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Abstract

We study ΣΠΣ(k) circuits, i.e., depth three arithmetic circuits with top fanin k. We give
the first deterministic polynomial time blackbox identity test for ΣΠΣ(k) circuits over the field
Q of rational numbers, thus resolving a question posed by Klivans and Spielman (STOC 2001).

Our main technical result is a structural theorem for ΣΠΣ(k) circuits that compute the zero
polynomial. In particular we show that if a ΣΠΣ(k) circuit C =

∑

i∈[k] Ai =
∑

i∈[k]

∏

j∈[d] `ij

computing the zero polynomial, where each Ai is a product of linear forms with coefficients in
R, is simple (gcd{Ai | i ∈ [k]} = 1) and minimal (for all proper nonempty subsets S ⊂ [k],
∑

i∈S Ai 6= 0), then the rank (dimension of the span of the linear forms {`ij | i ∈ [k], j ∈ [d]})
of C can be upper bounded by a function only of k. This proves a weak form of a conjecture
of Dvir and Shpilka (STOC 2005) on the structure of identically zero depth three arithmetic
circuits. Our blackbox identity test follows from this structural theorem by combining it with
a construction of Karnin and Shpilka (CCC 2008).

Our proof of the structure theorem exploits the geometry of finite point sets in Rn. We
identify the linear forms appearing in the circuit C with points in Rn. We then show how to
apply high dimensional versions of the Sylvester–Gallai Theorem, a theorem from incidence-
geometry, to identify a special linear form appearing in C, such that on the subspace where the
linear form vanishes, C restricts to a simpler circuit computing the zero polynomial. This allows
us to build an inductive argument bounding the rank of our circuit. While the utility of such
theorems from incidence geometry for identity testing has been hinted at before, our proof is
the first to develop the connection fully and utilize it effectively.
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1 Introduction

Identity testing is the following problem: given an arithmetic circuit1 computing a multivariate
polynomial f(X1, . . . ,Xn) over a field F, determine if the polynomial is identically zero. Algorithms
for primality testing [AB03], perfect matching [MVV87] and some fundamental structural results in
complexity such as the PCP Theorem and IP=PSPACE involve testing if a particular polynomial
is zero.

Schwartz [Sch80] and Zippel [Zip90] observed that by evaluating a polynomial at randomly cho-
sen points from a sufficiently large domain, we can determine if the polynomial is nonzero with
high probability. The correctness of their algorithm follows from the simple observation that any
polynomial of total degree d cannot have many roots over a field whose size is much larger than
d. The Schwartz–Zippel Lemma combined with a standard counting argument implies that for
every integer s, there is a poly(s)-sized set of points P such that for every circuit C of size s, C
computes the zero polynomial if and only if C(a) = 0 for every a ∈ P. Blackbox Identity testing
is the problem of giving an explicit2 construction of such a test set P. Any explicit construction of
such a set of points immediately gives, via interpolation, an explicit polynomial f which cannot be
computed by circuits of size s [Agr05].

A more surprising connection between identity testing and the task of proving arithmetic circuit
lower bounds was discovered by Impagliazzo and Kabanets [IK03] who showed that any polynomial-
time algorithm for identity testing (not necessarily a blackbox identity test3) would also imply
certain arithmetic circuit lower bounds. More specifically, they showed that if identity testing has
an efficient deterministic polynomial time algorithm then (almost) NEXP does not have polynomial
size arithmetic circuits. For the pessimist, this indicates that derandomizing identity testing is a
hopeless problem. For the optimist, this means on the contrary that to obtain an arithmetic circuit
lower bound, we “simply” have to prove a good upper bound on identity testing.

Because of the difficulty of the general problem, research has focussed on bounded depth arithmetic
circuits. Grigoriev and Karpinski [GK98] have shown that any depth three arithmetic circuit over
a finite field computing the permanent or the determinant requires exponential size4. But progress
in this direction stalled and very recently, an “explanation” for this was discovered by Agrawal
and Vinay [AV08] who showed that there is chasm at depth four - proving exponential lower
bounds for depth four arithmetic circuits already implies exponential lower bounds for arbitrary
depth arithmetic circuits. They also showed that a complete blackbox derandomization of Identity
Testing problem for depth four circuits with multiplication gates of small fanin implies a nearly
complete derandomization of general Identity Testing. As most of these questions are fairly easy

1Arithmetic circuits are circuits with two types of internal nodes/gates: a × gate computes the product of its
inputs whereas a + gate is allowed to compute an arbitrary linear combination of its inputs, and the wires carry
elements of a field F.

2Over infinite fields such as the rationals, we require more so that the evaluation can be carried out efficiently -
the bit-length of the coordinates of the points in P need to be polynomially bounded. Furthermore, if the degree of
the polynomial computed is huge then we also require the construction to give a prime of small bit-length so that
the computation can be carried out modulo p.

3A non-blackbox algorithm is given a full description of the circuit and it needs to decide whether it is identically
0.

4The size of the field is held constant and a lower bound is obtained on the size of the circuit as a function of the
dimension of the matrix.
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for depth two circuits, we see that depth three circuits stand between the relatively easy (depth-
two) and the difficult, fairly general case (depth-four). Hence it is a worthwhile goal to get a good
understanding of depth-three circuits.

Another important direction of research, pursued in the works of Chen and Kao [CK00], Lewin
and Vadhan [LV98], Klivans and Spielman [KS01] and Agrawal and Biswas [AB03] on the identity
testing problem has been the effort to take advantage of the structure of a polynomial to reduce
the number of random bits needed for identity testing. In this process, Klivans and Spielman gave
a blackbox identity testing algorithm for depth two arithmetic circuits and posed as a challenge
the problem of devising blackbox identity testers for depth three circuits with bounded top fanin.
Recall that a depth three arithmetic circuit, also called a ΣΠΣ-circuit, has an addition gate at
the top (output) layer, followed by multiplication gates at the middle layer, followed by addition
gates at the bottom layer, the gates being of arbitrary fanin5. In other words, a ΣΠΣ circuit is
a sum of terms, each of which is a product of a linear function of the input variables. We denote
the set of n input, depth three circuits, where the top addition gate has fanin k, and the middle
multiplication gates have fanin at most d, by ΣΠΣ(k, d, n). The challenge posed by Klivans and
Spielman was taken up by Dvir and Shpilka [DS05] and then by Kayal and Saxena [KS06] and
a non-blackbox deterministic polynomial-time algorithm was devised (see also [AM07]). Recently
Karnin and Shpilka [KS08a] obtained a quasi-polynomial time blackbox identity test for ΣΠΣ(k, d, n)
circuits. Despite the progress made on this question, a deterministic polynomial-time blackbox test
had remained elusive.

In this paper we fully resolve the Klivans–Spielman challenge for arithmetic circuits with rational
coefficients by giving the first deterministic blackbox identity test for ΣΠΣ(k, d, n) circuits whose
running time, for every fixed value of k, is polynomial in d and n. Our main technical contribution
towards the proof of this result is a structural theorem for such circuits that answers a weak form
of a conjecture by Dvir and Shpilka. In particular we prove that the “rank” of bounded top-fanin
ΣΠΣ circuits is a constant depending only on the size of the top fanin. Combined with a result
from [KS08a] which says that a good rank bound suffices for black-box identity testing, we obtain
the full result. The proof of our structure theorem uses results from the incidence geometry of Rn.
In particular we invoke a high dimensional version of the Sylvester–Gallai Theorem that enables us
to identify certain configurations of linear forms appearing in any high rank circuit that prevent it
from being identically zero. The survey by Borwein and Moser [BM90] contains a good introduction
to the Sylvester–Gallai Theorem - its history, its proofs and its many generalizations. Before we
state the conjecture and our main result, we introduce some terminology.

2 Definitions and statement of results

[k] denotes the set {1, 2, . . . , k}. Q denotes the field of rational numbers and R the field of real
numbers.

Depth Three Arithmetic Circuits. We consider arithmetic circuits with coefficients in a field
F (in this paper, F will always be either Q or R) . A ΣΠΣ circuit C is a formal expression of the

5If the depth three circuit has a multiplication gate at the top then problems pertaining to identity testing and
lower bounds boil down to the relatively easy case of depth two circuits.
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form
∑

i∈[k]

Ai =
∑

i∈[k]

∏

j∈[d]

`ij,

where the `ij are linear forms of the type `ij =
∑

k∈[n] ak · Xk = a · X, where a = (a1, . . . , an) is a
fixed vector in Qn, and X = (X1, . . . ,Xn) is the tuple of indeterminates. k is the fanin of the top
gate of the circuit and d is the fanin of each multiplication gate Ai. The Ai’s are referred to as the
terms or the constituent ΠΣ subcircuits of C and the `ij ’s as the set of linear forms that belong to
the circuit. Recall that we denote the class of such circuits by ΣΠΣ(k, d, n).

