
A PARALLEL REPETITION THEOREM FOR ANY INTERACTIVE
ARGUMENT∗

IFTACH HAITNER†

Abstract. A fundamental question in the study of protocols, is characterizing the effect parallel
repetition has on the soundness error. While parallel repetition reduces the soundness error in
interactive proofs and in special cases of interactive arguments (e.g., three-message protocols, Bellare,
Impagliazzo, and Naor [FOCS ’97], and public-coin protocols, Hästad, Pass, Pietrzak, and Wikström
[TCC ’10]), Bellare et al. gave an example of an interactive argument for which parallel repetition
does not reduce the soundness error at all.

We show that by slightly modifying any interactive argument, in a way that preserves its com-
pleteness and only slightly deteriorates its soundness, we get a protocol for which parallel repetition
does reduce the error (at a weakly exponential rate). In this modified version, the verifier flips at
the beginning of each round an (1 − 1

2m
, 1
2m

) biased coin (i.e., 1 is tossed with probability 1/2m),
where m is the round complexity of the (original) protocol. If the outcome is one, the verifier halts
the interaction and accepts. Otherwise, it sends the same message that the original verifier would.
At the end of the protocol (if reached), the verifier accepts if and only if the original verifier would.

1. Introduction. In an interactive proof, a prover P is trying to convince the
verifier V in the validity of a statement.1 The basic properties such protocols should
have are completeness and soundness. The completeness means that P convinces V
to accept valid statements, where the soundness means that no cheating prover (of
a certain class) can convince V to accept invalid statements. More generally, (P,V)
has completeness β, if V accepts a valid statement x in (P,V)(x), with probability at
least β. Where V has soundness 1− ε, with respect to a given class of algorithms, if
no malicious P∗ from this class can convince V to accept an invalid statement with
probability greater than ε. The bound ε is typically called the soundness error of the
protocol.

The basic distinction one may make regarding the above soundness definition,
is whether it holds unconditionally (i.e., even an all-powerful prover cannot break
the soundness), or only holds against computationally bounded provers. Protocols
with unconditional soundness are called interactive proofs, whereas protocols with
the weaker type of soundness are called interactive arguments (also known as, com-
putationally sound proofs). This work focuses on computationally bounded provers,
specifically, on polynomial-time ones.

A common paradigm for constructing protocols with low soundness error, is to
start by constructing a protocol with noticeably smaller than one soundness error,
and then manipulate the protocol to decrease its soundness error. The most natural
such manipulation is repetition: repeat the protocol many times (with independent
randomness), where the verifier accepts only if the verifiers (of the original protocol)
accept in all executions. Such repetition can be done in two different ways, sequen-
tially (known as sequential repetition), where the (j + 1) execution of the protocol
is only started after the j’th execution is finished, or in parallel (known as parallel
repetition), where all the executions are done simultaneously.

∗A preliminary version appeared as [8].
†School of Computer Science, Tel Aviv University. Research supported by ISF grant 1076/11,

and the Israeli Centers of Research Excellence (I-CORE) program, Center No. 4/11 and ISF grant
1076/11. Part of this work was done while at Microsoft Research, New England Campus. E-mail:
iftachh@cs.tau.ac.il.

1Typically, P has some advantage over V, such as additional computational resources or some
extra information, e.g., an NP witness that validates the claim.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 27 (2009)

Sequential repetition is known to reduce the soundness error at an exponential
rate in most computational models (cf., [5]), but has the undesired effect of increasing
the round complexity of the protocol. Parallel repetition, on the other hand, does
preserve the round complexity, and for the case of interactive proofs also reduces the
soundness error at an exponential rate [7]. But, as shown by Bellare, Impagliazzo,
and Naor [2], might not reduce the soundness error in interactive arguments.

Let us be more precise about the latter statement. Parallel repetition does reduce
the soundness error in the case of three-message arguments [2], and in the case of
public-coin verifiers [11] (see Section 1.3 for more details). On the negative side, [2]
presented for any k ∈ N, a 4-message protocol with soundness error 1

2 , whose k-
parallel repetition soundness remains 1

2 . More recently, Pietrzak and Wikström [15]
gave an example of a single 8-message protocol for which the above phenomena holds
for all polynomial k simultaneously. Both results hold under common cryptographic
assumptions.

1.1. Our Result. We present a simple method for transforming any m-round in-
teractive argument whose soundness error is bounded away from one, into an m-round
interactive argument with negligible soundness error. Given an m-round interactive
algorithm V, define its random-terminating variant, denoted Ṽ, as follows: Ṽ acts
exactly as V would have, on the same input and seeing the same transcript, with a
single twist: at the end of each round, Ṽ tosses an (1 − 1

2m ,
1

2m) biased coin (i.e., 1

is tossed with probability 1/2m). If the outcome is one, then Ṽ accepts (i.e., outputs
1) and halts. Otherwise, it sends the same message that V would. At the end of the

protocol (if reached), Ṽ accepts if and only if V would.

Let (P,V) be an m-round interactive argument, and let (P, Ṽ) be its random-

terminating variant (i.e., Ṽ is the random-terminating variant of V). It is easy to

verify that the completeness of (P, Ṽ) is at least as high as that of (P,V), where the

soundness of (P, Ṽ), is at least (1 − 1
2m)m · α ≥ α/2, for α being the soundness of

(P,V). Our main contribution is stated in the following theorem.

Theorem 1.1 (informal). Parallel repetition of the random-terminating variant
of any interactive argument, reduces the soundness error at a weakly exponential rate.2

The above theorem is applicable for any interactive protocol that can be cast as an
interactive argument. For instance, our result yields a round-preserving binding am-
plification for computationally binding commitment schemes.3 In addition, it extends
to the “threshold case”, where the prover in the k-fold repetition is only required to
make t < k of the verifiers accept. Finally, the choice 1/2m as the halting probability

of Ṽ is rather arbitrary; the proof of Theorem 1.1, given in Section 3, can be easily
altered for other choices of interest.

