positive coefficients, ithonotonecircuit complexity is denoted by (f),

We have the following theorem relating the complexityfgfnod.4) and f(div .A) to the com-
plexity of f.

Theorem 1. Let f € F(X) and.A be a DFA withs states accepting some subsetXof. Then, for
g € {f(modA), f(div.A)} we have

1. C(g) < C(f) - (ns)°),
2. C*(g) < C*(f) - (ns)OW).

3. B(g) < B(f) - (ns)°M.

Furthermaore, the circuit (ABP) of the size given above fdypomial g can be computed in determin-
istic logspace (hence INC?) on input a circuit (resp. ABP) fof and the DFAA.

Proof. We first describe a circuit construction that proves padad 2 of the theorem.

Let A = (Q, X, 9, qo, F') be the quintuple describing the given DFA wilstates. We can extend
the transition functiord to words (i.e. monomials) itX* as usuald(a,m) = b for statesa,b € @
and a monomialn if the DFA goes from state to b on the monomiain. In particular, we note that
d(a,e) = a for each stater. As in automata theory, this is a useful convention becausenwve
write a polynomialf € F(X) as)_ c¢,m,, we can allow fore as the monomial corresponding to the
constant term iry.

Let C be the given circuit computing polynomidl. For each gatg of C, let f, denote the
polynomial computed by’ at the gatey. In the new circuitC’ we will haves? gates(g, a, b),a,b € Q
corresponding to each gag®f C'. Recall that mofyf) is the set of monomials of. Let M, = {m €
X* | 6(a,m) = b} for statesu, b € Q. At the gate(g, a, b) the circuitC” will compute the polynomial

f;’b = Z CaMqy,

ma €MgpNmon(fg)

wheref, = 3" coma.
The input-output connections between the gates’afre now easy to define. dfis a+ gate with
input gatesh andk so thatf, = f;, + fi, we have

b b eab
1o =1+

implying that(h, a,b) and(k, a, b) are the inputs to the- gate(g, a, b). If g is ax gate, with inputsh
andk so thatf, = f5 - fr, we have

’ 7b
fgt =3 R
ceQ

This simple formula can be easily computed by a small subitiwith O(s) many+ gates andx
gates.

Finally, letout denote the output gate of circui, so thatf,,; = f. It follows from the definitions
that

f(modA) = fiuf
a¢F

fliva) =% fo
acF

Hence, by introducing a small formula for this computatioithvguitably designated output gate,
we can easily get the circuit’ to computef (mod.4) or f(div .A).

The correctness of our construction is immediate. Furtbeemsiz¢C’) satisfies the claimed
bound. Note tha€” will remain a monotone circuit if the given circuit is monotone. This completes
the proof of the first two parts.

Now we prove part 3 of the statement. Li&be an ABP computing polynomigland.A4 be a given
DFA. The idea for the construction of ABPs that compjitenod.A) and f (div .A) is quite similar to

4

the construction described for part 1. Consider for ingahe ABPP’ for f(mod.A). Consider the
directed acyclic layered graph underlying the ABPIn the new ABPP’ we will have exactly the
same number of layers as fét. However, for each nodein the i*" layer of ABP P we will have
nodes(b, ¢) for each statg of the DFA.A. Now, let f, denote the polynomial that is computed at the
nodeb by the ABPP. The property that the construction Bf can easily ensure is

fo = Zf(b,q)»
q

where f, oy is the polynomial computed at nodg, ¢) by the ABPP’. More precisely, letV, be

the set of all nonzero monomiais of f; such that on inpuin the DFA A goes from start state to
stateq. Then the polynomialf, ., will be actually the sum of all the terms of the polynomjg|
corresponding to the monomials i, . This construction can now be easily used to obtain ABPs for
each off(mod.A) and f (div .A), and the size of the ABP will satisfy the claimed bound. Wetdhe
easy details of the construction of the ABPs.

A careful inspection of the constructions shows that for\ewgicircuit C and DFA A we can
construct the circuits that comput&mod.4) andC/(div .A) in deterministic logspace (and hence in
NC?). Likewise, the construction of the ABPs fét(mod.A) and P(div A) for a given ABPP can
also be computed in deterministic logspace. [

The following is an immediate corollary of Theorem 1.

Corollary 1. 1. Given a noncommutative ABP computing a polynomiaf € F(X) and a deter-
ministic finite automatord we can test in deterministic polynomial time whettfémod.A) is
identically zero.

2. Given a noncommutative circuit computingf € F(X) and a DFAA then we can test whether
f(mod.A) is identically zero in randomized polynomial time (ifis a monotone circuit then we
can test iff (mod.A) is zero in deterministic polynomial time).

We now prove a similar result for commutative ABPs. Howeveg, need to be careful to con-
sider the right kind of DFAs that capture commutativity sattthe constructions of Theorem 1 are
meaningful and go through.

Definition 3 (Commutative Automata). Letw € X9 be any string of lengtll over the alphabet
X ={x1, ,z,}. LetC, C X denote the set of all words’ obtained by shuffling the letters of

A DFA (or NFA) A over the alphabeX = {z1,---,z,} is said to becommutativeif for every
wordw € X*, w is accepted by if and only if every word irC,, is accepted bw.

The following theorem is the analogue of Theorem 1 for irdetieg and quotienting commutative
circuits and commutative ABPs by commutative DFAs. We oimdt proofs as the constructions are
identical to those in the proof of Theorem 1. It can be eagibnsfrom Definition 1 and the proof of
Theorem 1 that in the commutative case the constructionsaemingful and work correctly when
the DFAs considered are commutative.

