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Abstract

We show that the reachability problem for directed graphs that are either K3,3-free
or K5-free is in unambiguous log-space, UL ∩ coUL. This significantly extends the result
of Bourke, Tewari, and Vinodchandran that the reachability problem for directed planar
graphs is in UL ∩ coUL.

Our algorithm decomposes the graphs into biconnected and triconnected components.
This gives a tree structure on these components. The non-planar components are replaced
by planar components that maintain the reachabilty properties. For K5-free graphs we
also need a decomposition into fourconnected components. A careful analysis finally gives
a polynomial size planar graph which can be computed in log-space.

We show the same upper bound for computing distances in K3,3-free and K5-free
directed graphs and for computing longest paths in K3,3-free and K5-free directed acyclic
graphs.

1 Introduction

For undirected graphs, the reachability problem is L-complete [Rei05]. For general graphs,
reachability is NL-complete. Bourke, Tewari and Vinodchandran [BTV07] proved that reach-
ability on planar graphs is in UL ∩ coUL and is hard for L. They built on work of Reinhard
and Allender [RA00] and Allender, Datta, and Roy [ADR05]. A more direct proof is given
by Kulkarni [Kul09]. Jacoby and Tantau [JT07] showed for series-parallel graphs that reach-
ability is complete for L. They also showed that the problem to compute distances between
vertices or longest paths are complete for L. Thierauf and Wagner [TW08] proved that the
distance problem for planar graphs is in UL ∩ coUL. For general graphs and even undirected
planar graphs, the longest path problem is complete for NP. It is NL-complete for directed
acyclic graphs (DAG). Limaye, Mahajan and Nimbhorkar [LMN09] prove that longest paths
in planar DAGs can be computed in UL ∩ coUL.

We study reachability on extensions of planar graphs. Our main result is that reacha-
bility for directed K3,3-free graphs and directed K5-free graphs logspace-reduces to planar
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reachability. Thus, the current upper bound for planar reachabilty, UL∩ coUL, carries over to
reachability for directed K3,3-free graphs and directed K5-free graphs. One motivation for our
results clearly is to improve the complexity upper bounds of certain reachability problems,
from NL to UL in this case. Another aspect is that thereby we also consider the relationship
of complexity classes, namely of UL vs. NL. The major open question is whether one can
extend our results further such that we finally get a collaps of NL to UL.

In the case of a K3,3-free graph G, our technique is to decompose G into biconnected
components. Then these biconnected components are decomposed further into planar com-
ponents triconnected components and K5-components. We construct a tree where the nodes
are associated with these components (cf. [Vaz89]), the PlaK5-component tree.

For the reachability problem from vertex s to t in graph G we consider the simple path P
in the PlaK5-component tree from component nodes S to T , where s and t are contained,
respectively. We split the graph into components along the separating pairs we have on
path P . A path from s to t in G must contain vertices of all these separating pairs. Thus,
we make the reachability test for all these components. The difficulty is to handle the non-
planar components. The crucial step is to replace all the K5-components in the tree by
planar components such that the reachabilty is not changed. Then we recombine the planar
components into a planar graph H such that there is a path from s to t in G if and only if
this holds too in H. The construction can be carried out in log-space.

There also exists a decomposition of K5-free graphs (cf. Khuller [Khu88]). This is obtained
by decomposing the graph into triconnected components. Each triconnected component is
either planar, the four-rung Mobius ladder, also called V8, or it is constructed by taking 3-
clique sums of planar 4-connected components [Wag37]. We replace the V8-components by
planar components such that the reachabilty is not changed. Then we recombine the planar
components into a planar graph. A difficulty that arises here is that we cannot use the
3-clique sum to recombine the components, because this would result again in a nonplanar
graph. Instead, we carefully add copies of the components that can be arranged in a planar
way such that the reachability is not altered. All the steps can be accomplished in log-space.

It is easy to see that our transformations from K3,3-free or K5-free graphs to planar graphs
maintain not just reachability, but also the distances of the vertices. Therefore it follows from
our results that distances in K3,3-free or K5-free graphs can be computed UL ∩ coUL.

The same is true with respect to longest paths when considering DAGs instead. This is
easy to see in the case of K3,3-free DAGs and requires some extra arguments in the case of
K5-free DAGs. Hence, longest paths in K3,3-free or K5-free DAGs can be computed UL∩coUL.

The paper is organized as follows. Section 2 provides definitions and notations. In Section
3 we prove that Reachability on K3,3-free graphs reduces to planar Reachability. In Section 4
we prove that Reachability on K5-free graphs reduces to planar Reachability.

2 Definitions and Notations

A graph G = (V,E) contains a set of vertices V and edges E. For U ⊆ V let G − U be the
induced subgraph of G on V − U .

An undirected graph G is connected if there exists a path between any two vertices. A
vertex v is an articulation point if G − {v} is not connected. The connected components of
G − {v} are called the split components of v. G is biconnected if it cointains no articulation
points.
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Let G be a biconnected graph. A pair of vertices u, v is a separating pair if G − {u, v}
is not connected. The connected components of G − {u, v} are called the split components
of u, v. G is 3-connected if it contains no separating pairs, i.e. there are three vertex-disjoint
paths between any pair in G. A graph is triconnected if it is either 3-connected, a cycle or a
3-bond. A k-bond is a pair of vertices connected by k edges.

Let G be a 3-connected graph. A triple of vertices u, v,w is a separating triple if G −
{u, v,w} is not connected. The connected components of G − {u, v,w} are called the split
components of u, v,w. G is 4-connected if it contains no separating triples.

A K3,3-free graph is an undirected graph which does not contain a K3,3 as a minor. A
K5-free graph is an undirected graph which does not contain a K5 as a minor.

Tree decomposition of connected planar graphs. The decomposition of graphs into
their biconnected components is used in many applications. For example, for comput-
ing the number of perfect matchings of K3,3-free [Vaz89] or for the canonization of planar
graphs [KHC04, DLN+08a]. We use the decomposition in the context of reachability testing.
The first step is to decompose the connected graph G into biconnected components.

The tree decomposition of a connected planar graph from Hopcroft and Tarjan [HT73]
is defined as follows. A connected planar graph G can be decomposed into biconnected
components. For this find the set of articulation points. Start with an arbitrary articulation
point a of G and consider the split components in G − {a}. In all the split components, a
copy of a is contained. Recursively decompose the split components this way. The resulting
connected components contain no articulation points and are biconnected. We define nodes
for these components and the articulation points and a new graph as follows. An articulation
point node is connected to a biconnected component node if this articulation point is contained
as vertex in the corresponding component. The resulting graph is a tree, the biconnected
component tree.