2We are using a rather relaxed interpretation of weakly exponential rate, meaning that the
soundness error is bounded by max{neg, exp(−k · poly(1−ε

m
)}, where m is the round complexity of

the protocol and ε is the soundness error of (a single instance of) the random-terminating protocol.
See Theorem 3.3 for the exact statement.

3Given a weakly binding commitment (S,R), consider the protocol (P,V) where P and V play the
role of S and R in a random commit stage of (S,R) respectively. Following the commit stage, P sends
two strings to V, and V accepts, iff the strings are valid decommitments to two different values. The
weakly binding property of (S,R), yields that the soundness error of (P,V) is noticeably far from one.
Thus, Theorem 1.1 yields that the parallel repetition of the random-terminating variant of (P,V)
has negligible soundness error. Namely, the parallel repetition of the random-terminating variant of
(S,R) is (strongly) binding.

2

1.2. Our Technique. Let (P, Ṽ) be the random-terminating variant an m-round

interactive argument (P,V), and let (P(k), Ṽ(k)) be its k’th parallel repetition. We

show that any efficient strategy B that breaks the soundness of (P(k), Ṽ(k)) with no-
ticeable probability εk (e.g., larger than 0.001), implies an efficient algorithm A that

breaks the soundness of (P, Ṽ) with high probability (e.g., 0.999). As a warm up, we

start by presenting such strategy assuming that (P(k), Ṽ(k)) is public coin (but not nec-
essarily random terminating), and then explain how to adapt it to the (private-coin)
random-terminating case.

Public-coin protocols:. The following description loosely follows the approach pre-
sented in [10]. In order to interact with Ṽ, algorithm A emulates a random execution

of (B, Ṽ(k)), where the “real” Ṽ plays the role of the i’th verifier in Ṽ(k), for a uni-
formly chosen i ∈ [k], and A emulates the other (k−1) verifiers and B by itself. Upon

receiving the j’th message r from Ṽ, algorithm A starts by uniformly choosing the
emulated verifiers’s messages in the j’th round. Let r = (r1, . . . , rk) be the messages
of the real and emulated verifiers induced by this sampling (i.e., ri = r, and the other
r’s are the emulated verifiers’ messages chosen by A). Next, A estimates αr — the

probability that B makes Ṽ(k) accept, conditioned on r and on the emulated interac-
tion of the previous rounds. To do so, A samples many random continuations of the
emulated execution (B, Ṽ(k)),4 and measures the fraction of accepting ones (i.e., where
all verifiers accept). If the estimated value of αr is not “significantly” smaller than εk,
then A updates the state of the emulated verifiers according to r, and sends ai back
to Ṽ, where a is the j’th answer of B to Ṽ(k) in the emulated execution. Otherwise
(αr is too small), A repeats the above process, to a maximum of w/εk attempts (for
some large enough w).5 Note that whenever A does not abort in any of the m rounds,

it is guaranteed to make (the real verifier) Ṽ accept.

To prove that A breaks the soundness of (A, Ṽ) with high probability, it suffices
to show that the conditional success probability of the emulated B after getting the
j + 1 message from the real verifier, is not much smaller than αr (as estimated at the
j’th round). While in the worst case these two value might be far apart, one can use
a result by Raz [16] to show that they are close for a uniformly chosen i.

Random-termination protocols.. When one tries to adopt the above strategy to
non public-coin protocols, he should first decide what the values of r and αr defined
stand for in this case. The first approach that comes to mind, is viewing r as the
verifiers’ messages (in the j’th round), and let αr be the probability that B makes

Ṽ(k) accept conditioned on r, and on the transcript produced in the previous rounds.
The very same argument we used above, yields that A makes Ṽ accepts with high
probability. The problem is, however, that the resulting strategy is not necessarily
efficient in the non public-coin case; in particular, estimating αr requires the ability
of finding a random preimage of the function that maps the coins of Ṽ(k) to protocol
transcripts, a task that seems infeasible even for random terminating Ṽ.

To circumvent the above obstacle, we adopt the public-coin strategy in a different

4In general, choosing random continuation means sampling a random execution of the protocol
that is consistent with the current state (e.g., messages sent, or coins flipped). In the case of public-
coin protocols, however, it simply means choosing at uniform the messages of all verifiers in the last
m− j rounds (for the i’th verifier, whose j’th message was already chosen by the real execution, only
choose the messages for the last m− j − 1 rounds).

5[11] use a different (and somewhat less intuitive) strategy for evaluating the quality of r, which
significantly simplifies the above analysis. The sampling method of the cheating prover for random-
terminating verifiers, described in Section 3, is a variant of their approach.

3

way; we view r as the verifiers’ random coins in the j’th round, and let αr be the
probability that B makes Ṽ(k) accept conditioned on r, and on the coins flipped in the
previous rounds. As in the case of former approach, one can show that the resulting
adversary makes Ṽ accept with high probability.

At a first look, however, it seems that there is no hope to implement the above
strategy; even an unbounded algorithm cannot evaluate αr in the general case.6 In-
terestingly, we show that the following variant of the above strategy can be imple-
mented, and in an efficient way, for any random-terminating verifier. Let Ṽ be a
random-terminating verifier, and assume without loss of generality that it chooses
all but its decision bits (the bits uses for deciding whether or not to terminate the
executions) before the interaction begins. In order to approximate the value of αr,
the cheating prover A samples the future random coins of all verifiers, conditioned that
the real verifier’s decision bit in the end of the j’th round is one (i.e., the i’th verifier
decides to halt in the end of the j’th round). Sampling in this case is very easy; the
real verifier sends no further messages, and the future random coins for the emulated
verifiers are uniformly distributed over all possible strings that cause Ṽ(k) to accept.