Theorem 2. Let f € Flxy, 29, -+, x,] and A be a commutative DFA with states over alphabet
X ={z1,---,z,}. Then, forg € {f(mod.A), f(div.A)} we have

1. C(g) < C(f) - (ns)°0.

2. CT(g) <CH(f) - (ns)°W.

3. B(g) < B(f) - (ns)°D).

Furthermore, the commutative circuit (ABP) for polynomiameeting the above size bounds are
computable in deterministic logspace (henc&li®?) on input a circuit (resp. ABP) fof and DFAA.

2.1 Monomial search problem

Next we consider the monomial search problem for ABPs in bothmutative and noncommutative
setting. The goal is to compute a nonzero monomial of thenmotyal computed by the given ABP.
We apply Theorem 1 to prove these results.

Theorem 3. Given a noncommutative ABP computing a polynomiaf in F(X) there is a ran-
domizedNC? algorithm that computes a nonzero monomialfoMore precisely, the algorithm is a
randomizedeLG2PL algorithm.

Proof. We can assume wlog that the given ABPcomputes a homogeneous degidegolynomial.
The proof is by a careful application of the isolating lemnidhVV87]. Define the universd/ =
{zs | 1 <i < n,1 < j < d}, where the element;; stands for the occurrence of in the j1"
position in a monomial. With this encoding every deg#emonomialm over X can be encoded as a
subsets,, of sized in U, whereS,,, = {z;; | x; occurs injt* position inm}. Following the isolation
lemma, we pick a random weight assignment U — [4dn]. The weight of a monomial is
defined asv(m) = w(Sy,) = wa_esm w(z;;), and with probabilityl /2 there is a unique minimum
weight monomial.

Construction of weight-checking DFAor any weight value such thatl < a < 4nd?, we can easily
construct a DFAVZ that accepts a monomiat € X* iff m € X4 andw(m) = a. This DFA will
haveO(4nd®) many states. Furthermore, we can compute this DFA in detéstiti logspace, given
the weight functionw.

Next, by Theorem 1 we can compute an ABP that computes the polynomidt(div M) for
each ofl < a < 4nd3. With probability 1/2 we know that one of?(div M2) accepts precisely one
monomial of the original polynomiaf (with the same coefficient).

In order to find each variable occurring in that unique moradraccepted by, say?: we will
design another DFA4,; which will accept a monomial» € X< if and only if z; occurs in thej®
position. Again by Theorem 1 we can compute an ABP, , ., that accepts preciseliy; (div A;;).
Now, the ABPB, ; , ., €ither computes the zero polynomial(if does not occur in thg!" position of
the unique monomial aP2) or it computes that unique monomial Bf. In order to test which is the
case, notice that we caeterministicallyassign the values; = 1 for each variable;;. Crucially, since
P¢ has auniquemonomial it will be nonzero even for this deterministic amshenutative evaluation.
Since the evaluation of an ABP is for commutative valuesléscalues), we can carry it out in NC
in fact, in FLG@PL for any fixed finite field or ove®), (see e.g. [T91], [VO1], [MVT7]).

Let m be the monomial that is finally constructed. We can constugFA A, that accepts only
m and no other strings. By Theorem 1 we can compute an &BPRr the polynomial P(div A,,)
and again check i’ is zero or nonzero by substituting all = 1 and evaluating. This will make the
algorithm actually a zero-error NGQilgorithm.

The success probability can be boosted by parallel repetifihis completes the proof sketch.

[]

Next we describe a randomized R@&lgorithm for the Monomial search problem for commuta-
tive ABPs. This is the best we can currently hope for, sinderda@nistic polynomial-time identity
testing for commutative ABPs is a major open problem. Ouronaial search algorithm will use the
following generalized isolation lemma of Klivans and Spiah [KSO01].

Lemma 1. [KSO1, Lemma 4]Let L be a collection of linear forms over variables, ..., z, with
integer coefficients if0, 1,. .., K}. If eachz; is picked independently and uniformly at random from

6

{0,1,...,2Kn} then with probability at Ieas% there is a unique linear form id. which attains
minimum value atz1, 22, . .., 2y).

Theorem 4. The monomial search problem for commutative algebraic tinarg programs is in ran-
domized\NC? (more precisely, it is in randomizdﬂ_GapL).

Proof. We will only provide a proof outline, since it is similar tbat of Theorem 3 and builds on
Theorem 2.

Let P be a commutative algebraic branching program computing Fnpmial f €
Flxy,zo,...,xz,]. We assume, without loss of generality, thfais homogeneous of degrek First,
pick a random weight functiom : {z,---,z,} — [2dn]|. Next for each numbe& such that
0 < a < 2d*n we construct a DFAAS which will accept a monomiatn € X* iff m X% and
w(m) = a, wherew(m) = >, w(z;) - a;, andz; occurs exactlyy; times inm. Crucially, notice that
the DFAAY is acommutativdDFA. Hence, applying Theorem 2, for each numbeve can obtain an
ABP P in deterministic logspace.

By Lemma 1 with probability at least/2 one of the ABPsP? accepts a unique monomial
m = z{"x5? ... 20~ of the given polynomialf. Suppose that value af is u. Let ¢ # 0 denote
the coefficient of the unique monomial in f computed by the ABR.

Our goal now is to find they;’s. To find o;, we evaluate the ABR; by settingz; = 1 for all
J # 1. Clearly, the ABPP; will evaluate on this input tex;". Evaluating each of the ABPB¢ on the

input (1, ---,1,2;,1,---,1) can be done in N& Indeed, it can be done in aPL, since we only
need determinant computation over the fi@ldrhis completes the proof sketch. [

Theorem 4 is a generalization of the Mulmuley et al. resultomstructing maximum matchings
in RNC? [MVV87] using the connection between matchings and the wdrike Tutte matrix)/. We
can apply Theorem 4 to find maximum matchingRINC? (more precisely, randomized ﬁf"p'-).

