A Candidate Counterexample to the Easy Cylinders Conjecture

Oded Goldreich
Department of Computer Science
Weizmann Institute of Science
Rehovot, Israel.
oded.goldreich@weizmann.ac.il

March 26, 2009

Abstract

We present a candidate counterexample to the easy cylinders conjecture, which was recently suggested by Manindra Agrawal and Osamu Watanabe (see ECC, TR09-019). Loosely speaking, the conjecture asserts that any 1-1 function in \(\mathcal{P} / \text{poly} \) can be decomposed into “cylinders” of sub-exponential size that can each be inverted by some polynomial-size circuit. Although all popular one-way functions have such easy (to invert) cylinders, we suggest a possible counterexample. Our suggestion builds on the candidate one-way function based on expander graphs (see ECC, TR00-090), and essentially consists of iterating this function polynomially many times.

Keywords: One-Way Functions.

*Partially supported by the Israel Science Foundation (grant No. 1041/08).
1 The Easy Cylinders Conjecture

Manindra Agrawal and Osamu Watanabe [2, Sec. 4] have recently suggested the following interesting conjecture. The conjecture refers to the notion of an easy cylinder, defined next, and asserts that every 1-1 and length-increasing function in \(\mathcal{P}/\text{poly} \) has easy cylinders.

Definition 1 (easy cylinders, simplified\(^1\)): A length function \(\ell : \mathbb{N} \to \mathbb{N} \) is admissible if the mapping \(n \mapsto \ell(n) \) can be computed in poly\((n)\)-time and there exists a constant \(\varepsilon > 0 \) such that \(\ell(n) \in [n^\varepsilon, n - n^\varepsilon] \). A function \(f \) has easy cylinders if for some admissible length function \(\ell \) there exists mappings \(\sigma_1, \sigma_2 : \{0,1\}^* \to \{0,1\}^* \) such that the following conditions hold:

1. For every \(x \), it holds that \(|\sigma_1(x)| = \ell(|x|) \) and \(|\sigma_2(x)| = |x| - \ell(|x|) \).

2. The function \(\sigma(x) = (\sigma_1(x), \sigma_2(x)) \) is 1-1, polynomial-time computable and polynomial-time invertible. The cylinders defined by \(\sigma_1 \) consists of the collection of sets \(\{\sigma_1^{-1}(x')\}_{n \in \mathbb{N}} : x' \in \{0,1\}^{\ell(n)} \} \), where \(\sigma_1^{-1}(x') = \{ x \in \{0,1\}^n : \sigma_1(x) = x' \} \).

3. For every \(n \in \mathbb{N} \) and \(x' \in \{0,1\}^{\ell(n)} \), there exists a poly\((n)\)-size circuit \(C = C_{x'} \) such that for every \(x \in \sigma_1^{-1}(x') \) it holds that \(C(f(x)) = \sigma_2(x) \).

That is, when restricted to any such cylinder, the function \(f \) is easy to invert.

Needless to say, the existence of easy cylinders is interesting only in the case that \(f \) is not polynomial-time invertible. Agrawal and Watanabe noted that all popular candidates one-way functions have easy cylinders. Generalizing their observations (and going somewhat beyond them), we first present four classes of functions that are conjectured to be one-way and still have easy cylinders. Next (in Section 3), we present our candidate counterexample.

2 Four Classes of Functions that have Easy Cylinders

The first class generalizes the multiplication function (i.e., \((x', x'') \mapsto x' \cdot x'' \)). This class consists of (polynomial-time computable) functions \(f \) having the form \(f(x) = g(\sigma_1(x), \sigma_2(x)) \), where the \(\sigma_i \)'s satisfy the first two conditions in Definition 1 and the mapping \((x', x'') \mapsto (x', g(x', x'')) \) is easy to invert (by an efficient algorithm \(I \)). Clearly, the cylinders defined by \(\sigma_1 \) are easy (since we can have \(C_{\sigma_1}(f(x)) = I(\sigma_1(x), f(x)) \)).