The obvious problem with the above approach is that adding this additional
conditioning might effect B’s success probability (and hence, causing A to err in its
estimation of αr). Fortunately, it turns out that the latter undesired effect does not
happen for most choices of i. For a fixed i ∈ [k], let real distribution be that of the

verifiers’ (real and emulated) random coins induced by a random execution of (A, Ṽ).
We compare this distribution to its ideal version (hereafter, the ideal distribution),
where the value of αr is estimated at each round without the additional conditioning
(say, by giving A access to the random coins of the real verifier). Our main technical
contribution is showing that the above distributions are statistically close for most
values of i ∈ [k]. Since in the ideal case A makes Ṽ accepts with high probability (as
in the public-coin case), the above observation yields that the same holds also in a

real interaction of A with Ṽ.

Bounding the distance between the ideal and real distributions.. Let us briefly
explain why these distributions should be close to each other.7 We say that i ∈ [k]
affects r in the j’th round, if adding the condition that the i’th verifier halts at the end
of the j’th round, significantly changes the value of αr, i.e., of B’s success probability,
conditioned that the verifiers random coins are set to r.

Fix a round j and a value for r sampled in the j’th round, let ` be the number
of indices affecting r, and assume for simplicity that there exists a set S ⊆ [k] of size
at least `/2, such that the following holds for every i ∈ S: conditioning that the i’th
verifier halts at the end of the j’th round, significantly biases the value of αr towards
zero. Assuming that k ≥ `m, yields that with probability 1− O(2−`) at least one of
the verifiers indexed by S halts in any random continuation of the protocol, yielding
that αr ∈ O(2−`).

Taking large enough ` (so that 2−` << εk), the above observation yields that for
most values of i ∈ [k], most values of r are selected with similar probability in the
real and in the ideal case. Namely, that the real and ideal distributions are close.

6The random coins that the real verifier chooses in the j’th round, might only affect the transcript
on a later round. Therefore, the transcript of the protocol in the j’th round might not contain enough
information for estimating αr.

7We remark that the question in hand is similar in spirit to the issue mentioned in the last
paragraph of the above discussion regarding public-coin protocols. Indeed, we formally answer the
current question via (a more sophisticated use of) the very same lemma by Raz [16].

4

1.3. Related Work. Babai and Moran [1] showed that parallel repetition re-
duces the soundness error of Arthur-Merlin protocols, where Goldreich [7, Appendix
C.1] showed the same for interactive proofs. Parallel repetition is also known to re-
duce the error in the important case of two-prover interactive proofs [16]. In all above
examples, the soundness error reduces at exponential rate.

Moving to bounded provers, Bellare et al. [2] showed that the parallel repetition
of three-message interactive arguments reduces the soundness error at a weakly ex-
ponential rate. Canetti et al. [3] gave a tighter result for two-message arguments,
where Impagliazzo et al. [13] generalized [3] to the threshold case. For public-coin
arguments, Pass and Venkitasubramaniam [14] gave a parallel repetition theorem for
constant-round protocols. This result was recently extended to a polynomial number
of rounds by Hästad et al. [11], and further improved by Chung and Liu [4] (achiev-
ing, exponential error reduction). The results of [11, 4] also extends to the threshold
case. More importantly, [10, 4] ([10] is the preliminary version of [11]) extend to the
so called “extendable and simulatable” verifiers — it is feasible to sample a random
continuation of the verifier’s actions, given any partial transcript of the protocol. Fi-
nally, [11] presents an extension to ”δ-simulatable” verifiers, a class of verifiers that
contains random-terminating verifiers as a special case.

The idea of randomly terminating the verifier, is inspired by the work of Haitner,
Reingold, Vadhan, and Wee [9], showing a round-preserving binding amplification of a
specific (weakly) computational binding commitment. The phenomena that modifying
a verifier to send less information might help its parallel repetition to reduce the
soundness error, is a reminisce of the work of Feige and Kilian [6] (given in the
context of two-prover protocols).

1.4. Paper Organization. Notations and formal definitions appear in Sec-
tion 2, where our main result is formally stated and proved in Section 3.

2. Preliminaries. We use calligraphic letters to denote sets, uppercase for ran-
dom variables, and lowercase for values. For n ∈ N, let [n] = {1, · · · , n}. We let
poly be the set of all polynomials and let pptm stand for probabilistic algorithm (i.e.,
Turing machines) that runs in strict polynomial time.

Given an interactive protocol (A,B), we let (A,B) also denote a random execu-
tion of (A,B). In case the parities get private inputs iA and iB respectively, and
a common input ic, we denote a random execution of (A,B) with these inputs by
(A(iA),B(iB))(ic). An interactive algorithm A has m rounds, if m bounds A’s num-
ber of rounds in (A,B) for any algorithm B; in case A accepts inputs, m can be a
function of its input length. Let A(k), for k ∈ N, be the interactive algorithm consists
of k independent copies of A; a message sent to A(k) is accepted to be of the form
m1, . . . ,mk (otherwise, A(k) aborts), one message for each copy of A. In each round,
every copy of A tosses its random coins and process its message independently, then
the k messages are bundled into a single message (separated by commas) and sent to
the other party.

The statistical distance of two probability distributions P and Q over U , denoted
SD(P,Q), is defined as 1

2 ·
∑
x∈U |P (x)−Q(x)|. Given a random variable X, let

x ← X indicate that x is selected according to X. Similarly, given a finite set S, let
s← S denote that s is selected according to the uniform distribution on S. Given a
random variable X and an event W (over the same probability space), let (X | W)
denote the random variable induced by drawing at random from X, conditioned on
W (if W is an empty event, then (X |W) has all its mass on ⊥). Given two random
variables X and Y , let (X | Y) be the distribution (X | Y = y)y←Y .