Lemma 2.1 The biconnected component tree of an undirected graph can be computed in log-
space.

Proof: We can find all the articulation points of G in log-space: a vertex a is an articulation
point if we can find two further vertices u and v such that there is no path from u to v
in G − {a}.

Similarly, we can compute all biconnected components of G: two vertices u and v are
in the same biconnected component, if there is a path from u to v in G − {a}, for every
articulation point a /∈ {u, v} of G.

The biconnected component tree has an arbitrary articulation point as root, say a0. To
walk along the tree, we have to identify the parent articulation point and the child articulation
points of a biconnected component with respect to the root a0. Let B be a biconnected
component with articulation points a1, . . . , ak. Then ai is the parent articulation point of B,
if there is a path from ai to a0 in G−aj , for all j 6= i. Hence, we can traverse the biconnected
component tree in log-space. �

Tree decomposition of biconnected planar graphs. For biconnected graphs, Hopcroft
and Tarjan [HT73] introduced the decomposition into separating pairs and triconnected com-
ponents. The latter are cycles, 3-bonds and 3-connected components. Separating pairs will
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be connected by a virtual edge. The 3-bonds come from separating pairs that are connected
by an edge in the given graph. Cycles are a special case. Although cycles are not 3-connected,
they are not further decomposed for technical reasons. Hopcroft and Tarjan [HT73] defined
the triconnected component tree that has these components as nodes and showed that it can
be computed in linear time. There is an edge between the separating pair node for (a, b) and
a triconnected component node for G0, if (a, b) is contained in G0 (connected by a virtual
edge). The resulting graph on these nodes is a tree T . We consider an arbitrary separating
pair as the root node of T . For an example see Figure 1. Datta et. al. [DLN+08a] showed that
when the graph is in addition planar , then the triconnected component tree can be computed
even in log-space.
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Figure 1: ([DLN+08a]) The decomposition of a biconnected planar graph G. Its tricon-
nected components are G1, . . . , G4 and the corresponding decomposition into the tree T of
triconnected components. The split pairs are (a, b) and (c, d). Since the 3-connected separat-
ing pair (c, d) is connected by an edge in G, we also get {c, d} as triple-bond G3. The virtual
edges corresponding to the 3-connected separating pairs are drawn with dashed lines.

The size of a component tree. Let T be a biconnected or a triconnected component
tree. We define the size of such a tree. The size of an individual component node of T is the
number of nodes in the component. The size of the tree T , denoted by |T |, is the sum of the
sizes of its component nodes.

Let TC be a component tree rooted at some component node C and let TC′ be a subtree
of T rooted at a child C ′ of C. We call C ′ a large child of C, if |TC′ | > |TC |/2.

Reachability. Let G be a class of directed graphs. We consider the following problems
restricted to G.

G-Reachability = { (G, s, t) | G ∈ G contains a path from s to t }

G-Distance = { (G, s, t, k) | G ∈ G contains a path from s to t of length ≤ k }

G-Long-Path = { (G, s, t, k) | G ∈ G contains a simple path from s to t of length ≥ k }

L is the class of languages accepted by deterministic log-space Turing-machines and NL

by nondeterministic log-space Turing-machines. UL is the class of languages accepted by
unambiguous nondeterministic log-space machines, i.e. there exists at most one accepting
computation path. coUL is the class of complements of languages in UL. We also use the fact

that LUL∩coUL = UL ∩ coUL (c.f. Thierauf and Wagner [TW08]).
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3 Reachability in K3,3-free Graphs

We give a logspace reduction from the reachability problem for directed K3,3-free graphs to
the reachability problem for directed planar graphs. The latter problem is known to be in
UL ∩ coUL [BTV07].

For the reduction, we decompose the given graph G into triconnected components. For
the decomposition, we consider G as undirected . That is, each directed edge of G is considered
as an undirected edge. After the decomposition we consider the components again as directed
graphs.

We will see that every non-planar component is precisely the K5. We define a tree based
on planar and K5-components. There are component nodes for the planar components and
the K5-components which are connected via nodes for separating pairs of the components.
We call this tree the PlaK5-component tree.

The key step in the reduction is to replace the K5-components by planar components while
maintaining the reachability properties. Then we recombine the components to a directed
planar graph H. The construction is such that vertex t is reachable from vertex s in G if and
only if this holds in H, too.

3.1 Tree decomposition

We consider the decomposition of biconnected K3,3-free graphs into triconnected components.
Tutte [Tut66] proved that the decomposition is unique. Moreover, Asano [Asa85] proved that
it has the following form.

Lemma 3.1 [Asa85] Each triconnected component of a K3,3-free graph is either planar or
exactly the graph K5.

The triconnected components are the nodes of the triconnected component tree. Two
nodes are connected by an edge, if they share a separating pair. For our purpose it suffices
to distinguish between planar and non-planar components. Vazirani [Vaz89] recombines the
planar triconnected components that are neighbors in the tree into one planar component.
This defines a new tree with alternating planar and K5-component nodes which we call the
PlaK5-component tree. Vazirani [Vaz89] showed that the PlaK5-component tree is unique and
can be computed in NC2. Here we give a simpler and more direct construction that works in
log-space. We use Lemma 3.1 and the following lemmas which are implicitely in [Asa85].

Lemma 3.2 Let K = {v1, . . . , v5} be a K5-minor in graph G. Let pi,j be a simple path
from vi to vj , for all i 6= j, such that these paths are pairwise vertex disjoint (except for their
endpoints), and let P =

⋃
vi,vj∈K pi,j.

If there are two vertices a, b and a path pa,b from a to b that is vertex disjoint from all
paths in P (except for their endpoints) such that

(i) a is an intermediate point on some path in P , w.l.o.g. say p1,2 and

(ii) either b ∈ {v3, v4, v5} or b is an intermediate point on some path pi,j 6= p1,2,

then G has a K3,3-minor.
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Proof: We consider the two cases for vertex b separately. First, let b ∈ {v3, v4, v5}, w.l.o.g.
say b = v3. Then we have a K3,3-minor in G with {v1, v2, v3} on the left side and {v4, v5, a}
on the right side. See Figure 2 (a).

For the second case, let b be an intermediate point on some path pi,j 6= p1,2. At least one
of vi and vj is different from v1 and v2, say vi. We distinguish two cases. The cases are shown
in Figure 2 (b) and (c).

• vj 6∈ {v1, v2}. Then there is a K3,3-minor in G with {v1, v2, b} on the left side and
{vi, vj , a} on the right side

• vj ∈ {v1, v2}. Then there is a K3,3-minor in G that consists of the vertices {a, v1, . . . , v5}
with {v1, v2, vi} on the left side and the remaining vertices on the right side. Note that
we have a path from a to vi by following path pa,b to b and then going along path pi,j

to vi. By construction this path is vertex disjoint from all paths in P − {p1,2, pi,j}
(except for their endpoints). Note also that we do not need path pi,j otherwise, because
vi and vj are on the same side of the K3,3-minor.