The second class consists of functions that are derived from collections of finite one-way functions having a dense index set and dense domains.\(^2\) For example, consider the DLP-based collection that consists of the functions \(\{f_{p,g} : \mathbb{Z}_p \to \mathbb{Z}_p\} \), where \(p \) is prime, \(g \) is a generator of the multiplicative group modulo \(p \), and \(f_{p,g}(z) = g^z \mod p \). For simplicity, we consider collections of the form \(\{f_{\alpha} : \{0,1\}^n \to \{0,1\}^n\}_{\alpha \in I} \), where the index set \(I \) is dense (i.e., \(|I \cap \{0,1\}^n| > 2^n / \text{poly}(n) \)). The one-wayness condition means that, for a typical \(\alpha \in I \), the function \(f_{\alpha} \) is hard to invert, and so the “natural” cylinders defined by \(\sigma_1(\alpha, z) = \alpha \) are not easy. Nevertheless, the function \(F(\alpha, z) = (\alpha, f_{\alpha}(z)) \), which is (weakly) one-way, has easy cylinders that are defined by \(\sigma_1(\alpha, z) = z \);

\(^1\)Our formulation is a special case of the formulation in [2], but we believe that our candidate counterexample also holds for the definition in [2].

\(^2\)Indeed, we consider a restricted case of [4, Def. 2.4.3]. On the other hand, note that any collection of finite one-way functions with dense domains can be converted into a collection of finite one-way functions over the set of all strings of a fixed length. Thus, we may freely use the latter.
specifically, by virtue of the circuits C_z that (easily) extract $\alpha = \sigma_2(\alpha, z)$ from $F(\alpha, z)$ (since $F(\alpha, z) = (\alpha, f_\alpha(z))$).

The third class consists of functions that are derived from collections of trapdoor one-way permutations. Here it is essential to have a non-trivial index-sampling algorithm, denoted I, that samples the index set along with corresponding trapdoors; that is, the coins used to sample an index-trapdoor pair cannot be used as the index (because the trapdoor must be hard to recover from the index). Let $I_1(r)$ denote the index sampled on coins r, and let $I_2(r)$ denote the corresponding trapdoor (and suppose that the domains are dense as before, which indeed restricts $[4, \text{Def. 2.4.4}]$). Then, the function $F(r, z) = (I_1(r), f_{I_1(r)}(z))$ is (weakly) one-way, but it has easy cylinders that are defined by $\sigma_1(r, z) = r$ (using the circuit $C_r(F(r, z)) = f_{I_1(r)}^{-1}(z)$, which in turn uses the trapdoor $I_2(r)$ that corresponds to the index $I_1(r)$).

The last class consists of all functions that computable in NC_0; that is, functions in which each output bit depends on a constant number of input bits. Recall that this class is widely conjectured to contain one-way functions (cf., the celebrated work of Applebaum, Ishai, and Kushilevitz [1]). For every such function $f : \{0, 1\}^n \rightarrow \{0, 1\}^n$, letting σ_1 be the projection of the n-bit input on $n - n^{1/3}$ random coordinates, with high probability, we obtain easy cylinders.\footnote{In fact, the argument remain intact as long as $\ell(n) = n - o(n^{1/2})$ (rather than $\ell(n) = n - n^{1/3}$). Actually, using $n - o(n^{2/3})$ random coordinates would work too, since then (w.h.p.) no output bit of the function is influenced by more than two of the $o(n^{2/3})$ remaining coordinates (and so a 2SAT solver can invert the residual function on each of the individual cylinders).} The reason is that, with high probability, no output bit of the function is influenced by more than one of the $n^{1/3}$ remaining coordinates (and so the residual function $f(x)$ obtained after fixing the value of $\sigma_1(x)$ is essentially a projection).

3 Our Candidate Counterexample to the Conjecture

We note that the last class of functions (i.e., NC_0) contains the candidate one-way function suggested by us [3]. However, we believe that iterating this function for a polynomial (or even linear) number of times yields a function that has no easy cylinders. For sake of self-containment, we recall the proposal of [3], hereafter referred to as the basic function.

The basic function. We consider a collection of functions $\{f_n : \{0, 1\}^n \rightarrow \{0, 1\}^n\}_{n \in \mathbb{N}}$ such that f_n is based a collection of $d(n)$-subsets, $S_1, ..., S_n \subset [n] \equiv \{1, ..., n\}$, and a predicate $P : \{0, 1\}^{d(n)} \rightarrow \{0, 1\}$ (as follows).

1. The function d is relatively small; that is, $d = O(\log n)$ or even $d = O(1)$, but $d > 2$.

2. The predicate $P : \{0, 1\}^d \rightarrow \{0, 1\}$ should be thought of as being a random predicate. That is, it will be randomly selected, fixed, and “hard-wired” into the function. For sure, P should not be linear, nor depend on few of its bit locations.