Remark Note that the above definition only captured homogeneous circuits. For the purpose
of identity testing, we can assume this without loss of generality. Indeed, notice that a polynomial
C(X1, . . . ,Xn) of degree less than or equal to d is zero if and only if the corresponding homogeneous
polynomial Zd ·C(X1

Z
, . . . , Xn

Z
) is zero. This observation can be used to homogenize the input circuit

C. Notice also that after the homogenization all multiplication gates {Ai} have the same fanin d.
In the rest of the paper we will assume that the input circuit is homogeneous, i.e. the `ij’s as linear
forms (zero constant term) and all the multiplication gates have the same fanin d.

When the context requires it, we will drop some of the parameters in talking about this class of
circuits. ΣΠΣ(k) will denote the set of ΣΠΣ circuits with top fanin k and ΣΠΣ(k, d) will be the set
of ΣΠΣ circuits with top fanin k and middle (multiplication gate) fanin d. Given such a circuit, we
can naturally associate it with the polynomial computed by it. We say that C ≡ 0 if the polynomial
computed by C is identically zero. We are now ready to state our main result which shows that for
every fixed k, there is a deterministic blackbox identity tester for the class of ΣΠΣ(k, d, n) circuits
over the field Q that runs in time polynomial in n and d.

Theorem 2.1 [Blackbox PIT for ΣΠΣ(k) circuits] There is a deterministic algorithm that

takes takes as input a triple (k, d, n) of natural numbers and in time poly(n) · d2O(k·log k)
, outputs a

set P ⊂ Zn with the following properties:

1. Any ΣΠΣ(k, d, n) circuit C with rational coefficients computes the zero polynomial if and only
if C(a) = 0 for every a ∈ P .

2. The number of points in P is poly(n) · d2O(k·log k)
.

3. For every (a1, . . . , an) ∈ P and every i ∈ [n] : |ai| ≤ poly(2n2
· d) · 22O(k log k)

. In particular,
the bit-length of each point in P is 2O(k log k) · O(n3 · log d).

Remark.

1. Notice that in the theorem above, the number of points in P and the bit-lengths of these
points are both independent of the bit-lengths of the constants from Q used in the circuit.
Hence we can allow arbitrary constants from Q to be used on the edges coming into addition
gates in the circuit. We get this feature because the two main components of the proof,
the structure theorem (Theorem 2.2) as well as the result from [KS08a] (Lemma 2.3) are
independent of the bit-lengths of the constants from Q used in the circuit.
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2. For every fixed value of k, the algorithm for the construction of the set P alluded to in the
above theorem can in fact be implemented in TC0. Combined with the observation that a
given depth three circuit can be evaluated at a given point in TC0, we get a deterministic
P-uniform TC0-algorithm for identity testing of ΣΠΣ(k, d, n) circuits. Previously no efficient
deterministic algorithm, not even a non-blackbox one, for identity testing of ΣΠΣ(k) was
known which can be implemented in TC0. We do not stress the constant depth computability
because it is not the main point of our result. But the ability to do identity testing using
small depth uniform circuits can potentially be useful at other places, such as in the context
of the question [MVV87]: Is BipartiteMatching ∈ NC ?

3. For concreteness, we only state our results over Q but our theorem is valid over any field
that can be embedded into the real numbers, in particular for any totally real extension of
Q. Over such fields, the same set of points as constructed above suffices for identity testing.

4. As noted in the introduction, a blackbox identity testing algorithm for any class of circuits
can in general be used to construct explicit polynomials that are hard to compute by the
corresponding class of circuits. For the class of ΣΠΣ(k) arithmetic circuits however, such
polynomials were already known. For example, Shpilka and Wigderson [SW01] have shown
that the higher degree elementary symmetric polynomials cannot be computed by such cir-
cuits.

After introducing the requisite terminology, we state the two main ingredients leading to this
theorem - our proof of a conjecture by Dvir and Shpilka and a construction of rank preserving
subspaces by Karnin and Shpilka.

2.1 Notions related to a ΣΠΣ circuit

Let C =
∑

i∈[k] Ai =
∑

i∈[k]

∏

j∈[d] `ij be a ΣΠΣ circuit. We give the following definitions:
minimal: We say that C is minimal if no strict nonempty subset of its constituent ΠΣ polynomials
{A1, . . . , Ak} sums to zero.
simple: We say that C is simple if the gcd of its constituent ΠΣ polynomials, gcd(A1, A2, . . . , Ak)
equals one. The simplification of a ΣΠΣ-circuit C, denoted Sim(C), is the ΣΠΣ circuit obtained
by dividing each term by the gcd of all the terms. i.e.,

Sim(C)
def
=

∑

i∈[k]

Ai(X)

g(X)
, where g(X) = gcd(A1, . . . , Ak)

rank: Identifying each linear form ` =
∑

i∈[k] ai · Xi with the vector (a1, . . . , an) ∈ Rn, we define
the rank of C to be the dimension of the vector space spanned by the set {`ij | i ∈ [k], j ∈ [d]}.
pairwise-rank: For a ΣΠΣ(k) circuit C =

∑

i∈[k] Ai, we define the pairwise-rank of C to be
min1≤i<j≤k{rank(Sim(Ai + Aj))}, where Ai + Aj is the subcircuit of C containing just the two
multiplication gates Ai and Aj. If C has only one multiplication gate, we say the pairwise-rank of
C is ∞.
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2.2 The Dvir–Shpilka conjecture and the main Structural Result

Very roughly, the conjecture of Dvir and Shpilka [DS05] asserts that for every k, there is a constant
c(k) such that if a depth three circuit C with top fanin k computes the zero polynomial then the
rank of C is at most c(k) (independent of the degree d of the intermediate polynomials computed
at the different multiplication gates). As a step towards the conjecture, a poly(2k2

· log d) upper
bound on the rank was obtained by Dvir and Shpilka [DS05]. This was subsequently improved by
Saxena and Seshadri [SS08] to (poly(k) · log d). Over finite fields, this conjecture was disproved by
Kayal and Saxena [KS06] but the situation over fields of characteristic zero remained unclear. The
conjecture soon revealed its fundamental nature - the weaker polylogarithmic upper bound was
used by Karnin and Shpilka[KS08a] to give a quasipolynomial time deterministic blackbox identity
test for ΣΠΣ circuits with bounded top fanin. It was also used by Shpilka [Shp07] and by Karnin
and Shpilka [KS08b] to give a quasipolynomial time algorithm for reconstruction of ΣΠΣ circuits.
In this paper, we prove the conjecture of Dvir and Shpilka over the field R of real numbers, and
therefore also over all subfields of R such as Q, the field of rational numbers. We then combine
this result with ideas from [KS08a] to get an efficient algorithm for blackbox identity testing of
ΣΠΣ-circuits with bounded top-fanin.

Theorem 2.2 [Structure Theorem: Rank bound for ΣΠΣ(k) circuits] For every k, there
exists a constant c(k) (where c(k) ≤ 3k((k + 1)!)2 = 2O(k·log k) ) such that every ΣΠΣ(k) circuit C
with coefficients in R that is simple, minimal, and computes the zero polynomial has rank(C) ≤ c(k).

Remark.

1. Dvir and Shpilka conjectured that c(k) is in fact a polynomially increasing function of k. We
are able to only prove the weaker poly(2k·log k) upper bound on c(k). The best previously
known bound was (poly(k) · log d) [SS08] (note the dependence on d).

2. Our proof techniques also enable us to prove the structure theorem above (and hence blackbox
identity testing) for the case k = 3 over complex numbers and over prime fields of very large
characteristic. For more discussion about these results and why our proof does not go through
for larger values of k over these fields, see Appendix A.

2.3 From the Rank Bound to Identity Testing

We give below the construction of Karnin and Shpilka [KS08a] which used ideas from an earlier
work of Gabizon and Raz [GR05] to show how the rank bound of Theorem 2.2 translates into the
blackbox identity testing algorithm of Theorem 2.1.

Lemma 2.3 [Translating rank bounds into a blackbox identity test.] [KS08a] Let F be
a field and R(k, d) be an integer such that every minimal and simple ΣΠΣ(k, d, n) circuit over F
computing the zero polynomial has rank at most R(k, d). For α ∈ F let Aα be the n × R(k, d)

matrix for which (Aα)i,j = αi(j+1). Let bα
def
= (α,α2, . . . , αn). Let S, T be subsets of F such that

|S| = n ·
(

(

kd
2

)

+ 2k
)

·
(

R(k,d)+2
2

)

+ 1 and |T | = d + 1. Let P ⊂ Fn be the following set of points.

P
def
=

{

Aα · x + bα : α ∈ S and x ∈ TR(k,d)
}

.
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Then for every ΣΠΣ(k, d, n) circuit C, C is identically zero if and only if C(a) = 0 for all a ∈ P.

This lemma can be applied to our situation as follows.

Proof of Theorem 2.1 We set F = Q and using Theorem 2.2, we get that R(k, d) = c(k) =
2O(k·log k) is independent of d. We choose S to be {1, 2, . . . ,m} where

m = n ·

((

kd

2

)

+ 2k

)

·

(

c(k) + 2

2

)

+ 1

and T to be {1, 2, . . . , d + 1}. We apply the above lemma to these choices of F, R(k, d), S and T .
We thus get a set P which satisfies property (1). The number of points in P is |S| · |T | so that

|P | = poly(n) ·d2O(k log k)
. Thus P satisfies property (2). Every coordinate of a point in P is the dot

product of two vectors of length R(k, d) = c(k) whose entries have bit-length 2O(k log k) ·O(n2 · log d).
This means that the bit-length of each point in P is 2O(k log k) · O(n3 · log d). This proves property
(3). Clearly, this set P is very explicit - in fact it is so explicit that for every fixed k, P can be
computed in the complexity class P-uniform TC0. This completes the proof of the theorem.

