Electronic Colloguium on Computational Complexity, Report No. 34 (2009) Eode

Understanding Space in Resolution:
Optimal Lower Bounds and Exponential Trade-offs

Eli Ben-Sassoh
Computer Science Department
Technion — Israel Institute of Technology
Haifa, 32000, Israel
eli@cs.technion.ac.il

Jakob Nordstrom
Computer Science and Atrtificial Intelligence Laboratory
Massachusetts Institute of Technolégy
Cambridge, MA 02139, USA
jakobn@mit.edu

March 25, 2009

Abstract

For current state-of-the-art satisfiability algorithmséd on the DPLL procedure and clause learn-
ing, the two main bottlenecks are the amounts of time and mgmsed. Understanding time and
memory consumption, and how they are related to one anashiterefore a question of considerable
practical importance. In the field of proof complexity, te@ssources correspond to the length and space
of resolution proofs for formulas in conjunctive normalfo{CNF). There has been a long line of re-
search investigating these proof complexity measuresybilé strong results have been established for
length, our understanding of space and how it relates talelngs remained quite poor. In particular,
the question whether resolution proofs can be optimizetkfagth and space simultaneously, or whether
there are trade-offs between these two measures, has eshesisentially open apart from a few results
in very limited settings suffering from various technicastrictions.

In this paper, we remedy this situation by proving a host nfth-space trade-off results for reso-
lution in a completely general setting. Our collection @de-offs cover space ranging over the whole
interval from constant t®(n/ loglog n), and most of them are superpolynomial or even exponential.

Our key technical contribution is the following, somewhatwising, theorem: Any CNF formul&
can be transformed by simple substitution into a new fornftilauch that ifF has the right properties,
F’ can be proven in essentially the same lengtti"aghile the minimal space needed ffY is lower-
bounded by the number of variables mentioned simultangauahy proof forF'. Applying this theorem
to so-called pebbling formulas defined in terms of pebble egmon directed acyclic graphs, and then
using known results from the pebbling literature as well @saving a couple of new ones, we obtain
our resolution trade-off theorems.

*Research supported by the Israeli Science Foundation atitelyS-Israel Binational Science Foundation.

TResearch supported by the Ericsson Research Foundat®fotindation Olle Engkvist Byggmastare, and the Foundatio
Blanceflor Boncompagni-Ludovisi, née Bildt.

tPart of this work performed while at the Royal Institute offirology (KTH) and while visiting the Technion.

ISSN 1433-8092

UNDERSTANDING SPACE IN RESOLUTION

1 Introduction

1.1 Previous Work

Resolution length and space Theresolutionproof system, introduced by Blake [Bla37] in 1937 is
the single-most studied proof system in propositional pommplexity. The interest in resolution is due
to its lying at the very base of the important bounded-depégé& hierarchy of propositional proof systems
and because thgroof complexity of resolution is tightly connected to themputationalcomplexity of the
prominent family ofSAT solverdased on the DPLL algorithm of [DLL62, DP60, Rob65].

The interest in resolution has lead to an extensive studyh@ftomplexity of proofs in this system,
which operates by refuting unsatisfiable formulas in cocire normal form (henceforth CNF formulas).
The most important proof complexity measure is lgregthof refutations and the most important question
regarding this measure has been (and still is) to estal@didtmtques for proving lower bounds on length.
Over the past half century, starting with the seminal suglgriomial lower bound foregular resolution by
Tseitin in 1968 [Tse68], several techniques for provingespplynomial lower bounds on this complexity
measure have been discovered. Notable examples inclu#&%$Hdrq87, CS88, Pud97, BKPS02, BSWO01,
Raz03, Raz04]. We refer to the survey [Seg07] for more infdiom on this topic.

The study of resolutiospacecomplexity was initiated more recently—about ten years-abgp Esteban
and Toran [ETO01, Tor99]. Intuitively, the space of a refigta is the maximal amount of memory needed
while verifying it, and the space of refuting the CNF formulais defined as the minimal space of any
resolution refutation of". Over the past decade, a number of upper and lower boundsfidation space
in resolution have been presented in, for example, [ABSRVB&503, EGM04, ETO3].

There are two main ways to measure the amount of memory ndedeztify a refutation and these
measures are known akause spacandvariable space The former measure is defined as the number of
different clauses in the memory, regardless of the amoumearhory each clause requires. The latter is
the number of literals kept in memory, i.e., it is the sum & #izes of the clauses kept in memory. While
variable space is more clearly related to the actual amdunemory required to verify a proof—the actual
memory is at mostog n times the variable space—clause space has attracted mibst aftention. The
reason for this seems to be that clause space has interestimgctions to refutation length amddth,
which is the size of a largest clause in the refutation. Esieind Toran [ET01] proved that clause space is
at most logarithmic in the minimal length of a tree-like rafiion of a formula, which implies that clause
space is bounded by the number of variables appearing irotheufa, and Atserias and Dalmau [ADO3]
proved that space is lower bounded by width.

The question of the relation between clause space and lefigineral resolution proofs was raised
by the first author in [BS02] and has also been discussedrimdstance, [ET03, Seg07, Tor04]. A pair of
works of the second author and Hastad [Nor06, NHO8] havevshbat, in contrast to the case of tree-like
resolution, length and clause space of general resolutioofg are not strongly related. By this we mean
that the existence of a short proof does not necessarilyyithpl existence of a proof that can be carried out
in small clause space. In our recent joint work [BSN08] wevgda that the separation of clause space and
length can be “maximally” large. More precisely, the maisuieéin our paper is an explicit construction of
k-CNF formulas of size: (for arbitrarily largen) that have refutations of size(n) but require clause space
Q(n/logn). We say this separation is “maximal” because these bourdsgiut up to constant factors.

Length-space trade-offs The focus of this paper is the fundamental question ofrdude-off between

length and space in resolution. Informally, this questisksehow much time one can save when verifying
a refutation by allowing more working memory during the fiedation process. Notice that the above-
mentioned lower bounds on length and on space do not dealthigtlquestion, but rather state absolute
lower bounds on each individual complexity measure. Cansidr instance the maximal separation of

2

1 INTRODUCTION

length and space described in the previous paragraph. €peraion is maximal since by combining
results from [ETO1, HPV77] we know that any formula refutalsl timeO(n) can also be refuted in space
O(n/logn). But can this linear-length refutation be carried out incgpaay,100 - n/logn? As we show
later in this paper, the answer is no in general. Sometimext skfutations require large space, and small
space implies long proofs. Analogous time-space tradedar well-known in computational complexity
(see, e.g., [CS80, CS82, LT82, Bor93, BSSV03, FLVMV05] dmel durvey [vMO06]) and one of the main
results of this work is to show how such classical time-spasailts can be “lifted” to give length-space
trade-offs for resolution.

The question of length-space trade-offs in resolution was dtudied by the first author in [BS02] and
more recently by Hertel and Pitassi in [HPO7] and by the sécthor in [NorO7]. These works have a
number of limitations that are overcome in the current paphe results of [BS02] are limited to the very
restricted case of tree-like resolution. The paper [HP@&lslwith variable space only and in addition re-
quire formulas with rapidly growing width, and [Nor07] ussesomewhat artificial construction of formulas
“glued together” from two different unsatisfiable subfolamiover disjoint variable sets. Moreover, both
trade-off results for general resolution apply only for ayearefully selected ratio of space-to-formula-
size and display a sharp and abrupt decay of proof length \space is increased even by small amounts.
For instance, the refutation length of the formulas of [HRIéps exponentially once the variable space is
increased t@ literals above the bare minimal variable space required.

1.2 Our contribution

This paper contains two main results regarding resolugmgth and space, and one auxiliary result about
“classical” time-space trade-offs. Our first result is a meathod to obtain clause space lower bounds from
lower bounds on a space measure related to variable spaeesethnd result, which builds upon the first,
is a technigue to convert time-space trade-offs from thas&ital” computational setting to resolution.

The Substitution Space Theorem To describe our first result we define thariable support size

of a refutation as the maximal number of distinct variablppearing simultaneously in memory during
the refutation. Thus, in particular, variable support s&za lower bound on variable space. We present a
general method to transform lower bounds on the variablp@tigize forF’ to clause space lower bounds
on a formulaF’ obtained fromF' as follows. Supposé’ mentions variables:,...,z,. To produceF’

all we do is substitute each variabie with the exclusive-dr (xor) of two copies ofx;, denotedzgl), xz@)

and expand the resulting “clauses” (which became disjanstbf xors after substitution) to obtain a CNF
formula in the standard way. Our first main theorem can nowdtted (informally) as follows.

Theorem 1.1 (Substitution Space Theorem (Informal)).For any CNF formulaF” over the set of variables
{z1,...,2,}, let F" denote the formula with the exclusiveml(rl) P w@(g) substituted for;, written in CNF
in the canonical way.

Then any refutatiomr of F' in bounded width can be transformed into a refutatidrof £/ such that the
length and variable space af is at most a constant times the length and variable spaeé, oéspectively.

In the other direction, any refutation’ of the substitution formuld@” can be translated back into a
refutation of ' such that the length of is upper-bounded by the lengthdfand thevariable support size
of 7 is at most theslause spacef .

The most surprising aspect of this theorem, which is alsdhtirdest to prove, is that one can convert
support size lower bounds fdt to clause space lower bounds f6f. This reduces tha problem of proving
lower bounds on clause space to the easier task of provingr lbaunds on variable support size.

There is nothing magical about the exclusive-or of two \#lga. Substituting each variable with any function whodeeris
never dictated by only one variable will lead to essentitily same Substitution Space Theorem.