An easy prefix search gives a deterministic polynomial tingerithm for the monomial search
problem for noncommutative ABPs.

Theorem 5. There is a deterministic polynomial time algorithm for thermamial search problem for
noncommutative algebraic branching programs.

Proof. Let P be the input noncommutative ABP that computes a polynorhia F(X). W.l.0.g.
assume thaf =) a,m, is homogeneous polynomial of degréewherem, are the nonzero
monomials off. We solve the monomial search problem by a prefix searchdlmtided by the Raz-
Shpilka deterministic identity test [RS05]. For any string= X*, k& < d we can define a polynomial-
sized DFAD,, that accepts only words of the formy for some wordy € X*. Applying Theorem 1
we can construct an ABP,, that computed (div D,,) for any givermw. Notice that

flivDy) = > agma.

Mma=wy

The prefix search algorithm is now easy to describe. Stanitigw = ¢, we successively compute
ABPsP,, P,,,- -, P,,, where|lwy| = k andwy, is a prefix ofwy, for eachk.

EachP,, is an ABP that computeg(div D,,,) as described above. Notice that computesf.
Supposef (div D,,,) is nonzero. Then the prefix search sejs.; = wyz; for the first indeterminate
z; such thatP,, , , computes a nonzero polynomial (to check this we use the Rpika identity test
onP, [RSO05]). Sincef (div D,) # 0 for some indeterminate; the polynomialf (div D, ,) is

Wi+1

7

nonzero. Hence the prefix search will successfully contifile output of the monomial search will
bew,. |

Finally, we note that the same technique of isolating usifigFA and DFA intersection with a
circuit can be used to give a randomized NC reduction fromanuoal search for noncommutative
(commutative) circuits to noncommutative (resp. comnivgipolynomial identity testing.

Theorem 6. Monomial search for noncommutative (commutative) ciscigt randomized\C re-
ducible to noncommutative (resp. commutative) polynordéaitity testing.

3 The Hadamard Product

Motivated by the well-known Hadamard product of matricese(g.g. [Bh97]), in this section we
consider the Hadamard product of polynomials.

Definition 4. Let f,g € F(X) whereX = {z1,x9,---,x,}. Thehadamard produabf f and g,
denotedf o g, is the polynomial

fog= Zaabamou
wheref = 3" aomq andg =) bamaq.

Clearly, morif og) = mon(f)mon(g). Thus, the Hadamard product can be seen as an algebraic
version of the intersection of formal languages.

Our definition of the Hadamard product of polynomials is aljumotivated by the well-known
Hadamard product o B of two m x n matricesA and B. We recall the following well-known bound
for the rank of the Hadamard product.

Proposition 1. Let A and B be twom x n matrices over any fieldl. Then
rank(A o B) < rank(A)rank(B).

It is known from Nisan’s paper [N91] that the ABP complexiBy f) of a polynomialf € F(X)
is closely connected with the ranks of the communicatiorrices My (), whereMy(f) has its rows
indexed by degregé monomials and columns by degrée- £ monomials and thém, m’)™ entry of
M;(f) is the coefficient ofnm’ in f. Nisan showed thaB(f) = >, rank(M (f)).

Indeed as a consequence of Nisan'’s result and the abovesitiopave can easily obtain the
following nice bound on the ABP complexity gfo g.

Lemma 2. For f, g € F(X) we haveB(f o g) < B(f)B(g).

Proof.
B(fog) =Y rankM(f og)) < _ rank(Mj(f))rank(My(g)) (1)
k k
< (D rank(My(f))(>_ rankMy(g))))
k k

We will now prove a more interesting algorithmic version luiktupper bound.

8

Theorem 7. Let P and @ be two given ABP’s computing polynomigl@nd g in F(z1, x2, ..., z,),
respectively. Then there is a deterministic polynomiaktetgorithm that will output an ABR® for
f o g such that the size aR is a constant factor of product of the sizes®fand Q. (Indeed, the
construction ofR can be done in deterministic logspace.)

Proof. Without loss of generality we can assume that bBtland () are homogeneous ABP’s of
degreed. If not we can easily construct an ABP to compiffe g; separately for each wheref;, g;
denotes degreehomogeneous parts of the polynomjahndg, respectively. Since hadamard product
is distributive over addition we can compufe> g by adding allf; o g;. By allowing parallel edges
between nodes of ABPB, (Q we can assume that the labels associated with each edge iBRiisA
either0 or a - z; for somea € F, i € [n]. Let s; andsy bound the number of nodes in any particular
layer of P andQ respectively. We denote th&" node in layer by (i, j) for ABP’s P and(. Next we
give the construction of the ABR which will compute the polynomiaf o g. Each layen, 1 <i < d
of R will have s; - s2 hodes, with node labeled, a, b) corresponding to the node, a) of P and the
node (i, b) of Q. We can assume there is an edge from every node in fatgeevery node in layer
i + 1 for both ABPs. For, if there is no such edge we can always adgithtlabel0.

