
Arithmetic Circuit Size, Identity Testing, and Finite Auto mata

V. Arvind and Pushkar S. Joglekar

Institute of Mathematical Sciences
C.I.T Campus,Chennai 600 113, India

{arvind,pushkar}@imsc.res.in

Abstract. Let F〈x1, x2, · · · , xn〉 be the noncommutative polynomial ring over a fieldF, where thexi’s
are free noncommuting formal variables. Given a finite automatonA with the xi’s as alphabet, we can
define polynomialsf(modA) andf(div A) obtained by natural operations that we callintersectingand
quotientingthe polynomialf by A. Related to intersection, we also define theHadamard productf ◦ g of
two polynomialsf andg.
In this paper we study the circuit and algebraic branching program (ABP) complexities of the polynomials
f(modA), f(div A), andf ◦g in terms of the corresponding complexities off andg and size of the automa-
tonA. We show upper and lower bound results. Our results have consequences in new polynomial identity
testing algorithms (and algorithms for its corresponding search version of finding a nonzero monomial). E.g.
we show the following:
(a) A deterministic NC2 identity test for noncommutative ABPs over rationals. In fact, we tightly classify

the problem as complete for the logspace counting classC=L.
(b) Randomized NC2 algorithms for finding a nonzero monomial in both noncommutative and commuta-

tive ABPs.
(c) Over monomial algebrasF〈x1, · · · , xn〉/I we derive an exponential size lower bound for ABPs com-

puting the Permanent. We also obtain deterministic polynomial identity testing for ABPs over such
algebras.

We also study analogous questions in thecommutativecase and obtain some results. E.g. we show over any
commutative monomial algebraQ[x1, · · · , xn]/I such that the idealI is generated byo(n/ lg n) monomi-
als, the Permanent requires exponential size monotone circuits.

1 Introduction

The basic goal of this paper is to study polynomial identity testing for polynomials given by circuits
or algebraic branching programs (ABPs), as well as its connection to proving circuit/ABP size lower
bounds. We consider these problems mainly in the noncommutative setting, but we also have obser-
vations in the commutative setting.

The main tool we use to study circuits and ABPs is finite automata and its properties. To this end,
we define the notion ofintersectionof a circuit or an ABP by a finite automaton and the notion of the
quotientof a circuit/ABP by a finite automaton.

More precisely, supposeX = {x1, x2, · · · , xn} is a set ofn noncommuting variables. The free
monoidX∗ consists of all words over these variables. For a fieldF let F〈x1, x2, · · · , xn〉 denote the
free noncommutative polynomial ring overF generated by the variables inX. Thus, the polynomials
in this algebra areF-linear combinations of words overX.

For a given polynomialf ∈ F〈X〉, let mon(f) = {m ∈ X∗ | m is a nonzero monomial inf}.

Definition 1. Letf ∈ F〈X〉 be a polynomial andA be a finite automaton (deterministic or nondeter-
ministic) accepting a subset ofX∗. Thequotientof the polynomialf =

∑
α cαmα by the automaton

A is defined as the polynomial

f(modA) =
∑

mα∈mon(f)\L(A)

cαmα,

Electronic Colloquium on Computational Complexity, Report No. 26 (2009)

ISSN 1433-8092

whereL(A) is the language accepted by the automaton. Similarly, theintersectionof the polynomial
f by the automatonA is the polynomial

f(divA) =
∑

mα∈mon(f)∩L(A)

cαmα.

Note: The automatonA splits the polynomialf into two parts asf = f(modA) + f(div A).

Thus, given an arithmetic circuitC (or an ABPP) computing a polynomial inF〈X〉 and a finite
automatonA (a DFA or an NFA) we can talk of the polynomialsC(modA), C(div A), P (modA)
andP (div A). We are interested in theexpressive powerof intersection and quotienting of circuits
and ABPs by finite automaton. In some of these cases, we are able to show bounds on the circuit
(respectively, ABP) size of these intersections and quotients in terms of the sizes ofC (or P) and
A. In contrast, quotienting with NFAs is much more expressive. For example, the permanent can
be expressed asP (modA) for an ABPP and an NFAA that are polynomial size bounded. These
results are presented in Section 2 and Section 5. Additionally, we define theHadamard productof two
polynomialsf andg in F〈X〉, which is an “algebraic” version of the intersection and we examine the
expressive power of the Hadamard product.1 It turns out that thenoncommutativebranching program
complexity of the Hadamard productf ◦ g is essentially the product of the branching program sizes
for f andg. We are able to use this property to give anewdeterministic polynomial time identity
test for noncommutative algebraic branching programs overQ (shown to be deterministic polynomial
time by Raz and Shpilka [RS05]). Our identity test can also beparallelized to give a deterministic
NC2 algorithm (in fact, we show it is complete for the logspace counting classC=L). These results
are explained in Section 2.

We define theMonomial Search Problem which is the natural search version of polynomial
identity testing:

Given a polynomialf ∈ F〈X〉 (or, in the commutative casef ∈ F[X]) of total degreed by an
arithmetic circuitC or an ABP, the problem is tofind a nonzero monomial of the polynomialf .

Applying our results on intersection of noncommutative ABPs overF with automata (specifically
DFAs), we give a randomizedRNC2 algorithm for finding a nonzero monomial and its coefficient.
With some more work we can show the same result even for the case of commutative ABPs.

Our result for monomial search for commutative ABPs can be seen as an algebraic generalization
of the search version of the maximum matching problem for which the Mulmuley-Vazirani-Vazirani
algorithm provided anRNC2 algorithm in a celebrated paper [MVV87] in which they introduced the
isolation lemma to do a parallel search. Indeed, the result on matchings can be derived in our setting.

In general, for arithmetic circuits too, we obtain a randomized NC reduction of the monomial
search problem to identity testing.

Arithmetic Circuit Size and Ideal Membership

Lower bounds for noncommutative computation were first studied in the pioneering paper of Nisan
[N91]. He studies noncommutative arithmetic circuits, formulas and algebraic branching programs.
Using a rank argument Nisan shows that the noncommutative permanent or determinant polynomials
in the ringF〈x11, · · · , xnn〉 require exponential size noncommutative formulas (and noncommutative
algebraic branching programs).

1 We call this the Hadamard product, because it is motivated bythe Hadamard product of matrices associated with algebraic
branching programs [N91].

2

Nisan’s results are over thefreenoncommutative ringF〈X〉. Chien and Sinclair, in [CS04], explore
the same question over other noncommutative algebras. Theyrefine Nisan’s rank argument to show
exponential size lower bounds for formulas computing the permanent or determinant over specific
noncommutative algebras, like the algebra of2×2 matrices overF, the quaternion algebra, and a host
of other examples.

In this paper, we apply our results on intersection of circuits and ABPs with DFAs to easily derive
similar results formonomial algebras.

Recall that an idealI (more precisely, a2-sided ideal) of the noncommutative polynomial ring
F〈X〉 is a subring that is closed under both left and right multiplication by the ring elements. We would
like to study arithmetic circuit lower bounds and identity testing in the quotient algebraF〈X〉/I for
different classes of ideals, where the idealI is given by a generating set of polynomials. For instance,
the circuit sizeCI(f) in the algebraF〈X〉/I is

min
g∈I

C(f + g).