�

v4
v2 = vj

v5

(b)

v4 = vj

v1

(c)

v3 = vi

v4

v5 v1

v2

v1

v3 = b

(a)

v5

v3 = vi

v2

a
a

b

b

a

Figure 2: K = {v1, . . . , v5} is a K5-minor. (a) There is a path from a to b = v3 that is
disjoint from all paths in P . Then the black and white vertices are the two sides of a K3,3-
minor. The paths that are drawn dashed do not contribute to the K3,3-minor.
(b) There is a path from a to b that is disjoint from all paths in P such that b is on some
path pi,j where vi, vj 6∈ {v1, v2}. Then there is a K3,3-minor as indicated.
(c) The same situation as in (b), but with vj ∈ {v1, v2}.

The next lemma is similar to Lemma 3.2 but takes a slightly different point of view.

Lemma 3.3 Let G = (V,E) be a biconnected undirected graph. Let K ⊆ V be a K5-minor
in G. If there is a vertex u 6∈ K such that there are pairwise vertex disjoint paths from u to
three vertices in K then G has a K3,3-minor.

Proof: Let K = {v1, . . . , v5}. Because K is a K5-minor, there is a simple path pi,j between vi

and vj for all i 6= j, such that these paths are vertex disjoint (except for their endpoints). Let
P =

⋃
vi,vj∈K pi,j. Let furthermore pu,1, pu,2, pu,3 be pairwise vertex disjoint paths from u to

three vertices in K, say w.l.o.g. to v1, v2, v3. We assume that these paths do not pass through
any of the other two vertices of K, i.e. v4 or v5. Otherwise shorten such a path and rename
the vertices. We distinguish three cases.
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Case 1 : pu,1, pu,2, pu,3 reach w.l.o.g. v1, v2, v3 respectively, without intersecting any of the
paths pi,j in beforehand. Then we have a K3,3-minor with {v1, v2, v3} on the left side and
{v4, v5, u} on the right side, see Figure 3 (a).

Case 2 : One of the paths pu,1, pu,2, pu,3 intersects ≥ 2 paths in P before reaching the end
vertex. Let a and b be two such consecutive intersection points on two different paths of P .
Then we have a K3,3-minor by Lemma 3.2.

Case 3 : In the remaining case, all paths pu,1, pu,2, pu,3 intersect at most one path in P and
at least one of the paths, say pu,1, intersects some path of P , say path pi,j at an intermediate
point. Let b be this point of intersection.

At least one of the paths pu,1, pu,2, pu,3 does not have vi or vj as an endpoint. Let pu,k be
such a path, for some k ∈ {1, 2, 3}, and let a be the first intersection of pu,k with some path
in P . Note, that a might be in K. We distinguish the following subcases.

• a ∈ pi,j. In this case we have a path from a to vk that is vertex disjoint from the paths
in P , see Figure 3 (b). Then there is a K3,3-minor by Lemma 3.2.

• a 6∈ pi,j. This also includes the case that a ∈ K. Then we have a path from a to b via u
that is vertex disjoint from the paths in P , see Figure 3 (c). Again there is a K3,3-minor
by Lemma 3.2.

�

(a)

v2=vj v4

v5

(c)(b)

v3=vk v3=vi

v2=vj

v1v1

v2v4

v5

v3

v4

v5 v1=vi

u

a

b

a

u

ub

Figure 3: K = {v1, . . . , v5} is a K5-minor. (a) There is are paths from u to v1, v2, v3 that
are disjoint from all paths in P . Then the black and white vertices are the two sides of a
K3,3-minor. The paths that are drawn dashed do not contribute to the K3,3-minor.
(b) There is a path from a ∈ p1,2 to vk 6∈ {v1, v2} (here vk = v3) which is disjoint from all
paths in P . Then there is a K3,3-minor as indicated.
(c) The paths from u intersect two different paths of the K5-minor at a and b, respectively.
Then there is again a K3,3-minor as indicated, where the path from a to vk = v3 passes
through u and b.

There are some easy consequences of Lemma 3.3. We consider how many vertices the
components of a PlaK5-component tree can have in common.

Corollary 3.4 [Asa85] A non-planar 3-connected graph G with ≥ 6 vertices has a K3,3-
minor.
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Proof: Assume that G is non-planar because it contains a K5-minor. Let K = {v1, . . . , v5}
be a K5-minor in G. Let w be a vertex in G that is not in K. There must be paths p1, p2, p3

from w to v1, v2, v3 in C, respectively, such that path p1 goes from w to v1 without passing
through v2 or v3, and similarly from w to p2 and p3. Note that if all paths from w to, say v3

would pass through v1 or v2, then v1, v2 would be a separating pair for G and G would not
be 3-connected.

Next, go along pi, starting from vi for all i. Let u1 be the first vertex on p1 that intersects p2

or p3. Let u2 be the first vertex on p2 that intersects p1 or p3. There are two cases.

• u1 = u2. In this case we define u = u1.

• u1 6= u2. Then both vertices also belong to p3. Let u be the one which comes first on p3

starting from v3.

Then we can use p1, p2, p3 to construct three vertex disjoint paths from u to v1, v2, v3, respec-
tively. By Lemma 3.3, there is a K3,3-minor in G.

�

Corollary 3.5 Two (different) K5-minors of a K3,3-free graph G have ≤ 2 vertices in com-
mon.

Proof: Let K1,K2 be two K5-minors that have ≥ 3 vertices in common. Then G has a
3-connected component that contains K1 and K2. This component has ≥ 6 vertices and
therefore contains a K3,3 by Corollary 3.4. �

Corollary 3.6 Let G = (V,E) be a K3,3-free biconnected undirected graph. Let K be a K5-
minor and B be a biconnected planar component in G. Then K and B have ≤ 2 vertices in
common.

Proof: A biconnected planar component B consists of triconnected components that are
connected by separating pairs. Note that by Corollary 3.4, each 3-connected planar compo-
nent has ≤ 2 vertices in common with K. Hence, if B contains three or more vertices of K,
then these vertices must be distributed in more than one 3-connected component of B. By a
similar argument as in Corollary 3.4 we can find a vertex u such that there are vertex disjoint
paths in B to three vertices of K. The point is that at least one of the paths must leave
a 3-connected component via a separating pair and can therefore be made disjoint from the
other two paths. �

The next lemma is the crucial lemma for identifying the K5-minors in a K3,3-free bicon-
nected graph.

