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Abstract

We study the density of the weights of Generalized Reed–Muller codes. Let RMp(r,m)
denote the code of multivariate polynomials over Fp in m variables of total degree at
most r. We consider the case of fixed degree r, when we let the number of variables m

tend to infinity. We prove that the set of relative weights of codewords is quite sparse:
for every α ∈ [0, 1] which is not rational of the form `

pk , there exists an interval around
α in which no relative weight exists, for any value of m. This line of research is to the
best of our knowledge new, and complements the traditional lines of research, which
focus on the weight distribution and the divisibility properties of the weights.

Equivalently, we study distributions taking values in a finite field, which can be
approximated by distributions coming from constant degree polynomials, where we do
not bound the number of variables. We give a complete characterization of all such
distributions.

1 Introduction

We study the weights of Generalized Reed–Muller codes.

Definition 1 (Generalized Reed–Muller codes). Let Fp be a prime finite field. We denote
by RMp(r, m) the rth-order Generalized Reed–Muller code with m variables. This is a linear
code over Fp, whose codewords f ∈ RMp(r, m) : F

m
p → Fp are evaluations of polynomials

over Fp in m variables of total degree at most r.

Definition 2 (Weights). Let C be a code. The weight of a codeword f ∈ C is the number
of non-zero elements in it. For C = RMp(r, m), this is

wt(f) = |{x ∈ F
m
p : f(x) 6= 0}|
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One of the main problems in coding theory is understanding the possible weights and
the distribution of the weights for various families of codes. Generalized Reed–Muller codes
are one of the more basic family of codes, and has been researched extensively. To quote [15]:

Reed–Muller (or RM) codes are one of the oldest and best understood families of codes

Understanding the weights of codewords of Generalized Reed–Muller codes is considered
to be one of the important questions in coding theory, however our current understanding
of it is quite limited. There are two traditional lines of research regarding the weights of
Generalized Reed–Muller codes: their distribution, and their divisibility properties. We
introduce in this work a third line of research, studying the density of the weights.

We study the weights of codewords of RMp(r, m) when we fix the order r and let the
number of variables m tend to infinity. This can be better described in terms of the relative
weights of the codewords.

Definition 3 (Relative weights). Let C be a code. The relative weight of a codeword f ∈ C
is the fraction of non-zero elements in it. For C = RMp(r, m), this is

rel-wt(f) =
1

pm
|{x ∈ F

m
p : f(x) 6= 0}| = Pr

x∈Fm
p

[f(x) 6= 0]

Let Wp(r, m) be the set of relative weights of codewords of RMp(r, m):

Wp(r, m) = {rel-wt(f) : f ∈ RMp(r, m)}

Since RMp(r, m) can be embedded in RMp(r, m + 1), we have Wp(r, m) ⊆ Wp(r, m + 1).
Thus it makes sense to consider the limit of the weights when m → ∞. We define Wp(r) to
be the set of weights of codewords of RMp(r, m) where we do not restrict m, i.e.

Wp(r) =
⋃

m∈N

Wp(r, m)

The set Wp(r) is contained in the interval [0, 1], and in fact can be further restricted based
on the minimal relative weight of RMp(r, m), which is well known (see for example [4]). We
are interested however in the density of the weight set. Our a-priory intuition was that
the set Wp(r) should be relatively dense, since we allow the number of variables to grow
indefinitely. However, our main theorem shows that the truth is quite far from it. In order
to state it, we first define the notion of p-rational numbers.

Definition 4 (p-rational numbers). We say a number α ∈ [0, 1] is p-rational if it is rational
of the form α = `

pk for some integers `, k.

Theorem 1 (Main theorem). Let α ∈ [0, 1] be a number which is not p-rational. Then there
exists ε > 0 such that Wp(r) contains no value in the interval (α − ε, α + ε). Equivalently,
there is no sequence of multivariate polynomials f1, f2, . . . over Fp of degree at most r, each
possibly on a different number of variables, such that limk→∞ rel-wt(fk) = α.
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Thus, around every α ∈ [0, 1] which is not p-rational, there is a ”hole”, in which there
are no relative weights of RMp(r, m).

Another way to view Theorem 1 is as a theorem about the approximation of random
variables over finite fields by low-degree polynomials.

Definition 5 (Distribution of a polynomial). The distribution of a polynomial f(x1, . . . , xm)
over Fp is defined to be the distribution of f applied to a uniform input in F

m
p .

Let X be a random variable taking values in Fp. We say X can be approximated by
degree-r polynomials, if its distribution can be arbitrarily approximated by the distribu-
tion of degree-r polynomials. That is to say, for every ε > 0, there exists a multi-variate
polynomial f(x1, . . . , xm) over Fp of total degree at most r, whose distribution is ε-close to
the distribution of X (for example in statistical distance). The following is an immediate
corollary of Theorem 1.