Polynomial identity testing in the algebraF〈X〉/I is basically testing membership of a polynomial in
the idealI. The problem is intractable in general, but for special ideals it can be easier.

If I is a finitely generated monomial idealof F〈X〉, we can design a polynomial-size DFAA
that accepts precisely the monomials inI. Applying this idea, we show that the Permanent (and
Determinant) in the quotient algebraF〈X〉/I still requires exponential size ABPs. Furthermore, the
Raz-Shpilka deterministic identity tests for ABPs carry over easily toF〈X〉/I.

For commutative monomial algebras too our approach is through finite automata. The results we
obtain are weaker. Our main result here is an exponential size monotone circuit lower bound for
the Permanent over any monomial algebraQ[x1, x2, · · · , xn]/I, whereI is generated byo(n/ lg n)
monomials.

2 Intersecting and Quotienting Circuits by DFAs

In this section we focus on the circuit and ABP size complexities off(modA) andf(div A), in terms
of the circuit (resp. ABP) complexity off and the size of the automatonA, in the case whenA is a
deterministic finite automaton. The bounds we obtain areconstructive: we will efficiently compute a
circuit (resp. ABP) forf(modA) andf(div A) from the given circuit (resp. ABP) forf andA.

We will apply these results to obtain a randomized NC2 algorithm for the monomial search prob-
lem for ABPs (both noncommutative and commutative).

We first recall the following complexity measures for a polynomial f ∈ F〈X〉 from Nisan [N91].

Definition 2. [N91] For f ∈ F〈X〉, we denote its formula complexity byF (f), its circuit complexity
by C(f), and the algebraic branching program complexity byB(f). For F = R and a polynomial
f ∈ F〈X〉 with positive coefficients, itsmonotonecircuit complexity is denoted byC+(f),

We have the following theorem relating the complexity off(modA) andf(div A) to the com-
plexity of f .

Theorem 1. Let f ∈ F〈X〉 andA be a DFA withs states accepting some subset ofX∗. Then, for
g ∈ {f(modA), f(div A)} we have

1. C(g) ≤ C(f) · (ns)O(1).
2. C+(g) ≤ C+(f) · (ns)O(1).

3

3. B(g) ≤ B(f) · (ns)O(1).

Furthermore, the circuit (ABP) of the size given above for polynomialg can be computed in determin-
istic logspace (hence inNC2) on input a circuit (resp. ABP) forf and the DFAA.

Proof. We first describe a circuit construction that proves parts 1and 2 of the theorem.
Let A = (Q,X, δ, q0, F) be the quintuple describing the given DFA withs states. We can extend

the transition functionδ to words (i.e. monomials) inX∗ as usual:δ(a,m) = b for statesa, b ∈ Q
and a monomialm if the DFA goes from statea to b on the monomialm. In particular, we note that
δ(a, ε) = a for each statea. As in automata theory, this is a useful convention because when we
write a polynomialf ∈ F〈X〉 as

∑
cαmα, we can allow forε as the monomial corresponding to the

constant term inf .
Let C be the given circuit computing polynomialf . For each gateg of C, let fg denote the

polynomial computed byC at the gateg. In the new circuitC ′ we will haves2 gates〈g, a, b〉, a, b ∈ Q
corresponding to each gateg of C. Recall that mon(f) is the set of monomials off . LetMab = {m ∈
X∗ | δ(a,m) = b} for statesa, b ∈ Q. At the gate〈g, a, b〉 the circuitC ′ will compute the polynomial

fa,b
g =

∑

mα∈Mab∩mon(fg)

cαmα,

wherefg =
∑

cαmα.
The input-output connections between the gates ofC ′ are now easy to define. Ifg is a+ gate with

input gatesh andk so thatfg = fh + fk, we have

fa,b
g = fa,b

h + fa,b
k ,

implying that〈h, a, b〉 and〈k, a, b〉 are the inputs to the+ gate〈g, a, b〉. If g is a× gate, with inputsh
andk so thatfg = fh · fk, we have

fa,b
g =

∑

c∈Q

fa,c
h · f c,b

k .

This simple formula can be easily computed by a small subcircuit with O(s) many+ gates and×
gates.

Finally, letout denote the output gate of circuitC, so thatfout = f . It follows from the definitions
that

f(modA) =
∑

a6∈F

f q0,a
out

f(div A) =
∑

a∈F

f q0,a
out

Hence, by introducing a small formula for this computation with suitably designated output gate,
we can easily get the circuitC ′ to computef(modA) or f(div A).

The correctness of our construction is immediate. Furthermore, size(C ′) satisfies the claimed
bound. Note thatC ′ will remain a monotone circuit if the given circuitC is monotone. This completes
the proof of the first two parts.

Now we prove part 3 of the statement. LetP be an ABP computing polynomialf andA be a given
DFA. The idea for the construction of ABPs that computef(modA) andf(div A) is quite similar to

4

the construction described for part 1. Consider for instance the ABPP ′ for f(modA). Consider the
directed acyclic layered graph underlying the ABPP . In the new ABPP ′ we will have exactly the
same number of layers as forP . However, for each nodeb in the ith layer of ABPP we will have
nodes〈b, q〉 for each stateq of the DFAA. Now, letfb denote the polynomial that is computed at the
nodeb by the ABPP . The property that the construction ofP ′ can easily ensure is

fb =
∑

q

f〈b,q〉,

wheref〈b,q〉 is the polynomial computed at node〈b, q〉 by the ABPP ′. More precisely, letMq be
the set of all nonzero monomialsm of fb such that on inputm the DFAA goes from start state to
stateq. Then the polynomialf〈b,q〉 will be actually the sum of all the terms of the polynomialfb

corresponding to the monomials inMq. This construction can now be easily used to obtain ABPs for
each off(modA) andf(div A), and the size of the ABP will satisfy the claimed bound. We omit the
easy details of the construction of the ABPs.

A careful inspection of the constructions shows that for a given circuit C and DFAA we can
construct the circuits that computeC(modA) andC(div A) in deterministic logspace (and hence in
NC2). Likewise, the construction of the ABPs forP (modA) andP (div A) for a given ABPP can
also be computed in deterministic logspace.

The following is an immediate corollary of Theorem 1.

Corollary 1. 1. Given a noncommutative ABPP computing a polynomialf ∈ F〈X〉 and a deter-
ministic finite automatonA we can test in deterministic polynomial time whetherf(modA) is
identically zero.

2. Given a noncommutative circuitC computingf ∈ F〈X〉 and a DFAA then we can test whether
f(modA) is identically zero in randomized polynomial time (ifC is a monotone circuit then we
can test iff(modA) is zero in deterministic polynomial time).

We now prove a similar result for commutative ABPs. However,we need to be careful to con-
sider the right kind of DFAs that capture commutativity so that the constructions of Theorem 1 are
meaningful and go through.

Definition 3 (Commutative Automata). Let w ∈ Xd be any string of lengthd over the alphabet
X = {x1, · · · , xn}. LetCw ⊂ Xd denote the set of all wordsw′ obtained by shuffling the letters ofw.

A DFA (or NFA)A over the alphabetX = {x1, · · · , xn} is said to becommutativeif for every
wordw ∈ X∗, w is accepted byA if and only if every word inCw is accepted byA.

