
A Parallel Repetition Theorem for Any Interactive Argument

Iftach Haitner∗

April 2, 2009

Abstract

The question whether or not parallel repetition reduces the soundness error is a fundamental question
in the theory of protocols. While parallel repetition reduces (at an exponential rate) the error in inter-
active proofs and (at a weak exponential rate) in special cases of interactive arguments (e.g., 3-message
protocols — Bellare, Impagliazzo and Naor [FOCS ’97], and constant-round public-coin protocols — Pass
and Venkitasubramaniam [STOC ’07]), Bellare et al. gave example of interactive arguments for which
parallel repetition does not reduce the soundness error at all.

We show that by slightly modifying any interactive argument, in a way that preserves its completeness
and only slightly deteriorates its soundness, we get a protocol for which parallel repetition does reduce the
error at a weak exponential rate. In this modified version, the verifier flips at the beginning of each round
an (1− 1

4m
, 1

4m
) biased coin (i.e., 1 is tossed with probability 1/4m), where m is the round complexity of

the (original) protocol. If the coin is one, the verifier halts the interaction and accepts, otherwise it sends
the same message that the original verifier would. At the end of the protocol (if reached), the verifier
accepts if and only if the original verifier would.

1 Introduction

In an interactive proof, a prover P is trying to convince the verifier V in the validity of some statement.
Typically, P has some advantage over V, such as additional computational resources or some extra informa-
tion (e.g., an NP witness that validates the claim). The two basic properties we would like such protocols
to have are completeness and soundness. The completeness means that P convinces V to accept valid state-
ments, and the soundness means that no cheating prover (of a certain class) can convince V to accept invalid
statements. More generally, (P, V) has soundness 1 − δ with respect to a given class of algorithms, if no
malicious P∗ from this class can convince V to accept an invalid statement with probability greater than δ.
The bound δ is typically called the soundness error of the protocol.1

The basic distinction one may make about the soundness of a given protocol, is whether it holds un-
conditionally (i.e., even an all-powerful prover cannot break the soundness) or that it only holds against
computationally bounded provers. Protocols with unconditional soundness are called interactive proofs,
whereas protocols with the weaker type of soundness are called interactive arguments. In this work, the class
of computationally bounded provers is the class of algorithms with polynomial running time.

A common paradigm for constructing protocols with low soundness error (i.e., the probability that the
verifier accepts a false statement) is to start with construction a protocol with noticeable soundness error,
and then manipulate the original protocol in a certain way that decreases its soundness error while keeping
its completeness (i.e., the probability that the verifier accepts a true statement) high. The most natural
way that comes to mind is to use repetition. Namely, to repeat the protocol many times (with independent
randomness), where the verifier accepts only if the verifiers (of the original protocol) accept in all execu-
tions. The above repetition can be done essentially in two different ways: sequentially (known as sequential

∗Microsoft Research, New England Campus. E-mail: iftach@microsoft.com.
1Additional properties (e.g., zero-knowledge) are often also required from the protocol, but in this work we only focus on

the above properties.

1

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 27 (2009)

ISSN 1433-8092

repetition), where the (i + 1) execution of the protocol is only started after the ith execution is finished, or
in parallel (known as parallel repetition), where all the executions are done simultaneously.

Sequential repetition is known to reduce the soundness error at an exponential rate in most computational
models (cf., [DP98]). Unfortunately, sequential repetition has the undesired effect of increasing the round
complexity. Parallel repetition on the other hand, does preserve the round complexity, and for the case
of interactive proofs, it also reduces the soundness error at an exponential rate [Gol99]. Unfortunately, as
shown by Bellare, Impagliazzo and Naor [BIN97], in the case of interactive arguments parallel repetition
might not reduce the soundness error at all.

Let us be more precise about the latter statement. Parallel repetition does reduce the soundness error
in the case of 3-message protocol [BIN97, CHS05, IJK06] and in the case of public-coin verifiers [PV07,
HPPW08] (see Section 1.3 for more details). On the negative side, for any k ∈ N an 8-message protocol
with soundness error 1

2 whose k-parallel repetition soundness remains 1
2 , was presented by Bellare et al.

[BIN97]. Recently, Pietrzak and Wikström [PW07] gave an example of a single protocol for which the above
phenomena holds for all polynomial k simultaneously.2 Moreover, both results extend to 4-message protocols,
assuming that the soundness proof of the resulting protocol is “black box”.

1.1 Our Result

We present a simple method for transforming any efficient interactive argument whose soundness error is
bounded away from 1, into an efficient interactive argument with the same number of rounds and negligible
soundness error. Given an m-round interactive protocol (P, V), we define the random-termination vari-

ant of V, denoted by Ṽ, as follows: through the interaction with P algorithm Ṽ acts exactly as V does, but
with the following additional step: at the beginning of all but the first round, Ṽ tosses an (1− 1/4m, 1/4m)

biased coin (i.e., 1 is tossed with probability 1/4m). If the outcome of the coin is 1, then Ṽ accepts the

interaction (i.e., outputs 1) and halts. At the end of the interaction (if reached), Ṽ accepts if and only if V
does (upon receiving the same messages from P).

Note that the completeness of (P, Ṽ) — the random-termination variant of (P, V), is at least as high as

the completeness of (P, V), where the soundness error of (P, Ṽ) is at most 1− 3
4α, given that the soundness

error of (P, V) is at most 1− α. Our main contribution is stated in the following theorem.

Theorem 1.1 (informal). Parallel repetition of the random-termination variant of any interactive argument,
reduces the soundness error at a weak exponential rate.3

We stress that our result holds with respect to any interactive protocol that can be cast as an interactive
argument. For instance, our result yields a round-preserving binding amplification for computationally
binding commitment schemes.4 Our result also extends to the more general threshold case, where the prover
in the k-fold repetition is only required to make t < k of the verifiers accept.

1.2 Our Technique

Let (P, V) be an interactive argument with soundness error ε and let (P(k), V(k)) be its kth parallel repetition.

We show that if (P, V) is a random-termination variant of some protocol, then any efficient algorithm P(k)∗

2Both negative results hold under common cryptographic assumptions.

3We are using a rather relaxed interpretation of weak exponential rate. Namely, εk ≤ max
{

neg, ε
k

poly(m,(1/1−ε))
)
, where

m is the round complexity of the protocol, and ε and εk are the soundness error of the original protocol and its k-parallel
repetition respectively. See Corollary 3.2 for the exact statement.

4Given a weakly binding commitment (S, R), consider the protocol (P,V) where P and V play the role of S and R in a
random commit stage of (S, R) respectively. Following the commit stage, P sends two strings to the V, and V outputs “1” iff
both strings are valid decommitments to different values. The weakly binding property of (S, R) yields that the soundness error
of (P, V) is noticeably far from one. Thus, Theorem 1.1 yields that the parallel repetition of the random-termination variant
of (P,V), has negligible soundness error. It follows that the parallel repetition of the random-termination variant of (S, R) is
strongly binding.

2

that breaks the soundness of (P(k), V(k)) with “too high” probability εk, implies an efficient algorithm P∗

that breaks the soundness of (P, V) with probability higher than ε.

Verifiers with “test mode”. We start by considering a toy protocol that enjoys an extra property that

will enable us to derive P∗ from P(k)∗, and then show how to emulate this useful property in any random-
termination protocol. We say that a verifier V has a test mode if in at any given time through the execution
of the protocol, it agrees (upon request) to move to the following test mode: in this mode the verifier agrees to
interact in a random continuation of the protocol, where in such random continuations, the verifier samples
uniformly at random the values of the random coins that it did not flip prior to moving to the test mode.
When the verifier is told that the test mode is ended, it sets its state back to its value before moving to the
test mode (and when the “real” interaction continues, it flips the rest of its random coins independently of
the values it flipped in the test mode). There is no limit on the number of times the verifier agrees to move
to a test mode.