In the new ABPR we will add an edge froni, a, b) to (i + 1, ¢, e) with label« - Sz, in R if and
only if there is an edge from node, a) to (i + 1, ¢) with label« - z; in P and an edge fron, b) to
(i + 1,¢e) with label 5 - x; in ABP Q. Let (0,a,b) and(d, ¢, e) be the source and the sink nodes of
ABP R respectively, wheré, a), (0, b) are the source nodes Bfand@, and(d, c), (d, e) are the sink
nodes of? andQ respectively. Let; , ;, denote the polynomial computed at nodea, b) of ABP
R. Similarly, let f; ,y andg,; 5, denote the polynomials computed at ndde:) of P and node(i, b)
of Q. We can easily see that; ., = f.q) © 94, Py Using an induction argument on the number
of layers in the ABPs, we skip the details of the inductivegbrdt follows from this argument that
the ABP R computes the polynomial o g at its sink node. The bound on the sizef®dtlso follows
easily. [

This theorem has an interesting consequence for noncortiveuidentity testing of ABP’s (and
formulas) overQ. This gives an alternative algorithm to the one due to Razmulka’s deterministic
polynomial time identity test [RS05]. In fact, we actuallyengthen the result to give an R@pper
bound.

Theorem 8. The problem of polynomial identity testing for noncommuéaalgebraic branching pro-
grams overQ is in NC2. (In fact, it is complete for the logspace counting cléssL under logspace
reductions).

Proof. Let P be the given ABP computing € Q(X). We apply the construction of Theorem 7 to
compute a polynomial sized ABR for the Hadamard produgto f (i.e. of f with itself). Notice that

f o fis nonzero iff f is nonzero. Now, we crucially use the fact that f is a polynomial whose
nonzero coefficients are glbsitive Hence,f o f is nonzero iff it evaluates to nonzero on the &4
input. The problem thus boils down to checkingiifevaluates to nonzero on the & input.

By Theorem 7, the ABRR for polynomial f o f is computable in deterministic logspace, given as
input an ABP forf. Furthermore, evaluating the ABR on the alll’s input can be easily converted
to iterated integer matrix multiplication (one matrix foach layer of the ABP), and checking #
evaluates to nonzero can be done by checking if a specifig efithe product matrix is nonzero. It
is well known that checking if a specific entry of an iteratateger matrix product is zero is in the
logspace counting clags_L (e.g. see [ABO99]). Howevef;_L is contained in N&, in fact in TC'.
On the other hand, the problem of checking if an integer matris singular is complete fo€_L

9

The standard GapL algorithm for computidet(A) [T91] can be converted to an ABP4 which will
computedet(A). HenceP,4 computes the identically zero polynomial iff is singular. Putting it all
together, it follows that identity testing of noncommutatiABPs over rationals is complete for the
classC_L. [

Analogous to Theorem 7 we show thabt ¢ has small circuits iff has a small circuit angl has a
small ABP.

Theorem 9. Letf, h € F(zq,z9,- - -, z,) be given by a degreecircuit C' and an ABPP respectively,
wherep < poly(n). Then we can compute in polynomial time a ciratiitthat computeg o h where
the size of”” is polynomially bounded by sizes@fand P.

Proof. Without loss of generality we can assume that bhbindh are homogeneous polynomials of
degreed. If not we can computg; o h; separately for each < i < p, wheref;, h; denotes degree
homogeneous parts gfandh respectively. Since the Hadamard product is distributiver addition
we can computeg o h by adding allf; o h;’s. Let f, denotes the polynomial computed at gatef
C. Let w denotes number of nodes in any layeriaflLet (i, a) denote the: node in thei*” layer
of Pfor0 < i < d,1 < a < w. Lethyg) denote the polynomial computed by ABP. The
ABP P’ is same as but with source nodéi, a) and sink nodgj, b). We construct circuit”’ that
computes polynomiaf o h. In C’ we have gatesy, [, (i,a), (i + 1,b)) for0 <1 < d,0 < i < d,
1 < a,b < w associated with each gageof C, such that at each gate, [, (i, a), (i + 1, b)) the circuit

C’ will compute

(0.) _
Pl (i1p) = Fo © Bia),+1,0)

wheref, ;) denotes the degréénomogeneous component of the polynonfialNext we describe the
input-output connections fa@r’. If g is a+ gate ofC with input gatesys, g2 so thatf, = f,, + fg,, we

(9:0) (g1,0) (92,0) -
haver(z DLy = T(_i,Z),(m,b) +7 Z) (410)" for0<1<d,0<i<d,1<a,b<w.Inotherwords,
(g,1,(i,a), (i+1,b)) is+ gate inC’ with input gates g1, [, (4, a), (i+1,b)) and(gs, [, (i, a), (i+1,b)).

If g is ax gate inC we will have

I w
ZZT 91:3) F92:0-9)
(z a),(i+1,b) ,(i47,t) (Z-‘rj t),(i+1,b)

7=0 t=1

This formula can be easily computed by a small subcircuit.(hed, (0,1), (d, 1)) be the output gate
of C’, whereg is the output gate of’ and(0, 1), (d, 1) denotes the source and the sink of the ABP
respectively. This completes the description of the cir€li Next we inductively prove that at gate
(9,1, (i,a), (i +1,b)), C" indeed computes the polynomil, ;y o h; a),(i1,5)- At + gateg of C the
claim is easy to see. Letis x gate ofC with inputs gy, go such thatf, = f,, - f4, and assume that
the claim holds true for the gates andg.. This impliesf, , = Zizo Tigriy * Jigai—iy- SO We have,

l
Fgy © Moy ity = D Figrgy - Figai—i) © Pisa) (i) 3)
7=0
l
=D (figrg) " Figni—iy © Piia).(iv10) (4)
=0
l w
= Z Figrgy - Figzi—i) © Pisa), (44) * PG4, i+1,0) ()