The following theorem is the analogue of Theorem 1 for intersecting and quotienting commutative
circuits and commutative ABPs by commutative DFAs. We omit the proofs as the constructions are
identical to those in the proof of Theorem 1. It can be easily seen from Definition 1 and the proof of
Theorem 1 that in the commutative case the constructions aremeaningful and work correctly when
the DFAs considered are commutative.

Theorem 2. Let f ∈ F[x1, x2, · · · , xn] and A be a commutative DFA withs states over alphabet
X = {x1, · · · , xn}. Then, forg ∈ {f(modA), f(divA)} we have

1. C(g) ≤ C(f) · (ns)O(1).
2. C+(g) ≤ C+(f) · (ns)O(1).
3. B(g) ≤ B(f) · (ns)O(1).

Furthermore, the commutative circuit (ABP) for polynomialg meeting the above size bounds are
computable in deterministic logspace (hence inNC2) on input a circuit (resp. ABP) forf and DFAA.

5

2.1 Monomial search problem

Next we consider the monomial search problem for ABPs in bothcommutative and noncommutative
setting. The goal is to compute a nonzero monomial of the polynomial computed by the given ABP.
We apply Theorem 1 to prove these results.

Theorem 3. Given a noncommutative ABPP computing a polynomialf in F〈X〉 there is a ran-
domizedNC2 algorithm that computes a nonzero monomial off . More precisely, the algorithm is a
randomizedFLGapLalgorithm.

Proof. We can assume wlog that the given ABPP computes a homogeneous degreed polynomial.
The proof is by a careful application of the isolating lemma of [MVV87]. Define the universeU =
{xij | 1 ≤ i ≤ n, 1 ≤ j ≤ d}, where the elementxij stands for the occurrence ofxi in the jth

position in a monomial. With this encoding every degreed monomialm overX can be encoded as a
subsetSm of sized in U , whereSm = {xij | xi occurs injth position inm}. Following the isolation
lemma, we pick a random weight assignmentw : U −→ [4dn]. The weight of a monomialm is
defined asw(m) = w(Sm) =

∑
xij∈Sm

w(xij), and with probability1/2 there is a unique minimum
weight monomial.
Construction of weight-checking DFA:For any weight valuea such that1 ≤ a ≤ 4nd2, we can easily
construct a DFAMa

w that accepts a monomialm ∈ X∗ iff m ∈ Xd andw(m) = a. This DFA will
haveO(4nd3) many states. Furthermore, we can compute this DFA in deterministic logspace, given
the weight functionw.

Next, by Theorem 1 we can compute an ABPP a
w that computes the polynomialP (div Ma

w) for
each of1 ≤ a ≤ 4nd3. With probability1/2 we know that one ofP (div Ma

w) accepts precisely one
monomial of the original polynomialf (with the same coefficient).

In order to find each variable occurring in that unique monomial accepted by, say,P a
w we will

design another DFAAij which will accept a monomialm ∈ Xd if and only if xi occurs in thejth

position. Again by Theorem 1 we can compute an ABPBi,j,a,w that accepts preciselyP a
w(div Aij).

Now, the ABPBi,j,a,w either computes the zero polynomial (ifxi does not occur in thejth position of
the unique monomial ofP a

w) or it computes that unique monomial ofP a
w. In order to test which is the

case, notice that we candeterministicallyassign the valuesxi = 1 for each variablexi. Crucially, since
P a

w has auniquemonomial it will be nonzero even for this deterministic and commutative evaluation.
Since the evaluation of an ABP is for commutative values (scalar values), we can carry it out in NC2

in fact, in FLGapL for any fixed finite field or overQ, (see e.g. [T91], [V91], [MV97]).
Let m be the monomial that is finally constructed. We can constructa DFAAm that accepts only

m and no other strings. By Theorem 1 we can compute an ABPP ′ for the polynomialP (div Am)
and again check ifP ′ is zero or nonzero by substituting allxi = 1 and evaluating. This will make the
algorithm actually a zero-error NC2 algorithm.

The success probability can be boosted by parallel repetition. This completes the proof sketch.

Next we describe a randomized NC2 algorithm for the Monomial search problem for commuta-
tive ABPs. This is the best we can currently hope for, since deterministic polynomial-time identity
testing for commutative ABPs is a major open problem. Our monomial search algorithm will use the
following generalized isolation lemma of Klivans and Spielman [KS01].

Lemma 1. [KS01, Lemma 4]Let L be a collection of linear forms over variablesz1, . . . , zn with
integer coefficients in{0, 1, . . . ,K}. If eachzi is picked independently and uniformly at random from

6

{0, 1, . . . , 2Kn} then with probability at least12 there is a unique linear form inL which attains
minimum value at(z1, z2, . . . , zn).

Theorem 4. The monomial search problem for commutative algebraic branching programs is in ran-
domizedNC2 (more precisely, it is in randomizedFLGapL).

Proof. We will only provide a proof outline, since it is similar to that of Theorem 3 and builds on
Theorem 2.

Let P be a commutative algebraic branching program computing a polynomial f ∈
F[x1, x2, . . . , xn]. We assume, without loss of generality, thatf is homogeneous of degreed. First,
pick a random weight functionw : {x1, · · · , xn} −→ [2dn]. Next for each numbera such that
0 ≤ a ≤ 2d2n we construct a DFAAa

w which will accept a monomialm ∈ X∗ iff m ∈ Xd and
w(m) = a, wherew(m) =

∑
i w(xi) · αi, andxi occurs exactlyαi times inm. Crucially, notice that

the DFAAa
w is acommutativeDFA. Hence, applying Theorem 2, for each numbera we can obtain an

ABP P a
w in deterministic logspace.

By Lemma 1 with probability at least1/2 one of the ABPsP a
w accepts a unique monomial

m = xα1

1 xα2

2 . . . xαn
n of the given polynomialf . Suppose that value ofa is u. Let c 6= 0 denote

the coefficient of the unique monomialm in f computed by the ABPP u
w.

Our goal now is to find theαi’s. To find αi, we evaluate the ABPP a
w by settingxj = 1 for all

j 6= i. Clearly, the ABPP u
w will evaluate on this input tocxαi

i . Evaluating each of the ABPsP a
w on the

input (1, · · · , 1, xi, 1, · · · , 1) can be done in NC2. Indeed, it can be done in FLGapL, since we only
need determinant computation over the fieldF. This completes the proof sketch.

Theorem 4 is a generalization of the Mulmuley et al. result onconstructing maximum matchings
in RNC2 [MVV87] using the connection between matchings and the rankof the Tutte matrixM . We
can apply Theorem 4 to find maximum matchings inRNC2 (more precisely, randomized FLGapL).

An easy prefix search gives a deterministic polynomial time algorithm for the monomial search
problem for noncommutative ABPs.

Theorem 5. There is a deterministic polynomial time algorithm for the monomial search problem for
noncommutative algebraic branching programs.

Proof. Let P be the input noncommutative ABP that computes a polynomialf ∈ F〈X〉. W.l.o.g.
assume thatf =

∑
α aαmα is homogeneous polynomial of degreed, wheremα are the nonzero

monomials off . We solve the monomial search problem by a prefix search that is guided by the Raz-
Shpilka deterministic identity test [RS05]. For any stringw ∈ Xk, k ≤ d we can define a polynomial-
sized DFADw that accepts only words of the formwy for some wordy ∈ X∗. Applying Theorem 1
we can construct an ABPPw that computesf(div Dw) for any givenw. Notice that

f(div Dw) =
∑

mα=wy

aαmα.