Corollary 2. Let X be a random variable taking values in Fp, which can be approximated
by degree-r polynomials, for some constant r. Then all the probabilities Pr[X = a] are p-
rational. In particular, X can be realized as the distribution of a single polynomial over
Fp.

So for example, we cannot have an arbitrary good approximation of perfect random bits
by constant degree polynomials over F3, for any constant degree, since 1/2 is not 3-rational.

Returning to the framework of weights of Generalized Reed–Muller codes, we note that
although the set Wp(r) is sparse, it is not finite. For example, consider the set W2(2),
the set of relative weights of quadratics over F2. The relative weight of f(x1, . . . , x2k) =

x1x2 + x3x4 + · · ·+ x2k−1x2k is 2k+1
2k+1 , and the set of these weights is infinite.

1.1 Related work

As we mentioned before, the two traditional lines of research regarding the weights of Gen-
eralized Reed–Muller codes are studying their weight distribution and their divisibility prop-
erties. We now describe them in more details.

The weight distribution of RMp(r, m) is the number of codewords below a certain weight.
The case of r = 1, i.e. of linear functions, is trivial, since all non-constant codewords have
the same weight. The case of r = 2, i.e. of quadratic functions, is also fully understood.
A theorem of Dixon [15] gives a canonical characterization of quadratic functions, and in
particular gives the possible weights and the weight distribution of quadratic functions.
By the McWilliams identity, this characterize the weight distribution of their dual codes,
which are RMp(m − 2, m) and RMp(m − 3, m). These are, to the best of our knowledge,
the only (non-trivial) orders for which complete characterization the weights of Generalized
Reed–Muller codes is known. For other orders, complete characterization is known only for
specific values of m. For example, for cubics the record is the work of Sugita, Kasami and
Fujiwara [17], characterizing the weight distribution for RM2(3, 9).

Considering general orders, several characteristics of the weights are known. The minimal
weight of non-zero codewords in RMp(r, m) is known, as are as are the codewords achieving
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this minimal distance [4]. In the case of Reed–Muller codes, corresponding to p = 2, Kasami
and Tokura [11] give a complete characterization of codewords of weight at most twice the
minimal weight of the code, and Azumi, Kasami and Tokura [1] gave a characterization of
codewords of weight at most 2.5 the minimal weight of the code. Recently, Kaufman and
the author [10] gave a relatively tight estimate on the number of codewords in Reed–Muller
codes, holding for all weights.

The second line of research is divisibility of the weights of codewords. Ax [2] proved that
all weights of codewords f ∈ RMp(r, m) are divisible by pdm/re−1. This was later generalized
to general codes [13, 5]. For a survey on divisible codes see [18] or [12].

1.2 Organization

The paper is organized as follows. Theorem 1 is proved in Section 2. The proof is based on
a technical lemma which is proved in Section 3.

2 Proof of Theorem 1

We study codewords f ∈ RMp(r, m). Equivalently, we study polynomials: f is a polynomial
over Fp in m variables of total degree at most r. First, we fix some notations. We denote
probabilities according to a distribution D by Prz∼D. For a set S we denote by US the uniform
distribution over S, and we shorthand Prz∈S for Prz∼US

. We let N = {1, 2, . . .} denote the
set of natural numbers. We will denote elements of F

m
p by x = (x1, . . . , xm), and polynomials

or functions by f(x) = f(x1, . . . , xm). When we refer to the degree of a polynomial, we will
always mean its total degree. The relative weight of a polynomial/function f : F

m
p → Fp is

the fraction of non-zero elements in it,

rel-wt(f) = Pr
x∈Fm

p

[f(x) 6= 0]

In order to prove Theorem 1 we will show that for any degree-r polynomial f(x1, ..., xm),
there exists a function g(x1, ..., xc) on a constant number of inputs (i.e. independent of m),
such that rel-wt(f) ≈ rel-wt(g). This is straight-forward if the required approximation is
fixed a-priory; we show this can be achieved even if the error is allowed to depend arbitrarily
on the number of inputs c.

Lemma 3. Let E : N → (0, 1) be an arbitrary mapping from the naturals to (0, 1). For any
constant degree r there exists a constant C = C(Fp, r, E(·)) such that the following holds: for
any degree-r polynomial f(x) = f(x1, ..., xm), there exists c ≤ C and a function g(x1, ..., xc),
such that

|rel-wt(f) − rel-wt(g)| < E(c)

Remark. In fact, a somewhat stronger version of the lemma also holds. Not only |rel-wt(f)−
rel-wt(g)| < E(c). but the statistical distance between the distributions of f and g is
bounded by E(c). However, we will not need this stronger version in the proof of Theorem 1.
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We now prove Theorem 1 using Lemma 3.