5

The following proposition plays an important role in our proofs.
Proposition 2.1. Let Y and X1 . . . , Xk be independent random variables

over some probability space let W be a non-empty event in the same space and let
α =

√
− log(Pr[W])/k, then

1. Pri←[k],x←Xi
[Pr[W | Xi = x] /∈ (1± ε) · Pr[W]] ≤ 2

ε · α for any ε > 0,

2. Ei←[k]

[
SD

(
(i, (X |W)), (i, (X |W,Xi))

)]
≤ α where X = (X1 . . . , Xk), and

3. Ei←[k] [SD ((i, (Y,Xi |W)), (i, (Y |W), Xi))] ≤ α.
Proof. We use the following fact due to Holenstein [12] (simplifying lemma of Raz

[16]).
Lemma 2.2. ([12, Corollary 4.3], simplified version) Let Y , X1 . . . , Xk , W

and α be as in Theorem 2.1, then Ei←[k] [SD ((Y,Xi |W), ((Y |W), Xi))] ≤ α. For

i ∈ [k], let S−i = {x ∈ Supp(Xi) : Pr[W | Xi = x] < (1 − ε) · Pr[W]} and let
S+
i = {x ∈ Supp(Xi) : Pr[W | Xi = x] > (1 + ε) · Pr[W]}. Since

SD((Xi |W), Xi) ≥
1

2
·
∣∣PrXi|W [S−i]− PrXi [S−i]

∣∣+
1

2
·
∣∣PrXi|W [S+

i]− PrXi [S+
i]
∣∣

≥ ε

2
· PrXi

[S−i ∪ S
+
i],

it follows that

Pri←[k],x←Xi
[Pr[W | Xi = x] /∈ (1± ε) · Pr[W]] ≤ 2

ε
· Ei←[k] [SD((Xi |W), Xi)] ,

(2.1)

and the proof of the first item follows by Theorem 2.2.
To see that the second item also follows by Theorem 2.2, notice that sampling

from
(
i, (X |W)

)
and

(
i, (X |W,Xi)

)
, can be done by applying the same random

function to (Y,Xi |W) and ((Y |W), Xi) respectively, i.e., fi(x, y) returns a random
sample from (i, (X | W,Xi = x)) (ignoring y). The third item fellows for similar
reasons, taking fi(y, x) := (i, y, x).

2.1. Random-terminating Algorithms. Definition 2.3. [random-
terminating variant] Let A be a deterministic, no-input interactive algorithm, and

let δ ∈ [0, 1]. We define the δ-random-terminating variant of A, denoted Ã, as follows:

algorithm Ã acts exactly as A does, but adds the following step at the end of each com-
munication round: it tosses an (1− δ, δ) biased coin (i.e., 1 is tossed with probability

δ), if the outcome is one, then Ã accepts (i.e., outputs ‘1’) and halts. Otherwise, it
continues as A (seeing the same transcript) would.

The above naturally extends to randomized algorithms that do accept inputs, where
in this case we allow δ to be a function of the input length.

2.2. Smooth Sampling. Let Xm = (X1, . . . , Xm) be a random variable over
Um, and let S ⊆ Um be with Pr[Xm ∈ S] = ε. For j ∈ [m] and x ∈ U j , let
v(x) = PrXm|Xj=x[Xm ∈ S], where Xj = (X1, . . . , Xj). Consider the task of choosing
(x1, . . . , xm) ∈ S in rounds, where the value of xj should be chosen in the j’th round.

The straightforward strategy for winning such a game is to try and maximize
the value of v(x1, . . . , xj) in each round. Following [11] we use the following strategy,
whose proof turned to be useful for the question studied in this paper (see Section 3).

Algorithm 2.4 (Sam).
1. For j = 1 to m do:

(a) Do until a break occur:

6

i. Sample (x′1, . . . , x
′
m)← (Xm | Xj−1 = (x1, . . . , xj−1)).

ii. Break the loop if (x′1, . . . , x
′
m) ∈ S.

(b) Set xj = x′j.
2. Output (x1, . . . , xm).

. .
It is clear that Sam outputs (x1, . . . , xm) ∈ S with probability one. We make the

following observations (implicit in [11]):
Proposition 2.5.
1. E(x1,...,xm)←Sam[1

v(x1,...,xj)] ≤ 1/ε for every j ∈ [m], and

2. Pr[Sam loops more than t
ε times in the j’th round] ≤ 1

t , for every j ∈ [m]
and t > 0.

Proof. Let (Y1, . . . , Ym) be the output of a random execution of Sam, and for
j ∈ [m], let Y j = (Y1, . . . , Yj). Note that 1

v(x1,...,xj) is the expected number of loops

Sam does in the j+ 1 round, conditioned on Y j = (x1, . . . , xj). Hence fact (2) follows
by (1) and a Markov bound. By induction, the following holds for every j ∈ [m] and
x = (x1, . . . , xj) ∈ Uj :

PrY j [x] = PrY j−1 [x1...,j−1] · PrYj |Y j−1= x1...,j−1
[xj] (2.2)

= PrXj−1 [x1...,j−1] · v(x1...,j−1)

ε
· PrYj |Y j−1= x1...,j−1

[xj]

= PrXj−1 [x1...,j−1] · v(x1...,j−1)

ε
· PrXj |Xj−1= x1...,j−1

[xj] ·
v(x)

v(x1...,j−1)

= PrXj [x] · v(x)

ε
,

where the second equality holds by the induction hypothesis, and the third one since

PrYj |Y j−1= x1...,j−1
[xj] =

∞∑
`=1

(1− v(x1...,j−1))`−1 · PrXm|Xj−1= x1...,j−1
[Xm ∈ S ∧Xj = xj]

(2.3)

=
1

v(x1...,j−1)
· PrXm|Xj−1= x1...,j−1

[Xm ∈ S ∧Xj = xj]

=
1

v(x1...,j−1)
· PrXj |Xj−1= x1...,j−1

[xj] · PrXm|Xj= x[Xm ∈ S]

=
1

v(x1...,j−1)
· PrXj |Xj−1= x1...,j−1

[xj] · v(x).

It follows that

EY j

[
1

v(Y j)

]
=

∑
x∈Supp(Y j)

Pr[Y j = x] · 1

v(x)

=
∑

x∈Supp(Y j)

v(x)

ε
· Pr[Xj = x] · 1

v(x)

=
1

ε
·

∑
x∈Supp(Y j)

Pr[Xj = x] ≤ 1

ε
·
∑
x∈Uj

Pr[Xj = x] =
1

ε
.