�

The rest of this article is devoted to a proof of Theorem 2.2.

3 Organization

The rest of this paper is organized as follows. In Section 4, we give an overview of the techniques
that we use in the proof of Theorem 2.2. In Section 5, we give the proof of Theorem 2.2 while
deferring the proof of a key lemma used in the proof to Section 7. We give a sketch of the proof of this
lemma and its connection to the Sylvester–Gallai Theorem and a related hyperplane decomposition
lemma in Section 6. In Section 7 we prove the main technical (key) lemma, which we call the fanin
reduction lemma, and in Section 8 we prove the hyperplane decomposition lemma. We conclude
with a discussion of open problems in Section 9. Finally, in Appendix A, we discuss some of the
conjectures formulated in the conclusion.

4 Overview of Proof of Rank Bound

In this section we give an overview of the proof of the structure theorem (Theorem 2.2). The proof
proceeds by induction on the number of multiplication gates in the circuit. As induction hypothesis,
we assume that any simple, minimal ΣΠΣ circuit with fewer than k multiplication gates that is
identically 0 cannot have high rank. Now if possible, let C =

∑k
i=1 Ai =

∑k
i=1

∏

`ij be a simple
and minimal circuit in n variables that has high rank, and such that C ≡ 0. We will obtain a
contradiction. For the sake of simplicity, we assume that each linear form `ij that appears in a
gate of the circuit C, appears there with multiplicity one only. In Section 7, when we give the full
argument, we remove this assumption.

6



Looking at the circuit modulo a linear form. We will be looking at the circuit modulo an
appropriately chosen linear form. If ` = a1 · X1 + · · · + an · Xn is a linear form with a1 6= 0,
then the image of a circuit C modulo ` is defined to be circuit obtained by replacing X1 by
− 1

a1
· (a2 · X2 + . . . + an · Xn) in C. i.e.

C′(X2,X3, . . . ,Xn) = C (mod `)
def
= C(−

1

a1
· (a2 · X2 + . . . + an · Xn),X2, . . . ,Xn).

(see Section 7 for a more accurate definition that avoids the degenerate case when a1 = 0.) Observe
that if Ai is a ΠΣ polynomial of rank r and ` is a linear form, then either Ai equals zero modulo
` (i.e. ` divides Ai) or the rank of Ai drops by at most one to r − 1. Now if we pick a linear form
` which occurs in one of the constituent ΠΣ polynomials, say in A1, then A1 equals zero modulo `
so that the resulting circuit C′ = C (mod `) would have at most k − 1 multiplication gates, each
surviving gate having rank at most one less than what it had previously. Notice that if C computes
the zero polynomial then so does the circuit C′. If this circuit C′ was both simple and minimal we
would be immediately done by the induction hypothesis.

However, in general it may not be possible to ensure C′ is simple and minimal, and hence we use
an intermediate notion, pairwise-rank, that very effectively captures and deals with the issues of
simplicity and minimality. We first show that (1) any simple and minimal circuit computing the
zero polynomial that has high rank must also have high pairwise rank. We then show that (2) no
circuit with high pairwise rank can compute the zero polynomial.

Step (1) is the easier of the two steps. We show that if the circuit C has low pairwise-rank, then
by setting some of the variables of the circuit to random values, we can obtain a new circuit that
is still simple, minimal, has high rank, computes the zero polynomial, but has fewer multiplication
gates (see Lemma 5.3). This contradicts the induction hypothesis.

Step (2) again uses the induction hypothesis. One of the key lemmas used here, which we refer to
as the fanin reduction lemma, roughly asserts that if C is a simple circuit with high pairwise rank,
then there exists a linear form ` in C such that if we go modulo `, we get a circuit C′ that still
has high pairwise rank, but with fewer multiplication gates. Also, if C ≡ 0, then C′ ≡ 0. From C′,
we then show how to extract a subcircuit that is simple, minimal, computes the zero polynomial
and has high rank. This will contradict the induction hypothesis. The bulk of the work goes into
proving the fanin reduction lemma, Lemma 5.5. The vital ingredient in the proof of Lemma 5.5 is
a theorem from incidence geometry called the high-dimensional Sylvester–Gallai Theorem. Before
we state the Sylvester–Gallai Theorem, we first translate our problem into geometrical language.

4.1 A correspondence between ΣΠΣ(k, d, n) circuits and k-colored points in Rn

We identify the linear forms appearing in C with colored points in Rn. A linear form ` = a1 ·X1 +
· · · + an · Xn corresponds to the point P` = (1, a2

a1
, . . . , an

a1
) ∈ Rn (see Section 7 for a more accurate

definition of this correspondence which avoids the degenerate case when a1 = 0). If the linear form
` ∈ Ai then we assign the color i to the point P`. Since a linear form could appear in multiple gates,
in general a point could have many colors (see Section 7 for details). Our choice of the mapping of
linear forms to points satisfies the property that 3 linear forms are linearly dependent iff they map
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to collinear points. For two points P 6= Q ∈ Rn we will denote by λ(P,Q) the line joining P and
Q. For a point P and a color i we will denote by LP

i the pencil of lines {λ(P,Q) : Q has color i}.6

Translating the search for a suitable linear form into the search for a suitable point.
Let the set of all points in the image of the set of linear forms in C be S. For a color i ∈ [k], we
will denote by Si the set of points of color i. Now fix a linear form ` that occurs in C and consider
two multiplication gates, say A1 and A2 occurring in C which do not contain `. Consider the set
S1∆S2 which is the symmetric difference of the two sets of points of color 1 and 2 respectively
(see Section 7 for a more accurate definition which takes care of degenerate cases when a linear
forms occurs in a gate with a higher multiplicity). Then the dimension of the space spanned by
points in S1∆S2 corresponds to the rank of the simplification of the circuit A1 + A2. Now consider
the two pencils of lines LP`

1 and LP`

2 . Notice that LP`

1

⋂

LP`

2 is again a pencil of lines through P`.
Now gcd(A1 (mod `), A2 (mod `)) is nontrivial (6= 1) if and only if there exists a line common
to these two pencils, i.e. LP`

1

⋂

LP`

2 6= φ. In fact the degree of gcd(A1 (mod `), A2 (mod `)) is

exactly the number of lines in the pencil LP`

1

⋂

LP`

2 . Now let us consider the symmetric difference

LP`

1 ∆LP`

2 which is again another pencil of lines through P`. The requirement that C modulo ` has
high pairwise rank, i.e. for all pairs of gates A1, A2 that do not contain `, the simplification of
A1 (mod `) + A2 (mod `) should have high rank, then exactly translates into the requirement that
the lines in this pencil LP`

1 ∆LP`

2 should span a high dimensional space.

Applying the Sylvester–Gallai Theorem. At this point it is not a priori clear as to why there
should exist even a single line in the pencil LP`

1 ∆LP`

2 . In fact if we fix the point P` then such
an assertion is easily seen to be false. We show that there indeed exists a linear form `, and the
corresponding point P` such that for every pair of colors i and j (P` has color neither i nor j),
the lines in the pencil LP`

i ∆LP`

j span a space of large enough dimension. The proof of this fact
forms the main substance of the proof of our fanin reduction lemma, Lemma 5.5. In order to
prove this result, we crucially use the Sylvester–Gallai Theorem, a result from incidence geometry.
The basic Sylvester–Gallai Theorem roughly states that if S is a finite set of points in Rn that
are not all collinear, then there exists a line passing through exactly 2 points of S. This kind of
statement is already in the spirit of what we want to show. We use a high dimensional version of
the Sylvester–Gallai Theorem along with some colorful combinatorics to obtain our final result7.

5 The Rank Bound

In this section we the circuit rank bound, Theorem 2.2. The main technical result that we use is
Lemma 5.5 (which we call the fanin reduction lemma). A sketch of the proof of the fanin reduction
lemma is given in Section 6, and the full proof given in Section 7. We first state some lemmas and
definitions related to circuit transformations that will be useful in the proof of Theorem 2.2. We
then state the fanin reduction lemma (Lemma 5.5) and show how to combine the results on circuit
transformations and the fanin reduction lemma to give a proof of Theorem 2.2.

6A pencil of lines is just a set of lines through a common point.
7Dvir and Shpilka [DS05] even observed that a certain colorful analog of the Sylvester–Gallai Theorem would imply

the rank bound for the special case of k = 3. Such a result had in fact been proved much earlier by Edelstein and
Kelly [EK66]. Unfortunately, such a direct approach does not generalize for higher values of k. For more discussion
about these results, see Appendix A.
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Remark For the rest of this paper, all ΣΠΣ circuits will have coefficients in R.

5.1 Circuit Transformations

In this section we discuss some operations on circuits that will be useful in the proof of the rank
bound (Theorem 2.2).