Let us now present an efficient implementation of P∗, assuming that V has a test mode. In order to

interact with V, algorithm P∗ emulates a random execution of (P(k)∗, V(k)), where the “real” V plays the
role of the i∗th V, for i∗ that is chosen at random from [k], and P∗ emulates the execution of the other k− 1

verifiers and of P(k)∗. In the jth round (for j ∈ [m]), P∗ acts as follows: upon receiving the jth message
from V, it samples at random the value of rcj — the random coins flipped by the emulated verifiers in order

to send their jth messages, and evaluates their “quality” — the probability that P(k)∗ makes V(k) accept
conditioned on rcj . In order to do so, P∗ samples many random continuations of the protocol, and measures
the fraction of accepting ones (i.e., where all the verifiers accept).5 Sampling such random continuations
requires the ability to sample a random continuation of each of the k verifiers. This sampling is always easy
for the emulated verifiers (as P∗ knows their random coins), and is also possible for a real verifier with a test
mode. If this success probability is higher than some threshold (e.g., larger than βj = εk · (1− (j/4m))), P∗

let aj = (aj
1, . . . , a

j
k) as the messages that P(k)∗ sends in the jth round upon receiving the messages induced

by rcj , and sends aj
i∗ back to the real V. In addition, P∗ sets the state of the emulated verifiers and P(k)∗

according to rcj . If the above sampling was unsuccessful (the accepting rate was below the threshold), P∗

samples new value for rcj and evaluates its quality as above. Algorithm P∗ aborts after n/εk unsuccessful
attempts to sample good value for rcj . Note that if P∗ does not abort in any of the rounds, then V accepts.

For proving that P∗ breaks the soundness of (P∗, V) with high probability (i.e., higher than ε), we show
that the following condition holds with high probability in the end of the emulation’s jth round: conditioned

on the random coins sampled by P∗ and V in the first j rounds of the emulated execution of (P(k)∗, V(k))

(where in case of P∗, it stands for the value of (rc1, . . . , rcj)), the probability that P(k)∗ makes V(k) accept

in a random continuation of (P(k)∗, V(k)) is very close to βj . (In particular, this condition for j = m yields
that V has accepted in the real execution of (P∗, V)). The proof goes by induction on j. Assuming that the

conditional success portability of P(k)∗ in the end of the jth round is βj , it suffices to show that with high

enough probability P(k)∗’s conditional success probability is noticeably larger than βj+1, when conditioning
also on the actual random coins flipped by V in the beginning of the j + 1 round. While in the worst case
the latter probability might be arbitrarily small, using a result of Raz [Raz98, Claim 5.1] one can show that
with high probability over the choice of i∗ (where this probability is a function of βj and k), it holds that
the latter probability is high.6

Verifiers with no test mode. While in some special cases, such as public-coin and 3-message protocols,
implementing the test mode without the verifier’s help is easy (indeed, these are exactly the cases where
parallel repetition theorems are known), for general protocols implementing such a test mode might be

5We assume for the sake of this presentation that V’s decision whether to accept or not is only a function of the protocol’s
transcript, and not of the transcript and its random coins. In the actual proof, we handle the more general case using the “soft
decision” approach taken by [BIN97, CHS05, IJK06, HPPW08].

6We remark that a conclusion of [Raz98, Claim 5.1] was used in similar settings by [IJK06, HPPW08].

3

infeasible.7 Our main technical contribution is an efficient approximation of the test mode for any random-
termination protocol.

Let V be a random-termination verifier and assume without loss of generality that it chooses all but its
decision bits (the bits uses for deciding whether or not to terminate the executions) before the interaction
starts. In order to approximate the test mode in the random-termination verifier (i.e., sample a random
continuation conditioned on its already flipped random coins), we sample the random coins conditioned on
the event that the verifier’s decision bit in the current round is one. Sampling in this case is very easy, since
the verifier sends no further messages.

The obvious problem with the above approach is that the additional conditioning might effect the expected

success probability of P(k)∗. If the latter happens, P∗ might choose a bad value for rc and we have no
guarantee for the success probability of P∗ in this case. Our main technical contribution is showing that the
latter does not happen for most values of i∗ ∈ [k]. Thus, for most choices of i∗ it holds that P∗ breaks the
soundness of (P∗, V) with high probability, and therefore it breaks the soundness with high probability for
a random i∗ ∈ [k].

1.3 Related Work

Babai and Moran [BM88] showed that parallel repetition reduces the soundness error of Arthur-Merlin
protocols, where Goldreich [Gol99] showed that the same holds with respect to interactive proofs. Parallel
repetition is also known to reduce the error in the important case of two-prover interactive proofs [Raz98]
(in all the above cases the soundness error reduces at exponential rate).

Bellare, Impagliazzo and Naor [BIN97] showed that parallel repetition of 3-message interactive arguments
reduces the soundness error at weak exponential rate. For two-message protocols, Canetti et al. [CHS05]
gave a proof with better parameters, and Impagliazzo et al. [IJK06] showed that the same holds with
respect to the threshold case. Finally for public-coin protocols, Pass and Venkitasubramaniam [PV07] gave
a parallel repetition theorem for constant-round protocols, where recently H̊astad et al. [HPPW08] extended
this result to a polynomial number of rounds. The result of [HPPW08] extends to the case where it is
feasible to sample a random continuation of the verifier’s actions, given a partial transcript of the protocol
(i.e., the verifier has an implicit “test mode”, see Section 1.2). All the latter protocols reduce the soundness
error at a weak exponential rate. Recently, Haitner et al. [HRVW] showed a round-preserving computational
binding amplification of a specific “m-phase” computational binding commitment. The random-termination
protocol used in this work, is inspired by their construction. Finally, the phenomena that by changing the
verifier to send less information in a single execution (thus increasing the soundness error), we reduce the
soundness error when repeating the protocol in parallel, also happens in the work of Feige and Kilian [FK94]
in the context of two-prover protocols.

1.4 Paper Organization

We present the notations and formal definitions used in this paper in Section 2, where we also state (and
prove) our main technical lemma that bounds the number of variables that significantly effect the expectation
of a given function. Our main result is formally stated and proved in Section 3.

2 Preliminaries

For α, β > 0, we let (α ± β) := [α − β, α + β]. We use calligraphic letters to denote sets, capital letters
for random variable, and lower case letters for values. We use superscripts to denote tuples, e.g., Xn :=
(X1, . . . , Xn) and xn := (x1, . . . xn), and denote by Xn

−i the tuple contains all but the ith entry of the tuple,

7Since the transcript of the protocol does not always fully determine the random coins used to generate it, there is sufficient
information for implementing the test mode. A different approach would be to sample a random continuation of the protocol
conditioned on the transcript. This approach can be used for proving parallel a repetition theorem for interactive proofs, but
such a sampling might be hard in the general case (it is equivalent to finding a random preimage of an arbitrary function).

4

e.g., Xn
−i := (X1, . . . , Xi−1, Xi+1, . . . , Xn). Given a set X , we let 1X (x) = 1 if x ∈ X and zero otherwise. For

a random variable X taking values in a finite set U , we write x← U to indicate that x is selected according
to the uniform distribution over U . We adopt the convention that when the same random variable occurs
several times in an expression, all occurrences refer to a single sample. For example, Pr[f(X) = X] is defined
to be the probability that when x ← X , we have f(x) = x. If a distribution PXY over X × Y is given, we
write PX and PY to denote the marginal distributions, e.g., PX(x) :=

∑
y∈Y PXY (x, y). The conditional

distribution PY |X=x is PY |X=x(y) = PXY (x, y)/PX(x).

For k ∈ N and p ∈ (0, 1], we let Up
k be the distribution induced on {0, 1}k by independently setting each of

the bits to 1 with probability p. For i ∈ [k] and b ∈ {0, 1}, let the distribution Up
k,i=b be the distribution Up

k

conditioned that ith bit is b. Given a set S let 1S(x) = 1 if x ∈ S and 0 otherwise. The statistical difference
of two distributions P1

X and P2
X defined over a set X , is equal to

∥∥P1
X − P2

X

∥∥ = 1
2

∑
x∈X

∣∣P1
X(x)− P2

X(x)
∣∣ =

maxX ′⊆X

{
P1

X(X ′)− P2
X(X ′)

}
. When bounding the statistical difference of two distributions, we often use

the following proposition.

Proposition 2.1. Let P1
X and P2

X be two distributions over X and let X ′ ⊆ X . Then

∥∥P1
X − P2

X

∥∥ ≤ 1

2
P1

X(X ′) +
∑

x∈X\X ′

∣∣P1
X(x)− P2

X(x)
∣∣ .