Lemma 3.7 Let G = (V,E) be a K3,3-free biconnected undirected graph. A set K ⊆ V of 5
vertices is a K5-minor in G, and hence a K5-component in the PlaK5-component tree, if and
only if for every pair u, v ∈ K either (u, v) ∈ E or {u, v} is a separating pair in G such that
the three remaining vertices of K are all in one split component of G − {u, v}.

Proof: For the direction from right to left let u, v ∈ K be a separating pair. By definition a
separating pair has at least two split components. Then there is a path from u to v in G that
passes purely through a split component of G − {u, v} that does not contain the other three
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vertices of K (except for the endpoints). We have analogous paths for all separating pairs
with both vertices in K. By construction, these paths are pairwise vertex disjoint (except for
the endpoints). Hence K is a K5-minor in G.

For the direction from left ro right let K = {v1, . . . , v5} be a K5-minor in G and let
(v1, v2) 6∈ E. Assume, that {v1, v2} is not a separating pair in G. We show that in this case
G has a K3,3-minor which contradicts the assumption that G is K3,3-free.

Because K is a K5-minor, there is a simple path pi,j between vi and vj for all i 6= j such
that these paths are vertex disjoint (except for their endpoints). Let a 6= v1, v2 be a vertex
on path p1,2. Since {v1, v2} is not a separating pair, there is a simple path pa,3 from a to v3

which does not pass through v1 or v2. By Lemma 3.3, there is a K3,3-minor in G. �

As a consequence, we can compute all the K5-components of a biconnected undirected
graph in log-space: cycle through all the

(
n
5

)
sets of 5 vertices and check the condition of

Lemma 3.7 for each set. With the K5-components in hand, we show that we can compute
the PlaK5-component tree in log-space. We start with a technical lemma.

Lemma 3.8 Let G = (V,E) be a K3,3-free biconnected undirected graph. The PlaK5-
component tree of G can be computed in log-space.

Proof: We have already seen how to compute the K5 components. We show how to compute
the planar components. Two vertices u and v are in the same planar component, if there is a
path p from u to v in G such that p contains ≤ 2 vertices from any K5-component. Note that
by Corollary 3.6, path p can go through at most two vertices of a K5-component. Intuitively,
this allows p to touch a K5-component, but not to go through the other components connected
to the K5-component.

The PlaK5-component tree of G consists of

• K5-component nodes,

• planar component nodes, and

• K5-separating pair nodes. These are pairs of vertices that are separating pairs and
belong to a K5.

The tree has alternating K5-component nodes and planar component nodes and a K5-
separating pair node between these two. That is, there is an edge between a K5- or planar
component node and a K5-separating pair node if the corresponding component contains both
vertices of the separating pair. Figure 4 shows an example.

Let the tree be rooted at node N and let N ′ be a component node in the tree. The parent
node of N ′ is the K5-separating pair u, v incident to N ′ in the tree such that there is no path
from vertices in N ′ to vertices to the root N in G−{u, v}. All the other K5-separating pairs
are children of N ′. Hence, we can navigate in log-space through the tree. �

We summarize.

Theorem 3.9 [DLN+08b]1 The decomposition of a K3,3-free biconnected graph into a planar
component tree can be computed in log-space.

1The result came up in discussion with Samir Datta, Nutan Limaye, and Prajakta Nimbhorkar. The proof
presented here was developed in this paper.

9



TG

G u6
u5

u4

D

v3v5 D′

u1

u2

u1

u2

v2

v4

v1

u2

u6

u1

u3

D

u3 u6

u4 u5

v2

D′

v1

v4

v2

u1

u2

v1

u3

u6

v1

v2 v4

v1

v1

v3

v4

v5

u3

Figure 4: Two K5-component nodes D and D′ with planar components.

3.2 Reduction to the planar case

In this section, we construct a reduction from the reachability problem for directed K3,3-
free graphs to the reachability problem for directed planar graphs. We prove the following
theorem.

Theorem 3.10 K3,3-free Reachability ≤L
T Planar Reachability.

We start by showing that it suffices to consider biconnected directed K3,3-free graphs.

Lemma 3.11 Reachability ≤L
T biconnected Reachability.

Proof: Let G be a graph and s and t be two given nodes in G. Compute the biconnected
components of G in log-space by Lemma 2.1. Let S be the biconnected component that
contains s, and T the one that contains t. Let S = V1, . . . , Vk = T with k odd be a simple
path from S to T of nodes of the biconnected component tree of G. Let a2, a4, . . . , ak−1 be
the articulation points shared by these components, i.e. ai is shared by Vi−1 and Vi+1. Recall,
this path is an alternating path on articulation point nodes and separating pair nodes. Then
a path from s to t has to go through all these articulation points. Hence, there is a path
from s to t in G if and only if there is a path from ai−1 to ai+1 in the biconnected component
of Vi, for all odd i. �

Note that the reduction in the proof considers subgraphs of G. Hence the reduction
maintains the property that G is K3,3-free or K5-free, respectively.

Let G = (V,E) be a biconnected directed K3,3-free graph and s, t be two vertices in G.
The problem is to find a path from s to t in G. Let TG be the PlaK5-component tree of G.
Let S be the biconnected component that contains s and T the one that contains t.

We partition the tree into subtrees and consider the reachability problem for these sub-
trees. Then we replace non-planar components of the PlaK5-component tree TG by planar
components such that the reachability condition remains unchanged.

Partitioning of G into subgraphs. Consider the simple path from S to T in TG, say S =
C1, C2, . . . , Cl = T . A path from s to t always contains vertices of separating pairs, which
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are shared by the component nodes Ci−1 and Ci+1. Let (ui, vi) be the separating pair which
separates Ci−1 from Ci+1. For an example see Figure 5.

Observe, that a path p from s to t must visit at least one vertex of each of these separating
pairs. Once we have reached Ci, then p will not go back to Ci−1, because otherwise p would
not be simple. Note, p goes through the siblings of Ci−1 before it goes to the parent Ci+1.

TS

C2

C3

C4

C5

C6

C7

C7

TC6

C6

TC7

u2 v2

u4 v4 u6 v6

s t

u6 v6

Figure 5: Partitioning of the PlaK5-component tree TG into pieces TCi
. The boxes indicate

component nodes and the triangles indicate subtrees.

We partition the reachability problem into subproblems. For a component node Ci define
the tree TCi

as the subtree of TG rooted at Ci, where the branches to Ci−1 and Ci+1 are cut
off. Let Gi be the graph corresponding to TCi

. If Ci is a component node then {ui−1, vi−1}
and {ui+1, vi+1} are separating pairs of Ci. In the case, when Ci is a separating pair node
then we define ui−1 = ui+1 and vi−1 = vi+1 such that we have only one seperating pair in Ci.