The prefix search algorithm is now easy to describe. Startingwith w = ε, we successively compute
ABPsPε, Pw1

, · · · , Pwd
, where|wk| = k andwk is a prefix ofwk+1 for eachk.

EachPwk
is an ABP that computesf(div Dwk

) as described above. Notice thatPε computesf .
Supposef(div Dwk

) is nonzero. Then the prefix search setswk+1 = wkxi for the first indeterminate
xi such thatPwk+1

computes a nonzero polynomial (to check this we use the Raz-Shpilka identity test
onPwk+1

[RS05]). Sincef(div Dwk
) 6= 0 for some indeterminatexi the polynomialf(div Dwk+1

) is

7

nonzero. Hence the prefix search will successfully continue. The output of the monomial search will
bewd.

Finally, we note that the same technique of isolating using aDFA and DFA intersection with a
circuit can be used to give a randomized NC reduction from monomial search for noncommutative
(commutative) circuits to noncommutative (resp. commutative) polynomial identity testing.

Theorem 6. Monomial search for noncommutative (commutative) circuits is randomizedNC re-
ducible to noncommutative (resp. commutative) polynomialidentity testing.

3 The Hadamard Product

Motivated by the well-known Hadamard product of matrices (see e.g. [Bh97]), in this section we
consider the Hadamard product of polynomials.

Definition 4. Let f, g ∈ F〈X〉 whereX = {x1, x2, · · · , xn}. Thehadamard productof f and g,
denotedf ◦ g, is the polynomial

f ◦ g =
∑

α

aαbαmα,

wheref =
∑

α aαmα andg =
∑

α bαmα.

Clearly, mon(f ◦g) = mon(f)∩mon(g). Thus, the Hadamard product can be seen as an algebraic
version of the intersection of formal languages.

Our definition of the Hadamard product of polynomials is actually motivated by the well-known
Hadamard productA ◦B of two m×n matricesA andB. We recall the following well-known bound
for the rank of the Hadamard product.

Proposition 1. LetA andB be twom × n matrices over any fieldF. Then

rank(A ◦ B) ≤ rank(A)rank(B).

It is known from Nisan’s paper [N91] that the ABP complexityB(f) of a polynomialf ∈ F〈X〉
is closely connected with the ranks of the communication matricesMk(f), whereMk(f) has its rows
indexed by degreek monomials and columns by degreed − k monomials and the(m,m′)th entry of
Mk(f) is the coefficient ofmm′ in f . Nisan showed thatB(f) =

∑
k rank(Mk(f)).

Indeed as a consequence of Nisan’s result and the above proposition we can easily obtain the
following nice bound on the ABP complexity off ◦ g.

Lemma 2. For f, g ∈ F〈X〉 we haveB(f ◦ g) ≤ B(f)B(g).

Proof.

B(f ◦ g) =
∑

k

rank(Mk(f ◦ g)) ≤
∑

k

rank(Mk(f))rank(Mk(g)) (1)

≤ (
∑

k

rank(Mk(f))(
∑

k

rank(Mk(g))) (2)

We will now prove a more interesting algorithmic version of this upper bound.

8

Theorem 7. Let P andQ be two given ABP’s computing polynomialsf andg in F〈x1, x2, . . . , xn〉,
respectively. Then there is a deterministic polynomial time algorithm that will output an ABPR for
f ◦ g such that the size ofR is a constant factor of product of the sizes ofP and Q. (Indeed, the
construction ofR can be done in deterministic logspace.)

Proof. Without loss of generality we can assume that bothP and Q are homogeneous ABP’s of
degreed. If not we can easily construct an ABP to computefi ◦ gi separately for eachi, wherefi, gi

denotes degreei homogeneous parts of the polynomialf andg, respectively. Since hadamard product
is distributive over addition we can computef ◦ g by adding allfi ◦ gi. By allowing parallel edges
between nodes of ABPsP,Q we can assume that the labels associated with each edge in an ABP is
either0 or a · xi for somea ∈ F, i ∈ [n]. Let s1 ands2 bound the number of nodes in any particular
layer ofP andQ respectively. We denote thejth node in layeri by 〈i, j〉 for ABP’sP andQ. Next we
give the construction of the ABPR which will compute the polynomialf ◦ g. Each layeri, 1 ≤ i ≤ d
of R will have s1 · s2 nodes, with node labeled〈i, a, b〉 corresponding to the node〈i, a〉 of P and the
node〈i, b〉 of Q. We can assume there is an edge from every node in layeri to every node in layer
i + 1 for both ABPs. For, if there is no such edge we can always add itwith label0.

In the new ABPR we will add an edge from〈i, a, b〉 to 〈i + 1, c, e〉 with labelα · βxt in R if and
only if there is an edge from node〈i, a〉 to 〈i + 1, c〉 with labelα · xt in P and an edge from〈i, b〉 to
〈i + 1, e〉 with label β · xt in ABP Q. Let 〈0, a, b〉 and〈d, c, e〉 be the source and the sink nodes of
ABPR respectively, where〈0, a〉, 〈0, b〉 are the source nodes ofP andQ, and〈d, c〉, 〈d, e〉 are the sink
nodes ofP andQ respectively. Leth〈i,a,b〉 denote the polynomial computed at node〈i, a, b〉 of ABP
R. Similarly, letf〈i,a〉 andg〈i,b〉 denote the polynomials computed at node〈i, a〉 of P and node〈i, b〉
of Q. We can easily see thath〈i,a,b〉 = f〈i,a〉 ◦ g〈i,b〉 by using an induction argument on the number
of layers in the ABPs, we skip the details of the inductive proof. It follows from this argument that
the ABPR computes the polynomialf ◦ g at its sink node. The bound on the size ofR also follows
easily.

This theorem has an interesting consequence for noncommutative identity testing of ABP’s (and
formulas) overQ. This gives an alternative algorithm to the one due to Raz andShpilka’s deterministic
polynomial time identity test [RS05]. In fact, we actually strengthen the result to give an NC2 upper
bound.

Theorem 8. The problem of polynomial identity testing for noncommutative algebraic branching pro-
grams overQ is in NC2. (In fact, it is complete for the logspace counting classC=L under logspace
reductions).

Proof. Let P be the given ABP computingf ∈ Q〈X〉. We apply the construction of Theorem 7 to
compute a polynomial sized ABPR for the Hadamard productf ◦ f (i.e. off with itself). Notice that
f ◦ f is nonzero ifff is nonzero. Now, we crucially use the fact thatf ◦ f is a polynomial whose
nonzero coefficients are allpositive. Hence,f ◦ f is nonzero iff it evaluates to nonzero on the all1’s
input. The problem thus boils down to checking ifR evaluates to nonzero on the all1’s input.