Lemma 5.1 [Invariance of circuit properties under invertible linear transformations of
the variables.] Let π : Rn → Rn be an invertible linear transformation. Let C =

∑

i∈[k] Ai =
∑

i∈[k]

∏

j∈d `ij be a ΣΠΣ circuit, and let π(C) be the circuit
∑

i∈[k] π(Ai) =
∑

i∈[k]

∏

j∈d π(`ij),
where for a linear form ` = a · X, π(`) = π(a) · X. Then, π(C) is simple ⇐⇒ C is simple, π(C)
is minimal ⇐⇒ C is minimal, π(C) ≡ 0 ⇐⇒ C ≡ 0, and rank(π(C)) = rank(C).

The proof of this lemma is immediate from definitions, and we omit it. We say that two circuits
C and C′ are equivalent, denoted by C ∼ C′, if there exists an invertible linear transformation
π : Rn → Rn such that C = π(C′).

Lemma 5.2 [Schwartz–Zippel Lemma] Let f(X1,X2, . . . ,Xn) be a nonzero n variate poly-
nomial of degree d over R. Then for (a1, a2, . . . , an) chosen uniformly at random in [0, 1]n, the
probability that f(a1, a2, . . . , an) = 0 is zero.

Lemma 5.3 [Setting linear forms to random values.] Let C ≡ 0 be a simple and mini-
mal ΣΠΣ circuit in the n indeterminates X1,X2, . . . ,Xn. Let rank(C) = r. Let t ∈ [n], and let
α1, α2, . . . , αt be real numbers picked independently and uniformly from [0, 1]. Let Z be an indeter-
minate, and consider the new circuit C′ formed by replacing Xi by αiZ for all i ∈ [t]. Then with
probability 1, C′ is minimal and rank(Sim(C′)) ≥ r − t.

Proof Let C =
∑

i∈[k] Ai =
∑

i∈[k]

∏

j∈dj
`ij. and after replacing Xi by αiZ for all i ∈ [t], let

C′ =
∑

i∈[k] A
′
i =

∑

i∈[k]

∏

j∈dj
`′ij .

With probability 1 C′ is minimal: We will show that with probability 1, for all S ⊆ [k],
∑

i∈S A′
i 6≡ 0. Let S ⊂ [k], and let PS = PS(X1,X2, . . . ,Xn) be the polynomial computed by

∑

i∈S Ai. Since C is minimal, PS is nonzero. Let the polynomial computed by
∑

i∈S A′
i be P ′

S =
PS(α1Z,α2Z, . . . , αtZ,Xt+1, . . . ,Xn). If P ′

S ≡ 0, then this must even hold for the setting of Z = 1,
i.e. PS(α1, α2, . . . , αt,Xt+1, . . . ,Xn) ≡ 0. Hence this must also be true for any settings of the
variables Xt+1, . . . ,Xn to values in [0, 1], and in particular to random values. By the Schwartz–
Zippel Lemma (Lemma 5.2), this can happen only with probability 0. Hence, for any S ⊂ [k], we
get that with probability 1,

∑

i∈S A′
i 6≡ 0. Hence, by the union bound, with probability 1, for all

S ⊂ [k],
∑

i∈S A′
i 6≡ 0, i.e. C′ is minimal.

With probability 1 rank(Sim(C′)) ≥ r − t: Observe that the Schwartz–Zippel Lemma
(Lemma 5.2), implies that with probability 1, no linear form appearing in C gets mapped to zero un-
der the random substitutions. Also, with probability 1, just changing X1 to α1Z will not change the
rank of the circuit at all. With probability 1, the definition of rank implies that the remaining t−1
substitutions could have made the rank of C drop by at most t−1. Hence with probability 1 we get
that rank(C′) ≥ rank(C)−(t−1) = r−t+1. Also, since8 rank(C′) ≤ rank(Sim(C′))+rank(gcd(C′)),

8where for gcd(C′) =
∏

`i, we have rank(gcd(C′)) = dim(span{` : ` | gcd(C′)})
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it suffices to show that with probability 1, rank(gcd(C′)) ≤ 1. In fact, we will show that with prob-
ability 1, for all linear forms ` such that ` | gcd(C′) (i.e. ` divides gcd(C′)), it also holds that ` | Z,
and this will imply the result.

Let `a = a1X1 + a2X2 + · · · + anXn and `b = b1X1 + b2X2 + · · · + bnXn be any two nonzero linear
forms in C such that gcd(`a, `b) = 1. Hence, for all γ ∈ R, `a − γ`b 6= 0. Let `′a = a1α1Z + a2α2Z +
· · · + atαtZ + at+1Xt+1 · · · + anXn, and `′b = b1α1Z + b2α2Z + · · · + btαtZ + bt+1Xt+1 · · · + bnXn.
We will show that with probability 1, gcd(`′a, `

′
b) | Z, and the result will follow easily from this.

Let `∗a = at+1Xt+1 · · · + anXn, and let `∗b = bt+1Xt+1 · · · + bnXn.

• Case 1: Suppose that at least one of `∗a, `
∗
b is 0. Hence at least one of `′a, `′b will divide Z.

The Schwartz–Zippel Lemma (Lemma 5.2) implies that with probability 1, both `′a and `′b
are nonzero and hence gcd(`′a, `

′
b) | Z.

• Case 2: Suppose that both `∗a, `
∗
b 6= 0, and gcd(`∗a, `

∗
b) = 1. In this case clearly gcd(`′a, `

′
b) = 1,

and hence gcd(`′a, `
′
b) | Z.

• Case 3: Suppose that both `∗a, `
∗
b 6= 0, and there exists nonzero γ∗ ∈ R such that `∗a = γ∗`∗b .

In this case, if gcd(`′a, `
′
b) - Z, it must be that `′a = γ∗`′b. Also, we know that `a − γ∗`b 6= 0.

If `′a − γ∗`′b ≡ 0, then this must even hold for the setting of Z = 1, i.e. a1α1 + a2α2 + · · · +
atαt + at+1Xt+1 + · · · + anXn − γ∗(b1α1 + b2α2 + · · · + btαt + bt+1Xt+1 + · · · + bnXn) ≡ 0.
Hence this must also be true for any settings of the variables Xt+1, . . . ,Xn to values in [0, 1],
and in particular to random values. By the Schwartz–Zippel Lemma (Lemma 5.2), this can
happen only with probability 0.

Hence in all three cases we get that with probability 1, gcd(`′a, `
′
b) | Z. Since any linear form in

gcd(C′) must be of the form gcd(`′a, `
′
b), where the original two linear forms `a, `b were initially such

that gcd(`a, `b) = 1, the above case analysis implies that after taking the union bound over all such
pair of linear forms appearing in C, with probability 1, gcd(`′a, `

′
b) | Z. This completes the proof.

Definition 5.4 [Setting a linear form to 0: C|`=0] Let C =
∑

i∈[k] Ai =
∑

i∈[k]

∏

j∈d `ij be a
ΣΠΣ circuit. Let ` be a linear form appearing in C. Let π : Rn → Rn is any linear map of rank
n−1 such that kernel(π) = span(`)9. We let C|`=0 denote the class of circuits obtained by applying
such a transformation π to C, to get a circuit π(C), where π(C) is the circuit

∑

i∈[k]

∏

j∈d π(`ij),
where for a linear form ` = a ·X, π(`) = π(a) ·X. Under such a transformation, all the constituent
ΠΣ polynomials that contain ` get set to 0, and we remove all such gates from the circuit.

It is easy to see that if C1 and C2 are two circuits in C|`=0, then C1 ∼ C2, and we omit the proof.
We abuse notation by using C′ = C|`=0 to refer to any circuit C′ in the class C|`=0. Note that if
C ≡ 0, then for any circuit C′ in the class C|`=0, we have C′ ≡ 0.

9Where for ` = a · X, span(`) denotes the one dimensional vector space spanned by the vector a
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5.2 The Fanin Reduction Lemma

Lemma 5.5 is the main technical result of our paper that allows us to apply an induction argument
to reason about the rank of ΣΠΣ circuits computing the zero polynomial. We show that if a simple
circuit C has high pairwise-rank, then by “setting a linear form to 0”, we can transform it to a new
circuit C′ with fewer multiplication gates that still has high pairwise-rank. Also, if C ≡ 0, then
C′ ≡ 0.

Lemma 5.5 [Fanin Reduction Lemma] Let k,A > 0 be integers. Let B = 3(A + 1)k2. Let C
be a simple ΣΠΣ(k) circuit such that pairwise-rank(C) ≥ A, and rank(C) ≥ B. Then there exists
a linear form ` in the circuit C such that for C′ = C|`=0, pairwise-rank(C′) ≥ A.

A sketch of the proof of this lemma is given in Section 6 and full proof given in Section 7. With
these tools in hand, we are now ready to prove the main theorem of this paper.

5.3 Proof of Theorem 2.2: The Rank Bound

Theorem 2.2 [Rank bound for ΣΠΣ(k) circuits]: Let c(k) = 3k((k + 1)!)2. Let C be a simple
and minimal ΣΠΣ(k) circuit that computes the zero polynomial. Then rank(C) ≤ c(k).