0t=1

.
Il

10

w

l
= Z Z (g1,5) © h (i,a),(i+7, t)) (f<g2,l—j> o h(i—l—j,t),(i—i—l,b)) (6)

j=0 t=1

The first two equalities easily follows from distributiviyf Hadamard product and the fact that,
foranyi < j <i+1, ha) (i+1,) =>4, h (i,a),(i45,) " P(i+4,0),i+1,p) @N the last equality follows
since fig, jys Pia), (i45,0) are both degreg homogeneous polynomials. By induction hypothesis we

(91,4)
haver 711, i = Figr5) © iy iy @NAr{ETD (1 = Figaa—s) © hiivsi 4ep - This proves the
desired claim o)
Pt = Jlob © i), +10)-
Clearly, at the output gatgy, d, (0,1), (d, 1)) the circuitC” will compute the polynomiaf o h. The
size of C’ is bounded by a polynomial in the sizes@fand P. [

On the other hand, suppogeand g individually have small circuit complexity. Two questions
arise: doesf o g have small circuit complexity? Can we compute such a cifauitf o g from the
circuits for f andg?

We first consider these questions for monotone circuitss liseful to understand the connec-
tion between monotone noncommutative circuits and cotitegtgrammars. We recall the following
definition.

Definition 5. We call a context-free grammar in Chomsky normal fa¥m= (V, T, P, S) an acyclic
CFGif for any nonterminald € V there does not exist any derivation of the fadm=* uAw.

The sizesize(G) of an acyclic CFGG = (V, T, P, S) is defined as$V'| + |T'| + sizg P), where
V, T, and P are the sets of variables, terminals, and production réMsnote the following easy
proposition that relates acyclic CFGs to monotone noncotatie circuits overx .

Proposition 2. For a monotone circuiC' of sizes computing a polynomiaf € Q(X) let mor(f)
denote the set of nonzero monomialg oThen there is an acyclic CFG for mon(f) with sizeG) =
O(s). Conversely, if7 is an acyclic CFG of size computing some finite sét C X* of monomials
over X, there exists a monotone circuit of si@gs) that computes a polynomial’, . ; aama €
Q(X), where the positive integet,, is the number of derivation trees fot,, in the grammaiG.

Proof. First we prove the forward direction by constructing andicyCFGG = (V, T, P, S) for
mon(f). LetV = {4, g is a gate of circui’} be the set of nonterminals ¢f. We include a pro-
duction in P for each gate of the circui. If g is an input gate with input;, 1 < i < n include the
production4, — z; in P. If the input is anonzerofield element then add the producticl)y — €?
Let f, denote the polynomial computed at gat@f C. If g is a x gate withf, = f;, x f; then
include the productiom, — A, A; and if it is + gate withf, = f; + fi include the productions
Ay — Ay | Ay Letthe start symbob = A,, whereg is the output gate of'. It is easy to see from the
above construction that is acyclic moreovesize(G) = O(s) and it generates the finite language
mon(f). The converse direction is similar.]

Theorem 10. There are monotone circuits andC’ computing polynomialg andg in Q(X) respec-
tively, such that the polynomigl o g requires monotone circuits of size exponential A, sizgC),
andsizgC").

2 If the circuit takes as inpui, we can first propagate it through the circuit and eliminate i

11

Proof. LetX = {zy,---,z,}. Define the finite languagk; = {zww" | z,w € X*,|z| = |w| = n}
and the corresponding polynomifl= 3", m,. Similarly let Ly = {ww"z | z,w € X*,[2| =
lw| = n}, and the corresponding polynomigk= >, m,. Itis easy to see that there are poly
sizeunambiguouscyclic CFGs forL; and L. Hence, by Proposition 2 there are monotone circuits
C and(C;, of size polyn) such thatC; computes polynomiaf andCy computes polynomiaj.

We first show that the finite languade N L. cannot be generated by any acyclic CFG of size
20(n18n) - Assume to the contrary that there is an acyclic QFG- (V, T, P,S) for Ly N Ly of size
20(n/lgn) Notice that,

LiNnLy={t|t=wwwwe X" |w| =n}.

Consider any derivation treéE’ for a wordww”w = wiws . . . WpWpWy_1 . . . WoW WY . . . Wy. Start-
ing from the root of the binary tre@’, we traverse down the tree always picking up the child with
larger yield. It is easy to see that there must be a nontetraina V' in the derivation tree such that
A =" u,u € X*andn < |u| < 2n. Crucially, note that any word that generates must have
same length since every word generated by the granifnaiin L.; N Ly and hence of lengtBn. Let
ww"w = sjusa Where|s;| = k. If both |s1], |s2| < n thenw” is a substring ofi. As |u| < 2n, itis
easy to see that the strings, will contain at least one occurrence of each1 < i < n. If either
|s1| or |s2] is greater tham then clearlyw is a subword 0§, s9 S0 it containaw; for i = 1 ton. Hence
the pair of subwords; ands, completely determines the stringy” w. Therefore, the nontermina
can deriveat mostone word inX* for each value ol < k < 2n. Since there are™ distinct words in
Ly N Lo, it follows that there must be at Iea@% distinctnonterminals in/. This contradicts the size
assumption o€.

SinceL; N L, cannot be generated by any acyclic CFG of €#&/'8™) it follows from Lemma
2 that the polynomiaf o ¢ can not be computed by any monotone circui2df/ s™) size. [

Remark 1.Theorem 10 shows that the Hadamard product of monotoneitsiigumore expressive
than monotone circuits. It raises the question whether énmanent polynomial can be expressed as
the Hadamard product of polynomial-size (or even subexptiaiesize) monotone circuits. Here we
note that the permanenan be easily expressed as the Hadamard product(ef) many monotone
circuits (in fact, monotone ABPS).