By Theorem 7, the ABPR for polynomialf ◦ f is computable in deterministic logspace, given as
input an ABP forf . Furthermore, evaluating the ABPR on the all1’s input can be easily converted
to iterated integer matrix multiplication (one matrix for each layer of the ABP), and checking ifR
evaluates to nonzero can be done by checking if a specific entry of the product matrix is nonzero. It
is well known that checking if a specific entry of an iterated integer matrix product is zero is in the
logspace counting classC=L (e.g. see [ABO99]). However,C=L is contained in NC2, in fact in TC1.
On the other hand, the problem of checking if an integer matrix A is singular is complete forC=L

9

The standard GapL algorithm for computingdet(A) [T91] can be converted to an ABPPA which will
computedet(A). HencePA computes the identically zero polynomial iffA is singular. Putting it all
together, it follows that identity testing of noncommutative ABPs over rationals is complete for the
classC=L.

Analogous to Theorem 7 we show thatf ◦ g has small circuits iff has a small circuit andg has a
small ABP.

Theorem 9. Letf, h ∈ F〈x1, x2, · · · , xn〉 be given by a degreep circuit C and an ABPP respectively,
wherep ≤ poly(n). Then we can compute in polynomial time a circuitC ′ that computesf ◦ h where
the size ofC ′ is polynomially bounded by sizes ofC andP .

Proof. Without loss of generality we can assume that bothf andh are homogeneous polynomials of
degreed. If not we can computefi ◦ hi separately for each1 ≤ i ≤ p, wherefi, hi denotes degreei
homogeneous parts off andh respectively. Since the Hadamard product is distributive over addition
we can computef ◦ h by adding allfi ◦ hi’s. Let fg denotes the polynomial computed at gateg of
C. Let w denotes number of nodes in any layer ofP . Let 〈i, a〉 denote theath node in theith layer
of P for 0 ≤ i ≤ d, 1 ≤ a ≤ w. Let h(i,a),(j,b) denote the polynomial computed by ABPP ′. The
ABP P ′ is same asP but with source node〈i, a〉 and sink node〈j, b〉. We construct circuitC ′ that
computes polynomialf ◦ h. In C ′ we have gates〈g, l, (i, a), (i + l, b)〉 for 0 ≤ l ≤ d, 0 ≤ i ≤ d,
1 ≤ a, b ≤ w associated with each gateg of C, such that at each gate〈g, l, (i, a), (i + l, b)〉 the circuit
C ′ will compute

r
〈g,l〉
(i,a),(i+l,b) = f〈g,l〉 ◦ h(i,a),(i+l,b)

wheref〈g,l〉 denotes the degreel homogeneous component of the polynomialfg. Next we describe the
input-output connections forC ′. If g is a+ gate ofC with input gatesg1, g2 so thatfg = fg1

+fg2
, we

haver
〈g,l〉
(i,a),(i+l,b) = r

〈g1,l〉
(i,a),(i+l,b) +r

〈g2,l〉
(i,a),(i+l,b), for 0 ≤ l ≤ d, 0 ≤ i ≤ d, 1 ≤ a, b ≤ w. In other words,

〈g, l, (i, a), (i+l, b)〉 is + gate inC ′ with input gates〈g1, l, (i, a), (i+l, b)〉 and〈g2, l, (i, a), (i+l, b)〉.
If g is a× gate inC we will have

r
〈g,l〉
(i,a),(i+l,b) =

l∑

j=0

w∑

t=1

r
〈g1,j〉
(i,a),(i+j,t) · r

〈g2,l−j〉
(i+j,t),(i+l,b)

This formula can be easily computed by a small subcircuit. Let 〈g, d, (0, 1), (d, 1)〉 be the output gate
of C ′, whereg is the output gate ofC and(0, 1), (d, 1) denotes the source and the sink of the ABPP
respectively. This completes the description of the circuit C ′. Next we inductively prove that at gate
〈g, l, (i, a), (i + l, b)〉, C ′ indeed computes the polynomialf〈g,l〉 ◦ h(i,a),(i+l,b). At + gateg of C the
claim is easy to see. Letg is × gate ofC with inputsg1, g2 such thatfg = fg1

· fg2
and assume that

the claim holds true for the gatesg1 andg2. This impliesf〈g,l〉 =
∑l

i=0 f〈g1,i〉 · f〈g2,l−i〉. So we have,

f〈g,l〉 ◦ h(i,a),(i+l,b) = [

l∑

j=0

f〈g1,j〉 · f〈g2,l−j〉] ◦ h(i,a),(i+l,b) (3)

=

l∑

j=0

(f〈g1,j〉 · f〈g2,l−j〉 ◦ h(i,a),(i+l,b)) (4)

=
l∑

j=0

w∑

t=1

f〈g1,j〉 · f〈g2,l−j〉 ◦ h(i,a),(i+j,t) · h(i+j,t),(i+l,b) (5)

10

=
l∑

j=0

w∑

t=1

(f〈g1,j〉 ◦ h(i,a),(i+j,t)) · (f〈g2,l−j〉 ◦ h(i+j,t),(i+l,b)) (6)

The first two equalities easily follows from distributivityof Hadamard product and the fact that,
for any i ≤ j ≤ i + l, h(i,a),(i+l,b) =

∑w
t=1 h(i,a),(i+j,t) · h(i+j,t),(i+l,b) and the last equality follows

sincef〈g1,j〉, h(i,a),(i+j,t) are both degreej homogeneous polynomials. By induction hypothesis we

haver
〈g1,j〉
(i,a),(i+j,t) = f〈g1,j〉 ◦h(i,a),(i+j,t) andrg2,l−j

(i+j,t),(i+l,b) = f〈g2,l−j〉 ◦h(i+j,t),(i+l,b). This proves the
desired claim

r
〈g,l〉
(i,a),(i+l,b) = f〈g,l〉 ◦ h(i,a),(i+l,b).

Clearly, at the output gate〈g, d, (0, 1), (d, 1)〉 the circuitC ′ will compute the polynomialf ◦ h. The
size ofC ′ is bounded by a polynomial in the sizes ofC andP .

On the other hand, supposef andg individually have small circuit complexity. Two questions
arise: doesf ◦ g have small circuit complexity? Can we compute such a circuitfor f ◦ g from the
circuits forf andg?

We first consider these questions for monotone circuits. It is useful to understand the connec-
tion between monotone noncommutative circuits and context-free grammars. We recall the following
definition.

Definition 5. We call a context-free grammar in Chomsky normal formG = (V, T, P, S) an acyclic
CFG if for any nonterminalA ∈ V there does not exist any derivation of the formA ⇒∗ uAw.

The sizesize(G) of an acyclic CFGG = (V, T, P, S) is defined as|V | + |T | + size(P), where
V , T , andP are the sets of variables, terminals, and production rules.We note the following easy
proposition that relates acyclic CFGs to monotone noncommutative circuits overX.

Proposition 2. For a monotone circuitC of sizes computing a polynomialf ∈ Q〈X〉 let mon(f)
denote the set of nonzero monomials off . Then there is an acyclic CFGG for mon(f) with size(G) =
O(s). Conversely, ifG is an acyclic CFG of sizes computing some finite setL ⊂ X∗ of monomials
over X, there exists a monotone circuit of sizeO(s) that computes a polynomial

∑
mα∈L aαmα ∈

Q〈X〉, where the positive integeraα is the number of derivation trees formα in the grammarG.