3

UNDERSTANDING SPACE IN RESOLUTION

The proof of the Substitution Space Theorem is presente@dtich 3. We believe it is of independent
interest; to wit, in a subsequent work [BSN09] we generdtife understand the connection between length
and space of the stronger proof system knowk-88\F resolution (although the results there are weaker and
apparently not tight, and in particular do not imply the tesun this paper). Let us briefly describe the main
ideas in the proof of the clause space—variable supportsizeection. A refutation’ of F” is a sequence of

clause configurationsvhere thetth configuration is a set of clauses over variablélé, :pf), e ,a:,(f), a:,(f)
corresponding to the content of the memory at tinie the proof. We start by “projecting” each memory
configuration down on a set of clauses over the original &z, ...,z,. Next, we argue that the

sequence of projected sets is (almost) a resolution redataf F', which we callr. Finally, we show that
the variable support of each projected setiis a lower bound on the clause space of its projecting clause
configuration int’.

The Substitution Space Theorem is inspired by our recent yfB8BNO08] and indeed our main theorem
there is a special case of this new theorem. Let us highlighinhportant novel aspects of this more general
theorem. First and foremost, our previous statement applidy to a very special kind of formulas known
aspebbling contradictionsvhereas the Substitution Space Theorem can be appliedrc@myeCNF for-
mula requiring large variable support size into a new andatiorelated CNF formula requiring large clause
space. Second, the proof of the Substitution Space Thearemich cleaner and simpler than the previous
one. There is no longer any need to assume the existence Ofiatgrlying directed acyclic graphs” and
construct intricate intermediate resolution-like pehipenes on these DAGs. Third, the Substitution Space
Theorem gives length-preserving reductions freno «’ and vice versa, whereas it was unclear how to
derive similar reductions from our previous work. And lémgreserving reductions are crucial for our
length-space trade-offs described below.

We end the discussion of the Substitution Space Theoremihtimmout that the space bounds obtained
from the Substitution Space Theorem apply to both clausevaridble space. This is because the lower
bound on space af’ is in terms of clause space. Thus, it implies a similar lowaurinl on the variable
space ofr’ because variable space is always at least as large as cfzamse dn the other direction, the
upper bound on the spacefis in terms of the larger of the two space measures,varigalees and hence
applies also to clause space. The “tightness of bounds”eoStibstitution Space Theorem plays a pivotal
role in our second main result, namely, the length-spacke{odfs described next.

Trade-offs in resolution Our second main result is a new method to “lift” classicaldispace trade-off
results to the proof complexity world and obtain a host obtrst” length-space trade-offs for resolution.
By “robust” we mean that the trade-off is not significantlfeated by small changes to either space or time
and displays a rather slow and gradual decrease in one parafsay, length) as the other (say, space) is
increased. Prior to this work such “robust” trade-offs wiemewn only for tree-like resolution [BS02].

All trade-off results reported here follow the same procddtggy, which is described in loose terms next
(the full details appear in Section 4). We start with a corapabhal time-space trade-off which is typically
stated as a result about thebbling priceof a directed acyclic graph. The use of pebbling in the cdrdéx
space lower bounds is by now standard and we refer the reaf&ipB0] for a survey of pebbling results and
to [Nor08] for a discussion of pebbling and resolution. @aht formal definitions appear in Section 2).
The pebbling trade-off results we need are of the followiagure.

“There exists (arbitrarily large) directed acyclic graghsvern vertices and bounded indegree
that(i) can be pebbled with pebbles in time, but (i) any pebbling strategy @ usings < p
pebbles requires timg(s), wheref monotonically decreases i’

One should think of as linear inn and of f(s) as being much larger tharfor small values o (We will
discuss later how “largef(s) can be.)

1 INTRODUCTION

With such a pebbling trade-off in hand, we construct fréha CNF formulaF’, known as gebbling
contradiction (see Definition 2.11) and promptly substitute each variallésay) the exclusive-or of two
copies of the variable, as described above. Our hope isttbaesulting formula, denotef’, will display a
length-space trade-off similar in spirit to the pebblingde-off of the underlying graph. More to the point,
the upper bound of on the time required to pebbt& usingp pebbles should imply that’ can be refuted
in length~ ¢ andvariable spacex~ p (consequently, the upper bound on clause space isajgo And the
Substitution Space Theorem says that a refutatioof F” in time ¢’ and clause spaceimplies a refutation
7 of F in time ~ ¢’ and variable space s. Finally, by a close reading of the construction in [BS02¢ w
deduce that any refutation of lengthand variable support sizeyields a pebbling strategy f@¥ of time ¢/
and space, which impliest’ > f(s).

Unfortunately, things are not that simple. We know how tovewha pebbling strategy into a short
and space-efficient refutation only if the pebbling stratisga so-calledlack pebblingwhich corresponds
to deterministic space). On the other hand, the result oDBSonverts the proofr into a black-white
pebblingstrategy (which corresponds to nondeterministic spaaeomplicate matters further, it is known
that black white pebbling can be asymptotically more effictban black pebbling [KS88, Wil85].

Thus, to obtain our trade-off results we need a strong forfdwdl” pebbling trade-offs, where the upper
bound(i) is stated in terms dblack pebbling while the matching lower bouril) applies to the stronger
model ofblack-whitepebbling. Appealing to the Substitution Space Theorem, aveshow that any such
strong pebbling trade-off translates into a length-spesdetoff for resolution.

Using this method of proof we present a number of robust sisse trade-offs for resolution. Before
giving a few examples we explain why the need arises for miffetrade-offs (as opposed to just one global
statement). In a nutshell, this is a mirror-picture of thetestof size-space trade-offs for pebbling graphs
upon which we rely. For instance, suppdsecan be pebbled in constant space. Then a straightforward
counting argument shows thé&t can be pebbled in polynomial time and constant space sinadtssly.
Thus, if we want to present a nontrivial size-space traddenfa formula that can be refuted in constant
space we cannot hope to get this trade-off to be superpolhor@imilarly, if G can be pebbled in, say,
polylogarithmic space, we cannot obtain exponential tapaee trade-offs. We are interested in deriving
robust trade-offs for a large range of space complexitypatars and thus we must rely on diverse size-
space trade-off results which each come from a differentifashgraphs. We end this section by describing
a couple of trade-off results (many more appear in SectionvV& remark that all of our results are for
explicitly constructible formulas.

Our strong pebbling trade-offs come from three sourcesst,Rive prove a new strong trade-off result
for a family of graphs introduced by Carlson and Savage irBf; £S82]. Carlson and Savage prove time-
space trade-offs for these graphs in the black pebbling mbdeto get a strong dual trade-off we need to
modify their construction and apply different ideas to mdower bounds in the more challenging black-
white pebbling setting. (Details appear in Section 5.2.)e ©hthe results derived from this is the rather
striking statement that superpolynomial length-spacdetiaffs can occur foarbitrarily slowly growing
non-constant space. (The formal statement appears asefiné€o?.)

Theorem 1.2 (Superpolynomial trade-offs for super-constat space (Informal)). For any arbitrarily
slowly growing functions(n) = w(1) and anye > 0, there exists a family of-CNF formulas{Fn}ZO:1
of sizeO(n) refutable in lengthO(n) and also in space(n), but not simultaneously so. On the contrary,

there are refutations of, in simultaneous lengtid(n) and variable space® ((n/s2(n))1/3), but any

refutation in clause spac® ((n/s2(n))1/3_6> must have superpolynomial length.

Three remarks should be made. First, notice that the tréidgplies to both clause and variable space.
This is because the upper bounds are stated in terms of ther laf these two measures (variable space)
while the lower bounds are in terms of the smaller one (claysee). This optimality of bound—-type is

5

UNDERSTANDING SPACE IN RESOLUTION

inherited from the Substitution Space Theorem. Seconarebshe “robust’ nature of the trade-off, which
is displayed by the long range of space complexity (frofh) up to~ n!/?) which requires superpolynomial
length. Finally, we point out that the lower bound on lengthahes up till very close to where our upper
bound kicks in.

A second source of trade-off results for resolution comamfstudying the graphs appearing in the study
of “classical” time-space trade-offs but deriviagictly better upper bounds on their refutation comphexit
than what can provably be obtained for black pebblifig.do this, we cannot use the machinery developed
in this paper as a black box, but need to prove upper boundssiution directly. The next theorem, a
guadratic length-space trade-off for constant space, tisi®type.

Theorem 1.3 (Quadratic trade-offs for constant space (Infamal)). There exists a family df-CNF for-
mulas{Fn};f’:1 of sizeO(n) refutable in lengthO(n) and also in variable spac®(1), but not simulta-
neously so. On the contrary, for any refutatierof £, in length L and clause space it must hold that

L=Q((n/s)?).

Our third and final source of trade-off results comes from sbeninal work of Lengauer and Tar-
jan [LT82], in which they showed strong pebbling trade-dffs variety of graphs. For instance, we can
obtain the following very strong trade-off in this way.

Theorem 1.4 (Exponential trade-offs for nearly-linear sp&e (Informal)). There exists constans <
K’ ande > 0 and a family ofi-CNF formulas{ F;, } | of sizeO(n) that are refutable in lengti®d(n) and
also in variable spacés - n/logn, but not simultaneously so. On the contrary, any refutatioof F,, in
clause space< K’ - n/log n must be of lengthxp(n®).

1.3 Organization of the Rest of This Paper

After a few basic definitions in Section 2, we present our firain result, the Substitution Space Theorem,
in Section 3. Our second main result, namely, the method daverting strong pebbling trade-offs into
length-space trade-offs for resolution, is described ictiSe 4. In Section 5, we derive our new pebbling
trade-off and survey some previously known ones. Thesdtseate needed for the robust length-space
trade-offs that are reported in in Section 6. We concludeeictiSn 7 with a brief discussion of some open
guestions.

2 Preliminaries

In this section we present definitions of and some basic &msit resolution and pebble games.

2.1 The Resolution Proof System

A literal is either a propositional logic variable or its negatiomatedz andz, respectively, or sometimes
orz! andz?. We definet = x. Two literalsa andb arestrictly distinctif « # b anda # b, i.e., if they refer
to distinct variables.