Theorem 11. Suppose there is a deterministic subexponential-timerigtgo that takes as input cir-
cuits computing polynomialg and g (in Q(z1,- - -, z,,)) and outputs a circuit forf o g. Then either
NEXPis not inP/poly or the Permanent does not have polynomial size noncommeiteiticuits.

Proof. Let(is a circuit computing polynomidl € Q(x, ..., z,). By assumption, we can compute
a circuitCy for the polynomialh o h in subexponential time. Therefofeis identically zero iffh o h

is identically zero iffCy evaluates t@ on all 1's input. We can easily check {f; evaluates t® on all
1's input by substitution and evaluation. This gives a detsistic subexponential time algorithm for
testing if A is identically zero. By the noncommutative analogue of [KIGhown in [AMSO08], this
implies either NEXP is not in Bpoly or the Permanent does not have polynomial size noncdative
circuits. [

We now consider the following problem: givefig € F(X) by circuits we want to test if o g

is identically zero. We show this problem is coNP-compl®¥e.first need the following Proposition
from [AMSO08].

12

Proposition 3. [AMSO08] Given a non-commutative circuit computing a polynomiagf € F(X) and
a monomialm € X*, in deterministic polynomial time we can compute the coefficofm in the
polynomial f.

Theorem 12. Given twomonotone polynomial-degreeircuits C' and C’ computing polynomial
f,9 € Q(X) itis coNPcomplete to check if o g is identically zero.

Proof. First we show that the complement of the problem is in NP. Wesg a monomiah,, € X*,

X = {x1,...,x,} and check if coefficient ofn,, is nonzero in botl' andC’. Note that we can com-
pute the coefficient of,, in C andC’ by Proposition 3 in deterministic polynomial time. This afs0
that the complement of the problem is in NP. Denote by CFGIMNT droblem of testing emptiness
of the intersection of two acyclic CFGs that generate pojylength strings. By Lemma 2 CFGINT
is polynomial time many-one reducible to testingfib ¢ is identically zero. The problem of testing
if the intersection of two CFGs (with recursion) is empty rlvn to be undecidable via a reduction
from post correspondence problem [HMU, Chapter 9,Page #¥2Jcan give an analogous reduction
from theboundedpost correspondence problem to CFGINT. The coNP-hardrigSEG@INT follows
from NP-hardness of bounded post correspondence probléi@®]GThis completes the proof sketch.

|
4 Monomial Algebras and Automata

Definition 6. A two-sided ideal = (mq,ma,---,m,) of the noncommutative ring(X) generated
by a finite set of monomiats, - - - , m,. is afinitely generated monomial ideaf F(X'). The quotient

algebraF(X)/I is afinitely generated monomial algebra

Nisan’s work [N91] on lower bounds for noncommutative fofasu(and ABPs), followed by Raz
and Shpilka's deterministic polynomial time identity tdst noncommutative ABPs motivates the
question whether such results can be proved over algeldrastbant (X'). The ultimate goal in this
direction would be to obtain lower bounds and determinisiintity tests in the commutative setting.
Chien and Sinclair [CS04] extend Nisan’s lower bound to matgebras (and various other algebras).
They show that Nisan'’s lower bounds for ABPs computing thena@ent or determinant holds for
the algebra o2 x 2 matrices.

In this section we examine this question for monomial algebFor a polynomiaf given by a
circuit (or ABP) and a monomial idedlwe are interested in the circuit (resp. ABP) complexity & th
polynomial f(modI). The corresponding identity testing problem is teal Membershigproblem
whetherf € I?

First we consider the problem in noncommutative setting.

Theorem 13. Let! = (mq,---,m,) be amonomial ideal ifi (X). Let P (resp.C’) be a noncommu-
tative ABP (resp. a polynomial degree monotone circuit) poting a polynomialf € F(X). Then
there is a deterministic polynomial-time algorithm to téghe polynomialf(modZ) is identically
zero.

Proof. Consider monomials; as strings over alphabét:y, ..., z,}. Letd = max;{length(m;)}.
Using the Aho-Corasick pattern matching automaton [AC78] a@nstruct a DFAA with O(dr)
states which on input a stringe X™* acceptss if s containsm; as a substring for some Now using
Theorem 1 we obtain an ABP’ (resp. a monotone circuit’) of sizepoly(n, d,) which computes

13

the polynomialy = f(mod.A). Clearly, f € Z iff ¢ = 0. Now we can invoke Corollary 1 to complete
the proof. [

As an easy consequence of Theorem 1, we have an immediate bowed observation for the
Permanent.

Corollary 2. LetI = (my,---,m,) be a monomial ideal and’ be a noncommutative ABP (or a
polynomial degree noncommutative monotone circuit) ondeterminateqz;; | 1 < i,j < n}. If
C = Perm,(modI) then eithersiz(C)) or the number of generating monomial$or I is 2°("),

4.1 Commutative monomial algebras

In this subsection we examine the same problem in the contveitzase. Letl = (mq, -+, my)
be a monomial ideal contained #jz1, - - -, 2,,]. As beforef(mod) is a meaningful polynomial in
Flzy,---,zy,] for f € Flzq, -+, xy).

First we introduce some useful notations. karm’ € X¢ we saym ~ m’ if m’ can be obtained
by shufflingm. Clearly, ~ is an equivalence relation and defines a partition on setlaf Ength
strings. Folx = (a1, ..., a,),0 < a; < dand), a; = d, the partition)/,, contains all stringsn €
X4 such thatn can be obtained by shuffling* 252 . .. 2. For a degred homogeneous polynomial
f in noncommuting variables, ..., z,, let f, = ZmemOI’Kf)ﬂMa amm wherea = (aq,...,ap),
0<a; <d,) ,a; =danda,, is a coefficient ofn in f.