The proof proceeds by an induction on k, the number of multiplication gates in C. We first show
that C must have high pairwise-rank. If it does not have high pairwise-rank, then we can use
Lemma 5.3 to obtain a new circuit that is still simple and minimal and has high rank, but with
fewer multiplication gates. This would contradict the induction hypothesis. We then use Lemma 5.5
to find a linear form ` such that the circuit C′ = C|`=0 also has high pairwise-rank, and is such
that C′ ≡ 0, but has fewer multiplication gates. Any minimal subset of the multiplication gates
of C′ that sums to 0 will give a circuit Cmin that also has high pairwise-rank, is minimal, and still
computes the zero polynomial. The simplification of Cmin will then be simple, minimal, have high
rank, and will have fewer than k multiplication gates, contradicting the induction hypothesis.

Proof We will prove the above theorem by induction on k.

For k = 1, 2, the result is vacuously true. Let k ≥ 3 and assume the theorem is true for ΣΠΣ(m)
circuits for all m ≤ k − 1.

If possible let

C =
k

∑

i=1

Ai =
k

∑

i=1

d
∏

j=1

`ij

be simple and minimal such that C ≡ 0, and rank(C) > c(k). Let the indeterminates appearing in
C be X1,X2, . . . ,Xn.

Case 1: pairwise-rank(C) < c(k) − c(k − 1). Hence there exist i, j ∈ [k] such that i 6= j and
rank(Sim(Ai + Aj)) < c(k) − c(k − 1). Let Ai + Aj = gcd(Ai, Aj) · Sim(Ai + Aj). Without loss of
generality, by Lemma 5.1 (equivalence up to linear transformations), let span((Sim(Ai + Aj))

10 be
spanned by X1,X2, . . . ,Xt, where t = rank(Sim(Ai + Aj)). For each i ∈ [t], let αi be a uniformly

10For C =
∑

i∈[k]

∏

j∈[d] `ij , we let span(C) = span({`ij | i ∈ [k], j ∈ [d]})
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random real number in [0, 1]. For i ∈ [t], set Xi = αiZ. By Lemma 5.3, with probability 1 we get
a (homogeneous) circuit C′ such that C′ ≡ 0, it has at most k − 1 gates (since after the random
substitution, both Ai and Aj will have the same set of linear forms up to scalar multiples, and
they can be merged into a single gate), is still minimal, and its gcd has rank at most 1. Also, since
t < c(k) − c(k − 1) we get that rank of Sim(C′) is strictly greater than c(k − 1). Hence Sim(C′)
is simple, minimal, computes the zero polynomial, has at most k − 1 multiplication gates, and has
rank strictly greater than c(k − 1), contradicting the induction hypothesis.

Case 2: pairwise-rank(C) ≥ c(k)− c(k− 1). Hence for all i, j ∈ [k] such that i 6= j, rank(Sim(Ai +
Aj)) ≥ c(k) − c(k − 1) > c(k)/2 > c(k − 1) + 1. Notice that by choice of the function c, c(k) ≥
3k2((c(k − 1) + 1) + 1). By Lemma 5.5 (With A = c(k − 1) + 1 and B = c(k)), there exists a linear
form ` in C such that for C′ = C|`=0, pairwise-rank(C′) ≥ c(k − 1) + 1.

Now, since the gates containing ` got set to 0, the number of gates in C′ is at most k − 1. Also,
pairwise-rank(C′) ≥ c(k − 1) + 1 implies that for all subsets S ⊆ [k] such that S indexes at least
two nonzero gates of C, rank(Sim(C′|S)) ≥ c(k− 1)+1 (where C′|S is the subcircuit of C′ obtained
by restricting to only those multiplication gates of C′ that are indexed by S). We know that
∑

i∈[k] A
′
i = 0 (where at least one of the A′

i is set to 0). Now take the smallest nonempty such set

S for which
∑

i∈S A′
i = 0. Then,

∑

i∈S A′
i is a minimal circuit such that its simple part has rank at

least c(k − 1) + 1. This contradicts the induction hypothesis.

Thus we conclude that rank(C) ≤ c(k).

6 The Sylvester–Gallai Theorem and the Fanin Reduction Lemma

In this section we will sketch a proof of the fanin reduction lemma (Lemma 5.5) and highlight the
main ingredients in the proof. The full proof is given in Section 7. Our proof of the fanin reduction
lemma first translates the problem from a question about circuits to a question purely about the
incidence properties of colored points in Rn. The main tools that we use in analyzing the points is
the Sylvester–Gallai Theorem, and a related hyperplane decomposition theorem. Before we state
these results, we first introduce some terminology that we will use.

Affine spaces and hyperplanes. We say that H ⊆ Rn is an affine space if it is a translation of
a linear space. In other words, there exists a linear vector space H ′ ⊆ Rn and a vector v ∈ Rn such
that H = v + H ′ = {v + u | u ∈ H ′}. The dimension dim(H) of the affine space is the dimension
of the corresponding linear space dim(H ′). We will be using the term hyperplane interchangeably
with affine space. In this terminology, a point is a hyperplane of dimension 0, a line is a hyperplane
of dimension 1 etc. For a set S ⊆ Rn of points, the affine span of S, denoted affine-span(S), is the
intersection of all the affine spaces containing S. Note that the affine span of a set is also an affine
space. Also note the difference between this notion of affine-span and the notion of vector space
span11.

The Sylvester–Gallai Theorem (see the survey by Borwein and Moser [BM90] for details) asserts
the following:

11Informally, as sets, the vector space span of a set of points/vectors S would equal the affine span of S ∪ {0},
where {0} denotes the origin (or zero vector).
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Theorem 6.1 [Sylvester–Gallai] Let S be a finite set of points spanning an affine space V ⊆ Rn

such that dim(V ) ≥ 2. Then there exists a line L ⊆ V such that |L ∩ S| = 2.

We state below the high dimensional Sylvester–Gallai Theorem. It was first proved in a slightly
different form by Hansen [Han65]. The version below is a slightly refined version of Hansen’s result,
and was obtained by Bonnice and Edelstein [BE67, Theorem 2.1].

Theorem 6.2 [Generalized Sylvester–Gallai for high dimensions] ([Han65], [BE67]) Let S
be a finite set of points spanning an affine space V ⊆ Rn such that dim(V ) ≥ 2t. Then, there exists
a t dimensional hyperplane H such that |H ∩ S| = t + 1, and such that H is spanned by the points
of S. i.e affine-span(H ∩ S) = H.

Using the above result, we obtain the following ‘decomposition’ theorem. A similar decomposition
procedure was carried out by Edelstein and Kelly [EK66] (to obtain a Sylvester–Gallai kind of
theorem for colored points), and by Bonnice and Edelstein [BE67]. We defer the proof of the
hyperplane decomposition lemma (Lemma 6.3) to Section 8.

Lemma 6.3 [Hyperplane decomposition] Let V be an m dimensional affine space over R. Let
S ⊂ V be a finite set, such that affine-span(S) = V . Let Score ⊆ S, and let Hcore = affine-span(Score)
be an affine space of dimension mcore. Then for some r ≥ m−mcore

2 , there exist hyperplanes
H1,H2, . . . ,Hr ⊂ V , such that letting H = affine-span({Hi | i ∈ [r]}), we have the following
properties.

1. For all i ∈ [r], Hcore ⊆ Hi and dim(Hi) = mcore + 1.

2. dim(H) = mcore + r. In particular, if R ⊆ [r] is such that for each i ∈ R, Pi is a point in
Hi \ Hcore, then dim(affine-span({Pi | i ∈ R})) = |R| − 1.

3. For all i ∈ [r], (Hi \ Hcore) ∩ S 6= φ.

4. For every point P ∈ S∩H, there exists i ∈ [r] such that P ∈ Hi. Note that it is not necessary
that every point in S lies on one of the Hi’s but every point of S inside H certainly does lie
on at least one of the Hi’s.

We present below a very informal outline of the proof of the fanin reduction lemma (Lemma 5.5)
to demonstrate how the hyperplane decomposition lemma is used in its proof. For the full details
of the proof, see Section 7.