Proof. Let δ :=
∑

x∈X\X ′

∣∣P1
X(x) − P2

X(x)
∣∣, and note that P2

X(X ′) ≤ P1
X(X ′) + δ. Hence

∥∥P1
X − P2

X

∥∥ =
1

2

∑

x∈X

∣∣P1
X(x) − P2

X(x)
∣∣

≤ 1

2
·max

{
P1

X(X ′), P2
X(X ′)

}
+

1

2
δ ≤ 1

2
P1

X(X ′) + δ .

�

2.1 Interactive Arguments

An interactive argument for a language L ⊆ {0, 1}∗, is an interactive protocol between the prover P and
the verifier V. The parties get as common input a security parameter 1n and an element x ∈ {0, 1}∗, and
the prover might get an additional private input (e.g., witness). We assume for simplicity that V speaks
first, where each round of the protocol consists of exchange of two message, from V to P and back. The
protocol has completeness γ(n), if for every x ∈ L, there exits w ∈ {0, 1}∗ such that Pr(P(w), V)(1n, x) 6=
1] ≤ γ(n). The protocol has soundness error δ(n), if for every x /∈ L, and for every efficient P∗, it holds that
Pr(P∗, V)(1n, x) = 1] ≤ δ(n), where the prover is allowed to use an arbitrary private input. In this work we
focus on the soundness of the protocol.

2.2 Random-termination Verifiers

Definition 2.2. [random-termination verifiers] Let V be a verifier of an m-round protocol. The random-

termination variant of V, denoted as Ṽ, acts exactly as V does, but with the following additional step: in the
beginning in all but the first round, Ṽ tosses an (1−1/4m, 1/4m) biased coin (i.e., 1 is tossed with probability

1/4m), if the outcome of the coin is 1, then Ṽ accepts (i.e., outputs 1) and halts. Given a protocol (P, V),

we call (P, Ṽ) the random-termination variant of (P, V).

2.3 Large-Effect Variables

Our soundness analysis for the parallel repetition of random-terminating protocols gives rise to the following
question: let f be a real function from {0, 1}n to [0, 1], we are interested in a bound of the number of indices

5

in [n] for which conditioning that the ith bit input of f is 1, significantly changes the expectation of f with
respect to a given input distribution.8 Bounds for the number of variables ”large-effect” were given in several
other papers (e.g., [HKM06, GRYY08]), but in different settings that than the ones discussed in this paper.
For the input distribution Up

n (i.e., each input bit is independently set to 1 with probability p), we give the
following answer.

Lemma 2.3. Let f : {0, 1}n 7→ [0, 1], let b ∈ {0, 1} and let p and µ be in (0, 1
2]. Let δ := EUp

n
[f] and let

LargeEfctf,p,µ,b :=
{
i ∈ [n] : EUp

n,i=b
[f] /∈ (1± µ)δ

}
. Then,

1. For any function f and i ∈ [n] it holds that EUp
n,i=0

[f] ≤ 1
1−p · EUp

n
[f] and EUp

n,i=1
[f] ≤ 1

p · EUp
n
[f].

2. For any Boolean function f it holds that
∣∣LargeEfctf,p,µ,b

∣∣ ∈ O(− log δ
p2µ2),

3. for any function f it holds that
∣∣LargeEfctf,p,µ,b

∣∣ ∈ O(log δ·log(δµp)
p2µ2).

Proof. The proof of the first item is immediate by a Markov bound. We prove the other two items for b = 1,
and the proof for b = 0 would immediately follow via a straight forward average argument. In the following
we let LargeEfctf,p,µ := LargeEfctf,p,µ,1.

Proof of 2. For i ∈ [n] and x ∈ {0, 1}n, let ri(x) :=
√

(1− p)/p if xi = 1, and −
√

p/(1− p) otherwise. Note
that for every i ∈ [n], it holds that (EUp

n
[ri · f])2 = (1− p)p · (EUp

n,i=1
[f]− EUp

n,i=0
[f])2 ≥ p

2 (EUp
n,i=1

[f]−
EUp

n,i=0
[f]). Also note that for every i ∈ LargeEfctf,p,µ, it holds that

∣∣∣EUp
n,i=1

[f]− EUp
n,i=0

[f]
∣∣∣ ≥ µδ.

Therefore,

∑

i∈LargeEfctf,p,µ

(EUp
n
[ri · f])2 ≥

∣∣LargeEfctf,p,µ

∣∣ · pδ2µ2 (1)

We conclude the proof using the following proposition, which is a generalization of [Tal96, Proposition
2.2] for the case of p 6= 1

2 .

Proposition 2.4. For any p ∈ (0, 1] and any subset A ⊆ {0, 1}n it holds that

∑

i∈[n]

(EUp
n
[ri · 1A])2 ∈ O

(
1

p
· (EUp

n
[1A])2) · log

1

EUp
n
[1A]

)
.

Letting A := f−1(1), Proposition 2.4 and Equation 1 yield that

∣∣LargeEfctf,p,µ

∣∣ ∈ 1

p2δ2µ2
O(

1

p
· δ2 · log

1

δ
) ∈ O(

1

p2µ2
· log

1

δ
) .

Proof. (of Proposition 2.4) The proof follows the same lines as the original proof, with the following
changes. We replace [Tal96, Proposition 2.1] with the following proposition.

Proposition 2.5. For any real numbers {αi}i∈[n] and t ≥ 0 it holds that

Pr

[∣∣∣∣
∑

i∈[n]

αi · ri(U
p
n)

∣∣∣∣ ≥ t

]
≤ 2 · e−

p·t2

2
∑

i∈[n] αi

8We remark that unless f is monotone, the above notion is not the same as the influence of a variable defined as
Pr[f(X1, . . . , Xi, . . . , Xn) 6= f(X1, . . . , Xi, . . . , Xn)]. In particular, it easy to come up with an example of function and distri-
bution for which the influence of a variable is maximal (i.e., 1), but has small effect (i.e., conditioning that the variable is 1,
does changes the expectation of the function).

6

Proof. The proof is immediate by Hoeffding bound (note that EUp
n
[
∑

i∈[n] αi · ri] = 0, and that for

every i ∈ [n] and x ∈ {0, 1}n it holds that αi · ri(x) ∈ [− |αi| ·
√

2p, |αi| ·
√

1/p]). �

For any real numbers {αi}i∈[n] such that
∑

i∈[n] α
2
i = 1, let f :=

∑
i∈[n] αi ·ri. As in [Tal96, Proposition

2.1], it follows that for any t0 ≥ 1 it holds that EUp
n
[f · 1A] ≤ EUp

n
[1A] · t0 + 2e−p·t20/2. Taking

t0 =
√

1/p ·
√

2 log e
EU

p
n

[1A] ≥ 1, we have that EUp
n
[f · 1A] ∈ O

(√
1/p · EUp

n
[1A]

√
log 1

EU
p
n

[1A]

)
, which

concludes the proof. �

Proof of 3. Let γ := δµ2p/4. For each j ∈ N, let fj be the function defined by the jth bit of f (i.e.,
fj(x) := f(x)j) and let δj := EUp

n
[fj]. Let J := {0 ≤ j ≤ − log γ : δj ≥ γ}, let fJ :=

∑
j∈J 2−j ·fj and

fJ :=
∑

j∈N\J 2−j · fj. Let Bad :=
⋃

j∈J LargeEfctf,p,(µ/2), the linearity of expectation yields that

LargeEfctfJ ,p,(µ/2) ⊆ Bad. Hence, for every i /∈ Bad it holds that (1 − µ/2)EUp
n
[fJ] ≤ EUp

n,i=1
[fJ] ≤

EUp
n,i=1

[f] and thus

(1 − µ)EUp
n
[f] ≤ (1 − µ)(1 + µ2)EUp

n
[fJ] ≤ (1− µ)(1 + µ2)

EUp
n
[f]

1− µ/2
< EUp

n,i=1
[f] (2)

Since EUp
n
[fJ] < 2γ, item 1. yields that EUp

n
[fJ] < 2γ/p. Thus for every i /∈ Bad it holds that

EUp
n,i=1

[f] = EUp
n,i=1

[fJ] + EUp
n,i=1

[fJ]

≤ EUp
n,i=1

[fJ] + 2γ/p

≤ (1 + µ/2)EUp
n
[fJ] + δµ2/2 ≤ (1 + µ)EUp

n
[f] .