A clauseC = a1 V -+ - V ay is a set of literals. Without loss of generality, all claugéare assumed to
be nontrivial in the sense that all literalsdhare pairwise strictly distinct (otherwisg is trivially true). We
say thatC' is asubclauseof D if C' C D. A clause containing at mostliterals is called &-clause

A CNF formulaF = C1 A --- A Cpy, is a set of clauses. A-CNF formulais a CNF formula consisting
of k-clauses. We define treze S (F) of the formulaF to be the total number of literals iR counted with
repetitions. More often, we will be interested in the numbieclauseg F'| of F.

6

2 PRELIMINARIES

In this paper, when nothing else is stated it is assumedAh&t, C, D denote clauses;, D sets of
clauses;, y propositional variablesy, b, ¢ literals, «, G truth value assignments anda truth valued or 1.
We write

oy a(y) ify+#x,
(y) = {) . (1)
v if y ==,
to denote the truth value assignment that agrees avéiierywhere except possibly @atto which it assigns
the valuev. We let Vars(C) denote the set of variables arid (C) the set of literals in a claus€.? This

notation is extended to sets of clauses by taking unionso,Al&e employ the standard notatign| =

{1,2,...,n}.
In its simplest form, aesolution derivationr : F'- A of a clauseA from a CNF formulaF’ can be
viewed as a sequence of clauses- {D, ..., D.} such thatD, = A and each liné);, i € [7], either is

one of the clauses if" (anaxiom) or is derived from clause®;, D;, in = with j, k£ < 7 by theresolution

rule
Bvxy CVzZ

BvC

We refer to (2) asesolution on the variable and toB Vv C as theresolventof B vV xz andC VvV T onz.

When we want to study length and space simultaneously irfuteso, we have to be slightly careful
with the definitions so that we will be able to capture lengplace trade-offs. Just listing the clauses used in
a resolution refutation does not tell hewthe refutation was performed, and essentially the saméatein
can be carried out in vastly different time depending on tece constraints (as is shown in this paper).
Following the exposition in [ETO01], therefore, we can viewesolution refutation as a Turing machine
computation, with a special read-only input tape from whtwd axioms can be downloaded and a working
memory where all derivation steps are made. Then the lengthoof is essentially the time of the
computation and space measures memory consumption. Thalfdefinitions follow.

(2)

Definition 2.1 (Resolution (JABSRWO02])). A clause configuratiorCC is a set of clauses. A sequence of
clause configuration§Cy, . . ., C, } is aresolution derivatiorfrom a CNF formulaF™ if Cy = () and for all
t € [r], C, is obtained fronC;_, by one of the following rules:

Axiom Download C; = C;_; U {C'} for someC € F (anaxiom).
Erasure C; = C;—1 \ {C} for someC € C;_;.
Inference C; = C;_; U {D} for someD inferred by resolution front’;, Cy € C;_;.

A resolution derivationr : F'- A of a clauseA from a formulaF' is a derivation{Cy, ..., C,} such that
C, = {A}. A resolution refutatiod of I is a derivation of the empty clausg i.e., the clause with no
literals, from F'. If every clause in a derivation is used at most once befoiegberased, we say that the
derivation istree-like

For a formulaF’ and a set of formula§ = {G,,...,G,}, we say thay implies F', denotedg F F,
if every truth value assignment satisfying all formuldse G satisfiesF' as well. It is well known that
resolution is sound and implicationally complete. Thatfithere is a resolution derivatiom : F'- A, then
F E A, and if I F A, then there is a (tree-like) resolution derivation F'- A’ for someA’ C A. In
particular, F' is unsatisfiable if and only if there is a resolution refudatof £'.

We will be interested in studying length and space in regmiutwhich are formalized as proof com-
plexity measures in the next definition. Also, it will be cement to define what width in resolution is.

2Although the notatiorLit(C)) is slightly redundant given the definition of a clause as atkterals, we include it for clarity.

3perhaps somewhat confusingly, a resolution refutatio’ &6 sometimes also referred to asesolution proofof F in the
literature. We will mostly stick to the term “refutation” ithis paper, but will sometimes use the words “proof” and Utafion”
interchangeably.

UNDERSTANDING SPACE IN RESOLUTION

Definition 2.2 (Length, width and space).Thelength L(r) of a resolution derivatiom is the total number
of axiom downloads and inferences maderjn.e., the total number of clauses counted with repetitions

Thewidth W(C') of a clause” is the number of literals in it, the width/(F") of a formulaF' is the size
of a widest clause i, and the widthi¥(7) of a derivationr is defined in the same way.

The clause spacep(C) of a clause configuratiof® is |C|, i.e., the number of clauses @, and the
variable spaceVarSp(C) is Y. qcc|C|, i.e., the total number of literals i€ counted with repetition$.
The clause space of a refutatianis Sp(r) = maxce,{Sp(C)} and analogously the variable space is
VarSp(m) = maxcer{ VarSp(C)}.

Taking the minimum over all refutations of a formulg we defineL(F + 0) = min,.pro{L(7)} as
the length of refutingt”, W(F' = 0) = ming.po{ W(r)} as the width of refuting”, and Sp (F - 0) =
ming.pro{Sp(m)} and VarSp(F + 0) = min,.rof VarSp(m)} as the clause space and variable space,
respectively, of refuting” in resolution.

Note that this definition of length exactly captures the munn length as the number of lines in a listing
of the refutation (just construct a refutation that only sldewnloads and inferences until it gets0tcand
only then erase all the other clauses). For tree-like réisoluwe obtain the standard length measure by
insisting that every clause be used at most once before leeftsgd. Restricting the resolution derivations
to tree-like resolution, we can define the measure&r' - 0), Sp<(F I 0), and VarSp<(F I 0) (note that
width in general and tree-like resolution in the same, sandejitree-like width separately does not make
much sense). In general, Definition 2.2 unifies previous diefirts for various subsystems of resolution
and gives us the possibility to measure length and spacdtameously in a meaningful way. This paper,
however, will focus exclusively on general, unrestrictedalution.

Finally, we also need to define a proof complexity measurekwisi related to, but weaker than, variable
space’

Definition 2.3 (Variable support size). Let us say that theariable support sizeor justsupport sizeof
a clause set is SuppSize(C) = | Vars(C)|, i.e., the number of variables mentionedGn We define the
support size of a resolution derivatian= {Cy, ..., C;} to be SuppSize(r) = max,c|;{SuppSize(C)}
and the minimal support size of refutidgis thenSuppSize (F t 0) = ming. g o{ SuppSize(m)}.

The difference between variable space and variable sugpratis that the variable space counts the
number of variable occurrences @ with repetitions but for variable support size we only count each
variable once no matter how often it occurs. It follows the support size of refuting a formula is always
at most linear in the formula size, while the refutation &bté space could potentially be quadratic in the
formula size in the worst case. (It should be noted, thouwdt, io such formulas are known to exist, and to
the best of our knowledge it is even an open problem to progerinear lower bounds on variable space.)

2.2 Some Auxiliary Technical Results for Resolution

For technical reasons, it is sometimes convenient to addwatien rule forweakeningn resolution, saying
that we can always derive a weaker claige> C from C. It is easy to show that any weakening steps can
always be eliminated from a refutation without changingthimg essential. Let us state this more formally
since we will need the precise formulation later on in thipgra The proof is a straightforward induction
over the refutation and we omit the details.

“Note that if one wanted to be really precise, space (as weibrmsula size) should probably measure the numbebitsf
rather than the number of literals. However, counting éitemakes matters substantially cleaner, and the differenat most a
logarithmic factor. Therefore, counting literals seembéedhe established way of measuring formula size and variidce.

SWe remark that this measure has previously been studied tigltdad Urquhart (see [Her08]), but their terminology i§atient
in that they name this measure “variable space” and refeatiable space as “total space.” While the argument caninbrtae
made in favour of this naming convention, we have choseri¢k wiith the definition of variable space used in previousqrap

8

2 PRELIMINARIES

Proposition 2.4. Any resolution refutationr : F'+ 0 using the weakening rule can be transformed into a
refutations’ : F'+ 0 without weakening in at most the same length, width, clapaees variable space, and
support size, and performing at most the same number of adimnloads, inferences and erasuresmas

Another tool that we will use to to simplify some of the proedthe concept ofestrictions

Definition 2.5 (Restriction). A partial assignmenbr restriction p is a partial functiorp : X — {0,1},
where X is a set of Boolean variables. We identjfywith the set of literal§ a4, . .., a,,} set to true byp.
The p-restriction of a clauseC' is defined to be

- 1 (i.e., the trivially true clause) iLz't(C) N p#0,
77 lC\{a|aep} otherwise.

This definition is extended to set of clauses by taking unions
We write p(—C') to denote the minimal restriction fixing to false, i.e.p(=C) ={a | a € C}.

Proposition 2.6. If 7 is a resolution refutation of” and p is a restriction onVars(F), then[, can be
transformed into a resolution refutation éf[, in at most the same length, width, clause space, variable
space, and support size as

In fact, 7[, is a refutation ofF'[, (removing all trivially true clauses), but possibly usingakening.
The proof of this is again an easy induction over the resmtutefutations.
We next state an observation that will come in handy in thefsto

Observation 2.7. Any unsatisfiable CNF formul#’ over n variables can be refuted in length at most
2"l — 1, clause space at moét(n), and variable space at moét(n?) simultaneously.

Proof sketch.Build a search tree where all vertices on levejuery theith variable and where we go to
the left, say, if the variable is false under a given truthueahssignment and to the right if the variable is
true. As soon as some axiom His falsified by the partial assignment defined by the path tertex, we
make that vertex into a leaf labelled by that clause. This kras size at mogf*t! — 1, and if we turn it
upside down we can obtain a legal tree-like refutatio’ppossibly using weakening. This refutation can
be carried out in clause space linear in the tree depth amableuispace upper-bounded by the clause space
times the number of distinct variables. We refer to, foranse, [BS02, ET01] for more details. O

In a resolution refutation of a formul&, there is nothing in Definition 2.1 that rules out that contgdie
unnecessary derivation steps are made on the way, suchoassalxeéing downloaded and them immediately
erased again, or entire subderivations being made to ndrusar constructions it will be important that we
can rule out some redundancies and enforce the followinginements for any resolution refutation:

e Every clause in memory is used in an inference step beforgleased.
e Every clause is erased from memory immediately after halvean used for the last time.