Lemma 3. LetC is a circuit (resp. ABPR) computing homogeneous polynomjfat Q[X] of degree
d and A is commutativeV F A of sizes computing language.(.A) C X¢. There is a deterministic
polynomial (insize(C'), s) time algorithm to construct a circuif” (resp. ABPR’) which computes
polynomialg € Q[X] such that mofyf (div.4)) = mon(g). Moreover, ifC is a monotone thet” is
also monotone.

Proof. We prove the claim for circuits (the ABP case can be sinyilddne). Sincd. = L(A) C X

is a finite language, we can assume that the underlying tiamgjraph of NFAA is a layered directed
acyclic graph. We can modityl to an ABPP which will have a node corresponding to each statd in
with edges going between layersdlfz, z;) = b is a transition in the NFA then in the ABP we will
include a directed edge fromto b with labelz;. Clearly, P computes a polynomidl = > _; a,,m,
where eachu,,, is the number of accepting paths of the NFEAon inputm. Notice that, for any
m,m’ € L such thatn ~ m’ we havea,, = a,,, because the commutative NFA has thesame
number of accepting paths for andm’. So for anya = (a1, ..., o), ; € [d] suchthad ", a; = d,
we haveha = aq }-,,emonn)na, ™ Whereaq > 1is number of accepting paths dfon input any
m € M, Nnmon(h). Supposef’ € Q(X) is a degreel homogeneous polynomial computed by the
circuit C, assuming the multiplication gates @farenoncommutativeand the inputs to each gate are
ordered left to right. It is easy to see that the polynonfi@iv .A) in commuting variables, ..., z,
will have nonzero monomial{'z5° ... x5 iff > o am # 0, whereSy = mon(f’) N L N M, and
an, is the coefficient ofn in f’. By Theorem 9 we can compute in deterministic polynomiaktian
circuit C’ of size polynomial in siz&”') andsize(P) such thatC’ computesy’ = f'oh € Q(X). We

have,
g=Ffoh=> floha=Y[> ammlolas »_ m (7)

a meS) meSa

WhereS; = mon(f’) N M, andS,; = mon(h) N M,,. Let g € Q[X] be the polynomial obtained on
evaluatingC”’ in commutative algebr@[X]. Clearly,g will have a nonzero monomiaf{* z52 ... 29

14

iff ao) nesins, am # 0 0ff ag), cq am # 0 sincea, is a positive integer this shows that
(f(div A)) has nonzero monomiaf 57 ... 25~ iff g has nonzero monomiaf]* x5 ... z%". Thus
mon(f(div .A)) = mon(g). It follows easily from the construction in Theorem 9 thag ttircuit C’
will be monotone, ifC' is monotone. |

Theorem 14. LetI = (my,...,my) be a commutative monomial ideal @[z11, . .., z,»], gener-
ated byk = o(lgin) many monomials. Suppoégis a monotone circuit computing a polynomijain

Q[z11, . . . , Znn] Such that the permaneterm,, = f(modI) thenC+(f) = 2927,

Proof. Let X denote the set of variablés:1, ..., z,, }. For each monomiak; in the generating set
for I write m; = []}_, «;" , wheree,; are nonnegative integers.

Consider the language C X™ containing all stringsn such that for eaclh 1 < i < k there is
somej € [n] such that the number of occurrencesegfin m is strictly less that;;. Notice thatL is
preciselyX* \ I. Clearly, the languagé is commutativeif m € L then so is every reordering of the
word m. It is easy to see that there isammutativeNFA A with n@*) = 2°(") states such that =
L(A) (the NFA is designed using counters for eaeimd guessegl). So we havePerm,, = f(div A).

If possible assume thaf can be computed by a monotone circdit of size 2°("). By
Lemma 3 there is a monotone circuit of si2¢™ computing a polynomiay such that mofy) =
mon(f(div A)) = mon(Perm,). We observe that the*(") size lower bound proof for com-
mutative circuits computing the permanent (specificalhe tlerrum-Snir work [JS82]) also im-
ply the same lower bound for the polynomigl because the coefficients do not play a role and

mon(g) = mon(Perm,,). This completes the proof.]
Theorem 15. There is a monomial idedl = (my,---,m;) of F[X], whereX = {z;; | 1 <i,j <
n},t = O(n?) and a polynomial-sized commutative formi#lées, 1, - - - , ,,,,) such that

Perm,, = F(modI).

Proof. Let F' = [(w1 + @2 + - -+ + x4,,) and I be the monomial ideal generated by the set of
monomials{x;,z;, | 1 < i,j,k < n}. Clearly,Perm,, = F(modI). |

5 Intersecting Formulas and ABPs with NFAs

We now consider thexpressive powesf the intersecting and quotienting of formulas and ABPs by
NFAs. It turns out that quotienting formulas with NFAs is paful enough to express hard polyno-
mials like the permanent.

Theorem 16. There is are a polynomiaf € F(X) given by anO(n?) size formula and an NFA{ of
sizeO(n3), for X = {x;; | 1 < i,j < n} such that

Perm,, = f(mod.A).

Proof. Consider the polynomiaf = [], Zj z;;. Let L be a set of all wordsn € X™ such that
m = ux;pvz;pw for some strings:, v,w € X* andl < 4,5,k < n. Itis easy to see thdl = L(A)
for an NFA A with O(n?) states andPerm,, = f(mod.A). n

In contrast to the power of quotienting by NFAs we can eadilgws that intersection by small
NFAs cannot express the Permanent. Following Theorem isaap application of the result on
Hadamard product of ABPs (Theorem 7).