3. The collection $S_1, ..., S_n$ should be expanding: specifically, for some k, the union of every k subsets should cover at least $k + \Omega(n)$ elements of $[n]$ (i.e., for every $I \subset [n]$ of size k it holds that $|\bigcup_{i \in I} S_i| \geq k + \Omega(n)$). Specifically, it is suggested to have S_i be the set of neighbors of the ith vertex in a d-regular expander graph.
For \(x = x_1 \cdots x_n \in \{0,1\}^n \) and \(S \subset [n] \), where \(S = \{i_1, i_2, \ldots, i_k\} \) and \(i_j < i_{j+1} \), we denote by \(x_S \) the projection of \(x \) on \(S \); that is, \(x_S = x_{i_1}x_{i_2} \cdots x_{i_k} \). Fixing \(P \) and \(S_1, \ldots, S_n \) as above, we define

\[
f_n(x) \overset{\text{def}}{=} P(x_{S_1})P(x_{S_2}) \cdots P(x_{S_n}). \tag{1}
\]

Note that we think of \(d \) as being relatively small (i.e., \(d = O(\log n) \)), and hope that the complexity of inverting \(f_n \) is related to \(2^{n/O(1)} \). Indeed, the hardness of inverting \(f_n \) cannot be due to the hardness of inverting \(P \), but is rather supposed to arise from the combinatorial properties of the collection of sets \(\{S_1, \ldots, S_n\} \) (as well as from the combinatorial properties of predicate \(P \)). In general, the conjecture is that the complexity of the inversion problem (for \(f_n \) constructed based on such a collection) is exponential in the “net expansion” of the collection (i.e., the cardinality of the union minus the number of subsets).

We note that a non-uniform complexity version of this basic function (or rather the sequence of \(f_n \)'s) may use possibly different predicates (i.e., different \(P_i \)'s) for the different \(n \) applications of \(P \) in Eq. 1.

The iterated function – the vanilla version. The candidate counterexample, \(F \), is defined by \(F(x) = f_{|x|}^p(x) \), where \(p \) is some fixed polynomial (e.g., \(p(n) = n \)) and \(f_{n+1}^p(x) = f_n(f_n(x)) \) (and \(f_1^p(x) = f_n(x) \)). We conjecture that this function has no easy cylinders.

The iterated function, revisited. One possible objection to the foregoing function \(F \) as a counterexample to the easy cylinder conjecture is that \(F \) is unlikely to be 1-1. Although we believe that the essence of the easy cylinder conjecture is unrelated to the 1-1 property, we point out that this property may be obtained by suitable modifications. One possible modification that may yield a 1-1 function is obtained by prepending the application of \(F \) with an adequate expanding function (e.g., a function that stretches \(n \)-bit long strings to \(m(n) \)-bit long strings, where \(m \) is a polynomial or even a linear function). Specifically, for a function \(m : \mathbb{N} \rightarrow \mathbb{N} \) such that \(m(n) \in [2n, \text{poly}(n)] \), we define \(g_m : \{0,1\}^n \rightarrow \{0,1\}^{m(n)} \) analogously to Eq. 1 (i.e., here we use an expanding collection of \(m(n) \) subsets), and let \(F'(x) = F(g_m(x)) \); that is, for every \(x \in \{0,1\}^n \), we have \(F'(x) = f_{m(n)}^{g_m(x)}(g_m(x)) \).

4 Conclusion

Starting with the aforementioned non-uniform complexity version of the basic function \(f_n \), and applying different incarnations of this function in the different iterations, we actually obtain a rather generic counterexample. Alternatively, we may directly consider functions \(F_n : \{0,1\}^n \rightarrow \{0,1\}^{m(n)} \) such that the function \(F_n \) has a poly\((n)\)-sized circuit. Note that such a circuit may be viewed as a composition of polynomially many circuits in \(\mathcal{NC}_0 \), which in turn may be viewed as basic functions. Furthermore, a random poly\((n)\)-sized circuit is likely to be decomposed to \(\mathcal{NC}_0 \) circuits that correspond to basic functions in which the collection of sets (of input bits that influence individual output bits) are expanding. Needless to say, we believe that generic polynomial-size circuits have no easy cylinders.

It seems that the existence of easy cylinders in all popular candidate one-way functions is due to the structured nature of these candidates. Such a structure will not exist in the generic case, and so we conjecture that the Easy Cylinders Conjecture is false.
References