Applying 2., we conclude that |LargeEfct| ≤ |J | ·O(− log δ
p2µ2) ∈ O(log δ·log(δµp)

p2µ2).
�

We generalize the above Lemma for non-Boolean variable as follows.

Corollary 2.6. Let f : ({0, 1}t)n 7→ [0, 1], b ∈ {0, 1} and let p and µ be in (0, 1
2]. Let δ := E(Ut)n [f] and let

LargeEfcttf,p,µ :=
{
i ∈ [n] : Pra←Ut [E(Ut)n|(Ut)n

i =a[f] /∈ (1± µ) · δ] > p
}
. Then,

1. For any Boolean function f it holds that
∣∣LargeEfcttf,p,µ,b

∣∣ ∈ O(− log δ
p2µ2),

2. for any function f it holds that
∣∣LargeEfcttf,p,µ,b

∣∣ ∈ O(log δ·log(δµp)
p2µ2).

Proof. Again we prove for LargeEfcttf,p,µ := LargeEfcttf,p,µ,1. We assume without lost of generality that
p · 2n ∈ N (otherwise we would consider the smallest p′ > p for which the latter holds), and assume for
simplicity that for each i ∈ LargeEfcttf,p,µ it holds that Pra←Ut [E(Ut)n|(Ut)n

i =a[f] < (1 − µ) · δ] > p. For
each i ∈ [n], let Li be the set of the lightest p · 2n elements inside {0, 1}n according to the weight function
w(a) := E(Ut)n|(Ut)n

i =a[f]. We define h : {0, 1}n 7→ [0, 1] as h(x) := E[f(X1
x1

, . . . , Xn
xn

)], where X i
1 is uniformly

distributed over Li and X i
0 is uniformly distributed over {0, 1}n \ Li. Note that EUp

n
[h] = δ, and that for

every i ∈ LargeEfcttf,p,µ it holds that EUp
n,i=1

[h] < (1 − µ) · δ. Thus, we are in the settings of Lemma 2.3,

and the proof of the corollary follows. �

7

3 Parallel Repetition Theorem for Random-termination Protocols

In this section we present the main contribution if this paper. The following theorem relates the soundness
of the kth parallel repetition of the random-termination variant of a protocol to the soundness of the original
(non random-termination) verifier. In Corollary 3.2, we use this result to show that the soundness error of
the k parallel repetition decays at a weak exponential rate.

Theorem 3.1. [restatement of Theorem 1.1] Let (P, V) be an m-round protocol and let Ṽ the random-
termination variant of V. There exists an oracle-aided algorithm P∗ such that the following holds: let

x ∈ {0, 1}∗, n ≥ 2 · log m, n8m12 ≤ k ∈ poly(n) and t ∈ [k]. Then for any algorithm P(k)∗ for which

εk(n) := Pr[at least t verifiers accept in(P(k)∗, Ṽ
(k)

)(1n, x)] > 2−n/4, it holds that

Pr[(P∗
P(k)∗

(t), V)(1n, x) = 1] >
t

k
−O(m · k− 1

10) .

The running time of P∗ is bounded by O(k · TP(k)∗/ε3
k), where TP(k)∗ is an upper bound on the running time

of (P(k)∗, Ṽ
(k)

)(1n, x).

Theorem 1.1 yields that following useful corollary.

Corollary 3.2. Let (P, V), n, m, k, t, P(k)∗ and εk be as in Theorem 3.1. Let ε > 0 be a bound on the

soundness error of (P, V) (against ppt ’s). Assuming that P(k)∗ is a ppt and that δ := t
k − ε is noticeable

(e.g., ∃p ∈ poly such that δ > 1
p(n)), then εk ≤ max

{
neg(n), ε(δ

m)10·k
)
, where neg stands for any negligible

function.

Proof. Assumes that εk > ε(δ
m)10·k > neg(n). Let k′ := C · m

δ)10, for C > 0, be a multiple of k. Consider

the adversary P(k′)∗ for interacting with V(k′) that is the k′/k “parallel repetition” of P(k)∗. Namely,

P(k′)∗ partitions the verifiers into groups of size k and acts as P(k)∗ “against” each of this groups. A

direct calculation shows that εk′ = Pr[at least t
k fraction of the verifiers accept in(P(k′)∗, V(k′))(1n, x)] ∈

Ω(ε). Thus, Theorem 1.1 yields that (for the proper choice of C) there exists an efficient algorithm P∗ that
runs it time poly(k′, 1/ε, TP(k′)∗) and breaks the soundness of (P, V) with probability better than ε. The fact
that εk > neg, implies via a standard hybrid argument that ε > neg. Hence, P∗ contradicts the soundness
guarantee of (P, V). �

Proof. (of Theorem 1.1) We say that Ṽ
(k)

accepts if at least t of the Ṽ’s do. We omit 1n and x from our

notations whenever their values is clear from the context. We assume without lost of generality that P(k)∗

is deterministic, as handling randomized P(k)∗ would only increase the running time of our adversary by
O(n/ε2

k), while reducing its success probability by O(2−n).
Let len ∈ N be a bound on the number of random coins used by V in any interaction (with respect to

security parameter 1n). We assume without lost generality that the partial view of Ṽ
(k)

in an interaction

with P(k)∗ is of the form view(rk,S1, . . . ,S`), where rk ∈ {0, 1}k·len denotes the random coins of the k

embedded V’s inside Ṽ
(k)

, and Sj (for j ∈ [`]) denotes the indices of those verifier that decided to halt on

the beginning of the th round. Since P(k)∗ is deterministic, we omit its messages from Ṽ
(k)

’s view. We let
Sj(view) be the value of the entry ‘Sj ’ in view, let S>j(view) := [k] \ (

⋃j
j′=1 Sj′ (view)), let round(view =

(rk,S1, . . . ,S`)) := ` + 1 and let round(⊥) := 1.

We start by considering an algorithm P̂ that given V’s random coins as input, makes V accept with high
probability. We then complete the proof by showing how to implement P̂ efficiently, without no access to
these random coins. We stress the heart of our proof lies in the implementation of P̂ (given below), where

the shift to an algorithm without access to V’s random coins is rather standard. Algorithm P̂ follows rather
closely the intuition given in Section 1.2, but with the following main differences:

8

1. In all but for choosing the last random coins of the emulated verifiers, P̂ uses a soft threshold for
evaluating the “quality” of these random coins. Namely, the probability that P̂ return a given value

for these random coins, decays relatively to the distance of the induced success probability of P(k)∗

below a certain threshold (and not set to zero as described in the introduction). The use of such soft
threshold is needed, as our estimation of the above quality is not accurate enough.

2. When choosing the last random coins, P̂ uses a soft threshold for deciding whether the number of

accepting verifiers in a given execution of (P(k)∗, Ṽ
(k)

) is “high enough”. This change will later allows
us to handle the case where V’s random coins are unknown. We note that similar approach was taken
by [BIN97, CHS05, IJK06, HPPW08].

We define Algorithm P̂ is as follows.

Algorithm 3.3. P̂.

Oracle: P(k)∗

Input: A string r ∈ {0, 1}len.

Operations:

1. Choose i∗ ∈ [k] uniformly at random and set view =⊥.

2. For j = 1 to m:

(a) Set view = (view, GetNextRCP(k)∗

(view, i∗, r)).

(b) Send aj
i∗ to V, where aj is the message that P(k)∗ sends to Ṽ in the jth round of view.

. .

Algorithm 3.4. GetNextRC.

Oracle: P(k)∗

Input: Ṽ
(k)

’s view — view, an index i∗ ∈ [k]∪ ⊥ and a string r ∈ {0, 1}len∪ ⊥.

Operations:

1. Set round = round(view), µ = k−
1
10 and p = 1/4m.

2. Do the following for 16mn/εk times:

//Sample next random coins

(a) If round = 1,

i. Choose rk uniformly at random from {0, 1}k·len conditioned that rk
i∗ = r.

ii. Set rc = rk.

(b) Otherwise,

i. Chooses Sround ⊆ S>round−1(view) conditioned that i∗ /∈ Sround, where each i ∈ S>round−1 is
(independently) chosen to be in Sround with probability p.

ii. Set rc = Sround.