We say that a resolution refutation that meets these raqeines isfrugal. The formal definition, which is a
mildly modified version of that in [BS02], follows.

Definition 2.8 (Frugal refutation). Letr = {Cy = 0,C4,...,C, = {0}} be a resolution refutation of
some CNF formula’. Theessential clauses 7 are defined by backward induction:

e If C, is the first configuration containing then0 is essential at time

9

UNDERSTANDING SPACE IN RESOLUTION

e If D € C; is essential and is inferred at timérom C1, Cy € C;_1 by resolution, ther; andC> are
essential at time — 1.

e If Dis essential attimeandD € C,_q, thenD is essential at time— 1.

Essential clause configuratiorase defined by forward induction ovet The configuratiorC; € « is
essential if all clause® € C, are essential at timg if C; is obtained by inference from a configuration
C;_1 containing only essential clauses at time 1, or if C; is obtained from an essential configuration
C;_1 by an erasure step.

Finally, = = {Cy, ..., C,} is afrugal refutationif all configurationsC; € = are essential.

Without loss of generality, we can always assume that réealuefutations are frugal.

Lemma 2.9. Any resolution refutationr : F'+0 can be converted into a frugal refutatiori : F'- 0 with-
out increasing the length, width, clause space, variablacep or support size. Furthermore, the axiom
downloads, inferences and erasures performed iare a subset of those in.

Proof. The construction ofr’ is by backward induction over. Sets = min{t : 0 € C;} andC/, = {0}.
Assume thaC’,,C/_,,...C},,C} , have been constructed and consi@eand the transitiol; ~» C;;.

Axiom Download C;;1 = C, U {C}: SetC; = C;, \ {C}. (If C'is not essential we g€t} = C;_ ,.)
Erasure C;; = C; \ {D}: Ignore, i.e., seC} = C} ;.

Inference Cy1; = C; U {D} inferred fromC,,Cy € Ci: If D ¢ (CQH, ignore the step and sé&t, =
Cj,,. Otherwise (using fractional time steps for notationalwesmence) insert the configurations
Ci = Cn U{CL CI\{D}, €y = G UG Go}, €y = G UG

Finally go throughr’ and eliminate any consecutive duplicate clause configursti

It is straightforward to check that' is a legal resolution refutation. Let us verify thdtis frugal. By
backward induction, eacdi; for integral time steps contains only essential clauses. By forward induction,
if Cj,, = C,U{C} is obtained by axiom download, all clausesGf, , are essential. Erasuresinare
ignored. For inference step8; contains only essential clauses by inducti@@ 1 is essential by inference,

and(C;Jrg andCj ., are essential since they are derived by erasure from easentifigurations. Finally, it
3

is clear thatr’ performs a subset of the derivation stepsiand that the length, width, and space does not
increase. O

2.3 Pebble Games

Pebble games were devised for studying programming lamguaigd compiler construction, but have found
a variety of applications in computational complexity thedn connection with resolution, pebble games
have been employed both to analyze resolution derivatiotisrespect to how much memory they consume
(using the original definition of space in [ET01]) and to donst CNF formulas which are hard for different
variants of resolution in various respects (see for exarffl®U02, BSIW04, BEGJ00, BOP03] and the
sequence of papers [Nor06, NHO8, BSNO08] leading up to thidkwadAn excellent survey of pebbling up
to ca. 1980 is [Pip80]. We also refer the interested readtdret@pcoming survey [Nor09], which contains
some later results and also describes connections betvebbhing and proof complexity.

The black pebbling price of a DAG captures the memory space, i.e., the number of registeysred
to perform the deterministic computation describedchyThe space of a non-deterministic computation is
measured by the black-white pebbling pricecafWe say that vertices d@F with indegred) aresourcesand

10

2 PRELIMINARIES

that vertices with outdegrekaresinks(or targetg. In the following, unless otherwise stated we will assume
that all DAGs under discussion have a unigue sink and thiswithalways be denoted. The next definition
is adapted from [CS76], though we use the established peptdirminology introduced by [HPV77].

Definition 2.10 (Black-white pebble game).Suppose thafr is a DAG with sources$' and a unique sink.
The black-white pebble gamen G is the following one-player game. At any point in the gameyé¢hare
black and white pebbles placed on some vertices,@ft most one pebble per vertex p&bble configuration
is a pair of subset® = (B,W) of V(G), comprising the black-pebbled verticés and white-pebbled
verticesW. The rules of the game are as follows:

1. If all immediate predecessors of an empty vertelxave pebbles on them, a black pebble may be
placed orw. In particular, a black pebble can always be placed on artgxeér.S.

2. A black pebble may be removed from any vertex at any time.
3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vestbave pebbles on them, the white pebble on
v may be removed. In particular, a white pebble can always i@ved from a source vertex.

A black-white pebblingrom (B, Wy) to (B,, W) in G is a sequence of pebble configuratidfs=
{Py,...,P;} such thay = (By, Wy), P, = (B,, W), and for allt € [r], P, follows fromP;_; by one of
the rules above. Acomplete) pebbling af, also called gebbling strategy for7, is a pebbling such that
(Bo, Wo) = (0,0) and(B,, W,) = ({z},0).

The time of a pebblingP = {Py,...,P.} is simplytime(P) = r and thespaceis space(P) =
maxo<i<-{|B: U W¢|}. Theblack-white pebbling pricéalso known as theebbling measurer pebbling
numbe) of G, denotedBW-Peb(G), is the minimum space of any complete pebbling-of

A black pebblingis a pebbling using black pebbles only, i.e., haviig = (for all t. The (black)
pebbling priceof G, denotedPeb(G), is the minimum space of any complete black pebbling:of

For any DAGG over n vertices with bounded indegree, the black pebbling pricel (us also the
black-white pebbling price) is at mo§k(n/logn) [HPV77], where the hidden constant depends on the
indegree. A number of exact or asymptotically tight boundgddferent graph families have been proven
in the whole range from constant &(n/ log n), for instance in [GT78, Kla85, LT80, PTC77]. As to time,
obviously any DAGG over n vertices can be pebbled in tinga — 1, and for all graphs we will study
this is also a lower bound, so studying the time measure latiea is not that exciting. A very interesting
guestion, however, is how time and space are related in &egpetpbling ofG if one wants to optimize both
measures simultaneously. We will return to this questioBention 5.

2.4 Pebbling Contradictions

A pebbling contradictiordefined on a DAGS is a CNF formula that encodes the pebble game-ooy
postulating the sources to be true and the target to be fafskspecifying that truth propagates through
the graph according to the pebbling rules. These formulas peeviously been studied in, for instance,
[RM99, BEGJOO, BSWO01].

Definition 2.11 (Pebbling contradiction). Suppose thatr is a DAG with sourcess and a unique sink.
Identify every vertexo € V(G) with a propositional logic variable. The pebbling contradictiorover G,
denotedPeb, is the conjunction of the following clauses:

e forall s € S, a unit clauses (source axioms

11

UNDERSTANDING SPACE IN RESOLUTION

e For all non-source vertices with immediate predecessots, . .., uy, the clausai; V --- Vup Vv
(pebbling axiomkg

¢ for the sinkz, the unit clause (targetor sink axion).

If G hasn vertices and maximal indegréethe formulaPeb, is an unsatisfiablel{¢)-CNF formula
with n clauses ovenr variables.

3 The Substitution Space Theorem

In this section we present the main technical contributibths paper, the so-called Substitution Space
Theorem. In order to state this theorem, we need to introdanee new definitions and notation.
3.1 Substitution Formulas

Throughout this paper, we will lef; denote any (non-constant) Boolean functign: {0,1}¢ — {0,1}
of arity d. We use the shorthand = (x1,...,24), so thatf,(Z) is just an equivalent way of writing
fa(x1, ..., xq). For every functionf,, we fix some canonical representation of it as a CNF formula.lay/
Clif.(z)] denote the set of clauses in the canonical representatifipasfd Cl[—f,(Z)] denote the clauses
in the canonical representation of its negation. For ircgawe choose to define

Cl[Va(Z)] = {z1 Vao} and Cl[-Va(Z)] = {T1, Ta} (3)
for logical or of two variables and
Cli®2(Z)] = {z1 Va2, T1 VT2} and Cl[-®2(Z)] = {x1 VT2, T1 V 22} 4)
for logical exclusive or of two variables. The general d¢iimis for exclusive or are

C @d ‘f {\/2 lwm

o 11/, =d (mod2)} (5)
and
Cl[~®q(Z)] {\/Z Y

11/,- #Zd (mod 2)} (6)

from which we can see thdil[$4(Z)] and Cl[-&4(Z)] both ared-CNFs. We will also be interested in the
function saying thak out of d variables are true, which we will denoketrue;. To give an example, for
2-true, we have

x1 VoV a3,
o 1 VoV xy
Cl[2-truey(7)] = ’ (7)
xr1 Va3V ay,
o V3V Iy
and
z1 V Ta,
z1 VT3,
. 1V Ty
Cl-2-truey(8)] =< 7 (8)
To V T3,

To V Ty,

T3V Ty

12

3 THE SUBSTITUTION SPACE THEOREM

and in general we have

Cllk-trueq(Z)] = {V,eqwi|S C[d], [S|=d—k+1} 9)
and
Cl[~k-truey (7)) = {V,esTi| S C [d], |S| =k} . (10)
Clearly, 1-truey(x1, . .., z4) is just another way of writing the functio‘t;{f:1 x;, andd-truey(z1, ..., xq) =
/\?:1 Li-

In general, we could construct a canonical representatiofi,(z)] for f; as follows. For a truth value
assignment : {z1,...,z4} — {0,1} we define the clausg, = z; "V v ... v xcll_a(””d) that is true for
all assignments ta, . .., x4 excepta. Then we could define

Clfs@ = N Ca. (11)
a:a(fq(7))=0

But this way of representing the Boolean function can turntoue unnecessarily involved. For instance,
for binary logical and (11) yield€1[A2(Z)] = {x1 V 2, 1 V T2, T1 V z2} instead of the arguably more
natural representatio@l[Aq(Z)] = {z1, z2}. Therefore, we want the freedom to choose our own canonical
representation when appropriate. Note, however, thatqdrdstitutes a proof of the fact that without loss of
generality we can always assume that

| Cllfa(®)]] < 2¢ (12)

since there are onlg? truth value assignments arfglis assumed to be non-constant.
The following observation is rather immediate, but nevadhs it might be helpful to state it explicitly.