Proof of Thereom 1. Let α ∈ (0, 1) be a number which is not p-rational, and assume by
contradiction there exists a sequence of polynomials f1, f2, . . . of degree at most r, where
fk = fk(x1, ..., xmk

), whose relative weights converge to α,

lim
k→∞

rel-wt(fk) = α.

We now define a mapping δ from the naturals to (0, 1). For every c ∈ N, define δ(c) to
be the distance of α from the set of rational numbers of the form `

pc . Explicitly, δ(c) is given
by

δ(c) = min

{

α −
bαpcc

pc
,
dαpce

pc
− α

}

Notice that δ(·) is non-increasing, and by our assumption that α is not p-rational, δ(c) > 0
for all c ∈ N.

Set E(c) = δ(c)
4

. Once we fix the mapping E(·), we can use Lemma 3: there exists a
constant C = C(Fp, r, E(·)), such that for any polynomial fk there exists ck ≤ C, and a
function gk(x1, ..., xck

), such that

|rel-wt(fk) − rel-wt(gk)| < E(ck) =
δ(ck)

4
(1)

Since limk→∞ rel-wt(fk) = α, and E(·) is positive, there exists some k such that

|rel-wt(fk) − α| < E(C) =
δ(C)

4
(2)

Combining (1) and (2), and since δ(·) is non-increasing, we get that

|rel-wt(gk) − α| <
δ(ck)

4
+

δ(C)

4
≤

δ(ck)

2
(3)

We now show this cannot hold. gk is a function on ck inputs;
thus, its relative weight is rational of the form `

pck
. By definition of δ(·):

|rel-wt(gk) − α| = |
`

pck
− α| ≥ δ(ck) (4)

Combining (3) and (4) yields a contradiction. Thus, α must be p-rational.

3 Proof of Lemma 3

The proof of Lemma 3 is based on regularity results for constant degree polynomials by
Green and Tao [8] and by Kaufman and Lovett [9]. We first make some definitions. In this
section, all polynomials will be polynomials over Fp in m variables.
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Definition 6 (rank of polynomials). Let f(x) be a degree-r polynomial. The (r − 1)-rank
of f , denoted by rankr−1(f), is the minimal number of degree-(r − 1) polynomials required
to compute f . This means, rankr−1(f) is the minimal c such that there exists polynomials
g1(x), ..., gc(x) of degree at most r − 1 and a function F : F

c
p → Fp such that

f(x) = F (g1(x), ..., gc(x))

Definition 7 (regularity of polynomials). A degree-r polynomial f(x) is T -regular if rankr−1(f) >
T . A set of polynomials {f1(x), ..., fc(x)} is T -regular if all non-zero linear combinations
of them are T -regular. This means, for every a1, ..., ac ∈ Fp not all zero, let f ′(x) =
a1f1(x)+ · · ·+acfc(x). We require that f ′ is not identically zero, and that if degree(f ′) = k,
then rankk−1(f

′) > T .

We will need the following result from [8]: any degree-r polynomial f is a function of
a constant number of regular polynomials g1, . . . , gc, even if the regularity requirements on
g1, . . . , gc depend on the number of polynomials c:

Lemma 4 (Lemma 2.3 in [8]). Let T : N → N by an arbitrary mapping. There exists a
constant C1 = C1(Fp, r, T (·)) such that the following holds. For any degree-r polynomial
f(x) there exists some c ≤ C1, a set of polynomials g1(x), ..., gc(x) of degree at most r and
a function F : F

c
p → Fp, such that:

1. f(x) = F (g1(x), ..., gc(x)),

2. The set of polynomials {g1(x), ..., gc(x)} is T (c)-regular.

We also need a result relating regularity of polynomials to their joint distribution.

Definition 8 (distribution of polynomials). Let f : F
m
p → Fp be a polynomial. Its dis-

tribution D(f) is the distribution (taking values in Fp) of applying f on a random input
x ∈ F

m
p ,

D(f) = f(x)
x∼UFm

p
.

For a set of polynomials f1, . . . , fc : F
m
p → Fp, their joint distribution D(f1, . . . , fc) (taking

values in F
c
p) is the distribution of applying f1, . . . , fc on a common random input x ∈ F

m
p ,

D(f1, . . . , fc) = (f1(x), . . . , fc(x))
x∼UFm

p
.

Definition 9 (statistical distance). Let D′, D′′ be two distributions taking values in the
same set S. Their statistical distance is

dist(D′, D′′) =
1

2

∑

s∈S

|Pr[D′ = s] − Pr[D′′ = s]| .