Outline of proof of the fanin reduction lemma: Lemma 5.5: In Section 4.1 we saw how
to map the linear forms appearing in the circuit C to colored points in Rn. We will assume the
terminology used in Section 4.1. Recall that we want to show that there exists a linear form ` in C
and the corresponding point P` such that for all pairs of colors i and j such that ` does not occur
in Ai and Aj, the set of lines in the pencil LP`

i ∆LP`

j span a high dimensional space. We will use
the hyperplane decomposition lemma to accomplish this. Let the set of points S corresponding
to linear forms in C span the affine space V . We choose a (relatively low dimensional) subspace
Hcore ⊆ V such that for every pair of colors i and j, the symmetric difference of the points
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of those colors, Si∆Sj, contained within Hcore spans a high dimensional subspace. We apply
the hyperplane decomposition theorem to V and Hcore to get a large collection of hyperplanes
H1,H2, . . . ,Hr each containing Hcore and satisfying the properties listed in Lemma 6.3. Let H =
affine-span(H1,H2, . . . ,Hr). Observe that property (2) implies that if Pi and Pj are two points of
S in Hi \Hcore and Hj \Hcore respectively, then the line through them does not contain any other
point of S. This will be a very useful property. For a pair of colors i, j, let (Si∆Sj)

H denote the set
of points in Si∆Sj that lie in H \ Hcore. We say a pair of colors (i, j) is over-split if a large subset
of the hyperplanes {Hi} contain an element of (Si∆Sj)

H . Otherwise we say the pair is under-split.
Since for each pair of under-split colors (i, j) the set (Si∆Sj)

H occurs in few hyperplanes, and
since the total number of hyperplanes is large, the pigeon-hole principle implies that there exists a
hyperplane H∗ that does not contain any member of (Si∆Sj)

H for any under-split pair of colors
{i, j}. By property (3), there exists a point P` contained in H∗ \ Hcore. Let the corresponding
linear form be `. We will show that for all pairs of colors i and j such that ` does not occur in Ai

and Aj , the set of lines in the pencil LP`

i ∆LP`

j span a high dimensional space. From now on we will
only mention pairs of colors corresponding to multiplication gates in the circuit that do not contain
`. Now for any pair of colors {i, j}, since a line through P` and any point in (Si∆Sj)

H \ H∗ does
not contain any other point of S (by property (3)), the set of such lines is contained in the pencil
LP`

i ∆LP`

j . If the pair of colors is over-split, then this pencil will span a high dimensional space, and
hence this pair of colors will not create any worry. If the pair of colors (i, j) is under-split, then
recall that H∗ \Hcore does not contain any element of (Si∆Sj)

H . Now consider the intersection of
(Si∆Sj) with Hcore and call it (Si∆Sj)

core. Recall that by the choice of Hcore, (Si∆Sj)
core spans

a high dimensional space. Also, any line through P` and a point of (Si∆Sj)
core lies entirely within

H∗ and does not contain any other point of Hcore. Since there are no points of Si∆Sj in H∗ \Hcore,

hence any such line is a line in the pencil LP`

i ∆LP`

j . Since (Si∆Sj)
core spans a high dimensional

space, so does the pencil LP`

i ∆LP`

j . Hence under-split pairs of colors do not create a problem either,
and we are done.

7 Proof of the Fanin Reduction Lemma

In this section we give a full proof of the fanin reduction lemma. Recall the fanin reduction lemma
from Section 5.

Lemma 5.5[Fanin Reduction Lemma]Let k,A > 0 be integers. Let B = 3(A + 1)k2. Let C be
a simple ΣΠΣ(k) circuit such that pairwise-rank(C) ≥ A, and rank(C) ≥ B. Then there exists a
linear form ` in the circuit C such that for C′ = C|`=0, pairwise-rank(C′) ≥ A.

Proof Let C =
∑

i∈k Ai =
∑

i∈k

∏

j∈d `ij . Let the indeterminates appearing in C be
(X1,X2, . . . ,Xn). Let LC = {`ij | i ∈ k, j ∈ d} be the multiset of linear forms in C, and for
each i ∈ [k], let LAi

= {`ij | j ∈ [d]} be the multiset of linear forms in Ai. Hence |LAi
| = d.

From linear forms to points in Rn. For a linear form ` =
∑

i∈[n] ai · Xi = a · X, let S(`) =
{λa | λ ∈ R} be the line in Rn corresponding to the span of `. Let V ⊆ Rn be an n − 1 dimension
hyperplane such that (i) V does not contain the origin 0, and (ii) for all linear forms ` ∈ LC ,
V ∩ S(`) 6= φ. (A random hyperplane satisfies these conditions with probability 1.)

We map each linear form in LC to a point in V ⊆ Rn by the following map g : LC → Rn, where
g(a · X) = λaa, where λa is the unique nonzero constant such that λaa ∈ V . In other words, g
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maps the linear form ` =
∑

i∈[n] ai ·Xi to the unique point of intersection of the hyperplane V with

the line S(`) = {λa | λ ∈ R}12. Observe that in doing this, two linear forms get mapped to the
same point if and only if they are scalar multiples of each other. Let the set of points in the image
of g be S = {P1, P2, . . . , PN}.

Coloring the points. We assign a multiset of colors K(P ) to each point P in the image of g. For
i ∈ [k], we let the gate Ai represent the color i. Each linear form `ij in Ai is given the color i, and
if `ij maps to the point P under g, then i will be one of the colors in the multiset of colors K(P )
assigned to P . In particular, letting mult(P, i) denote the multiplicity of color i in the set K(P ),
we have that for all i ∈ [k], mult(P, i) = |g−1(P )∩LAi

|. Let CP be the set of colors assigned to the
point P (i.e. the set of colors in the multiset K(P ), but taken without multiplicity).

Differentiating between colors. We say that a point P ∈ S differentiates between the colors
i and j, if mult(P, i) 6= mult(P, j). For a color i, we let Si denote the multiset of all points of
color i, each point P ∈ S having multiplicity mult(P, i). For our purposes, we extend the notion of
symmetric difference of two sets to a symmetric difference of two multisets as follows. For i, j ∈ [k],
we define Si∆Sj to be the set {P ∈ S | mult(P, i) 6= mult(P, j)}

Observe that for a linear form ` = a · X, the function g maps it to a point of the form
λa. Hence by definition, linear forms that are linearly independent (over the vector space Rn)
get mapped to points that are independent13. In particular, for linear forms `1, . . . , `r ∈ LC ,
dim(span({`i | i ∈ [r]})) = d ⇐⇒ dim(affine-span({g(`i) | i ∈ [r]})) = d − 1. Thus the condition
“rank(C) ≥ B” exactly translates to the condition dim(affine-span(S)) ≥ B − 1. Similarly the
condition “pairwise-rank(C) ≥ A” translates to the condition that for all i, j ∈ [k] such that i 6= j,
dim(affine-span(Si∆Sj)) ≥ A − 1.

Choosing a core hyperplane. We now describe how to pick a set Score ⊆ S satisfying the
following conditions (i) dim(affine-span(Score)) ≤ k2A and (ii) for all i, j ∈ [k] such that i 6= j,
dim(affine-span(Score ∩ (Si∆Sj))) ≥ A − 1.

For i, j ∈ [k] such that i 6= j, since dim(affine-span(Si∆Sj)) ≥ A−1, there exists a set Sij ⊆ (Si∆Sj)
such that |Sij| = A, and dim(affine-span(Sij)) = A − 1. Pick such a set Sij for every i, j ∈ [k]

such that i 6= j, and let Score = ∪i,j∈[k],i6=jSij . Then |Score| ≤
(

k
2

)

A, and it satisfies the required
conditions. Let Hcore = affine-span(Score), and let dim(Hcore) = mcore.

Applying the Hyperplane decomposition lemma. By Lemma 6.3 applied the sets S and
Score, we get that for some r ≥ m−mcore

2 , there exist hyperplanes H1,H2, . . . ,Hr ⊂ V , such that
letting H = affine-span({Hi | i ∈ [r]}), we have the following properties.

1. For all i ∈ [r], Hcore ⊆ Hi and dim(Hi) = mcore + 1.

2. dim(H) = mcore + r. In particular, if R ⊆ [r] is such that for each i ∈ R, P̃i is a point in
Hi \ Hcore, then dim(affine-span({P̃i | i ∈ R})) = |R| − 1.

12Alternatively we could view the line S(`) as a point in the real projective space RPn−1, and we could map the
linear forms in LC to the corresponding points in RPn−1. The rest of the discussion would follow almost identically,
with the correct analog of Lemma 6.3 for RPn−1. In some ways it might be more natural to work in projective space,
since the projective embedding precisely captures the equivalence of linear forms that differ only by a nonzero scalar
factor. By taking the projection of the lines onto the hyperplane V , we essentially get the same features as those of
the projective embedding.

13We say that r points in Rn are independent if they span an r − 1 dimensional affine space.
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3. For all i ∈ [r], (Hi \ Hcore) ∩ S 6= φ.

4. For every point P ∈ S∩H, there exists i ∈ [r] such that P ∈ Hi. Note that it is not necessary
that every point in S lies on one of the Hi’s but every point of S inside H certainly does lie
on at least one of the Hi’s.

Observe that property (2) implies that if P̃i and P̃j are two points of S in Hi \Hcore and Hj \Hcore

respectively, then the line through them does not contain any other point of S. This will be a very
useful property later on. For a pair of colors i, j ∈ [k], let (Si∆Sj)

H denote the set of points in
Si∆Sj that lie in H \Hcore. Also, let (Si∆Sj)

core denote the set of points in Si∆Sj that lie in Hcore.

Over-split and under-split pairs of colors. We say that a hyperplane H̃ ∈ {Hi | i ∈ [r]} splits
a pair of colors {i, j} if there exists a point Q ∈ H̃ ∩ (Si∆Sj)

H . We say that a pair of colors {i, j}
is over-split if there exist at least A + 1 distinct hyperplanes contained in {Hi | i ∈ [r]} that each
splits {i, j}. Else we say that {i, j} is under-split.