//Evaluate the random coins

9

(c) If round < m,

i. Sample independently 8 ·n/ε2
kµ2 different values for view′ = (view, rc,Sround+1, . . . ,Sm) con-

ditioned that i∗ ∈ Sround+1(view′), where each i ∈ S>`(view′) (for ` ∈ {round, . . . , m− 1})
is chosen to be in S`+1 with probability p.

ii. Let α be the fraction of accepting view′’s and let β = εk(1− (2+3·round)
8m). If α ≥ β, return rc

with probability α, otherwise return rc with probability β · (α
β)8nm.

(d) Otherwise, return rc with probability min
{
1, 2µ·(|T |−t)

}
, where T ={

i ∈ [k] : Ṽi accepts in (view, rc)
}
.

3. Abort the execution.

. .

We assume that once the execution of (P̂(r), V(r)) ends, P̂ outputs (view, i∗), and let P0
View,I∗ be the

output distribution of P̂ induced by an execution of (P̂(Ulen), V(Ulen)). We also assume that if GetNextRC
is called with i∗ =⊥, it does the sampling of Lines 2.(a).i, 2.(b).i and 2.(c).i without the conditioning on

ı∗. We are interested in the probability over P0
View,I∗ that Ṽi∗ accepts in View. For lower bounding this

probability we introduce the following family of experiments
{
Exp`

}

`∈[m]
.

Experiment 3.5. Exp`.

Definition:

1. Set view =⊥.

2. For j = 1 to ` do

set view = (view, GetNextRCP(k)∗

(view,⊥,⊥)).

3. Select uniformly at random i∗ ∈ S>`(view).

4. For j = ` + 1 to m do

set view = (view, GetNextRCP(k)∗

(view, i∗,⊥)).

5. Output (view, i∗).

. .

Let P`
View,I∗ be the output distribution of Exp`. The proof of the theorem follows by the next two claims.

Claim 3.6. It holds that
∥∥P0

View,I∗ − Pm
View,I∗

∥∥ ∈ O(m · µ).

Claim 3.7. Pm
View,I∗(ṼI∗ accepts in View) ≥ t

k −O(µ).

Before proving the above claims, let us use the above claims for proving Theorem 3.1. Claim 3.6 and
Claim 3.7 yield that P̂ makes V accept with probability t

k −O(mµ), so it is left to show how to implement P̂

without knowing the verifier random coins. Since P̂ calls GetNextRC(view, i∗, r) only after receiving the first
round(view)+1 messages from V, and this knowledge suffices for the computation of GetNextRC(view, i∗, r),
we only need to know r for identifying the set T in the mth call to GetNextRC.

Let GetNextRC′ be a variant of GetNextRC that in case round = m, sets T = {i ∈ [k]\{i∗} : Ṽi accepts}
(i.e., the decision of the i∗th verifier is ignored). Let P∗ be that variant of P̂ that uses GetNextRC′ instead of
GetNextRC and let PReal

View,I∗ be the distribution induced by a random execution of (P∗, V(Ulen)) on (i∗, view).

For any fixed values of view = (rk, . . . ,Sm−1) and i∗, the“soft threshold” decision used by GetNextRC
yields that probability that a single loop of GetNextRC(view, i∗, ·) returns a value rc, is at most 1/(1 − µ)

10

larger (and never smaller) than the probability of a single loop of GetNextRC′(view, i∗, ·) to return rc. It
follows that

∥∥P0
View,I∗ − PReal

View,I∗

∥∥ ∈ O(µ) and hence
∥∥PReal

View,I∗ − Pm
View,I∗

∥∥ ∈ O(mµ), and we conclude that

Pr[(P̂, V(Ulen)) = 1)] > t
k −O(m · µ). �

We start with giving some notations and make several observations about algorithm GetNextRC.

Definition 3.8. Let view be a partial view of Ṽ
(k)

in an execution of (P(k)∗, Ṽ
(k)

), let i∗ ∈ [k] ∪ {⊥}
and let r ∈ {0, 1}len ∪ {⊥}. We let δview,i∗,r(rc) be the probability that GetNextRC(view, i∗, r) returns
rc, and let δview,i∗,r := ERc[δview,i∗,r(R)], where Rc is distributed according to the value a single loop
of GetNextRC(view, i∗, r) induces on rc. Given that round(view) < m, let γview,i∗,r(rc) be the prob-

ability that Ṽ
(k)

accepts (i.e., number of accepting verifier is at least t) in a single view′ sampled by
GetNextRC(view, i∗, r) conditioned on rc, and let γview,i∗,r := ERc[γview,i∗,r(Rc)]. Finally, for j ∈ [m]

let βj := εk(1− (3·j+2)
8m).

Note that γ(view,rc),⊥,⊥ = γview,⊥,⊥(rc) for round(view) < m − 1 and that δ(view,rc),⊥,⊥ = γview,⊥,⊥(rc)

for round(view) = m− 1. Also note that δ⊥,⊥,⊥ is exactly the cheating probability of P(k)∗ and thus equals
εk. We will use the following claim.

Claim 3.9. It holds that

1. δview,i∗,r(rc) ≤ (1 + µ
8mn) · γview,i∗,r(rc) for every value of (view, i∗, r, rc)

2. δview,i∗,r(rc)(1 ± (µ
8mn)) · γview,i∗,r(rc) for γview,i∗,r(rc) ≥ βj

3. δview,i∗,r(rc) ∈ O(2−n) for γview,i∗,r(rc) < βj − 1
m

4. δview,i∗,r(rc)(1 ±O(µ)) · δview′,i∗′,r′(rc′) for γview,i∗,r(rc) · (1± µ
8mn) · γview′,i∗′,r′(rc′),

Proof. An Hoeffding bound yields that for γview,i∗,r(rc) ≥ εk/2 it holds that Pr[α /∈ (1± µ
8mn)·γview,i∗,r(rc)] ∈

O(2−n), where α is the value calculated in Line 2.(c).ii of GetNextRC. Thus, the first three line of the claim
are immediate by the definition of GetNextRC. The last line is immediate for γview,i∗,r(rc), γview′,i∗′,r′(rc′) /∈
[βround(view) − 1

m , βround(view)]. It holds for γview,i∗,r(rc), γview′,i∗′,r′(rc′) ∈ [βround(view) − 1
m , βround(view)],

since in this case
δview,i∗,r(rc)

δview′,i∗′,r′ (rc′) =
(

γview,i∗,r(rc)

γview′,i∗′,r′ (rc′)

)8nm

. Finally, the triangle inequality yields that it also

holds for γview′,i∗′,r′(rc′) ∈ [βround(view)− 1
m , βround(view)] and γview,i∗,r(rc) /∈ [βround(view)− 1

m , βround(view)].
�

Fix view, i∗ and r such that round(view) < m, and let Rc be distributed according to the
value a single loop of GetNextRC(view, i∗, r) induces on rc. An averaging argument yields that
Eγview,i∗,r(Rc)[1[γview,i∗,r−

1
2m ,1]] ≥ γview,i∗,r/2m, and thus

δview,i∗,r ≥ γview,i∗,r/2m , (3)

for γview,i∗,r > βround(view) + 1
2m . It follows that

Pr

[
GetNextRC(view, i∗, r) aborts

∣∣ γview,i∗,r > βround(view) +
1

2m

)]
∈ O(2−n) (4)

Proof. (of Claim 3.7) For j ∈ [m − 1] let Γj denote the value of γview,⊥,⊥ in a random instance of Expm,
and let Γm be the value of δview,⊥,⊥ in such execution. Since Γ1 = εk, Claim 3.9(3) and Equation 4 yield
with save but negligible probability, it holds that Γj ≥ βj−1− 1

m = βj + 1
m . In particular, Expm aborts only

with negligible probability. Assuming that Γm > εk/2, the probability that GetNextRC returns rc for which

the number of accepting verifiers in (view, rc) is less than t− − log(εk·µ)
µ , is bounded by O(µ). It follows that

Pm
View,I∗(ṼI∗ is accepting in View) >

t−
− log(εk·µ)

µ

k −O(µ) ≥ t
k −O(µ). �

11

Proof. (of Claim 3.6) We prove the claim by proving that
∥∥∥P`

View,I∗ − P`+1
View,I∗

∥∥∥ ∈ O(µ) for every ` ∈

{1, . . . , m− 1}. For a given (partial) view of Ṽ
(k)

view = (rk,S1, . . . ,S`), we let kj(view) = |S>j(view)|
and identify the indices in S>j(view) with the set [kj(view)]. We call view typical if for every j ∈ [` −
1] is holds that kj+1(view) ∈ (1 ± µ)kj(view) · p. By induction, for every ` ∈ {0, . . . , m} it holds that
P`

View,I∗(View is not typical) ∈ O(mn · 2−n/εk) ∈ O(2−n/2).