Observation 3.1. Suppose for any non-constant Boolean funcifgthat C' € CI[f,(Z)] and thatp is any
partial truth value assignment such thatC') = 0. Then for allD € Ci[-f,(Z)] it holds thatp(D) = 1.

Proof. If p(C) = 0 this means thap(f;) = 0. Then clearlyp(—f;) = 1, so, in particularp must fix all
clausesD € Cl[—f4(Z)] to true. O

We want to define formally what it means to substityiefor the variablesVars(F) in a CNF formu-
la F'. For notational convenience, we assume fhamnly has variables, y, z, et cetera, without subscripts,
sothatxy, ..., 24, y1,---,%d, 21,-- -, 2d, - - - &1€ NEW variables not occurring in.

Definition 3.2 (Substitution formula). For a positive literalr and a non-constant Boolean functigin we
define thef;-substitutionof = to bez|[f4] = Cl[f,(Z)], i.e., the canonical representationfofx1, ..., z4)

as a CNF formula. For a negative litetalthe f;-substitution igj[f4] = CI[—f,(¥)]. The f;-substitution of
aclauseC' = aq V --- V ai is the CNF formula

Clfd= N - N\ (C1v...vy) (13)
Ci€ailfa] Cr€aglfd]
and thefy-substitution of a CNF formuld' is F[fq] = Accp Clfal-
For example, folC = x vV 3 and f; = x1 & x2 we get that

Clfe] = (@1 VaaVyi V) Az Va VY Vy2)

_ _ - (14)
ANTIVT2V Y1 V) A(T1 VT2 VT VYy2) .

We note thatF[f,] is a CNF formula oved - | Vars(F')| variables containing strictly less thaR| - 2¢ W(F)
clauses. (Recall that we defined a CNF formula as a set ofedaugich means that’| is the number of
clauses inF'.)

We have the following easy observation, the proof of whichressented for completeness.

13

UNDERSTANDING SPACE IN RESOLUTION

Observation 3.3. For any non-constant Boolean functigf : {0, 1} — {0, 1}, it holds thatF'[f,] is un-
satisfiable if and only it is unsatisfiable.

Proof. Suppose that’ is satisfiable and let be a truth value assignment such th&f’) = 1. Then we can
satisfy F[f4] by choosing an assignmeat for Vars(F|f4]) in such a way thaf,(o/(z1),. .., (zq4)) =
a(x). Forif C € Fis satisfied by some literal; set to true byy, theno’ will satisfy all clause<”; € a;[f4]
and thus also the whole CNF formuld f,] in (13).

Conversely, supposE is unsatisfiable and consider any truth value assignméfar F'[f;]. Theno’
defines a truth value assignmenfor F in the natural way by setting(z) = fq(¢/(z1), ..., (2z4)), and
we know that there is some clauéke e F' that is not satisfied by. That is, for every literah; € C =
a1 V---Vay itholds thata(a;) = 0. But thena’ does not satisfy; [f4], so there is some clausé € a;[f,]
such that/(C?) = 0. This shows that/ falsifies the disjunctiorC; v - -- v C}, € C[f,], and consequently

F[f4] must also be unsatisfiable. O
For our present purposes, a particularly interesting kinBanlean functionsf (x4, ..., z,) are those

having the property that no single variablgdetermines the value gf(z1, ..., z4).

Definition 3.4 (Non-authoritarian function). We will call a Boolean functiory overd variablesr, . . ., zq4

non-authoritarianif for any variablex; and any truth valuev(z;) = v; assigned ta;, « can be extended

to a truth value assignment satisfying f(z1,...,z,) and another truth value assignmerit falsifying

f(z1,...,xq). If fdoes not satisfy this requirement, then we will call the tiorcauthoritarian

Examples of non-authoritarian functions include exclesiv and threshold functions ovérvariables
for which the threshold lies aboveand belowd, as discussed above.

3.2 Formal Statement of the Theorem and Two Corollaries

Loosely put, the Substitution Space Theorem says that ifrauta ' can be refuted in resolution in small
length and width simultaneously, then so can the substitdormulaF’[f,]. There is an analogous result
in the other direction as well in the sense that we can tremslay refutationr ¢ of F/[f,] into a refutation

m of the original formulaF” where the length ofr is almost upper-bounded by the lengthmgf (this will

be made precise below). So far this is nothing very unexdedtet what is more interesting is that fif

is non-authoritarian, then the clause spacer pfs an upper bound on the number of variables mentioned
simultaneously inr. Thus, the theorem says that we can convert lower boundsr@bleasupport size into
lower bounds on clause space by making substitutions usingaothoritarian functions.

Theorem 3.5 (Substitution Space Theorem)Let F' be any unsatisfiable CNF formula arfg be any non-
constant Boolean function of arity. Then it holds that the substitution formuléf,;] can be refuted in
width

W(F[fs) - 0) = O(d- W(F 0))

and length
L(F[fs) F0) < ﬂ%iEO{L(W) -exp(O(d- W(m)))} .

In the other direction, any refutationy : F/[f,] -0 of the substitution formula can be transformed into a
refutationr : F' 0 of the original formula such that the number of axiom dowdbenr is at most the num-
ber of axiom downloads in. If in addition f; is non-authoritarian, it holds thabp(wy) > SuppSize(r),
i.e., the clause space of refuting the substitution formfdl#,] is lower-bounded by the variable support
size of refuting the original formul#’.

14

3 THE SUBSTITUTION SPACE THEOREM

Note that if £ is refutable simultaneously in linear length and constaidthw then the bound in Theo-
rem 3.5 onL (F[f4] - 0) becomes linear ith.(F - 0). It would be interesting to know if the bound in terms
of number of axiom downloads could in fact be strengtheneal hbound in terms of length, but we do not
know if this is the case or not. Luckily enough, however, tbard in terms of axiom downloads turns out
to be exactly what we need for our applications.

Although this might not be immediately obvious, Theorem 8.85emarkably powerful as a tool for
understanding space in resolution. It will take some morekwefore we can present our main applications
of this theorem, which are the strong time-space tradeeslis discussed in Section 6. Let us note for
starters, however, that without any extra work we immedliaget lower bounds on space.

Esteban and Toran [ETO1] proved that the clause spacewfmgfF is upper-bounded by the formula
size. In the papers [ABSRWO02, BSGO03, ET01] it was shown,gusjinite elaborate arguments, that there
are polynomial-sizé-CNF formulas with lower bounds on clause space matchirgupper bound up to
constant factors. Using Theorem 3.5 we can get a differerdfpf this fact.

Corollary 3.6 ([ABSRWO02, BSG03, ETO01]). There are families ok-CNF formulas{F'}>° , with O(n)
clauses oveP(n) variables such thasp (F,, - 0) = ©(n).

Proof. Just pick any formula family for which it is shown that anyudtion of F;,, must at some point in the
refutation mentiorf2(n) variables at the same time (e.g., from [BSWO01]), and thetyapipeorem 3.5. O

It should be noted, though, that when we apply Theorem 3.5dhmulas in [ABSRW02, BSGO03,
ETO1] are changed. We remark that there is another, and eves @legant way to derive Corollary 3.6
from [BSWO01] without changing the formulas, namely by usihg lower bound on clause space in terms
of width in [ADO3].

For our next corollary, however, there is no other, simplaywnown to prove the same result. Instead,
our proof in this paper actually improves the constants érésult.

Corollary 3.7 ([BSN08]). There are familied £}, },7 ; of k-CNF formulas of siz®(n) refutable in linear
length L(F,, - 0) = O(n) and constant width¥/(F,, - 0) = O(1) such that the minimum clause space
required isSp (F, F 0) = Q(n/logn).

Proof. In [BS02], the first author showed that there are formulastasfie simultaneously in linear length
and constant width, but for which any refutation must at spoiat mentiorf2(n/ log n) distinct variables at
the same time (although the result was stated in slightfemiht terms). Corollary 3.7 follows immediately
from this by applying Theorem 3.5. O

In fact, the ideas in [BS02], which provide a way of transigtback and forth between resolution and
pebbling, are also what allows us to prove strong tradeesftlts for resolution. We will return to this in
Section 4 where we formalize this resolution-pebbling espondence.

3.3 Proof of the Substitution Space Theorem—Main Component S

We divide the proof of Theorem 3.5 into three parts in The@@&m®, 3.11, and 3.12 below. In this subsec-
tion, we state these three theorems and show how they corubjield Theorem 3.5. The rest of Section 3
is then spent proving these three auxiliary theorems.

Theorem 3.8. For any CNF formulaF’ and any non-constant Boolean functig it holds that
W(F[fa F0) =0(d- W(F I 0))

and
L(F[fs)F0) < WI:I}lT'iEO{L(ﬂ-) -exp(O(d- W(m)))} .