Proof. First we prove the forward direction by constructing an acyclic CFG G = (V, T, P, S) for
mon(f). Let V = {Ag| g is a gate of circuitC} be the set of nonterminals ofG. We include a pro-
duction inP for each gate of the circuitC. If g is an input gate with inputxi, 1 ≤ i ≤ n include the
productionAg → xi in P . If the input is anonzerofield element then add the productionAg → ε.2

Let fg denote the polynomial computed at gateg of C. If g is a× gate withfg = fh × fk then
include the productionAg → AhAk and if it is + gate withfg = fh + fk include the productions
Ag → Ah | Ak. Let the start symbolS = Ag, whereg is the output gate ofC. It is easy to see from the
above construction thatG is acyclic moreoversize(G) = O(s) and it generates the finite language
mon(f). The converse direction is similar.

Theorem 10. There are monotone circuitsC andC ′ computing polynomialsf andg in Q〈X〉 respec-
tively, such that the polynomialf ◦ g requires monotone circuits of size exponential in|X|, size(C),
andsize(C ′).

2 If the circuit takes as input0, we can first propagate it through the circuit and eliminate it.

11

Proof. Let X = {x1, · · · , xn}. Define the finite languageL1 = {zwwr | z,w ∈ X∗, |z| = |w| = n}
and the corresponding polynomialf =

∑
mα∈L1

mα. Similarly letL2 = {wwrz | z,w ∈ X∗, |z| =
|w| = n}, and the corresponding polynomialg =

∑
mα∈L2

mα. It is easy to see that there are poly(n)
sizeunambiguousacyclic CFGs forL1 andL2. Hence, by Proposition 2 there are monotone circuits
C1 andC2 of size poly(n) such thatC1 computes polynomialf andC2 computes polynomialg.

We first show that the finite languageL1 ∩ L2 cannot be generated by any acyclic CFG of size
2o(n lg n). Assume to the contrary that there is an acyclic CFGG = (V, T, P, S) for L1 ∩ L2 of size
2o(n/ lg n). Notice that,

L1 ∩ L2 = {t | t = wwrw,w ∈ X∗, |w| = n}.

Consider any derivation treeT ′ for a wordwwrw = w1w2 . . . wnwnwn−1 . . . w2w1w1 . . . wn. Start-
ing from the root of the binary treeT ′, we traverse down the tree always picking up the child with
larger yield. It is easy to see that there must be a nonterminal A ∈ V in the derivation tree such that
A ⇒∗ u, u ∈ X∗ andn ≤ |u| < 2n. Crucially, note that any word thatA generates must have
same length since every word generated by the grammarG is in L1 ∩ L2 and hence of length3n. Let
wwrw = s1us2 where|s1| = k. If both |s1|, |s2| ≤ n thenwr is a substring ofu. As |u| < 2n, it is
easy to see that the strings1s2 will contain at least one occurrence of eachwi, 1 ≤ i ≤ n. If either
|s1| or |s2| is greater thann then clearlyw is a subword ofs1s2 so it containswi for i = 1 to n. Hence
the pair of subwordss1 ands2 completely determines the stringwwrw. Therefore, the nonterminalA
can deriveat mostone word inX∗ for each value of1 ≤ k ≤ 2n. Since there arenn distinct words in
L1 ∩ L2, it follows that there must be at leastnn

2n distinctnonterminals inV . This contradicts the size
assumption ofG.

SinceL1 ∩ L2 cannot be generated by any acyclic CFG of size2o(n/ lg n), it follows from Lemma
2 that the polynomialf ◦ g can not be computed by any monotone circuit of2o(n/ lg n) size.

Remark 1.Theorem 10 shows that the Hadamard product of monotone circuits is more expressive
than monotone circuits. It raises the question whether the permanent polynomial can be expressed as
the Hadamard product of polynomial-size (or even subexponential size) monotone circuits. Here we
note that the permanentcanbe easily expressed as the Hadamard product ofO(n3) many monotone
circuits (in fact, monotone ABPs).

Theorem 11. Suppose there is a deterministic subexponential-time algorithm that takes as input cir-
cuits computing polynomialsf andg (in Q〈x1, · · · , xn〉) and outputs a circuit forf ◦ g. Then either
NEXP is not inP/poly or the Permanent does not have polynomial size noncommutative circuits.

Proof. LetC1 is a circuit computing polynomialh ∈ Q〈x1, . . . , xn〉. By assumption, we can compute
a circuitC2 for the polynomialh ◦ h in subexponential time. Thereforeh is identically zero iffh ◦ h
is identically zero iffC2 evaluates to0 on all1’s input. We can easily check ifC2 evaluates to0 on all
1’s input by substitution and evaluation. This gives a deterministic subexponential time algorithm for
testing ifh is identically zero. By the noncommutative analogue of [KI03], shown in [AMS08], this
implies either NEXP is not in P/poly or the Permanent does not have polynomial size noncommutative
circuits.

We now consider the following problem: givenf, g ∈ F〈X〉 by circuits we want to test iff ◦ g
is identically zero. We show this problem is coNP-complete.We first need the following Proposition
from [AMS08].

12

Proposition 3. [AMS08] Given a non-commutative circuitC computing a polynomialf ∈ F〈X〉 and
a monomialm ∈ X∗, in deterministic polynomial time we can compute the coefficient of m in the
polynomialf .

Theorem 12. Given twomonotone polynomial-degreecircuits C and C ′ computing polynomial
f, g ∈ Q〈X〉 it is coNP-complete to check iff ◦ g is identically zero.

Proof. First we show that the complement of the problem is in NP. We guess a monomialmα ∈ X∗,
X = {x1, . . . , xn} and check if coefficient ofmα is nonzero in bothC andC ′. Note that we can com-
pute the coefficient ofmα in C andC ′ by Proposition 3 in deterministic polynomial time. This shows
that the complement of the problem is in NP. Denote by CFGINT the problem of testing emptiness
of the intersection of two acyclic CFGs that generate poly(n) length strings. By Lemma 2 CFGINT
is polynomial time many-one reducible to testing iff ◦ g is identically zero. The problem of testing
if the intersection of two CFGs (with recursion) is empty is known to be undecidable via a reduction
from post correspondence problem [HMU, Chapter 9,Page 422]. We can give an analogous reduction
from theboundedpost correspondence problem to CFGINT. The coNP-hardness of CFGINT follows
from NP-hardness of bounded post correspondence problem [GJ79]. This completes the proof sketch.

4 Monomial Algebras and Automata

Definition 6. A two-sided idealI = 〈m1,m2, · · · ,mr〉 of the noncommutative ringF〈X〉 generated
by a finite set of monomialsm1, · · · ,mr is afinitely generated monomial idealof F〈X〉. The quotient
algebraF〈X〉/I is afinitely generated monomial algebra.

Nisan’s work [N91] on lower bounds for noncommutative formulas (and ABPs), followed by Raz
and Shpilka’s deterministic polynomial time identity testfor noncommutative ABPs motivates the
question whether such results can be proved over algebras other thanF〈X〉. The ultimate goal in this
direction would be to obtain lower bounds and deterministicidentity tests in the commutative setting.
Chien and Sinclair [CS04] extend Nisan’s lower bound to matrix algebras (and various other algebras).
They show that Nisan’s lower bounds for ABPs computing the permanent or determinant holds for
the algebra of2 × 2 matrices.