Since the first ` rounds of Exp` and Exp`+1 are the same, it suffices to prove that P`
View,I∗ and P`+1

View,I∗

are close conditioned on a fixed value of view as calculated after the `th call to GetNextRC. The proof of
Claim 3.7 yields that Pm

View,I∗ [∃j ∈ [m] : Γj < (βj + 1
m)∨ the execution aborts] is negligible. Hence, it suffices

to prove that each neighbor distributions are closed given that the fixed value of view is typical, and that in
the ` + 1 call to GetNextRC(view,⊥,⊥) done in Exp`+1, it holds that γ ≥ β`+1 + 1

m −O(µ) > β`+1 + 1
2m .

We assume for simplicity that m > 1 and upper bound the statistical difference between P`
View,I∗ and

P`+1
View,I∗ separately for ` = 1, 2 ≤ ` < m and ` = m.

1. For every ` ∈ [m− 2], it holds that
∥∥∥P`

View,I∗ − P`+1
View,I∗

∥∥∥ ∈ O(µ).

Proof. Since the only difference between Exp` and Exp`+1 is in the ` + 1 call to GetNextRC and in
the way i∗ is chosen, it suffices to prove the following distributions are close.

D0
I∗,S := (I∗ ← S>`(view), S = GetNextRC(view, I∗,⊥), and

D1
I∗,S := (S = GetNextRC(view,⊥,⊥), I∗ ← S>`(view, S))

Consider the hybrid distribution

D
1
2

I∗,S := (I∗ ← S>`(view), S = GetNextRC′(view, I∗,⊥),

where GetNextRC′ is a variant of GetNextRC that in Line 2.(a).i does not condition on i∗ ∈
Sround+1(view′) (even if i∗ 6=⊥). The proof in concluded through by the following two claims.

Claim 3.10.

∥∥∥D
1
2

I∗,S − D1
I∗,S

∥∥∥ ∈ O(µ).

Proof. Let k` := k`(view) and consider the real function f : {0, 1}k` 7→ [0, 1] defined as f(x) =
δview,⊥,⊥(x). Let δ := EUp

k`

[f], let δi := EUp
k`,i=0

[f] and LargeEfct := {i ∈ [k`] : δi /∈ (1± µ) · δ}. Our

assumption about view yields that δ ≥ εk/2, and thus by Lemma 2.3 it holds that |LargeEfct| = q ∈
O(n2m2/µ2). Let (i, x) ∈ Supp(D1

I∗,S), and assume that i /∈ LargeEfct. It follows that,

D1
I∗,S(i, x) := D1

S(x) ·D1
I∗|S=x(i) =

(
C1

δ
· Up

k`
(x) · f(x)

)
· 1

w(x)
,

where C1 is the probability that D1
I∗,s does not abort and w(x) := |{i ∈ k` : x[i] = 1}|. Similarly, for

D
1
2

I∗,S it holds that

D
1
2

I∗,S(i, x) = D
1
2

I∗(i) ·D
1
2

S|I∗=1(x) =
1

k`
·
(

C
1
2

i

δi
· Up

k`,i=1(x) · f(x)

)
,

where C
1
2

i is the probability that D
1
2

I∗=i,S does not abort. Equation 4 yields that C1 ≥ 1−O(2−n), and

since i /∈ LargeEfct, the former also holds for C
1
2
i . It follows that

D
1
I∗,S(i,x)

D

1
2
I∗,S

(i,x)
∈ (1±2µ)·(1±µ) ∈ (1±O(µ)).

12

We conclude that
∥∥∥D

1
2

I∗,S − D1
I∗,S

∥∥∥

≤ D
1
2

I∗(LargeEfct) +
∑

(i,x) : i/∈LargeEfct

∣∣∣D1
I∗,S(i, x)− D

1
2

I∗,S(i, x)
∣∣∣

≤ q/k + O(µ) ∈ O(µ) ,

where the first inequality is due to Proposition 2.1. �

Claim 3.11.

∥∥∥D0
I∗,S − D

1
2

I∗,S

∥∥∥ ∈ O(µ)

Proof. Let f , δ, δi and LargeEfct be as in the proof of Claim 3.10. Define f0
i : {0, 1}k` 7→ [0, 1] as

f0
i (x) = δview,i,⊥(x), and let δ0

i := EUp
k`,i=0

[f0
i]. Note that D

1
2

I∗,S(i, x) = 1
k`
· f(x)

δi
and that D0

I∗,S(i, x) =

1
k`
· f0

i (x)

δ0
i

.

ForM⊆ [k`], let kM := k` − |M|, where we identify the indices in [k`] \M with the set [kM]. Define
gM : {0, 1}kM 7→ [0, 1] as gM(x) = γ(view,M),⊥,⊥(x). Let γ(M) = EUp

kM

[gM], and for i ∈ [kM] let

γi(M) := EUp
kM,i=1

[gM].

Let Light := {M ⊂ [k`] : γ(M) < εk/2m}. Let LargeEfctM :={
i ∈ [kM] : γi(M) /∈ (1± µ

8nm) · γ(M)
}
, by Lemma 2.3 we have that |LargeEfctM| = q ∈ O(n4m4/µ2)

for every M /∈ Light. Let LargeEfct(i) :=
{
y ∈ k` : i ∈ LargeEfcty

}
and let PotentialLargeEfct

be the µ · k` heaviest indices in k` according to EUp
k`

[γ · 1LargeEfct(i)], breaking ties arbitrarily.

Since
∑

i∈[k`]
EUp

k`

[γ · 1LargeEfct(i)] ≤ q · EUp
k`

[γ], for every i /∈ PotentialLargeEfct it holds that

EUp
k`

[γ · 1LargeEfct(i)] ≤ q
|PotentialLargeEfct| · EUp

k`

[γ]. An average argument yields that for every

i /∈ PotentialLargeEfct, it holds that EUp
k`,i=0

[γ · 1LargeEfct(i)] ≤ 1
p ·

q
|PotentialLargeEfct| · EUp

k`

[γ].

Lemma 2.3 yields that γi(M) ≤ 1
p · γ(M) for everyM, and therefore for every i /∈ PotentialLargeEfct

EUp
k`

,i=1[γi · 1LargeEfct(i)] ≤
1

p2
· q

|PotentialLargeEfct| · EUp
k`

[γ] (5)

≤ 1

p2
· q

|PotentialLargeEfct| · 2m · δ ∈ O(µ2 · δ) ,

where the second inequality is due to Equation 3 (recall that our assumption about view yields that
EUp

k`

[γ] ≥ β`+1 + 1
2m). Hence,

D0
S|I∗=i/∈PotentialLargeEfct(I

∗ ∈ LargeEfctS) ≤
EUp

k`,i=0
[f0

i · 1LargeEfct(i)]

δ0
i

(6)

≤
(1 + µ

8nm) · EUp
k`

,i=1[γi · 1LargeEfct(i)]

δ0
i

∈ O(µ2 · δ

δ0
i

) ,

where the second inequality is due to Claim 3.9(1). Since for every (i,M) ∈ [kM] × {0, 1}k` such
that i /∈ LargeEfctM, it holds that γi(M) ∈ (1 ± µ

8nm) · γ(M), Claim 3.9(4) yields that f0
i (M) ∈

(1±O(µ)) · f(M). It follows that

D
1
2

I∗,S(i,M)

D0
I∗,S(i,M)

∈ (1±O(µ)) · δ
0
i

δi
, (7)

13

for every such pair. For δi ∈ Ω(2−n/µ) it holds that

δ0
i = EUp

k`,i=0
[f0

i]