The following lemma states that the reachability problem in G can be partitioned into
reachability problems in Gi.

Lemma 3.12 Any simple path p from s to t in G can be written as a concatenation of paths,
p = p1, . . . , pl, such that

• path p1 goes from s to u2 or v2 in G1,

• path pi is a path from ui−1 or vi−1 to ui+1 or vi+1 in Gi, for all 2 ≤ i ≤ l − 1,

• path pl is a path from ul−1 or vl−1 to t in Gl.

Note, if s and t are in the same component C1 then S = C1 = T and TG = TC1
.

In the reachability problems for Gi, we search for a path from ui−1 (or vi−1) to ui+1

(or vi+1). Each separating pair is connected by a virtual edge. If we have the virtual edge {a, b}
in Ci on our path, then we have to check whether there is a path from a to b in a child of Ci

in TCi
. Note, in the child component the same situation can occur, recursively. If e.g. (a, b)

is also a directed edge in G then there es a child component, a leaf node in the tree which
corresponds to a 3-bond. This node indicates the directed edge (a, b).

Lemma 3.13 There is a path from ui−1 or vi−1 to ui+1 or vi+1 in Gi if and only if there
exists a path in Ci such that for virtual edges {a, b} on this path there exists a path from a
to b in the child component of Ci, recursively.

Because we have K5-component nodes, it is not clear yet, how we can test reachability
in UL ∩ coUL. We transform the K3,3-free graph into a planar graph.

11



Transforming a K5-component into a planar component. Let TCi
be a PlaK5-

component tree rooted at Ci as described above. We start with the root Ci and traverse
the tree in depth first manner. When we reach a K5-component node D, then we replace
it by a planar component D′ as described next such that the reachability problem does not
change. This results in a new PlaK5-component tree of a planar graph G′.

Lemma 3.14 There is a log-space algorithm that transforms G into a planar graph G′ such
that there is a path from s to t in G if and only if there is such a path in G′.

Let D be a K5-component node with vertices v1, . . . , v5. Let TCi
be the subtree that

contains D. Let N be the size of the subtree rooted at D in TCi
. Since our algorithm works

recursively and in order to have a log-space bound, we would like to have recursive calls only
on subtrees of small size, i.e. a fraction of N . Recall that there can be at most one large child
of node D in TCi

. In the following, we consider the situation that we search a path from v1

to v2 in D and we have a large child at v3, v4. The same construction works if there is no
large child, and it can be easily adapted to the case that the large child is at another pair
(e.g. v2, v4). The graph D′ is defined as shown in Figure 6.

v3

v4v5

D

D′

v3

v4

v1

v5
v2

(b) (c)(a)

ui+1ui

vi vi+1

v2

v1
v′

5 v′′

5

TCi,1

TCi,2

TCi,3

TCi,4

Figure 6: (a) A K5-component node D and (b) the planar component node D′. The two
vertices v′5 and v5

′′ are copies of v5. For eample, an edge (v1, v5) in D occurs twice in D′, as
(v1, v5) and (v1, v

′

5). The edges of D and D′ are drawn undirected to not overload the picture.
But note that only the virtual edges are undirected. The edges that come from graph G have
the same direction as in G. (c) The construction if D is the root of TCi

. Because there are
four reachability problems, we have four versions of D, say D1, . . . ,D4 that replace the root
in TCi

. This leads to four trees TCi,1, . . . ,TCi,4. As we can see, the resulting graph is planar.

The new component D′ has the following properties:

1. D′ is planar.

2. Every path from v1 to v2 in D exists as well in D′, possibly going through one of the
copies v′5 or v′′5 instead of v5.

3. D′ contains the edge {v3, v4} only once. This edge corresponds to a large child if there
is one.

4. Vertices v1 and v2 are on the outer face of D′.
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The last property is important for the special case when D is the root of the subtree, i.e.
D = Ci. Then we have two vertices ui, vi and ask whether we can reach two other vertices
ui+1 and vi+1 and all these vertices belong to D. For a planar arrangement, we make the
construction as shown in Figure 6 (c). For example, D1 is a copy of D where v1 is identified
with ui and v2 with ui+1. In total, this gives four combinations of reachability questions.
Hence, we make four copies of the whole planar graph corresponding to TCi

, one for each
path from a vertex of the incoming separating pair to a vertex of the outgoing separating
pair. Note, that this case can occur only at the root, and not in the recursion in the tree TCi

.
Therefore, we can afford to make the four copies.

The replacement of the K5-components is done recursively in depth-first manner with all
the copies of children (i.e. the subtrees rooted at separating pairs) which we have in the new
components D′. Consequently, we give new names to vertices in the copies of the subtrees.

We do this for all edges on all paths in D′. The order of the edges is given by the order
they appear on the input tape. We can always recompute the new planar component D′,
because we can recompute the sizes of the subtrees of D. We can always refer to which
copy of a separating pair we went into recursion by storing O(1) bits on the work-tape when
we go into recursion. Hence, whenever we have to change vertex names, we can recompute
the new vertex names of the copy of a separating pair. We need such bits at each level of
recursion. Since the sizes of the copied subtrees are at most 1/2 the size of the tree, there are
at most O(log n) levels of recursion. Hence, the algorithm runs in log-space.

Lemma 3.15 The resulting graph G′ after the transformation of K5 components has the
following properties for all i.

• G′

i is a planar graph.

• There are simple paths from ui or vi to ui+1 or vi+1 in Gi if and only if there are such
simple paths in G′.

• The size of the resulting graph G′

i remains polynomial.

Proof: The planarity and the reachability test on G′

i can be proven by induction on the
number of K5-components, when replaced one by one. The same way as in a K5-component
node D, G′ contains the same copies of vertices we have in D′ and for each copied edge in D′

we have a copy of the according split component in G′.
The resulting graph is of polynomial size S(N), because we recursively copy subgraphs of

size smaller than N/2. The recursion equation is the following for some constant k:

S(N) = kS(N/2) + O(N)

�

This finishes the proof of Theorem 3.10 and we get the following corollary.

Corollary 3.16 K3,3-free graph Reachability is in UL ∩ coUL.

Distance and longest paths in K3,3-free graphs. For the distance problem and the
longest path problem it suffices again to consider biconnected graphs, because we can pass
only once through every articulation point on a simple path from s to t. Hence we can
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consider longest paths or distances in the biconnected components, and then sum up these
lengths appropriately.

For biconnected graphs we use the transformation from Lemma 3.14. It suffices to observe
that simple paths in a K5-component D of graph G have the same length as the corresponding
paths in the planar component D′ in graph G′. Hence, the following lemma holds.