7

3. The Parallel Repetition Theorem. In this section we formalize and prove
Theorem 1.1. We start by presenting our main technical contribution.

Lemma 3.1. There exists an oracle-aided interactive algorithm A such that
the following holds: let V be a no-input, m-round interactive algorithm, let t, k ∈ N,
δ ∈ [0, 1] and let Ṽ be the δ-random-terminating variant of V (see Theorem 2.3).
Assume that

Pr[at least t of the Ṽ’s accept in (B, Ṽ(k))] = εk > 0 (3.1)

for some interactive algorithm B, then

Pr[(AV,B(k, t,m, εk, δ), Ṽ) = 1] >
t

k
−O

(
m

δ
·
√
− log εk

k

)
.

The running time of A (excluding the oracle calls) is polynomial in k, m, 1/εk, 1/δ

and the maximal message length in (B, Ṽ(k)). The above yields the following useful
corollary.

Corollary 3.2. Let A, V, B, t, k, δ and Ṽ be as in Theorem 3.1. The exists
universal constant c > 0 such that the following holds: assume

Pr[at least t of the Ṽ’s accept in (B, Ṽ(k))] = εk ≥ exp
(
−c · k ·

(t
k − ε
m/δ

)2)
for some ε > 0, then

Pr[(AV,B(k, t,m, εk, δ), Ṽ) = 1] > ε, (3.2)

and

Pr[(AV,B(k, t,m, εk, δ),V) = 1] > 2ε− 1. (3.3)

Proof. Equation (3.2) holds by Theorem 3.1, taking small enough c. Where since

the probability that Ṽ doe not chose to early terminate in a random execution is
(1 − 1

2m)m ≥ 1
2 , Equation (3.2) yields that Pr[(AV,B(k, t,m, εk, δ),V) = 1] ≥ (ε −

1
2)/ 1

2 = 2ε− 1, proving Equation (3.3). We prove Theorem 3.1 below, but first use
it (via Theorem 3.2) for proving Theorem 1.1 restated below.8

Theorem 3.3 (restatement of Theorem 1.1). Let V be an m(n)-round interac-
tive pptm and assume that

Pr[(A,V)(x) = 1] ≤ ε(n)

for any pptm A, x ∈ {0, 1}n and large enough n. Let Ṽ be the 1
2m(n) -random-

terminating variant of V and let ε̃(n) = (1 + ε(n))/2.
Then for any polynomial-time computable functions k, t and α, where k and t are

integer functions, and α(n) ≥ exp
(
−c ·k(n) ·

(t(n)
k(n)
−ε̃(n)

m(n)2

)2)
, for c > 0 being a universal

constant, it holds that

Pr[at least t(n) of the Ṽ’s accept in (B, Ṽ(k))(x)] < max{neg(n), α(n)},

8We state Theorem 1.1 in the uniform settings (i.e., against uniform provers), but the very same
proof of Theorem 3.3, given below, yields an equivalent result for non-uniform provers.

8

for any pptm B, x ∈ {0, 1}n and large enough n. Namely, for large enough k, an
efficient B cannot cheat significantly more verifiers than the trivial bound (i.e., ε̃(n)
fraction of them).

Proof. Assume towards a contradiction that there exist a pptm B and p ∈ poly
with

Pr[at least t(n) of the Ṽ’s accept in (B, Ṽ(k))(xn)] ≥ α(n) ≥ 1/p(n).

for infinitely many n’s, where xn ∈ {0, 1}n is some function of n. Theorem 3.2 yields
that for the right choice of c (specifically, four time larger than the constant in the
statement of corollary), it holds that

Pr[(AV(xn),B(xn)(k(n), t(n), α(n), 1/2m(n)),V(xn)) = 1] > 2ε̃(n)− 1 = ε(n) (3.4)

for infinitely many n’s, where A is the oracle-aided algorithm guaranteed by The-
orem 3.2. Since all the above algorithms and functions are polynomial-time com-
putable, there exists a pptm A′ with

Pr[(A′,V)(xn)) = 1] > ε(n)

for infinitely many n’s, in contradiction to the assumed soundness of V.
Proof. [Proof of Theorem 3.1] Fix V, B, t, k, εk and δ such that Equation (3.1)

holds, and set ε = εk. We assume without loss of generality that k > 1, that V
flips all its random coins before the interaction begins, and that B is deterministic.9

For notational convenience, we view the “random-terminating coins” flipped by V at
the end of the j’th round, as if they were flipped at the beginning of the (j + 1)’th

round. This yields that a full interaction of (B, Ṽ(k)) has m+ 1 rounds, where all that
happens in the (m + 1)’th “round”, is the verifiers taking their acceptance decision
(no message sent).

A partial view of Ṽ(k) in (B, Ṽ(k)) is of the form view = (r1, r2, . . . , r`), where

r1 ∈ {0, 1}k·len are the coins of the embedded V’s, and rj ∈ {0, 1}k, for j ∈ {2, . . . , `},
are the random-terminating coins of the Ṽ’s in the j’th round (arbitrary defined for

those Ṽ’s that aborted before the j’th round). In particular, rm+1
i determines whether

the i’th Ṽ’s simply accepts, or only if the embedded V does. We included no messages
in view, since their values is determined by the coins (recall B is deterministic). We
associate the following functions with such a view: let round(view) = `, and for j ∈ [`],

let rj(view) = rj and r1,...,j(view) = (r1, . . . , rj). Let Accepti(view) = 1 iff the output

of i’th verifier in view is ‘1’ (i.e., the i’th Ṽ accepts), and let Accept(view) = 1 iff∑
j∈[k] Accepti(view) ≥ t.

The definition of A given below follows rather closely the intuition given in Sec-
tion 1.2. The main difference is that in order to choose the emulated verifiers’ random
coins, it uses a variant of the “smooth sampler” described in Section 2.2, rather than
the threshold approach described in the introduction. For notational convenience, we
assume below that Ṽ sends in each round the new set of coins it flipped in this round,
and not the resulting message. This is merely done for presentation clarity, and we
explain below how to do things without it.