= EUp
k`,i=0

[f0
i · 1LargeEfct(i)] · EUp

k`,i=0
[f0

i | 1LargeEfct(i)]

+ (1− EUp
k`,i=0

[f0
i · 1LargeEfct(i)]) · EUp

k`,i=0
[f0

i | 1LargeEfct(i)]

∈ EUp
k`,i=0

[f0
i · 1LargeEfct(i)] · EUp

k`,i=0
[f0

i | 1LargeEfct(i)]

+ (1− EUp
k`,i=0

[f0
i · 1LargeEfct(i)]) · (1±O(µ)) · EUp

k`,i=0
[f | 1LargeEfct(i)]

∈ (1±O(µ)) ·
(
δi ±O(EUp

k`,i=0
[f0

i · 1LargeEfct(i)] + EUp
k`,i=0

[f · 1LargeEfct(i)])
)

∈ (1±O(µ)) · (δi ±O(EUp
k`

,i=1[γi · 1LargeEfct(i)] + EUp
k`

,i=1[γ · 1LargeEfct(i)])

where in the first ‘∈’ follows from Claim 3.9(2) and the fact that f0
i (M), f(M) ∈ O(2−n) forM ∈ Light

(see Claim 3.9(3)), and the last ‘∈’ follows from Claim 3.9(1). The above and Equation 5 yield the
following holds for every i /∈ PotentialLargeEfct such that δi ∈ Ω(2−n/µ)

δ0
i ∈ (1± O(µ)) · (δi ±O(µ2 · δ)) (8)

We conclude that
∥∥∥D0

I∗,S − D
1
2

I∗,S

∥∥∥

≤ D0
I∗(Bad) + D0

I∗,S|I∗ /∈Bad(I∗ ∈ LargeEfctS) +
∑

(i,x) : i/∈(LargeEfctx ∪ Bad)

∣∣∣D
1
2

I∗,S(i, x)− D0
I∗,S(i, x)

∣∣∣

≤ +O(µ) + O(µ) + O(µ) ∈ O(µ) ,

where Bad := LargeEfct∪PotentialLargeEfct �

�

2.
∥∥∥Pm−1

View,I∗ − Pm
View,I∗

∥∥∥ ∈ O(µ).

Proof. Note that for every fixing of the parameter view, the statistical difference between P0
View,I∗ and

P1
View,I∗ equals the statistical difference between D

1
2

I∗,S and D1
I∗,S (as defined in the proof of 1). Hence,

the proof follows the lines of the proof for Claim 3.10. �

3.
∥∥P0

View,I∗ − P1
View,I∗

∥∥ ∈ O(µ).

Proof. As in the proof of 1, it suffices to show that the following distributions are close:

D0
I∗,Rk := (I∗ ← [k], Rk = GetNextRC(⊥, I∗, Ulen)), and

D1
I∗,S := (I∗ ← [k], Rk = GetNextRC(⊥,⊥,⊥))

Consider the hybrid distribution

D
1
2

I∗,Rk := (I∗ ← [k], Rk = GetNextRC′(⊥, I∗, Ulen)),

where (as in the proof of 1.) GetNextRC′ is a variant of GetNextRC that does not condition in Line
2.(a).i on i∗ ∈ Sround+1(view′). We conclude the proof by the following two claims.

Claim 3.12.

∥∥∥D
1
2

I∗,Rk − D1
I∗,Rk

∥∥∥ ∈ O(µ).

14

Proof. Let PI and PXk := PX1 · · ·PXk
be the uniform distribution over [k] and {0, 1}k·len respectively,

and let W be the event that the loop of GetNextRC(⊥,⊥,⊥) returns. Equation 3 yields that PXk(W |
rk = Xk) ≥ ε/m, which yields that

∥∥∥PI · PXk|W − D1
I∗,Rk

∥∥∥ ∈ O(2−n) (9)

Applying Corollary 2.6 with f(xk) = Pr[W | rk = xk], we have that∣∣∣
{

i ∈ [k] : PXi

(
PXk

−i
(W | rk = Xk)) < ε/2m

)
> µ

}∣∣∣ ∈ O(n2/µ2), where PXk
−i

= PX1 · · ·PXi−1 ·
PXi+1 · · ·PXk

. It follows that

∥∥∥PI · PXi · PXk
−i|W,Xi

− D
1
2

I∗,Rk

∥∥∥ ∈ O(n2/µ2 · k) ∈ O(µ) , (10)

where PXk
−i|W,Xi

is set arbitrarily in case PXk|Xk
i =Xi

(W | rk = Xk) = 0. We complete the proof using

the following result due to Holenstein, restating a lemma of Raz [Raz98, Claim 5.1].

Lemma 3.13. ([Hol07, Equation 8]) Let PXk := PX1 · · ·PXk
be a probability distribution over X k and

let W be an event. Then,
k∑

j=1

∥∥PXj |W − PXj

∥∥ ≤
√
−k · log Pr[W].

Writing PXk|W = PXI |W PXk
−I |XI ,W , we have that

∥∥∥PI · PXI · PXk
−I |W,XI

− PI · PXk|W

∥∥∥ ∈
√
−k · log Pr[W]) ∈ O(µ) ,

and therefore
∥∥∥D

1
2

I∗,Rk − D1
I∗,Rk

∥∥∥

≤
∥∥∥PI · PXk|W − D1

I∗,Rk

∥∥∥+
∥∥∥PI · PXi · PXk

−i|W,Xi
− D

1
2

I∗,Rk

∥∥∥

+
∥∥∥PI · PXI · PXk

−I |W,XI
− PI · PXk|W

∥∥∥ ∈ O(µ) .

�

Claim 3.14.

∥∥∥D0
I∗,Rk − D

1
2

I∗,Rk

∥∥∥ ∈ O(µ).

Proof. The proof follows similar lines to the proof of Claim 3.11, but involves an additional complication
since I∗ effects not only the way the “quality” of next message is evaluate (as in the proof Claim 3.11),
but also determines which of the coordinates of Rk is sampled only once. In particular, we have to
make sure that this change does not increase by too much the probability that a random I∗ has large
effect.

Define f, f0
i,r : {0, 1}(k−1)·len 7→ [0, 1] as fi,r(x) := δ⊥,⊥,⊥(x[1], . . . , x[i− 1], r, . . . , x[k− 1]) and f0

i,r(x) =

δ⊥,i,r(x[1], . . . , x[i − 1], r, . . . , x[k − 1]). Let δi,r = E(Un)k−1 [fi,r] and let δ0
i,r = E(Un)k−1 [f0

i,r]. For

rk ∈ {0, 1}k·len, define grk : {0, 1}k 7→ [0, 1] as grk(x) := γ(view,M),⊥,⊥(x). Let γ(rk) = EUp
k
[grk], and

let γi(r
k) = EUp

k,i=1
[grk].

Let Light :=
{
rk ∈ {0, 1}k·len : γ(rk) < εk/2m

}
and for rk /∈ Light, let LargeEfctrk :={

i ∈ [k] : γi(r
k) /∈ (1± µ

8nm) · γ(rk)
}
. Lemma 2.3 yields that |LargeEfctrk | = q ∈ O(n4m4/µ2). Let

LargeEfct(i) :=
{
y ∈ {0, 1}k·len : i ∈ LargeEfcty

}
and let PotentialLargeEfct be the µ · k heaviest in-

dices in k according to EUk·len
[γ · 1LargeEfct(i)], breaking ties arbitrarily.