15

UNDERSTANDING SPACE IN RESOLUTION

These upper bounds on refutation width and length/pf,;] are not hard to show. The proof proceeds
along the following lines. Given a resolution refutatienof F', we construct a refutationy : F/[f;] -0
mimicking the derivation steps in. Whenr downloads an axion®’, we download thexp(O(d - W(C)))
axiom clauses irC|[f;]. Whenr resolvesC; v x andCy V T to deriveC; vV Cy, we use the fact that
resolution is implicationally complete to deri€'; v Ca)[f4] from (Cy V z)[f4] and (C2 V T)[f4] in at
mostexp(O(d - W(C, v C3))) steps. We return to the details of the proof in Section 3.4.

It is more challenging, however, to prove that we can get fdveeinds on clause space Bff,| from
lower bounds on support size fér. The idea is to look at refutations &f[f,;] and “project” them down on
refutations off". To do this, we first define a special kind of “precise implicaf’

Definition 3.9 (Precise implication). Let F' be a CNF formula and,; a non-constant Boolean function,
and suppose tha@it is a set of clauses derived frof| f;] and that? and N are (disjoint) subset of variables
of F. If

DE\/ fa@ Vv ~fa@ (15a)

zeP yeN

but for all strict subset®’ ;Cé D, P’ ;Cé P, andN’ ;Cé N it holds that

D' #\/ fa@ v\ ~fa@) (15b)
xeP yeN

D¥ \/ fa& v\ ~fa7) ,and (15¢)
zeP’! yeEN

¥\ fa@ v\ —f) (15d)
zeP yeN'

we say that the clause setimplies\/ . p f4(Z) V V ¢y ~f4(¥) preciselyand write

D> \/ fa@ v\ ~fa@) - (16)

zeP yeN

Note that? = N = () in Definition 3.9 corresponds f being unsatisfiable.
Let us also use the convention that any clatisean be writterC' = C*vC~, whereC* =\/ .1,y @

is the disjunction of the positive literals tfandC'~ = \/yem(c) 7 is the disjunction of the negative literals.

Definition 3.10 (Projected clauses)Let F' be a CNF formula angl; a nhon-constant Boolean function, and
suppose thdb is a set of clauses derived frofy f,]. Then we say thdb projectsthe clause” = C*+ v C~
on FF—or, perhaps more correctly, diurs(F)—if there is a subséb~ C D such that

Do\ fu@V \/ ~fa® (17)

zeC+ yeC—

and we writeproj (D) = {C |3Dc C Ds.t. Do > V,cor fa@) V Vyeo-—fa(¥)} to denote the set of
all clauses thab projects onF'.

Given that we now know how to translate clauses derived ffdjify] into clauses oveVars(F), the
next step is to show that this translation preserves raealuéfutations.

Theorem 3.11. Suppose that; = {]DO, . ,]DT} is a resolution refutation of'[f,] for some arbitrary
unsatisfiable CNF formulad” and some arbitrary non-constant functigfy. Then the sets of projected
clauses{ proj r-(Dy), . .., proj (D) } form the “backbone” of a resolution refutation of F' in the sense
that:

16

3 THE SUBSTITUTION SPACE THEOREM

e proj p(Do) = 0.
e proj p(Dy) = {0}.

e All transitions fromproj (D;—1) to proj p(ID;) for ¢ € [r] can be accomplished by axiom downloads
from F, inferences, erasures, and possibly weakening steps mawuay that the variable support
size int during these intermediate derivation steps never exc&&d@)eﬂf{SuppSize(projF(]D))}.

e The only timer performs a download of some axiamin F' is whenr,; downloads some axiom
D € Clfa]in F[fa].

Note that by Proposition 2.4, we can get rid of the weakenirayesn in a postprocessing step, but
allowing them in the statement of Theorem 3.11 makes thef pnoch cleaner. Accepting Theorem 3.11 on
faith for the moment (deferring the proof to Section 3.5¢ filhal missing link in the proof of the Substitution
Space Theorem is the following lower bound.

Theorem 3.12. Suppose thdD # () is a set of clauses derived frofi f,] for some arbitrary unsatisfiable
CNF formulaF and some non-authoritarian functiofy. ThenSp(D) = |D| > SuppSize(proj p(D)).

Combining Theorems 3.8, 3.11, and 3.12, which will be prasteortly, the Substitution Space Theorem
follows. This is immediate, but for the convenience of theder we write out the details.

Proof of Theorem 3.5The first part of Theorem 3.5, i.e., that any refutatioof ' can be converted to a
refutationr ¢ of the substitution formul’[f;], is Theorem 3.8 verbatim. For the second part of Theorem 3.5,
Theorem 3.11 describes how any refutatignof the substitution formuld’[f;] can be translated back into

a refutations of the original formulaF'. This is true regardless of what kind of functigp is used for the
substitution. If in additionf, is non-authoritarian, Theorem 3.12 says that the clauseesplar; provides

an upper bound for the variable support sizerofr he theorem follows. O

It remains to prove Theorems 3.8, 3.11, and 3.12. For coameriof notation in the proofs, let us define
the disjunctionC v D of two clause set€ andD to be the clause set

CvD={CVvD|CeC,DeD} . (18)

This notation extends to more than two clause sets in thealatiay. Rewriting (13) in Definition 3.2 using
this notation, we have that

(Dva)fd=Dlfdvalfd= N N\ (C1vE) . (19)

C1€D|[f4] C2€a|fq)

3.4 Proof of Theorem 3.8

Givenr : F'-0, we constructry : D[fq] -0 by maintaining the invariant that if we hain memory forr,
then we haveC|f;] in memory forr¢. We get the following case analysis.

Axiom download If = downloadsC, we download all ofC[f,], i.e., less tharz® W(©) clauses which all
have width at most - W(C).

Erasure If 7 erase<”, we erase all o[f,] in less thare? V() erasure steps.

17

UNDERSTANDING SPACE IN RESOLUTION

Inference This is the only interesting case. Suppose thetfersC; v C from C; vV z andCs VZ. Then by
induction we havéC V x)[fq] and(C2 V Z)[f4] in memory in7s. It is a straightforward extension
of Observation 3.3 that i€ = D, thenC[f,] F D[f;], so in particular it holds thatC; V z)[f,] and
(Cy VT)[fa] iImply (C1 Vv C2)[fa]. By the implicational completeness of resolution, theseisés can
all be derived.

An upper bound (not necessarily tight) for the width of thesidation in7yisd - (W(Cy V z) +
W(Co vV T) + W(Cy Vv Cy)) = O(d- W(r)), as claimed.

To bound the length, note tha®;, v Cy)[f4]. contains less thadf V(¢1VC2) clauses. For every clause
D € (C1 Vv C2)[fa], consider the minimal restriction(—D) falsifying D. Since

(Crva)[fa A(CoVT)[fal ED (20)

we have that
(CrVa)[fall jopy A (C2VE)[fall jpy F O - (21)

The number of variables is at mast (W(C, v C3) + 1) = N, and by Observation 2.7 there is a
refutation of (C1 V 2)[fall ,.py A (C2 V@) [fa]l ;- py IN length at mose¥+! — 1. Looking at this
refutation and removing the restrictipi—D), it is straightforward to verify that we get a derivation
of D from (Cy V z)[fa] A (C2 V T)[f4] in the same length (see, for instance, the inductive proof in
[BSWO01]). We can repeat this for every clauBe € (C; Vv Cs)[f,4] to derive all of the less than
2d-(W(C1VC2)) clauses in this set in total length at most

od-(W(C1VC2)) | 9d-(W(C1VC2)+2) < 93d-W(m) _ 9O(d-W(m)) (22)

Taken together, we see that we get a refutatigrin length at most(r) - 20(¢W(™) and width at most
O(d - W(r)). Theorem 3.8 follows.

3.5 Proof of Theorem 3.11

Let us use the convention thatand D denote clause sets and clauses derived ffdify] while C andC
denote clause sets and clauses derived ffom

Let us also overload the notation and wiile= C, D ¥ C, andD > C for C = Ct v C~ when
the corresponding implications hold or do not hold Iawith respect to\/, .+ f4(Z) V Vyeo-—fa(¥)
(with precise implicatiort> defined as in Definition 3.9). Note that it will always be clegren we use
the notation in this overloaded sense sificandC' are defined over different sets of variables, and so the
non-overloaded interpretation would not be very meaningfu

Recall from Definition 3.10 thgiroj (D) = {C |3D¢ C D s.t. Do > Vet fo(F)V Veo-~fa(@) }
is the set of clauses projected By In the spirit of the notational convention just introducea will let C;
be a shorthand faproj (D).

Suppose now that; = {]D)O, . ,]DT} is a resolution refutation of'[f,] for some arbitrary unsatisfiable
CNF formulaF and some arbitrary non-constant functifyn

The first two bullets in Theorem 3.11 are immediate. Bgr= () we haveCy = proj (Do) = 0, and
it is easy to verify thaid, = {0} yieldsC, = proj p(D,) = {0}. We note, however, that the empty clause
will have appeared i, = proj (D;) earlier, namely for the firgtsuch thaf, is contradictory.

The tricky part is to show that all transitions froB_; = projr(Dy—1) to C; = proj p(D;) can be
performed in such a way that the variable support size in @utation under constructiom : F'F 0 never
exceedSnaX{SuppSize((Ct_l), SuppSize((Ct)} during the intermediate derivation steps needed.ifihe
proof is by a case analysis of the derivation steps. Befaragihg into the proof, let us make a simple but
useful observation.

18

3 THE SUBSTITUTION SPACE THEOREM

Observation 3.13.Using the overloaded notation just introducedpif= C thenC = C Vv~ is derivable
from C; = proj (Dy) by weakening.

Proof. Pick D’ C D, C{” € C*, andC; C C~ minimal so thatD’ F C{” v C; still holds. Then by
definitionD’ > C;" v C; soC; v Cy € C,andC 2 Cyf v Oy can be derived fronT; by weakening as
claimed. O

Consider now the rule applied in; at timet¢ to get fromD;_; to D;. We analyze the three possible
cases—inference, erasure and axiom download—in this.order

3.5.1 Inference

SinceD; D D;_, it is immediate from Definition 3.10 that no clauses(dn ; can disappear at timgi.e.,
Ci—1 \ C; = 0. There can appear new clause<in but by Observation 3.13 all such clauses are derivable
by weakening frontC;_,. During such weakening moves the variable support size&sgs monotonically
and is bounded from above yppSize(Cy).