By the hyperplane decomposition theorem, r ≥ B−k2A
2 ≥ (A + 1)k2. Since each under-split pair

of colors is split by at most A hyperplanes, and there are at most k2 pairs of under-split colors,
by the pigeon-hole principle there must exist a hyperplane H∗ ∈ {Hi | i ∈ [r]} such that for every
under-split pair of colors {i, j}, H∗ does not contain any member of (Si∆Sj)

H . In other words,
for all under-split pairs of colors {i, j}, and for all points Q ∈ H∗ \ Hcore, mult(Q, i) = mult(Q, j).

Setting a linear form to zero. By property 3 in Lemma 6.3, there exists a point P` ∈ (H∗ \
Hcore) ∩ S. Let ` = g−1(P`)

14 be the linear form corresponding to P`. We will set ` to zero,
and show that for C′ = C|`=0, we have pairwise-rank(C′) ≥ A. Note that since the circuit C is
simple, the set of colors CP`

assigned to P` cannot have all k colors (since otherwise the linear form
corresponding the point P` would be present in all gates of C), i.e. |CP`

| < k. Also, if |CP`
| = k−1,

then the linear form ` would be present in all but one of the gates of C, and hence C|`=0 would
have only one multiplication gate. In this case the theorem is vacuously true. From now on, we
assume |CP`

| ≤ k − 2.

Translating the problem to colored points. To show that for C′ = C|`=0 that
pairwise-rank(C′) ≥ A, we need to show that for all nonzero gates A′

i and A′
j ∈ C′, rank(Sim(A′

i +
A′

j)) ≥ A. Let ` = a · X, and let π : Rn → Rn be a linear map such that π has nullity 1, and
kernel(π) = span(a). π is simply a linear transformation that maps points in Rn to the subspace
on which ` vanishes. Hence P` ≡ λaa for some nonzero λa ∈ R, and π(P`) = 0.

For all i ∈ CP`
(i.e. the color i occurs in the set of colors of P`), we get that ` occurs in the

gate Ai. Since we ‘set’ ` = 0, hence A′
i ≡ 0, and A′

i is eliminated from C′. For all other colors,
the corresponding multiplication gates stay nonzero, and the linear forms get transformed by π.
Recall that for a linear form ˜̀ = b · X, there exists nonzero λb ∈ R such that g(˜̀) = λbb. Hence
g(˜̀) recovers ˜̀ up to multiplication by a scalar. Also observe that if we apply π to g(˜̀), we would
recover π(˜̀) up to multiplication by a scalar. Recall that the multisets of colors associated with the
points of S indicate the multiplicities of occurrence of the corresponding linear forms in the gates
of C. We can similarly associate colors with the points obtained by applying π to the points in S
to indicate multiplicities of occurrence of linear forms in the gates of C′.

14Note that many linear forms in the multiset LC might map to P , however they will all be identical (up to
multiplication by a constant in R).
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Let S′ = {π(Q) | Q ∈ S}. For Q′ ∈ S′ and i ∈ [k] such that i 6∈ CP`
, let mult′(Q′, i) =

∑

Q∈π−1(Q′) mult(Q, i). Notice that if Q′ = π(g(˜̀)), then mult′(Q′, i) represents the number of

times the linear form π(˜̀) appears in the gate A′
i ∈ C′.

For i, j ∈ [k], let (Si∆Sj)
′ = {Q′ ∈ S′ | mult′(Q′, i) 6= mult′(Q′, j)}15. Then showing

pairwise-rank(C′) ≥ A exactly translates to showing that for all i, j ∈ [k] such that i 6= j, and
i, j 6∈ CP`

, dim(affine-span((Si∆Sj)
′)) ≥ A − 1.

Finishing up the proof. Let i, j be any two colors not in CP`
. We consider two cases depending

on whether {i, j} is over-split or under-split.

Case 1: Suppose that {i, j} is over-split. Hence by the definition of being over-split, there exist at
least A hyperplanes distinct from H∗ that split {i, j}. Without loss of generality (by reindexing the
hyperplanes if necessary) let these hyperplanes be H1,H2, . . . ,HA, and for 1 ≤ t ≤ A, let Qt ∈ Ht

be such that mult(Qt, i) 6= mult(Qt, j). Let Sc = {Qt | 1 ≤ t ≤ A}. By property 2 of Lemma 6.3,
we have dim(affine-span({P`} ∪ Sc)) = A. Since affine-span({P`} ∪ Sc) ⊆ V , and since 0 6∈ V ,
hence dim(affine-span({0, P`} ∪ Sc)) = A + 1. Let π(Qi) = Q′

i. Let S′
c = {Q′

t | 1 ≤ t ≤ A}. Also,
π(0) = 0, and π(P`) = 0. Since π has nullity 1 we get that dim(affine-span({0} ∪ S′

c)) ≥ A. Hence
dim(affine-span(S′

c)) ≥ A − 1.

Hence, to show that dim(affine-span((Si∆Sj)
′)) ≥ A−1, it suffices to show that S′

c ⊆ (Si∆Sj)
′. Let

Q′
t ∈ S′

c. We will show that mult′(Q′
t, i) 6= mult′(Q′

t, j), and this will imply that Q′
t ∈ (Si∆Sj)

′). Let
π(Qt) = Q′

t, where Qt is a point in S′
c. By definition of Sc we know that mult(Qt, i) 6= mult(Qt, j).

Also Qt is the only point of S that maps to Q′
t under π, since if there was another point Q∗ ∈ S

that maps to Q′
t, it would mean that P`, Qt and Q∗ are collinear. However there is no such point

(by property 2 and 4 of Lemma 6.3). This implies that mult′(Q′
t, i) 6= mult′(Q′

t, j), and hence
Q′

t ∈ (Si∆Sj)
′). Since Q′

t was an arbitrary point in S′
c, this implies that S′

c ⊆ (Si∆Sj)
′, thus

completing the proof for Case 1.

Case 2: Suppose that {i, j} is under-split. Hence, by choice of H∗, for all points Q ∈
(H∗ \ Hcore) ∩ S, we have mult(Q, i) = mult(Q, j). Let (Si∆Sj)

core = Hcore ∩ (Si∆Sj) =
{Q1, Q2, . . . Qs}. By choice of Hcore, we have that dim(affine-span((Si∆Sj)

core)) ≥ A − 1. Since
affine-span((Si∆Sj)

core) ⊆ Hcore, and P` 6∈ Hcore, we get dim(affine-span({P`}∪ (Si∆Sj)
core)) = A.

Now, letting (Si∆Sj)
core′ = {π(Q) | Q ∈ (Si∆Sj)

core}, exactly as in the previous case we get that
dim(affine-span((Si∆Sj)

core′)) ≥ A − 1.

To show that dim(affine-span((Si∆Sj)
′)) ≥ A − 1, we will show that (Si∆Sj)

core′ ⊆ (Si∆Sj)
′. For

t ∈ [s], let π(Qt) = Q′
t. Hence Q′

t ∈ (Si∆Sj)
core′ . By definition of (Si∆Sj)

core, we know that
mult(Qt, i) 6= mult(Qt, j). Note that the line joining P` (which lies in H∗ \ Hcore) and Qt (which
lies in Hcore) is contained in H∗. Also, since dim(H∗) = dim(Hcore) + 1, any line through P` that
intersects Hcore will do so in a unique point. Also, any point in π−1(Q′

t) other than Qt must lie on
the line through P` and Qt, and hence must lie in H∗\Hcore. All such points have equal multiplicity
of i and j (because H∗ does not split i and j ). Now when we compute the multiplicity of colors i and
j at the point Q′

t, we take the sum of multiplicities over all preimages of Q′
t under π. Qt has different

multiplicities for i and j, but all other points in the preimage have same multiplicities. Thus we
get mult′(Q′

t, i) 6= mult′(Q′
t, j), and hence Q′

t ∈ (Si∆Sj)
′). Since Q′

t was an arbitrary point in

15Each point in (Si∆Sj)
′ corresponds to a line in the pencil LP`

i ∆LP`

j as given in the outline of the proof of the
lemma.
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(Si∆Sj)
core′ , this implies that (Si∆Sj)

core′ ⊆ (Si∆Sj)
′. Hence dim(affine-span((Si∆Sj)

′)) ≥ A− 1,
thus completing the proof for Case 2.

8 The Hyperplane Decomposition Lemma

In this section we give a proof of the hyperplane decomposition lemma (Lemma 6.3) which was
critically used in the proof of the fanin reduction lemma to identify structure in the linear forms of
any high rank ΣΠΣ circuit. The hyperplane decomposition lemma follows from an application of
the high dimensional Sylvester–Gallai Theorem (Theorem 6.2), and we now give its proof.

Lemma 6.3 [Hyperplane decomposition] Let V be an m dimensional affine space over R. Let
S ⊂ V be a finite set, such that affine-span(S) = V . Let Score ⊆ S, and let Hcore = affine-span(Score)
be an affine space of dimension mcore. Then for some r ≥ m−mcore

2 , there exist hyperplanes
H1,H2, . . . ,Hr ⊂ V , such that letting H = affine-span({Hi | i ∈ [r]}), we have the following
properties.