In this section we examine this question for monomial algebras. For a polynomialf given by a
circuit (or ABP) and a monomial idealI we are interested in the circuit (resp. ABP) complexity of the
polynomialf(modI). The corresponding identity testing problem is theIdeal Membershipproblem
whetherf ∈ I?

First we consider the problem in noncommutative setting.

Theorem 13. LetI = 〈m1, · · · ,mr〉 be a monomial ideal inF〈X〉. LetP (resp.C) be a noncommu-
tative ABP (resp. a polynomial degree monotone circuit) computing a polynomialf ∈ F〈X〉. Then
there is a deterministic polynomial-time algorithm to testif the polynomialf(modI) is identically
zero.

Proof. Consider monomialsmi as strings over alphabet{x1, . . . , xn}. Let d = maxi{length(mi)}.
Using the Aho-Corasick pattern matching automaton [AC75] we construct a DFAA with O(dr)
states which on input a strings ∈ X∗ acceptss if s containsmi as a substring for somei. Now using
Theorem 1 we obtain an ABPP ′ (resp. a monotone circuitC ′) of sizepoly(n, d, r) which computes

13

the polynomialg = f(modA). Clearly,f ∈ I iff g ≡ 0. Now we can invoke Corollary 1 to complete
the proof.

As an easy consequence of Theorem 1, we have an immediate lower bound observation for the
Permanent.

Corollary 2. Let I = 〈m1, · · · ,mr〉 be a monomial ideal andC be a noncommutative ABP (or a
polynomial degree noncommutative monotone circuit) over indeterminates{xij | 1 ≤ i, j ≤ n}. If
C = Permn(modI) then eithersize(C) or the number of generating monomialsr for I is 2Ω(n).

4.1 Commutative monomial algebras

In this subsection we examine the same problem in the commutative case. LetI = 〈m1, · · · ,mk〉
be a monomial ideal contained inF[x1, · · · , xn]. As beforef(modI) is a meaningful polynomial in
F[x1, · · · , xn] for f ∈ F[x1, · · · , xn].

First we introduce some useful notations. Form,m′ ∈ Xd we saym ∼ m′ if m′ can be obtained
by shufflingm. Clearly,∼ is an equivalence relation and defines a partition on set of all d length
strings. Forα = (α1, . . . , αn), 0 ≤ αi ≤ d and

∑
i αi = d, the partitionMα contains all stringsm ∈

Xd such thatm can be obtained by shufflingxα1

1 xα2

2 . . . xαn
n . For a degreed homogeneous polynomial

f in noncommuting variablesx1, . . . , xn, let fα =
∑

m∈mon(f)∩Mα
amm whereα = (α1, . . . , αn),

0 ≤ αi ≤ d,
∑

i αi = d andam is a coefficient ofm in f .

Lemma 3. LetC is a circuit (resp. ABPR) computing homogeneous polynomialf ∈ Q[X] of degree
d andA is commutativeNFA of sizes computing languageL(A) ⊆ Xd. There is a deterministic
polynomial (insize(C), s) time algorithm to construct a circuitC ′ (resp. ABPR′) which computes
polynomialg ∈ Q[X] such that mon(f(div A)) = mon(g). Moreover, ifC is a monotone thenC ′ is
also monotone.

Proof. We prove the claim for circuits (the ABP case can be similarly done). SinceL = L(A) ⊆ Xd

is a finite language, we can assume that the underlying transition graph of NFAA is a layered directed
acyclic graph. We can modifyA to an ABPP which will have a node corresponding to each state inA
with edges going between layers. Ifδ(a, xi) = b is a transition in the NFA then in the ABPP we will
include a directed edge froma to b with labelxi. Clearly,P computes a polynomialh =

∑
m∈L amm,

where eacham is the number of accepting paths of the NFAA on input m. Notice that, for any
m,m′ ∈ L such thatm ∼ m′ we haveam = am′ , because the commutative NFAA has thesame
number of accepting paths form andm′. So for anyα = (α1, . . . , αn), αi ∈ [d] such that

∑
i αi = d,

we havehα = aα
∑

m∈mon(h)∩Mα
m, whereaα ≥ 1 is number of accepting paths ofA on input any

m ∈ Mα ∩ mon(h). Supposef ′ ∈ Q〈X〉 is a degreed homogeneous polynomial computed by the
circuit C, assuming the multiplication gates ofC arenoncommutative, and the inputs to each gate are
ordered left to right. It is easy to see that the polynomialf(div A) in commuting variablesx1, . . . , xn

will have nonzero monomialxα1

1 xα2

2 . . . xαn
n iff

∑
m∈S0

am 6= 0, whereS0 = mon(f ′)∩L∩Mα and
am is the coefficient ofm in f ′. By Theorem 9 we can compute in deterministic polynomial time a
circuit C ′ of size polynomial in size(C) andsize(P) such thatC ′ computesg′ = f ′ ◦ h ∈ Q〈X〉. We
have,

g′ = f ′ ◦ h =
∑

α

f ′
α ◦ hα =

∑

α

[
∑

m∈S1

amm] ◦ [aα

∑

m∈S2

m] (7)

WhereS1 = mon(f ′) ∩ Mα andS2 = mon(h) ∩ Mα. Let g ∈ Q[X] be the polynomial obtained on
evaluatingC ′ in commutative algebraQ[X]. Clearly,g will have a nonzero monomialxα1

1 xα2

2 . . . xαn
n

14

iff aα
∑

m∈S1∩S2
am 6= 0 iff aα

∑
m∈S0

am 6= 0 since aα is a positive integer this shows that
(f(div A)) has nonzero monomialxα1

1 xα2

2 . . . xαn
n iff g has nonzero monomialxα1

1 xα2

2 . . . xαn
n . Thus

mon(f(div A)) = mon(g). It follows easily from the construction in Theorem 9 that the circuit C ′

will be monotone, ifC is monotone.

Theorem 14. Let I = 〈m1, . . . ,mk〉 be a commutative monomial ideal inQ[x11, . . . , xnn], gener-
ated byk = o(n

lg n) many monomials. SupposeC is a monotone circuit computing a polynomialf in

Q[x11, . . . , xnn] such that the permanentPermn = f(modI) thenC+(f) = 2Ω(n).

Proof. Let X denote the set of variables{x11, . . . , xnn}. For each monomialmi in the generating set
for I write mi =

∏n
j=1 x

eij

j , whereeij are nonnegative integers.
Consider the languageL ⊂ Xn containing all stringsm such that for eachi, 1 ≤ i ≤ k there is

somej ∈ [n] such that the number of occurrences ofxj in m is strictly less thateij . Notice thatL is
preciselyX∗ \ I. Clearly, the languageL is commutative: if m ∈ L then so is every reordering of the
word m. It is easy to see that there is acommutativeNFA A with nO(k) = 2o(n) states such thatL =
L(A) (the NFA is designed using counters for eachi and guessedj). So we havePermn = f(div A).

If possible assume thatf can be computed by a monotone circuitC of size 2o(n). By
Lemma 3 there is a monotone circuit of size2o(n) computing a polynomialg such that mon(g) =
mon(f(div A)) = mon(Permn). We observe that the2Ω(n) size lower bound proof for com-
mutative circuits computing the permanent (specifically, the Jerrum-Snir work [JS82]) also im-
ply the same lower bound for the polynomialg, because the coefficients do not play a role and
mon(g) = mon(Permn). This completes the proof.