Lemma 3.17 1. K3,3-free Distance ≤L
m planar Distance.

2. K3,3-free Long-Path ≤L
m planar Long-Path.

Thierauf and Wagner [TW08] proved that computing the distance in planar directed
graphs is in UL∩ coUL. Limaye, Mahajan and Nimbhorkar [LMN09] proved that computing a
longest path in planar DAGs is in UL∩coUL. As a consequence we get the following corollary.

Corollary 3.18 1. K3,3-free Distance ∈ UL ∩ coUL.

2. K3,3-free Long-Path ∈ UL ∩ coUL.

4 Reachability in K5-free graphs

We give a logspace reduction from the reachability problem for directed K5-free graphs to the
reachability problem for directed planar graphs.

For the reduction, we decompose the given graph G into 3-connected and 4-connected
components. For the decomposition we consider G as undirected. It follows from a theo-
rem of Wagner [Wag37] that besides planar components we obtain the following non-planar
components that way:

• the four-rung Mobius ladder, also called V8 (see Figure 7), a 3-connected graph on 8
vertices, which is non-planar because it contains a K3,3.

• The remaining 3-connected non-planar components are further decomposed into 4-
connected components which are all planar.

Figure 7: The four-rung Mobius ladder, also called V8.

We define trees based on these components. There are nodes for the tri-connected com-
ponents and the V8-components which are connected via separating pair nodes. This is the
triconnected component tree of a K5-free graph. The non-planar 3-connected components are
further decomposed into 4-connected components for which we define a 4-connected compo-
nent tree. We will show, that this can be done in logspace.

The key step in the reduction is to replace the V8-components by planar components such
that the reachability properties are not altered.

14



4.1 The Tree Decomposition

Khuller [Khu88] described a decomposition of K5-free graphs with a clique-sum operation.
If two graphs G1 and G2 each contain cliques of equal size, the clique-sum of G1 and G2

is a graph G formed from their disjoint union by identifying pairs of vertices in these two
cliques to form a single shared clique, and then possibly deleting some of the clique edges. A
k-clique-sum is a clique-sum in which both cliques have at most k vertices.

If G can be constructed by repeatedly taking k-clique-sums starting from graphs isomor-
phic to members of some graph class G, then we say G ∈ 〈G〉k. The class of K5-free graphs
can be decomposed as follows.

Theorem 4.1 [Wag37] Let C be the class of all planar graphs together with the four-rung
Mobius ladder V8. Then 〈C〉

3
is the class of all graphs with no K5-minor.

We make two easy observations with respect to the above clique-sum operation.

• If we build the 3-clique-sum of two planar graphs, then the three vertices of the joint
clique are a separating triple in the resulting graph. Hence the 4-connected components
of a graph which is build as the 3-clique-sum of planar graphs must all be planar.

• The V8 is non-planar and 3-connected, but not 4-connected. Furthermore, the V8 cannot
be part of a 3-clique sum, because it does not contain a triangle as subgraph.

By Theorem 4.1 and the two observations we have the following situation.

Corollary 4.2 (cf. [Khu88]) A non-planar 3-connected component of a K5-free undirected
graph is either the V8 or its 4-connected components are all planar.

In the following we argue that the 3-connected and 4-connected components can be com-
puted in log-space. Similar to the decomposition algorithm of Vazirani [Vaz89], we decompose
the K5-free graph into triconnected components. That is, we first decompose it into bicon-
nected components and then the biconnected components further into triconnected compo-
nents. By Lemma 2.1, the biconnected component tree of an undirected K5-free graph can
be computed in log-space. The same holds for the triconnected component tree of a K5-free
biconnected graph.

The triconnected component tree for biconnected K5-free graphs.

Datta et.al. [DLN+08a] show how to construct the triconnected component tree for a
planar biconnected graph in log-space. We give a different construction which is suitable for
K5-free biconnected graphs. The difference is, that the 3-connected components must not be
planar.

We define a graph whose nodes are associated to the triconnected components and sep-
arating pairs of G. A separating pair node is connected to a triconnected component node if
the separating pair is contained in the corresponding component. The resulting graph is a
tree, the triconnected component tree T for a K5-free biconnected graph G where edges are
considered as undirected. We describe how to compute these nodes.

Let {a0, b0} be an arbitrary separating pair in G. Let S be a split component of G−{a0, b0}.
We define a triconnected component C with respect to S which has the following properties.
For C there is a node in T . The node for C is incident to the separating pair node for {a0, b0}.
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Intuitively, C is obtained from S by collapsing split components at separating pairs in S to
virtual edges. More precisely, we distinguish whether C is a cycle or a 3-connected component
as follows (cf. Battista and Tamassia [BT89], [BT96]).

• If S −{a0, b0} contains articulation points then C is a cycle. Let c1, . . . , cl be this set of
articulation points. Then, a0, c1, c2, . . . , cl, b0 is the cycle C. Two consecutive vertices
ci, ci+1 are connected by an edge as in C or form a separating pair. In the latter case
we connect the consecutive separating pair in C by a virtual edge which replaces the
original edge, in case there is one in S.

• If S − {a0, b0} does not contain articulation points, then C is a 3-connected component
which is defined as follows. Two vertices u and v of S are in C if for all separating pairs
{a, b} different from {a0, b0} in G there are simple paths from u and v to a0 (or b0) and
from u to v in S−{a, b}. Note that {a0, b0} also belongs to C. Connect each separating
pair of S in C by a virtual edge which replaces the original edge if it is present in S.
Then C is a 3-connected component, because it does not contain separating pairs by
construction.

• If there is an edge bewteen a0 and b0 in G then this edge is maintained in an extra
component called a 3-bond , i.e. the directed edge and two virtual edges. This also is
defined to be a triconnected component.

We further argue that this decomposition can be computed in log-space.

Lemma 4.3 The triconnected component tree for a K5-free biconnected graph can be com-
puted in log-space.

Proof: All the tasks, in particular the detection of separating pairs and articulation points or
finding paths in undirected graphs, where some vertices are deleted can be done in log-space
via queries to reachability testing [Rei05]. The construction of the triconnected component
tree can be done in log-space, since we operate on a tree structure.

Note that the navigation on the triconnected component tree is in logspace because there
are logspace computable functions to compute the parent, first child and next sibling for each
node in the tree. To see this, it suffices to locally store information of the active separating pair
a0, b0 the active child (i.e. one vertex of a split component) and for finding the unique parent
we store the root node of the tree if it is a separating pair and if the root is a triconnected
component node then we store a vertex of the corresponding component. �

Decomposition into 4-connected components. It remains to further decompose the
3-connected components which are non-planar and not the V8. To define the decomposition,
we need the notion of maximum separating triples.