3.5.2 Erasure

Sincel;_; C Dy, itis immediate from Definition 3.10 that no new clauses gapear at time. Any clauses
in C;—1 \ C; can simply be erased, which decreases the variable supp®rnsnotonically.

3.5.3 Axiom download

This is the only place in the case analysis where we need torde svork. Suppose th@lt, =D, ; U {D}
for some axiom claus® € A[f,], whereA in turn is an axiom off". If C' € C,; \ C;_; is a new projected
clause,D must be involved in projecting it so there is some sulis€t D;_; such that

DU{D}>C . (23)

Also note that ifD;_; E C we are done sinc€' can be derived front;_; by weakening, so we can assume
that
D1 EC . (24)

We want to show that all clausé€s satisfying (23) and (24) can be derived frdip_; = proj (D¢—1) by
downloadingA € F', making inferences, and then possibly erasin@nd that this can be done without the
variable support size exceedilﬁgax{SuppSize((Ct_l), SuppSz'ze((Ct)}. The key to our proof is the next
lemma.

Lemma 3.14. Suppose thaD derived fromF'[f;], D € A[f4], andC a clause overVars(F') are such that
D U {D} > CbutD¥ C. ThenifA =a; V---V ay, for everya; € A\ C there is a clause subsBf C D
and a subclaus€* C C such thatD’ > C? v @;. That s, all clause€ Vv @; for a; € A\ C can be derived
from C = proj (D) by weakening.

Proof. Consider any truth value assignmensuch thai (D) = 1 buta(V ,c o+ fa(Z) V Vgee-fa(¥) =

0. Such an assignment exists sifize“ C by assumption. Also, since by assumptbnJ {D} > C we
must havex(D) = 0. If A =a; V --- V ai, we can writeD € A[f4] on the formD = D, v --- Vv Dy, for

D; € a;[f4] (compare with (19)). Fix any € A and suppose for the moment thiat « is a positive literal.
Thena(D;) = 0 implies thata(f,;(Z)) = 0. By Observation 3.1, this means that-f,(Z)) = 1. Since
exactly the same argument holds:i= 3 is a negative literal, we conclude that

DFE Vaeovan+fa@) V Vyeovay-Fa(¥) (25)

19

UNDERSTANDING SPACE IN RESOLUTION

or, rewriting (25) using our overloaded notation, that
DECVaG; . (26)

If a; € C, the clauseC V @; is trivially true and thus uninteresting, but otherwise ek’ C D and
C* C C minimal such that (26) still holds (and notice that sifize C, the literala; cannot be dropped
from the implication). Then by Definition 3.10 we haé > C? v @; as claimed. O

We remark that Lemma 3.14 can be seen to imply fats(A) C Vars(C;) = Vars(proj (Dy)). For
x € Vars(A) N Vars(C) this is of course ftrivially true, but for € Vars(A) \ Vars(C) Lemma 3.14
tells us that already at time— 1, there is a clause i6;_; = proj »(D;—1) containingz, namely the clause
C" Vv a; found in the proof above. Sind@® D D,_1, this clause does not disappear at tim&his means that
if we downloadA € F in our refutationr : F'-0 under construction, we hauppSize(C;—1 U {A4}) <
SuppSize(Cy). Thus, we can download € F', and then possibly erase this clause again at the end of our
intermediate resolution derivation to get frdfp_; to C;, without the variable support size ever exceeding
maX{SuppSize((Ct_l), SuppSize((Ct)}.

Let us now argue that all new claus@sc C; \ C;_; can be derived front;_; U {A}. If A\ C =0,
then the weakening rule applied ehis enough. Suppose therefore that this is not the case anfi let
AN\ C =V aepi(an Lir(c) @- Appealing to Lemma 3.14 we know that for everye A there is aC, € C
such thaiC, vV @ € C;_;. Note that by assumption (24) this means that i Vars(A) N Vars(C), then
x occurs with the same sign it andC, since otherwise we would get the contradictiorr C' va = C.
Summing upC;_; containsC,, V @ for someC,, C C for all a € Lit(A) \ Lit(C) and in addition we know
that Lit(A) N {a | a € Lit(C)} = 0. Letus writeA’ = a; V --- V a,, and do the following weakening
derivation steps front;_; U {A4}:

A~sCVA
Cal\/61WCV61
Cqy Vg ~ C'V a2 (27)

Ca,, V@~ CV Gy,

Then resolve” vV A’ in turn with all clause€' V@, C Vag, ..., C,, V an, finally yielding the claus€.
In this way all clause¢” € C; \ C;_; can be derived one by one, and we note that we never mention
any variables outside dfars(C;—; U {A}) C Vars(C;) in these derivations.

3.5.4 Wrapping up the Proof of Theorem 3.11

We have proven that no matter what derivation step is madeeitransitiond; ; ~» Dy, we can perform
the corresponding transitidi;_; ~~ C; for our projected clause sets without the variable suppoetgoing
abovemaX{SuppSize((Ct_l), SuppSize((Ct)}. Also, the only time we need to download an axighe F
in our projected refutatiom of F' is whenr; downloads some axio® € A[f;]. This completes the proof
of Theorem 3.11.

3.6 Proof of Theorem 3.12

Recall the convention that, y, z refer to variables int" while x1, ..., x4, y1,...,%4, 21, - - . , 24 refer to
variables inF[f,]. Also recall that we use overloaded notatiorr C', D ¥ C, andD > C for C = C*T*vC~
(whereC* = \/, .z andC~ = Vyec 7) when the corresponding implications hold or do not holdfor

with respect t/ .+ £4(%) V Vyeo— ~fa(#)-

20

3 THE SUBSTITUTION SPACE THEOREM

We start with an intuitively plausible lemma saying that & variablesz appearing in some clause
projected byD, the clause sdb itself must contain at least one of the variabigs. . . , z4.

Lemma 3.15. Suppose thdD is a set of clauses derived frofi f;] and thatC' € proj (D). Then for all
variablesz € Vars(C) it holds that{z1,...,z4} N Vars(D) # 0.

Proof. Fix anyDD’ C D such thatD implies C precisely in the sense of Definition 3.9. By this definition,
for all = € Vars(C) we haveD’ ¥ C \ {z,z}. Suppose that appears as a positive literal @@ (the
case of a negative literal is completely analogous). Thiamadhat there is an assignmentuch that
a’) = 1buta(V,co (1. fa(@) V Vyec-fa(7)) = 0. SinceD’ > C, it must hold thaix(f,(2)) = 1.
Modify « into o/ by changing the assignments 19, ..., z4 in such a way that/(f;(%)) = 0. Then
o (Vyeos fa(@) V Vyeo- ~f4(7)) = 0, so we must have’(D') = 0. Since we only changed the assign-
ments to (a subset of) the variables . .., z4, the clause séb’ C D must mention at least one of these
variables. O

With Lemma 3.15 in hand, we are ready to prove Theorem 3.12te Bt everything said so far
in Section 3 (in particular, all of the proofs) applies to argn-constant Boolean function. In the proof
of Theorem 3.12, however, it will be essential that we ardidgavith non-authoritarian functions, i.e.,
functions f; having the property that no single variablgcan fix the the value of ;(z1, ..., zq).

Suppose thdD is a set of clauses derived froR] f;] and writeV* = Vars(proj -(D)) to denote the set
of all variables inVars(F') appearing in any clause projected by We want to prove thatp(D) = |D| >
|V*| provided thatf, is non-authoritarian.

To this end, consider the bipartite graph with the clauséslabelling the vertices on the left-hand side
and variables il labelling the vertices on the right-hand side. We draw aredsigfweenD € D and
x € V*if Vars(D) N{z1,...,24} # 0. By Lemma 3.15 it holds thatars(D) N {z1,...,z4} # 0 forall
variablesz € V*, so in particular every variable € V* is the neighbour of at least one clauSec D. Let
us write N (D) to denote the neighbours of a left-hand verf@xand extend this notation to sets of vertices
by taking unions.

We claim that ifV* = Vars(proj (D)) # 0, then there must exist some clauseBetC D satisfying
|D'| > N(D'). Suppose on the contrary that'| < N(D') for all D’ C D. Then by Hall's marriage theorem
there is a matching of the clauseslininto the variable set'*. Assume thaC = C* v C~ is any clause
projected byD (such a clause exists sing& +# ()). Then surely

DFV,eorfa(@) V Vgec-Fa¥) (28)

(there is even a subset bfsuch that this implication is precise). But using the matghietweer andV*,
we can satisfyD without assigning values to more than one variahle= Vars(D) corresponding to any
x € Vars(F). Since fy is non-authoritarian, we can then extend this assignmeahtther assignment
falsifying f,;(¥) for all z € C* and satisfyingf,(¢) for all 7 € C~. This means that our assignment
satisfies the left-hand side of the implication (28) butifeds the right-hand side, which is a contradiction.
The claim follows.

Hence, fix any largest subsBy C D such that/D;| > N(D;). Clearly, ifD; = D we are done
(remember thatV (D) = V*), so suppos®; # D. In much the same way as above, we show that this
assumption leads to a contradiction.