15

Theorem 17. Let f € Q(X) and A is an NFA with2°(™) many states accepting a languafjeC X*,
X = {xi; | 1 <i,j <n}such thatPerm, = f(div.A), thenB(f) = 22",

Thus, hard polynomials can be expressed by quotientingyampuiial of small formula size with
a small NFA, whereas we have exponential lower bound for tB® Aomplexity of any polynomial
whose intersection with a subexponential-size NFA is thenRaent. We can ask the “dual” question
about the complexity of identity testing fgiimod.4) and f (div .A) for NFAs A.

Given a formulaF’ computing a polynomial ifif (X') and an NFAA test if f(mod.A) is identically
zero. This problem turns out to be intractable unlike for BKéee Theorem 1).

Theorem 18. Given a formulaF’ computing a polynomiaf € Q(Z) and an NFAA accepting lan-
guageL(A) C Z* then the problem of testing whether the polynonfi@hod.A) is identically zero is
coNRcomplete.

Proof. We give a reduction from 3CNF-SAT to the complement of thebfgm. LetS = C; A
Cy A ... N Cy be a 3CNF formula wher€; = ¢;1 V cio V ¢i3 for 1 < ¢ < ¢, andCj;'s are from
{wl, e ,wn} U {—|w1, e ,"’wn}. Letf = HE:I Z?:l Zij Wherezij = g, if Cij = W; andzij = Y;
if ¢;j = —w;forl <i<n,1<j<3.Clearly, there is ad(t) size formulaF’ over indeterminates
Z ={x1,...,xn} U{y1,...,yn} for the polynomialf.

Let L C Z* be the set of all words of the forrm = wux;vy;w or m = wuy;vz;w for some
1 < i < n. Clearly, there is arO(n) size NFA A such thatL = L(.A). Notice that the 3CNF
formula S is satisfiable if and only if the polynomigi(mod .A) is not identically zero. Hence the
given problem is coNP-hard. The problem is in coNP, since areguess a monomiah, check in
polynomial time that it has nonzero coefficientfir{by Proposition 3), and check in polynomial time
thatm is not in L(A) using the NFA. |

Finally, we consider the problem of testingfifdiv .A) is identically zero forf given by an ABP
and an NFAA. We show that for the field of rationals, this problem is inedgtinistic polynomial
time. Itis an easy application of the result on Hadamard ycbdf ABPs (Theorem 7).

Theorem 19. Given an ABPP of sizes computing polynomiaf € Q(X) and an NFAA of sizet
then we can test whether the polynomjfatiiv A) is identically zero, in deterministic polynomial (in
s, t) time.

References

[ABO99] E. ALLENDER, R. BEALS, AND M. OGIHARA, The complexity of matrix rank and feasible systems of lnea
equationsComputational Complexity8(2):99-126, 1999.

[AC75] A.V.AHo, M. J. CoRASICK, Efficient String Matching: An Aid to Bibliographic Searadiommun. ACM, 18(6):
333-340, 1975

[AMSO08] V. ARVIND, P. MUKHOPADHYAY, S. SRINIVASAN New results on Noncommutative Polynomial Identity Test-
ingln Proc. of Annual IEEE Conference on Computational Compl268-279,2008.

[Bh97] R. BHATIA, Matrix Analysis, Springer-Verlag Publishing Company919

[BWO5] A. BoGDANOV, H. WEE More on Noncommutative Polynomial Identity TestilgProc. of 20th Annual Confer-
ence on Computational Complexi§2-99, 2005.

[CS04] S. GHIEN, A. SINCLAIR Algebras with polynomial identities and computing the deti@ant/n Proc. Annual IEEE
Sym. on Foundations of Computer ScieB&2-361, 2004.

[GJ79] M. R. &REY, D. S. bHNSONComputers and Intractability: A Guide to the Theory of NPa@eteness. W.H.
Freemarp. 228. ISBN 0-7167-1045;3979.

[HMU] J. E. HOPCROFT R. MoTAWANI, J. D. ULLMAN,, Introduction to Automata Theory Languages and Computa-
tion,Second EditionPearson Education Publishing Company.

16

[JS82] M. ERRUM, M. SNIR, Some Exact Complexity Results for Straight-Line Compatet over Semirings. ACM,
29(3): 874-897, 1982.

[KIO3] V. KABANETS, R. IMPAGLIAZZO, Derandomization of polynomial identity test means prgviircuit lower
bounds,/n Proc. of 35th ACM Sym. on Theory of Computi@$5-364,2003.

[KS01] A. KLIVANS, D. A. SPIELMAN, Randomness efficient identity testing of multivariateypoimials. STOC 2001
216-223.

[MV97] M. M AHAJAN, V. VINAY, A Combinatorial Algorithm for the Determinan§ODA 1997 730-738.

[MVV87] K. M ULMULEY, U. V. VAZIRANI, V. V. VAZIRANI, Matching Is as Easy as Matrix Inversi®rOC 1987
345-354.

[N91] N. NisaN Lower bounds for noncommutative computatienProc. of 23rd ACM Sym. on Theory of Computing,
410-418, 1991.

[RSO5] R. Raz, A. SHPILKA Deterministic polynomial identity testing in non commixat models Computational
Complexityl4(1):1-19, 2005.

[T91] S. ToDA, Counting Problems Computationally Equivalant to the Brateant, manuscript.

[VO1] V. VINAY, Counting Auxiliary Pushdown Automata and Semi-unbounéigthmetic Circuits,Proc. 6th Structures
in Complexity Theory Conferenc]0-284, 1991.

17

ECCC ISSN 1433-809

http://eccc.hpi-web.de/