Definition 4.4 Let τ be a separating triple and G a split component of τ . A separating triple
τmax 6= τ is a candidate separating triple in G with respect to τ if for any separating triple
τ ′ 6∈ {τ, τmax} there is a path from a vertex of τmax to a vertex of τ in G − τ ′.

Two candidate separating triples τ1, τ2 are crossing if τ1 ∩ τ2 6= ∅ and τ1 and τ2 have a
split component in common (i.e. if there is a vertex v in G − (τ ∪ τ1 ∪ τ2) which belongs to
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a split component G1 of τ1 and a split component G2 of τ2). Note, if τ1, τ2 are crossing then
there is no τ3 which is also crossing τ1 or τ2. See Figure 8 for an example.

A maximum separating triple with respect to τ is either a candidate separating triple which
is not crossing with any other candidate separating triple or the lexicographical smaller one
of two crossing candidate separating triples.

(a) (b)

a

(c)

d e f

a b c

d e f

a b c

v1 v2 v3 v1 v2 v3 v2 v3

Figure 8: (a) The parent separating triple τ = {v1, v2, v3} and two pairwise crossing candi-
date separating triples {a, v2, v3} and {v1, v2, c}.
(b) The 4-connected component split by τ and {a, v2, v3}.
(c) The split component split by {a, v2, v3} which has to be further decomposed recursively.

Let C be a 3-connected component in a K5-free graph and let τ be a separating triple
in C. We define a 4-connected component D with respect to τ as follows. Two vertices u
and v are in D if there are simple paths from u and v to some vertices of τ and from u to v
in C − τ ′, for all maximum separating triples τ ′ with respect to τ .

Connect each pair of vertices of τ or of a maximum separating triple in D by a virtual
edge. If for such a pair there is an edge in G then this is not contained in D and we define a
3-bond instead.

The resulting component D is 4-connected, because it does not contain separating triples
by construction.

We define a tree T as follows. There is a node for each separating triple and each 4-
connected component. A separating triple node is connected to a 4-connected component node
if the separating triple is contained in the 4-connected component. Choose one separating
triple τroot in C as the root node of T . The resulting graph is a tree, the 4-connected component
tree of C. This tree can be computed in log-space, since the tasks are similar to those of the
PlaK5-component tree in the previous section.

Lemma 4.5 The 4-connected component tree of a 3-connected K5-free graph can be computed
in log-space.

4.2 Reachability on K5-free Graphs

In this section, we prove the following theorem.

Theorem 4.6 K5-free Reachability ≤L
m planar Reachability.

17



Let G be a connected graph and s and t be two vertices in G. By Lemma 3.11 and
Lemma 3.13, we can partition the reachability problem for G into reachability problems on
the triconnected components of G. If a triconnected component is planar, then we are done
with it. If it is non-planar, then we distinguish the two cases whether the triconnected
component is the V8 or not.

In a triconnected component tree, a triconnected component has an incoming separating
pair {ui, vi} and an outgoing separating pair {ui+1, vi+1}. We consider four reachability
tests, from ui to ui+1, from ui to vi+1, from vi to ui+1 and from vi to vi+1. For each of these
reachability tests, we construct a planar copy of the triconnected non-planar component and
connect them as shown in Figure 6 (c) on page 12.

Transforming a V8-component into a planar component. Let TC be a triconnected
component tree rooted at some node C. Let D be a V8-component node in TC and v1, . . . , v8

the vertices in D. We transform D into a planar component D′ such that the reachability
question remains unchanged. The transformation is shown in Figure 9. For this, let v1, . . . , v4

be four vertices in D such that v1, v2 are pairwise different. Assume, we search for a path
from v1 to v2 in D and that (v3, v4) is an edge in D and corresponds to a large child of C.

By construction, D′ has the following properties.

• For each path from v1 to v2 that does not contain (v3, v4), D′ contains a copy of this
path, i.e. a copy of all vertices and edges on this path.

• For all the paths from v1 to v2 which contain (v3, v4), D′ contains a copy of the sub-path
from v1 to v3 and v4 to v2 or vice versa from v1 to v4 and v3 to v2.

• D′ contains the edge (v3, v4) exactly once.

• v1 and v2 are both on the outer-face of D′. This property is important in the case, that
D is the root of TC (i.e. D = C).

• D′ with all the copies of paths is planar and contains O(1) copies of each edge.

The replacement of the V8-components is done recursively in depth-first manner with all
the copies of children (i.e. the subtrees rooted at separating pairs) which we have in the new
components D′. Consequently, we give new names to vertices in the copies of the subtrees.

We do this for all edges on all paths in D′. The order of the edges is given by the order in
which they appear on the input tape. We can always recompute the new planar component D′,
because we can recompute the sizes of subtrees of D. We can always recompute from which
copy of a separating pair we went into recursion by storing O(1) bits on the work-tape when
we go into recursion. So, when we have to change vertex names, then we can recompute
the new vertex names of the copied separating pair. We need such bits at each level of
recursion. Since the sizes of the copied subtrees are at most 1/2 the size of the tree, there are
at most O(log n) levels of recursion. Hence, the algorithm runs in log-space.

Lemma 4.7 Let Gi be a K5-free biconnected graph with incoming separating pair ui, vi

and outgoing separating pair ui+1, vi+1. Let G′

i be the resulting graph when all the V8-
components D in Gi are replaced by the new gadgets D′. G′

i has the following properties.

• G′

i is a planar biconnected graph.
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Figure 9: To similify matters, all the copies of a vertex have the same label in the picture.
We do not identify copies of vertex names.
(a) The V8 component D with edges drawn undirected.
(b) The planar component D′ is shown schematically. v1 and v2 can be any two vertices in D
and v3, v4 correspond to a large child of D such that {v1, v2} ∩ {v3, v4} = ∅. For every path
from v1 to v2 that does not contain (v3, v4), D′ contains a copy of the path, i.e. a copy of all
vertices and edges on this path. This is indicated above the the vertices v1, v2.
The remaining paths go along (v3, v4) or (v4, v3) in D. This edge should occur only once
in D′. Therefore these paths in D are subdivided into paths from v1 to v3 or to v4, and from
these vertices to v2. This is indicated in the part below v1, v2.
(c) {v1, v2} and {v3, v4} must not be disjoint. The construction is essentially the same as
in (b). Here, we see D′ in the case that (v1, v3) is the large child.

• There are simple paths from ui or vi to ui+1 or vi+1 in Gi if and only if there are such
simple paths in G′

i.

• The size of G′

i is polynomial in the size of Gi.