The following result from [9] shows that polynomials whose distribution is not close to
uniform must have low rank:
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Lemma 5 (Theorem 4 in [9]). Let f(x) be a degree-r polynomial such that dist(D(f), UFp
) ≥

ε. Then rankr−1(f) ≤ C2(Fp, r, ε).

We combine Lemma 4 and Lemma 5 to prove the following lemma, showing that any
degree-r polynomial is a function of a constant number of polynomials which are uncorre-
lated.

Lemma 6. Let E : N → (0, 1) be an arbitrary mapping from the naturals to (0, 1). For any
constant degree r there exists a constant C = C(Fp, r, E(·)) such that the following holds: For
any degree-r polynomial f(x) there exists some c ≤ C, a set of polynomials g1(x), . . . , gc(x)
of degree at most r and a function F : F

c
p → Fp, such that:

1. f(x) = F (g1(x), . . . , gc(x)),

2. dist(D(g1, . . . , gc), UFc
p
) < E(c).

Proof. We will choose T : N → N large enough, to be specified later, and apply Lemma 4.
Let g1, . . . , gc be the polynomials given by the lemma such that f(x) = F (g1(x), . . . , gc(x)),
and the set {g1, . . . , gc} is T (c)-regular. We will show that if we choose T (·) large enough,
we can guarantee that D(g1, . . . , gc) is close to uniform.

We first reduce the task to guaranteeing that all the non-zero linear combinations of
g1, . . . , gc are close to uniform. We claim that in order to guarantee that dist(D(g1, . . . , gc), UFc

p
) <

E(c), it is enough to guarantee for every non-zero linear combination g′(x) = a1g1(x)+ · · ·+
acgc(x) that dist(D(g′), UFp

) < p−cE(c). The proof is by simple Fourier analysis: see for
example Claim 33 in [3].

Given this reduction, we show it is enough to require that g′ is regular. Assume dist(D(g′), UFp
) ≥

p−cE(c). Either g′ ≡ 0, or, by Lemma 5,if degree(g′) = k then

rankk−1(g
′) ≤ C2(Fp, k, p−cE(c)) (5)

In any case, if we set T (c) = max1≤k≤r C2(Fp, k, p−cE(c)), we get that the set {g1, . . . , gc}
is not T (c)-regular, since g′ is not T (c)-regular. This is a contradiction to the promise of
Lemma 4.

Hence we conclude that the joint distribution D(g1, . . . , gc) has statistical distance of at
most E(c) to the uniform distribution F

c
p, where c ≤ C and

C = C1(Fp, d, T (·))

Before proving Lemma 3, we will also need the following simple claim: the statistical dis-
tance between distributions bounds the probability that a function will be able to distinguish
between them:

Claim 7. Let D′, D′′ be two distributions taking values in the same set S. Then for any
subset S ′ ⊆ S:

| Pr
z∼D′

[z ∈ S ′] − Pr
z∼D′′

[z ∈ S ′]| ≤ dist(D′, D′′)
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We are now ready to prove Lemma 3.

Proof of Lemma 3. Let f(x) be a degree-r polynomial. Apply Lemma 6. There exists some
C = C(Fp, r, E(·)) such that there is c ≤ C, a set of polynomials g1(x), ..., gc(x) and a
function F : F

c
p → Fp such that

1. f(x) = F (g1(x), . . . , gc(x)),

2. dist(D(g1, . . . , gc), UFc
p
) < E(c).

We claim that the function F (y1, . . . , yc), where y1, . . . , yc ∈ Fp are independent variables,
have approximately the same relative weight as that of f(x) = F (g1(x), . . . , gc(x)). We
bound:

|rel-wt(f) − rel-wt(F )| =

| Pr
x∈Fm

p

[F (g1(x), . . . , gc(x)) 6= 0] − Pr
y1,...,yc∈Fp

[F (y1, . . . , yc)] 6= 0| =

| Pr
x∈Fm

p

[(g1(x), . . . , gc(x)) ∈ F−1(Fp \ {0})] − Pr
y1,...,yc∈Fp

[(y1, . . . , yc) ∈ F−1(Fp \ {0})| ≤

dist(D(g1, . . . , gc),D(y1, . . . , yc)) =

dist(D(g1, . . . , gc), UFc
p
) < E(c).

4 Open problems

We studied in this work the density of the weights of RMp(r, m) where we keep r constant.
We proved that any α ∈ [0, 1] which is not p-rational, cannot be the limit of relative weights
of constant degree polynomials. However, we can ask what is the asymptotics of the degrees
of polynomials that are required to approximate α, i.e, for every ε > 0, what should be the
the degree of f(x) such that |rel-wt(f) − α| < ε, and how do this degree depend on ε?

Another open problem is giving good bounds on the constant C in Lemma 3. We note
that the current proof depends on Lemma 4 and Lemma 5, for which no good bounds are
currently known.
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