In the following let µ = 1
δ ·
√
− log ε
k and w =

⌈
2
εµ

⌉
.

Algorithm 3.4 (A).

9The only non trivial “without loss of generality” is B being deterministic. For that one can
append in the reduction a random string to Ṽ’s first message, and instruct B to use the string
attached to (the first message of) the first verifier in Ṽ(k) as its random coins.

9

1. Set i← [k] and view =⊥.
2. For j = 1 to m+ 1 do:

(a) Get the next random coins r from Ṽ.
(b) Set view = (view,GetNextCoins(view, i, r)).

(c) Send aji back to Ṽ, where aj is the message that B sends to Ṽ(k) in the
j’th round of view.

. .
Algorithm 3.5 (GetNextCoins).

Input: a (partial) view of Ṽ(k) — view, an index i ∈ [k] and a string r ∈ {0, 1}∗.
Operation:

1. Set j = round(view) + 1 (set j = 1, if view =⊥), and do the following for w
times:
(a) Choose view

′
as Ṽ(k)’s view in a random execution of (B, Ṽ(k)), condition

on
i. r1,...,j−1(view

′
) = view,

ii. rj(view
′
)i = r, and

iii. rj+1(view
′
)i = 1 (only taken if j < m+ 1).

(b) If Accept(view
′
), return rj(view

′
).

2. Abort the execution.
. .

Note that no message is sent by A at the (m+ 1)’th round, and this round is only
included for notational convince. We also note that since GetNextCoins conditions
that Ṽ

(k)
i (i.e., the real verifier) halts at the end of the j’th round and since B only

sees the verifiers’ messages, it is easy to modify A to only use the messages sent by

Ṽ
(k)
i (and not its random coins), while maintaining the same success probability.10

Finally, it is easy to verify that given oracle access to B and V, and the values of k, t,
ε and δ, the running time of A (and of its realistic variant) fulfills the requirement of
the lemma.

In the following we analyze the success probability of A. We assume that A
outputs the value of (i, view) at the end of the interaction; outputs ⊥, in case one of

the calls to GetNextCoins aborts. Let ˜GetNextCoins be the “unbounded variant” of
GetNextCoins — the loop in ˜GetNextCoins runs until a good value for view

′
is found

(i.e., Accept(view
′
) = 1); ˜GetNextCoins aborts, in case no such good value exists.

We define that if ˜GetNextCoins is called with the parameter i set to ⊥, it does the
sampling of Step 1a without conditions (b) and (c).

For ` ∈ {0, . . . ,m+ 1}, the experiment Exp` is defined as follows:
Experiment 3.6 (Exp`).
1. Set view =⊥.
2. For j = 1 to ` do:

Set view = (view, ˜GetNextCoins(view,⊥,⊥)).

3. Set i← [k]; emulate a random execution of (A, Ṽ), condition that (i, view) is
A’s view after the `’th call to GetNextCoins, and output the same output that
A does.

10In this variant, GetNextCoins aims to find a good value for view
′
−i — the emulated verifiers’s

view. Note that when conditioning on rj+1(view
′
i) = 1 (where view

′
i is the real verifier’s view), the

value of view
′
−i along with Ṽ

(k)
i ’s messages in the first j rounds, suffice to compute Accept(view

′
=

(view
′
i, view

′
−i)) and to compute B’s first j messages in view

′
.

10

. Note that Exp0 describes a random execution of (A, Ṽ).
It is also clear that Expm+1 always outputs an accepting view, which is independent
of the index i. In the following we abuse notation and view Exp` also as the random
variable the output of a random execution of Exp` induces, and prove the lemma via
the following claim.

Claim 3.7. SD(Exp`,Exp`+1) ∈ O(µ), for every ` ∈ {0, . . . ,m}. Assuming
Claim 3.7, it holds that

Pr[(AV,B(k, t, ε, δ), Ṽ) = 1] = Pr(i,view)←Exp0 [Accepti(view)]

≥ Pr(i,view)←Expm+1 [Accepti(view)]− SD(Exp0,Expm+1)

≥ t

k
− SD(Exp0,Expm+1)

≥ t

k
−

m∑
`=0

SD(Exp`,Exp`+1)

≥ t

k
−O(mµ),

concluding the proof of Theorem 3.1. The second inequality holds since in Expm+1,
the value of i is independent of view and at least t sub-verifiers accept in view, and
the last one by Claim 3.7.

3.1. Proving Claim 3.7. We prove the claim for ` ∈ {1, . . . ,m− 1}, where the
simpler case ` = m follows by similar lines.

The only difference between Exp` and Exp`+1 is in their (`+ 1) “round”. In this

round Exp`+1 calls ˜GetNextCoins(view,⊥,⊥), and Exp` (implicitly via the emulation

of (A, Ṽ)) calls GetNextCoins(view, I, R1), where I is uniformly distributed over [k]

and R1 is distributed according to the coins flipped by Ṽ at the (` + 1)’th round.
Let Prefix be the distribution induced by the value of view after the `’th round of
Exp` (or, equivalently, of Exp`+1). For view ∈ Supp(Prefix), define the distributions

D0,view and D1,view as follows:
• D0,view :=

(
I,GetNextCoins(view, I, R1)

)
, and

• D1,view :=
(
I, ˜GetNextCoins(view,⊥,⊥)

)
.

It is easy to verify that

SD(Exp`,Exp`+1) = Eview←Prefix

[
SD(D0,view,D1,view)

]
(3.5)

The following claim is where the heart of the proof lies.
Claim 3.8. For every view ∈ Supp(Prefix), it holds that

SD(D0,view,D1,view) ∈ O

1

δ
·

√
− log(α(view))

k
+

(
1− α(view)

2

)w ,

where α(view) = Pr[Accept(View)], for View being Ṽ(k)’s view in a random execution

of (B, Ṽ(k)) conditioned on r1,...,`(View) = view. Before proving Claim 3.8, we first
use it to prove Claim 3.7.