Planar arrangement of split components in a 4-connected component tree. After
the replacement of V8-components by planar components, we have to consider the other
non-planar 3-connected components. We have decomposed them into planar 4-connected
components. We have to recombine all the components into one planar graph. However, we
cannot simply reverse the decomposition process because the 3-clique sum of the 4-connected
(planar) components could result in a non-planar 3-connected component.

To get around this problem we make copies of some of the components and arrange
the copies in a planar way. This has to be done carefully such that the size of the graph
constructed that way stays polynomial in the size of the input graph.

Consider a 4-connected component tree T . Let S and T be the component nodes in T
where vertex s and t are contained in, respectively. Consider S as the root of T i.e., let
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TS = T and let P be a simple path from S to T in TS. We describe how to find a planar
arrangement of the components of TS.

We start by putting the component S in the new planar arrangement. Inductively assume
that we have put some component C and let τ be some child separating triple node of C
in TS . Let furthermore the children of τ be the 4-connected component nodes C1, . . . , Ck.
Precisely one of the children is put once in the planar arrangement, the other children are put
three times, i.e. there are two additional copies which are connected to copies of the vertices
of τ . Figure 10 shows the construction. By G′ we denote the resulting planar arranged graph
we obtain for G.

C2 C ′

2

C v0

C3C2C1

τ
v′

3

v′

2
v1 v2

v3

v2
v1

v′′

1

v3

v′′

2

v′′

3

C

(a)

(b) (c)

C ′′

3

v′

1
C ′

3
C3

C ′′

2

C1

Figure 10: (a) A planar 4-connected component C with separating triple τ = {v1, v2, v3}.
The pairwise edges among these vertices are virtual edges, indicated by dashed undirected
lines. (b) The 4-connected component tree with C, separating triple τ and its children, the
4-connected component nodes C1, C2 and C3. (c) The planar arrangement of C1, C2 and C3

at separating triple τ is obtained by making copies of C2 and C3 (i.e. C ′

2, C
′′

2 and C ′

3, C
′′

3 ) and
vertices vi (i.e. v′i, v

′′

i ) for 1 ≤ i ≤ 3. The planar arrangement of C is obtained by connecting
the vertices of τ to v0.

Note, the construction does not change the reachability properties. For example, if there
is a path from v1 to v2 in G which goes through the component C2 and also passes vertex v3,
then there will be a path from v1 to v2 in G′ which goes through the copy C ′′

2 of C2 and passes
the copy v′′3 instead of v3. If there is no path from v1 to v2 in G then there will be no path
from v1 to v2 in the constructed planar graph as well. The children which is put only once is
selected as follows:

1. If a child Ci of τ is a node on path P , then we select Ci.

2. If no child of τ is a node on path P but there is a large child Cj , then we select Cj .

3. If none of the first two cases occurs then we select an arbitary component, say C1.

Let N be the size of the triconnected component tree rooted at node C. We emphasize
that in case 1, if a large child is copied three times because another child of τ is on path P
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then this situation does not occure recursively. That is, because the ancestors of the copied
large child do not belong to path P . Hence, the planar arranged graph G′ is of polynomial
size, because we just copy recursively subgraphs of size smaller than N/2 even if we consider
the exception of case 1. The recursion equation for the size S(N) of G′ with some constant k
is

S(N) = kS(N/2) + O(N)

This finishes the proof of Theorem 4.6. Since reachablity in planar DAGs is in UL ∩
coUL [BTV07], we get the following corollary.

Corollary 4.8 K5-free graph reachability is in UL ∩ coUL.

Distance and longest paths in K5-free graphs. To compute distances, we search for
shortest simple paths. Again it is easy to see that the graph transformations do not change
the distances between the vertices. Also for the longest path problem we can guarantee the
same length of a simple path in the resulting graph, but here we have to argue more carefully.
Namely, we have to make sure that we do not get longer paths by the copies of the components
introduced in the planar arrangement of the 4-connected components. We use the fact that
subpaths of longest paths are again longest paths in a DAG.

Lemma 4.9 Let pu,v be a longest simple path from u to v in a DAG G. Let a, b be two
vertices on path pu,v and let pa,b be the subpath of pu,v from a to b. Then pa,b is a longest
simple path from a to b in G.

Since we make up to three copies of a component in our construction of a planar graph,
we have to make sure that we do not get longer paths by using the copies. We show that it
is not possible for a path to pass through a vertex and its copy.

Lemma 4.10 Let v be vertex of DAG G and let v′ be a copy of v in the planar graph G′

constructed from G. Then there is no path from v to v′ in G′.

Proof: Let C be the 4-connected component that contains v and let {v1, v2, v3} be the
separating triple that separates C from G. In G′, assume that there is a path p from v in C
to v′ in C ′. The components C and C ′ are connected by one vertex of v1, v2, v3, say v1.
Hence p can have the form p = (v, u1, . . . , ul, v1, u

′

l+1
, . . . , u′

k, v
′), where u1, . . . , ul ∈ C and

u′

l+1
, . . . , u′

k ∈ C ′. But then we have the cycle (v, u1, . . . , ul, v1, ul+1, . . . , uk, v) in C which is
a contradiction.

Path p might also go through v2 and v3. Then the argument is similar. �

We argue that the length of longest paths are not changed by the transformations. Con-
sider Figure 10. Let p be a longest path from v1 to some vertex v in G. Assume that p goes
through component C2 and that v ∈ C1. The interesting case is when p passes through v2

and v3 (in this order), because then we have two ways to go in the planar graph:

1. we can go through component C2 and pass through v′2 and then switch to C1 via v3.

2. we can go to v2 through component C ′′

2 and then to v3 through component C ′

2.
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The first case corresponds exactly to path p in G because after passing through v′2, the
path cannot go through v2 anymore by Lemma 4.10. In the second case the longest simple
path from v1 to v2 in C ′′

2 has the same length as the first part of p from v1 to v2 in C2 by
Lemma 4.9. Also, the longest simple path from v2 to v3 in C ′

2 has the same length as the
second part of p from v2 to v3 in C2. Hence, the second possibility does not lead to longer
paths. We conclude that the lengths of longest paths are not changed by the reduction.

Theorem 4.11 1. K5-free Distance ≤L
m planar Distance.

2. K5-free Long-Path ≤L
m planar Long-Path.

As a consequence, we have

Corollary 4.12 1. K5-free Distance ∈ UL ∩ coUL.

2. K5-free Long-Path ∈ UL ∩ coUL.

5 Conclusion

We showed a reduction from the reachability, the distance and the longest path problem
on K3,3-free graphs and on K5-free graphs (DAGs) to the corresponding problem on planar
graphs (DAGs), respectively. It would be interesting to extend the result to K3,4-free graphs
or to K6-free graphs, for example or even to minor-closed graph classes.
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