Theorem 15. There is a monomial idealI = 〈m1, · · · ,mt〉 of F[X], whereX = {xij | 1 ≤ i, j ≤
n},t = O(n3) and a polynomial-sized commutative formulaF (x11, · · · , xnn) such that

Permn = F (modI).

Proof. Let F =
∏n

i=1(xi1 + xi2 + · · · + xin) andI be the monomial ideal generated by the set of
monomials{xikxjk | 1 ≤ i, j, k ≤ n}. Clearly,Permn = F (modI).

5 Intersecting Formulas and ABPs with NFAs

We now consider theexpressive powerof the intersecting and quotienting of formulas and ABPs by
NFAs. It turns out that quotienting formulas with NFAs is powerful enough to express hard polyno-
mials like the permanent.

Theorem 16. There is are a polynomialf ∈ F〈X〉 given by anO(n2) size formula and an NFAA of
sizeO(n3), for X = {xij | 1 ≤ i, j ≤ n} such that

Permn = f(modA).

Proof. Consider the polynomialf =
∏

i

∑
j xij . Let L be a set of all wordsm ∈ Xn such that

m = uxikvxjkw for some stringsu, v,w ∈ X∗ and1 ≤ i, j, k ≤ n. It is easy to see thatL = L(A)
for an NFAA with O(n3) states andPermn = f(modA).

In contrast to the power of quotienting by NFAs we can easily show that intersection by small
NFAs cannot express the Permanent. Following Theorem is an easy application of the result on
Hadamard product of ABPs (Theorem 7).

15

Theorem 17. Letf ∈ Q〈X〉 andA is an NFA with2o(n) many states accepting a languageL ⊆ X∗,
X = {xij | 1 ≤ i, j ≤ n} such thatPermn = f(div A), thenB(f) = 2Ω(n).

Thus, hard polynomials can be expressed by quotienting a polynomial of small formula size with
a small NFA, whereas we have exponential lower bound for the ABP complexity of any polynomial
whose intersection with a subexponential-size NFA is the Permanent. We can ask the “dual” question
about the complexity of identity testing forf(modA) andf(div A) for NFAsA.

Given a formulaF computing a polynomial inF〈X〉 and an NFAA test iff(modA) is identically
zero. This problem turns out to be intractable unlike for DFAs (see Theorem 1).

Theorem 18. Given a formulaF computing a polynomialf ∈ Q〈Z〉 and an NFAA accepting lan-
guageL(A) ⊆ Z∗ then the problem of testing whether the polynomialf(modA) is identically zero is
coNP-complete.

Proof. We give a reduction from 3CNF-SAT to the complement of the problem. LetS = C1 ∧
C2 ∧ . . . ∧ Ct be a 3CNF formula whereCi = ci1 ∨ ci2 ∨ ci3 for 1 ≤ i ≤ t, andCij ’s are from
{w1, . . . , wn} ∪ {¬w1, . . . ,¬wn}. Let f =

∏t
i=1

∑3
j=1 zij wherezij = xi if cij = wi andzij = yi

if cij = ¬wi for 1 ≤ i ≤ n, 1 ≤ j ≤ 3. Clearly, there is anO(t) size formulaF over indeterminates
Z = {x1, . . . , xn} ∪ {y1, . . . , yn} for the polynomialf .

Let L ⊆ Z∗ be the set of all words of the formm = uxivyiw or m = uyivxiw for some
1 ≤ i ≤ n. Clearly, there is anO(n) size NFA A such thatL = L(A). Notice that the 3CNF
formula S is satisfiable if and only if the polynomialf(modA) is not identically zero. Hence the
given problem is coNP-hard. The problem is in coNP, since we can guess a monomialm, check in
polynomial time that it has nonzero coefficient inf (by Proposition 3), and check in polynomial time
thatm is not inL(A) using the NFA.

Finally, we consider the problem of testing iff(div A) is identically zero forf given by an ABP
and an NFAA. We show that for the field of rationals, this problem is in deterministic polynomial
time. It is an easy application of the result on Hadamard product of ABPs (Theorem 7).

Theorem 19. Given an ABPP of sizes computing polynomialf ∈ Q〈X〉 and an NFAA of sizet
then we can test whether the polynomialf(div A) is identically zero, in deterministic polynomial (in
s, t) time.

References

[ABO99] E. ALLENDER, R. BEALS, AND M. OGIHARA , The complexity of matrix rank and feasible systems of linear
equations,Computational Complexity, 8(2):99-126, 1999.

[AC75] A. V. A HO, M. J. CORASICK, Efficient String Matching: An Aid to Bibliographic Search.Commun. ACM,18(6):
333-340, 1975

[AMS08] V. A RVIND , P. MUKHOPADHYAY, S. SRINIVASAN New results on Noncommutative Polynomial Identity Test-
ingIn Proc. of Annual IEEE Conference on Computational Complexity,268-279,2008.

[Bh97] R. BHATIA , Matrix Analysis, Springer-Verlag Publishing Company, 1997.
[BW05] A. BOGDANOV, H. WEE More on Noncommutative Polynomial Identity TestingIn Proc. of 20th Annual Confer-

ence on Computational Complexity,92-99, 2005.
[CS04] S. CHIEN, A. SINCLAIR Algebras with polynomial identities and computing the determinantIn Proc. Annual IEEE

Sym. on Foundations of Computer Science,352-361, 2004.
[GJ79] M. R. GAREY, D. S. JOHNSONComputers and Intractability: A Guide to the Theory of NP-Completeness. W.H.

Freeman.p. 228. ISBN 0-7167-1045-5, 1979.
[HMU] J. E. HOPCROFT, R. MOTAWANI , J. D. ULLMAN , Introduction to Automata Theory Languages and Computa-

tion,Second Edition, Pearson Education Publishing Company.

16

[JS82] M. JERRUM, M. SNIR, Some Exact Complexity Results for Straight-Line Computations over Semirings.J. ACM,
29(3): 874-897, 1982.

[KI03] V. K ABANETS, R. IMPAGLIAZZO , Derandomization of polynomial identity test means proving circuit lower
bounds,In Proc. of 35th ACM Sym. on Theory of Computing,355-364,2003.

[KS01] A. KLIVANS , D. A. SPIELMAN , Randomness efficient identity testing of multivariate polynomials.STOC 2001,
216-223.

[MV97] M. M AHAJAN , V. V INAY, A Combinatorial Algorithm for the Determinant,SODA 1997, 730-738.
[MVV87] K. M ULMULEY, U. V. VAZIRANI , V. V. VAZIRANI , Matching Is as Easy as Matrix InversionSTOC 1987,

345-354.
[N91] N. NISAN Lower bounds for noncommutative computationIn Proc. of 23rd ACM Sym. on Theory of Computing,

410-418, 1991.
[RS05] R. RAZ , A. SHPILKA Deterministic polynomial identity testing in non commutative modelsComputational

Complexity,14(1):1-19, 2005.
[T91] S. TODA, Counting Problems Computationally Equivalant to the Determinant, manuscript.
[V91] V. V INAY, Counting Auxiliary Pushdown Automata and Semi-unboundedArithmetic Circuits,Proc. 6th Structures

in Complexity Theory Conference,270-284, 1991.

17

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