Proof. [Proof of Claim 3.7] Let View be Ṽ(k)’s view in a random execution of

(B, Ṽ(k)). Observe that choosing view by applying the first ` rounds of Exp`, is

11

equivalent to the way Algorithm 2.4 chooses the value of (x1, . . . , x`), with respect to
Xm+1 = (r1(View), . . . , rm+1(View)) and S = {view ∈ Supp(View): Accept(View) =
1}. Hence, Theorem 2.5 yields that

Eview←Prefix

[
1/α(view)

]
≤ 1/ε (3.6)

Consider a variant of Exp`+1 where in the (`+1)’th call to ˜GetNextCoins, a successful

loop (i.e., Accept(view
′
) = 1) causes a return only with probability half, and let L

denote the number of loops done in the (` + 1)’th call of this variant. Since E[L] =
Eview←Prefix

[
1/2α(view)

]
≤ 2/ε, a Markov bound yields that Pr[L ≥ w] ≤ µ (recall

w =
⌈

2
εµ

⌉
). Noting that (1 − α(view)

2)w is the probability of L ≥ w conditioned on

view being the `-round view of the above variant, it follows that

Eview←Prefix[(1− α(view)

2
)w] ≤ µ (3.7)

Finally, applying Jensen’s inequality with respect to the function
√

log(·)/k and the
set { 1

α(view)
}view∈Prefix, yields that

Eview←Prefix

[√
log(1/α(view))/k

]
≤
√

log(Eview←Prefix[1/α(view)])/k =

√
− log ε

k
(3.8)

We conclude that

SD(Exp`,Exp`+1) = Eview←Prefix

[
D0,view,D1,view

]
∈ O

(
1

δ
·
√
− log ε

k
+ µ

)
∈ O(µ).

Proof. [Proof of Claim 3.8] Fix view ∈ Supp(Prefix), let α = α(view), D0 =

D0,view and D1 = D1,view. Let View be Ṽ(k)’s view in a random execution of (B, Ṽ(k)),

conditioned on r1,...,`(View) = view. Let R1 = r`+1(View), R2 = r`+2(View) and let
W = 1 iff Accept(View) (i.e., Pr[W] = α). Note that {R1

1, . . . , R1
k, R2

1, . . . , R2
k} are

independent random variables, that each of the Boolean R2
i’s is one with probability

δ, and that the R1
i’s are also identical random variables.11 Recall that I is uniformly

distributed over [k], that R1 is distributed according to the distribution of R1
1 (which

is that of R1
i, for any i ∈ [k]). For r1 ∈ Supp(R1) and r2 ∈ {0, 1}, let T(r1, r2) be the

distribution of
(
I, (R1 |W,R1

I = r1, R2
I = r2)

)
; we alow both r1 and r2 to take the

value ⊥, meaning that the relevant conditioning is omitted (e.g., T(⊥, 1) = (I, (R1 |
W,R2

I = 1))).
It is easy to verify that D1 is equivalent to T(⊥,⊥), where we also show that

D0 is close to T(R1, 1), letting T(R1, 1) :=
(
T(r1, 1)

)
r1←R1 (both facts are proved

in Claim 3.11). Hence, all is left to do is proving that T(⊥,⊥) is close to T(R1, 1).
We do so by relating their distance to the following well studied question: given a
tuple X = (X1, . . . , Xk) of independent random variables and an event W , what is

11The distribution of each of the R1
i’s is either uniform over {0, 1}len (for ` = 0), or the same as

of the R2
i’s.

12

the distance between (I, (X | W)) and (I, (X | W,XI))?
12 Roughly (see intuition in

the last part of Section 1.2), the two distributions are close, as long as Pr[W] is not
“too small”. Raz [16] proves a concrete bound for this distance (a result which we
use here via Theorem 2.1).

We formally prove Claim 3.8 via the following steps: we prove (Claim 3.9) that
T(⊥,⊥) is close to T(⊥, 1) and then prove that (Claim 3.10) that T(⊥, 1) is close
to T(R1, 1), yielding that T(⊥,⊥) is close to T(R1, 1) . We conclude the proof by
Claim 3.11, showing that D1 is the distribution of T(⊥,⊥), and D0 is close to T(R1, 1).

Claim 3.9. SD (T(⊥,⊥),T(⊥, 1)) ≤ 2
δ ·
√
− logα
k .

Proof. Applying Theorem 2.1(3) to Y = R1, X = R2 and W , yields that

SD
((
I, (R1, R2

I |W)
)
,
(
I, (R1 |W), R2

I)
))
≤
√
− logα

k
(3.9)

Since Pr
[
R2

I = 1
]

= δ, it follows that

SD
((
I, (R1 |W,R2

I = 1)
)
,
(
I, (R1 |W))

))
≤ 2

δ
·
√
− logα

k
,

concluding the claim’s proof.
We next prove that T(⊥, 1) is close to T(R1, 1), and conclude that T(⊥,⊥) is

close to T(R1, 1).

Claim 3.10. SD
(
T(⊥, 1),T(R1, 1)

)
≤ 2

δ ·
√
− logα
k .

Proof. Applying Theorem 2.1(2) to X = ((R1
1, R2

1), . . . , (R1
k, R2

k)) and W ,

yields that SD
((
I, (X |W)

)
,
(
I, (X |W,XI)

))
≤
√
− logα
k . Since Pr[XI = (·, 1)] =

δ, it follows that SD
((
I, (X |W, (XI)2 = 1)

)
,
(
I, (X |W, (XI)1, (XI)2 = 1)

))
≤ 2

δ ·√
− logα
k . We conclude that

SD
(
T(⊥, 1),T(R1, 1)

)
= SD

((
I, (R1 |W,R2

I = 1)
)
,
(
I, (R1 |W,R1

I , R2
I = 1)

))
≤ SD

((
I, (X |W, (XI)2 = 1)

)
,
(
I, (X |W, (XI)1, (XI)2 = 1)

))
≤ 2

δ
·
√
− logα

k
.