15

We would like to argue that D0
I∗,Rk|I∗ /∈PotentialLargeEfct(I

∗ ∈ LargeEfctRk) is small. Unlike the

proof of Claim 3.11, the above is note true for every I∗ /∈ PotentialLargeEfct. Neverthe-
less, we manage to show that it is so for most values of (i, r). Let PotentialLargeEfctPair :={
(r, i) : EUk·len|Uk·len[i]=r[γ · 1LargeEfct(i)] > 1

µ · EUk·len
[γ · 1LargeEfct(i)]

}
. A Markov bound yields that

Pr[(Un, I∗) ∈ PotentialLargeEfctPair] ≤ µ (11)

An averaging argument yields that for every i /∈ PotentialLargeEfct it holds that EUk·len
[γ ·

1LargeEfct(i)] ≤
q·EUk·len

[γ]

|PotentialLargeEfct| . Lemma 2.3 yields that γi(r
k) ≤ 1

p · γ(rk) for every rk, and therefore

for (i, r) /∈ PotentialLargeEfctPair such that i /∈ PotentialLargeEfct it holds that

EUk·len|Uk·len[i]=r[γi · 1LargeEfct(i)] ≤
µq · EUk·len

[γ]

|PotentialLargeEfct| ∈ O(µ · εk) , (12)

where the last conclusion is due to Equation 3. The rest of the proof follows rather closely that of
Claim 3.11. Claim 3.9(1) yields that

D0
I∗,Rk|I∗=i/∈PotentialLargeEfct∧Rk[i]=r∧(i,r)/∈PotentialLargeEfctPair(I

∗ ∈ LargeEfctRk)(13)

≤
EU(k−1)len

[f0
i,r · 1LargeEfct(i)]

δ0
i,r

≤ (1 + µ
8nm) · EUk·len|Uk·len[i]=r[γi · 1LargeEfct(i)]

δ0
i,r

∈ O(µ · εk

δ0
i,r

)

Since for every (i, rk) such that i /∈ LargeEfctrk , it holds that γi(r
k) ∈ (1± µ

8nm) · γ(rk). Claim 3.9(4)
yields that f0

i,r(r
k) ∈ (1±O(µ)) · fi,r(r

k) and therefore

D
1
2

I∗,Rk(i, rk)

D0
I∗,Rk(i, rk)

∈ (1±O(µ)) ·
δ0
i,r

δi,r
, (14)

for every such pair. For δi,r ∈ Ω(2−n/µ) it holds that

δ0
i,r = E(Un)k−1 [f0

i,r]

= E(Un)k−1 [f0
i,r · 1LargeEfct(i)] · E(Un)k−1 [f0

i,r | 1LargeEfct(i)]

+ (1− E(Un)k−1 [f0
i,r · 1LargeEfct(i)]) · E(Un)k−1 [f0

i,r | 1LargeEfct(i)]

∈ E(Un)k−1 [f0
i,r · 1LargeEfct(i)] · E(Un)k−1 [f0

i,r | 1LargeEfct(i)]

+ (1− E(Un)k−1 [f0
i,r · 1LargeEfct(i)]) · (1±O(µ)) · E(Un)k−1 [f | 1LargeEfct(i)]

∈ (1±O(µ)) ·
(
δi,r ±O(E(Un)k−1 [f0

i,r · 1LargeEfct(i)] + E(Un)k−1 [f · 1LargeEfct(i)])
)

∈ (1±O(µ)) · (δi,r ±O(EUk·len|Uk·len[i]=r[γi · 1LargeEfct(i)] + EUk·len|Uk·len[i]=r[γ · 1LargeEfct(i)])

where in the first ‘∈’ follows from Claim 3.9(2) and the fact that f0
i,r(r

k−1), f(rk−1) ∈ O(2−n) for in

case (rk−1[1], . . . , rk−1[i−1], r, . . . , rk−1[k−1]) ∈ Light (see Claim 3.9(3)), and the last ‘∈’ follows from
Claim 3.9(1). The above and Equation 12 yields the following for every (i, r) /∈ PotentialLargeEfctPair
such that i /∈ PotentialLargeEfct and δi,r ∈ Ω(2−n/µ)

δ0
i,r ∈ (1±O(µ)) · (δi,r ±O(µ · εk)) (15)

16

Finally, let LargefctPair := {(r, i) : δi,r < εk/2}, Corollary 2.6 yields Pr[(I∗, Un)) ∈ LargefctPair] ∈
O(n2

k·µ2 + µ) ∈ O(µ), and we conclude that

∥∥∥D0
I∗,Rk − D

1
2

I∗,Rk

∥∥∥

≤ D0
I∗(PotentialLargeEfct) + D0

I∗,Rk((I∗, Rk
I∗) ∈ BadPairs)

+ D0
I∗,Rk|I∗ /∈PotentialLargeEfct∧ (I∗,Rk

I∗
)/∈BadPairs(I

∗ ∈ LargeEfctRk)

+
∑

(i,x) : i/∈(PotentialLargeEfct∪LargeEfctx)∧ (i,x)/∈BadPairs

∣∣∣D
1
2

i,x(i, x)− D0
I∗,x(i, x)

∣∣∣

∈ O(µ) ,

where BadPairs := LargefctPair∪ PotentialLargeEfctPair. �

�

We conclude that
∥∥P0

View,I∗ − Pm
View,I∗

∥∥ ≤
∑m−1

`=0

∥∥∥P`
View,I∗ − P`+1

View,I∗

∥∥∥ ∈ O(m · µ). �

Acknowledgment

I am very thankful to Oded Goldreich, Thomas Holenstein, Omer Reingold, Salil Vadhan and Alex Samorod-
nitsky for very useful discussion. In particular, I am in great depth to Alex for helping with the proof of
Lemma 2.4. I am also very thankful to Tal Moran, Omer Reingold and Gil Segev for helping me to improve
the readability of this text.

References

[BIN97] Mihir Bellare, Russell Impagliazzo, and Moni Naor. Does parallel repetition lower the error in
computationally sound protocols? In Proceedings of the 37th Annual Symposium on Foundations
of Computer Science (FOCS), 1997.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. Syst. Sci., 36(2):254–276, 1988.

[CHS05] Canetti, Halevi, and Steiner. Hardness amplification of weakly verifiable puzzles. In Theory of
Cryptography, Second Theory of Cryptography Conference, TCC 2005, volume 2, 2005.

[DP98] Ivan B. Damg̊ard and Birgit Pfitzmann. Sequential iteration arguments and an efficient zero-
knowledge argument for NP. In ICALP: Annual International Colloquium on Automata, Lan-
guages and Programming, 1998.

[FK94] Uriel Feige and Joe Kilian. Two prover protocols: low error at affordable rates. In Proceedings
of the 26th Annual ACM Symposium on Theory of Computing (STOC), pages 172–183, 1994.

[Gol99] Oded Goldreich. Modern Cryptography, Probalistic Proofs and Pseudorandomness. Springer-
Verlag, Berlin Heidelberg, 1999.

[GRYY08] Ronen Gradwohl, Omer Reingold, Ariel Yadin, and Amir Yehudayoff. The player’s effect. Tech-
nical Report arXiv:0805.0400v1, 2008.

[HKM06] Hagggstrom, Kalai, and Mossel. A law of large numbers for weighted majority. ADVAM:
Advances in Applied Mathematics, 37, 2006.

17

[Hol07] Thomas Holenstein. Parallel repetition: simplifications and the no-signaling case. In Proceedings
of the 39th Annual ACM Symposium on Theory of Computing (STOC). ACM Press, 2007.

[HPPW08] Johan H̊astad, Rafael Pass, Krzysztof Pietrzak, and Douglas Wikström. An efficient parallel
repetition theorem. Unpublished manuscript, 2008.

[HRVW] Iftach Haitner, Omer Reingold, Salil Vadhan, and Hoeteck Wee. Inaccessible entropy. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC).

[IJK06] Russell Impagliazzo, Ragesh Jaiswal, and Ragesh Kabanets. Approximately list-decoding direct
product codes and uniform hardness amplification. In Proceedings of the 46th Annual Symposium
on Foundations of Computer Science (FOCS), 2006.

[PV07] Rafael Pass and Muthuramakrishnan Venkitasubramaniam. An efficient parallel repetition the-
orem for arthur-merlin games. In Proceedings of the 39th Annual ACM Symposium on Theory
of Computing (STOC), 2007.

[PW07] Krzysztof Pietrzak and Douglas Wikström. Parallel repetition of computationally sound proto-
cols revisited. In Salil P. Vadhan, editor, Theory of Cryptography, Fourth Theory of Cryptogra-
phy Conference, TCC 2007, volume 4392 of Lecture Notes in Computer Science, pages 86–102.
Springer, 2007.

[Raz98] Ran Raz. A parallel repetition theorem. Journal of the ACM, 27(3):763–803, 1998. Preliminary
version in STOC’95.

[Tal96] Michel Talagrand. How much are increasing sets positively correlated? Combinatorica,
16(2):243–258, 1996.

18

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