1. For all i ∈ [r], Hcore ⊆ Hi and dim(Hi) = mcore + 1.

2. dim(H) = mcore + r. In particular, if R ⊆ [r] is such that for each i ∈ R, Pi is a point in
Hi \ Hcore, then dim(affine-span({Pi | i ∈ R})) = |R| − 1.

3. For all i ∈ [r], (Hi \ Hcore) ∩ S 6= φ.

4. For every point P ∈ S∩H, there exists i ∈ [r] such that P ∈ Hi. Note that it is not necessary
that every point in S lies on one of the Hi’s but every point of S inside H certainly does lie
on at least one of the Hi’s.

Proof

For every point P ∈ S such that P 6∈ Hcore, let HP = affine-span(P,Hcore). Let H be the system
(pencil) of hyperplanes HP thus obtained.

Let H ′ be a hyperplane in V of m−mcore dimensions which intersects Hcore in a single point Q, and
intersects each HP ∈ H in a single line through Q, which we denote by LP (a random hyperplane
in H of m − mcore dimensions would have these properties with high probability). Thus we get a
pencil of lines L through Q that are contained in H ′. Now let H ′′ be a hyperplane of m−mcore − 1
dimensions that is contained in H ′, and intersects each line LP ∈ L in a single point, such that
these points span H ′′, and H ′′∩Hcore = φ. Moreover no line contained in H ′′ is parallel to any line
contained in Hcore (again a random hyperplane would work with high probability). Let SL be the
set of points of intersection of H ′′ with the lines in L.

By Lemma 6.2, there exists an r − 1 dimensional elementary hyperplane Helem (for some r ≥
m−mcore

2 ) in H ′′ that is spanned by and containing exactly r points (of SL), say Q1, . . . , Qr. Let the
lines (in H ′) corresponding to these points be L1, L2, . . . , Lr. Observe that since H ′′ ∩ Hcore = φ,
hence Helem ∩Hcore = φ. Also, no line contained in Helem is parallel to any line contained in Hcore.
Clearly affine-span({Li | i ∈ [r]}) = affine-span(Q,Helem).
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For every i ∈ [r], let Hi = affine-span(Hcore, Li). Observe that Hi ∈ H, where H was the pencil of
hyperplanes we originally considered. Let H = affine-span({Hi | i ∈ [r]}) = affine-span(Hcore∪{Li |
i ∈ [r]}). We now show that the hyperplanes Hi satisfy the requisite properties.

Property 1: Property 1 holds immediately by the fact that Hi = affine-span(Hcore, Li), where Li

intersects Hcore in the single point Q.

Property 2: We need to show that dim(H) = mcore + r. Observe that Helem ⊂ affine-span({Li |
i ∈ [r]}) ⊂ H. Also, dim(Helem) = r − 1, Helem ∩Hcore = φ and no line contained in Helem is paral-
lel to any line contained in Hcore. These properties imply that dim(affine-span(Helem,Hcore)) =
mcore + r. Now, for i ∈ [r], Hi = affine-span(Qi,Hcore), where Qi ∈ Helem. Hence H =
affine-span(Helem,Hcore), and dim(H) = mcore + r.

Similarly, if R ⊆ [r] and if for i ∈ R, Pi is a point in Hi\Hcore, then since Hi = affine-span(Pi,Hcore),
hence affine-span({Hi | i ∈ R}) = affine-span(Hcore, {Pi | i ∈ R}). Also, since dim(H) = mcore + r,
it must be that dim(affine-span({Hi | i ∈ R})) = mcore + |R| (since each additional hyperplane Hi

can increase the dimension of the span by at most 1). As dim(affine-span(Hcore)) = mcore, it must
be that dim(affine-span({Pi | i ∈ R})) ≥ |R| − 1. Since the span of |R| points can have dimension
at most |R| − 1, it must be that dim(affine-span({Pi | i ∈ R})) = |R| − 1.

Property 3: Property 3 holds since Hi ∈ H, which was the pencil of hyperplanes originally
considered, and by definition of H we have that every hyperplane in H contains a point P ∈ S such
that P 6∈ Hcore.

Property 4: If possible let P ∈ S ∩ H be such that P 6∈ Hi for all i ∈ [r]. Then the hyperplane
HP = affine-span(Hcore, P ) ∈ H is such that HP ⊂ H, and HP is distinct from all Hi, i ∈ [r]. Let
H ′ intersect HP in the line LP . Then LP is not contained in Hi for all i ∈ [r], since if it was,
then HP would equal Hi. Hence LP is a line through Q such that LP ⊂ H, and LP 6⊂ Hcore.
This we conclude that LP ⊂ affine-span({Li | i ∈ [r]}). Let H ′′ ∩ LP = QP . Then observe
that QP ⊂ affine-span({Qi | i ∈ [r]}), contradicting the fact that Q1, . . . , Qr span an elementary
hyperplane. Hence property 4 must hold.

This completes the proof of the hyperplane decomposition lemma.

9 Conclusion

Our paper invites further work in several directions.

1. Proving high-dimensional Sylvester–Gallai Theorem over the field of complex
numbers. Such a theorem would extend our results on the rank bound and identity testing
to the complex numbers. We conjecture the following analogue of Lemma 6.2 over the field
C of complex numbers: There exists a constant c ≥ 2 such that if S is a finite set of points
spanning an affine space V ⊆ Cn with dim(V ) ≥ c · t then there exists a t dimensional
hyperplane H ⊆ V such that |H ∩ S| = t + 1 and H is spanned by the points of S. i.e
affine-span(H ∩ S) = H.
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2. Conjecture for Sylvester–Gallai over finite fields. Such a theorem would extend our
results on the rank bound and identity testing to large finite fields. We conjecture that the
following version of Sylvester–Gallai is true over finite fields: There exists a constant c ≥ 2
such that if p is a prime and S is a subset of points in the 3-dimensional projective space
P3(Fp) and p > |S|c, then there exists a pair of points in S such that the line through this pair
of points contains no other point from S.

3. Devising a blackbox identity testing algorithm over finite fields. As shown in [KS06],
even the weaker form of the conjecture of Dvir and Shpilka is false over finite fields. Perhaps
there is some other neat classification of the structure of depth three arithmetic circuits
computing the zero polynomial over finite fields. We challenge the interested reader to devise
a blackbox identity testing algorithm for ΣΠΣ(k) circuits over finite fields.

4. Resolving the stronger Dvir–Shpilka conjecture over fields of characteristic zero.
Prove or disprove that the rank c(k) in Theorem 2.2 can be improved to a polynomially
growing function of the top fanin k.

See Appendix A for a discussion on how the first two conjectures will affect our understanding of
identity testing.
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A The Sylvester–Gallai Theorem and its generalizations.

The following theorem was proved by Edelstein and Kelly [EK66].

Theorem A.1 Let A,B and C be 3 nonempty finite subsets of points in Rn such that
affine-span(A ∪ B ∪ C) has dimension at least 4 and A ∩ B ∩ C = φ. Then there exists a line
intersecting exactly 2 of the sets A,B,C.

The proof is a clever application of the Sylvester–Gallai Theorem, and uses a special case of the
hyperplane decomposition theorem proved in Section 8 . By the correspondence of linear forms
appearing in the circuit with colored points in Rn, this almost immediately gives a rank bound for
simple and minimal ΣΠΣ(3) circuits that compute the zero polynomial. For the case of k = 3, the
connection of the structure theorem to Sylvester–Gallai type theorems was even observed in [DS05].
However, this approach to proving the rank bound does not directly generalize and additional ideas
are needed for k > 3.

Rank bound over other fields. Our proof the rank bound, Theorem 2.2, uses high-dimensional
versions of the Sylvester–Gallai theorem. If the high dimensional Sylvester–Gallai theorem held
over C or over any other field, then using the techniques of our paper, they would translate to
rank bounds for ΣΠΣ(k) circuits over the corresponding field. For k = 3, it suffices just to prove
a Sylvester–Gallai theorem for lines and fortunately this is known over C [Kel86, EPS06]. The
result by Edelstein and Kelly [EK66] essentially carries over for this case with a dimension bound
of 5 instead of 4, and hence we get a rank bound for ΣΠΣ(3) of 6 circuits over complex numbers.
Furthermore proving a rank bound over complex numbers implies a rank bound over finite fields
of characteristic significantly larger than the degree of the circuit.

In particular, the conjectures given in the conclusion would have the following implications.

Sylvester–Gallai over complex numbers, Conjecture (1): It will give a deterministic black-
box identity testing algorithm for ΣΠΣ(k) circuits (k fixed) over all fields of characteristic zero.

Sylvester–Gallai over large finite fields, Conjecture (2): It will give a deterministic blackbox
identity testing algorithm for ΣΠΣ(3, d, n) circuits over fields of characteristic p > poly(d).

Furthermore, using a standard argument involving the Hilbert Nullstellensatz, it can be shown
that Conjecture (1) implies high-dimensional Sylvester–Gallai over finite fields of characteristic

p > 22O(d2)
. Proving conjecture (2) will perhaps require a fundamentally new proof of the Sylvester–

Gallai theorem which somehow manages to avoid the well-ordered property of the real field.
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