Combining Claims 3.9 and 3.10 yields that

SD
(
T(⊥,⊥),T(R1, 1)

)
≤ 4

δ
·
√
− logα

k
(3.10)

and we conclude the proof of Claim 3.8 using the following claim.

Claim 3.11. D1 is equivalent to T(⊥,⊥) and SD(D0,T(R1, 1)) ≤ 4
δ ·
√
− logα
k +

(1− α
2)w.

12Recall that (X | W) is the distribution induced by drawing a sample from X, conditioned on
W , and that (X |W,Xi) is the distribution induced by the above process when also conditioning on
Xi = xi, for xi ← Xi.

13

Proof. For r1 ∈ Supp(R1) it holds that

D1(·, r1) = Pr[˜GetNextCoins(view,⊥,⊥) = r1] (3.11)

= Pr[R1 = r1 ∧W] ·
∞∑
z=0

(1− Pr[W])z−1

=
Pr[R1 = r1 ∧W]

Pr[W]
= PrT(⊥,⊥)[r1],

yielding that D1 is the distribution of T(⊥,⊥).

A similar arguments yields that the distribution of T(R1, 1) is D̃0, where D̃0 be

the variant of D0 obtained by using ˜GetNextCoins instead of GetNextCoins, where a
simple coupling argument yields that SD(D0, D̃0) = PrD0 [(·,⊥)] − PrD̃0 [(·,⊥)]. Since
PrD̃0 [(·,⊥)] ≤ PrD0 [(·,⊥)], we conclude the proof by for showing that PrD0 [(·,⊥)] is
small. We write

PrD0 [(·,⊥)] = Ei←[k],r1←R1

[
β(i, r1) ·

∞∑
z=w

(1− β(i, r1))z

]
= Ei←[k],r1←R1

[
(1− β(i, r1))w

]
(3.12)

letting 0 · ∞ = 1, where β(i, r1) := Pr[W | (R1
i, R2

i) = (r1, 1)]. Applying Theo-
rem 2.1(1) with respect to X1 = (R1

1, R2
1), . . . , Xk = (R1

k, R2
k), W and ε = 1

2 ,
yields that

Pri←[k],r1←R1

[
β(i, r1) < α/2

]
≤ 4

δ
·
√
− logα

k
(3.13)

and we conclude that

SD(D0,T(R1, 1)) = SD(D0, D̃0)

≤ PrD0 [(·,⊥)]

≤ 4

δ
·
√
− logα

k
+ (1− α

2
)w.

Combining Equation (3.10) and Claim 3.11, yields that SD(D0,D1) ∈

O

(
1
δ ·
√
− logα
k + (1− α

2)w
)

, concluding the claim’s proof.

Acknowledgment. I am very thankful to Oded Goldreich, Thomas Holenstein,
Tal Moran, Rafael Pass, Omer Reingold, Alex Samorodnitsky and Salil Vadhan for
useful discussions. Alex deserves special thanks, for advising me from the very first
step of this project. I also thank the anonymous referees for their very useful com-
ments.

References.
[1] L. Babai and S. Moran. Arthur-Merlin games: A randomized proof system and

a hierarchy of complexity classes. Journal of Computer and System Sciences, 36:
254–276, 1988.

[2] M. Bellare, R. Impagliazzo, and M. Naor. Does parallel repetition lower the
error in computationally sound protocols? In the 37th Annual Symposium on
Foundations of Computer Science (FOCS), 1997.

14

[3] R. Canetti, S. Halevi, and M. Steiner. Hardness amplification of weakly verifiable
puzzles. In Theory of Cryptography, Second Theory of Cryptography Conference
(TCC), 2005.

[4] K.-M. Chung and F.-H. Liu. Parallel repetition theorems for interactive argu-
ments. In Theory of Cryptography, Seventh Theory of Cryptography Conference
(TCC), 2010.

[5] I. B. Damgärd and B. Pfitzmann. Sequential iteration arguments and an efficient
zero-knowledge argument for NP. In ICALP: Annual International Colloquium
on Automata, Languages and Programming, 1998.

[6] U. Feige and J. Kilian. Two prover protocols: low error at affordable rates. In
the 26th Annual ACM Symposium on Theory of Computing (STOC), 1994.

[7] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
Springer, 1999.

[8] I. Haitner. A parallel repetition theorem for any interactive argument. In the
50th Annual Symposium on Foundations of Computer Science (FOCS), 2009.

[9] I. Haitner, O. Reingold, S. Vadhan, and H. Wee. Inaccessible entropy. In the
41st Annual ACM Symposium on Theory of Computing (STOC), 2009.

[10] J. Hästad, R. Pass, K. Pietrzak, and D. Wikström. An efficient parallel repetition
theorem. Unpublished manuscript, 2008.

[11] J. Hästad, R. Pass, K. Pietrzak, and D. Wikström. An efficient parallel repetition
theorem. In Theory of Cryptography, Seventh Theory of Cryptography Conference
(TCC), 2010.

[12] T. Holenstein. Parallel repetition: simplifications and the no-signaling case. The-
ory of Computing, 5:141–172, 2009. Preliminary version in STOC’07.

[13] R. Impagliazzo, R. Jaiswal, and R. Kabanets. Approximately list-decoding direct
product codes and uniform hardness amplification. In the 46th Annual Sympo-
sium on Foundations of Computer Science (FOCS), 2006.

[14] R. Pass and M. Venkitasubramaniam. An efficient parallel repetition theorem
for arthur-merlin games. In the 39th Annual ACM Symposium on Theory of
Computing (STOC), 2007.

[15] K. Pietrzak and D. Wikström. Parallel repetition of computationally sound pro-
tocols revisited. In Theory of Cryptography, Fourth Theory of Cryptography Con-
ference (TCC), 2007.

[16] R. Raz. A parallel repetition theorem. Journal of the ACM, 27(3):763–803, 1998.
Preliminary version in STOC’95.

15

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