LetDy = D\ Dy # 0 and define the vertex set§" = N(D;) and V5" = V*\ V;*. Note that we
must haveV; C N(Dy) sinceN(D) = N(D;) U N(Dy) = V*. By the maximality ofD; it must hold
forall D/ C D, that |D'| < |N(D') \ V*|, because otherwisB” = D; U D' would be a larger set with
|D”| > |N(D")|. But this implies that, again by Hall's marriage theoreneréhis a matching/ of D, into

21

UNDERSTANDING SPACE IN RESOLUTION

N(Ds) \ Vi* = V5. Consider any claus€' € proj (D) such thatVars(C) N V5 # () and letD’ C D be
any clause set such that

D' > \/mec+ fd(f) v \/yecf —fa() (29)

(the existence of which is guaranteed by Definition 3.10). dfeem that we can construct an assignment
o that makedD' true but\/ .+ f4(T) V Vgeo- —fa(¥) false. This is clearly a contradiction, so if we can
prove this claim it follows that our assumptidy # D is false and that it instead must hold tfizt = D
and thug N(D)| = |V*| < |D|, which proves the theorem.

To establish the claim, lé2; = D' N D; fori = 1,2 and letC; = C;" v C;~ for

Cf=\ =z and C; = \/ 7 (30)
zeC yeC
eV yev;

andi = 1,2. We construct the assignmentsatisfyingD)’ but falsifying \/ ,c o+ f4(Z) V Vyec-~fa(y) in
three steps:

1. SinceC{ v C; = (4 S C by construction (recall that we chose our cladsén such a way that

Vars(C) N V5 # 0), the minimality condition in Definition 3.10 yields that

]Dll # vxecjfd(f) \% \/yeC; _‘fd(g) (31)
and hence we can find a truth value assignmenthat setsD] to true, all f;(z1,...,z4), €
C;, to false, and allf;(y1,...,v4), ¥ € C, to true. Note thaty; need only assign values to

{z1,..., 24| z € Vars(C1)}.

2. ForD), we use the matching/ into V;* found above to pick a distinct variablé D) € Vars(F') for
everyD €), and then a variable(D); € Vars(F|f4]) appearing inD, the existence of which is
guaranteed by the edge betwelrandz(D). Let as be the assignment that sets all these variables
z(D); to the values that fix alD € D), to true. We stress that, assigns a value to at most one
variablex(D); for everyz(D) € Vars(F).

3. But sincef, is non-authoritarian, this means that we can extapdo an assignment to all vari-
ablesz(D)y, ..., z(D), that still satisfiedD), but sets allf;(z1,...,74), € C5, to false and all

falyi, ..., ya), 7 € Cy , to true.

Hence,a = a1 U ag is an assignment such thatD’) = 1 buta(V co+ f4(Z) V Vgeo-—fa(@) = 0,
which proves the claim. This concludes the proof of Theoreh2.3
Since Theorems 3.8, 3.11, and 3.12 have now all been estatbithe proof of Theorem 3.5 is finished.

4 Reductions Between Resolution and Pebbling

It is not hard to see how a black pebblifyof a DAG G can be used to construct a resolution refutation
of the pebbling contradictio®eb, in Definition 2.11 in length and space upper-boundeditmg (P) and
space(P), respectively. It is straightforward to show that this siation from pebblings to refutations
works even if we do arfs-substitution in the pebbling contradiction. We present@opof this fact in
Section 4.1.

Using our new results in Section 3, we can prove the moreisimgrfact that there is also a fairly tight
reduction in the other direction: provided that the funetj is non-authoritarian, any resolution refutation
of Peb[f4] translates into a black-white pebbling Gfwith the same time-space properties (adjusting for

22

4 REDUCTIONS BETWEEN RESOLUTION AND PEBBLING

constant factors depending on the functigrand the maximal indegree &f). This new reduction is given
in Section 4.2.

Finally, in Section 4.3 we appeal to both of these reductiongrove a meta-theorem saying that for
DAGs G having the right time-space trade-off properties, we cawethat pebbling contradictions defined
over such DAGs inherit the same trade-off properties. ThisalNow us, after having studied pebbling
time-space trade-offs in Section 5, to prove a wealth ohsitoade-offs for both clause space and variable
space in resolution in Section 6.

4.1 From Black Pebblings to Resolution Refutations

Given any black-only pebblin@ of a DAG GG, we can mimic this pebbling in a resolution refutationfef

by deriving that a literab is true whenever the corresponding vertexGiis pebbled (this was perhaps first
observed in [BSIW04]). This construction carries over atssubstitution formulageb;|[f4] and we have
the following theorem.

Theorem 4.1. Let f; be a non-constant Boolean function of arityand letG be a DAG with indegree at
most/ and unique sinke. Then given any complete black pebbliRgpf GG, we can construct a resolution
refutationn : Pebs[f4] 0 such that

L(m) < time(P) - exp((d(¢ + 1))) ,
W(r) <d(¢+1) , and
VarSp(m) < space(P) - exp(O(d({ + 1))) .

Before presenting the proof, we note that in our applicatiae will have the function arity and the
DAG indegreef fixed (we can for instance pick = ¢ = 2), which means that the bounds on length and
space above turns intb(r) = O(time(P)) and VarSp(r) = O(space(P)). We also remark that for
concrete functiong,, such as for instance XOR over two variables, we can easitypcte explicit upper
bounds on the constants hidden in the asymptotic notatie 8o wish, and these constants are small.

Proof of Theorem 4.1The proof is by induction over the black pebbli®y We maintain the invariant
that if at timet¢ we have black pebbles on the verticeslinthens will contain exactly the clause§; =
{z[f4] | = € V'}. To simplify the notation in the proof, we will again use fii@oal time steps inr, making
sure that it never takes more thexp (O(d(¢ + 1))) time steps to get fror;_; to C;.

Consider the pebbling move madefmat timet :

1. If P places a pebble on a source vertexwe download the less tha@t axioms ins[f,].

2. If P places a pebble on a non-source veriexith immediate predecessots, . . . , u,, by induction
we have{u;[fqs] |i=1,...,¢'} € Cy_;. The argument in this case is very similar to the one in
Section 3.4.

First download the less tha{(* +1) pebbling axioms i@, V - - - VT V v)[f4]. Now
{wlfad li=1,....0 U{@@ V- Ve Vv)[fa]} (32)

implies all claused € v[f,]. If we apply the restrictionp(—D) to the clause set (32) we can obtain
a refutation in length and variable space at mesgt(O(d(¢ + 1))) (and trivially in width at most
d(¢ + 1)) by Observation 2.7. Removing the restrictipft-D), this refutation turns into a derivation
of D. Doing this for all of the less tha2f' clausesD € v[f,] completes the induction step.

3. If P removes a pebble from any vertexwe erase the less thafi clauses in[f,] from memory.

23

UNDERSTANDING SPACE IN RESOLUTION

At the end of the pebblin@®, we haveC, = {z[f4]} for z the sink ofG. We conclude the refutation by
downloading all the sink axioms & f;] and deriving the empty claug$en lengthexp(O(d)), width d and
variable spacexp(O(d)). O

4.2 From Resolution Refutations to Black-White Pebblings

Let us now see how we can go in the other direction from relmmiutfutations to pebbling strategies.

Theorem 4.2. Let f be any non-authoritarian Boolean function antibe any DAG with unique sink and
bounded indegreé. Then from any resolution refutatiom : Peb,[f]F0 we can extract a black-white
pebbling strategyP,. for G such thatime(P,) < (¢ + 1) - L(w) andspace(P;) < Sp(r).

Before proving this theorem, we want to stress that Theorérhsand 4.2 are not perfect converses.
This is so since the reduction in one direction uses blacklpeb(Theorem 4.1) while the reduction in the
other direction is in terms of black-white pebbling (Theaurd.2) and there can be a quadratic difference
in pebbling price depending on whether white pebbles maydeel wr not [KS88]. The problem here is
that we do not know of any way of translating black-white databstrategies into resolution refutations
that preserve the time and space properties. Indeed, wavbdhat this is not a mere technicality but that
it is in fact not possible in general to convert black-whibplings to resolution refutations with the same
time-space trade-off properties. Formalizing and proingh a statement is another matter, however, and
we leave it as an open problem.

The proof of Theorem 4.2 is in three steps:

1. First, we convert : Peb[f]F 0 to a refutationt” of Peb, such thatSuppSize(r') < Sp(w) and the
number of axiom downloads i is upper-bounded by the number of axiom downloads.ithis is
Theorem 3.5, which is the key technical contribution of {hegper.

2. The refutationt’ : PebF 0 can contain weakening moves, which we do not want, so we &ppea
to Proposition 2.4 to get a refutatior!’ : Peb, 0 without any weakening steps. By Lemma 2.9,
without loss of generality we can assume thats frugal (Definition 2.8). This part of the proof just
uses standard techniques, and the number of axiom dowrdmathe variable support size can only
decrease when going froni to 7.

3. Finally, we show that” corresponds to a black-white pebbling stratégjor G such thatime(P)
is upper-bounded by the number of axiom downloads spate(P) by the maximal number of
variables occurring simultaneously itf. This final part relies heavily on the work [BS02] by the
first author. Since we need a more detailed result than caadueaff from that paper, however, we
present the full construction below.

Putting together these three steps, Theorem 4.2 cleallywi®l What remains is thus to prove the
following lemma.

Lemma 4.3. Let G be any DAG with unique sink and bounded indegfe@nd suppose that is any

resolution refutation ofPeb, without weakening that is also frugal. Then there is a blatite pebbling

strategyP, for G such thatspace(P,) < SuppSize(m) andtime(P,) is at most(¢ + 1) times the number
of axiom downloads im.

Proof. Given a refutationr = {Co =0,Cq,...,C, = {O}} of Peb, we translate every clause €&tinto
a black-white pebble configuratidh, = (B;, W}) using a slightly modified version of the ideas in [BS02],
and then show tha® = {PPy, ..., P} is essentially a legal black-white pebbling Gfas in the statement

of the lemma. The translation will satisfy the invariantttiia U W, = Vars(C;) which yields the upper

24

4 REDUCTIONS BETWEEN RESOLUTION AND PEBBLING

bound on space in terms of variable support size. The firdigumation Cy = 0 is thus translated into
Po = (0,0).

Suppose inductively thatB;_1, W;_1) has been constructed fro@}_; and consider all the variables
x € Vars(C;) one by one. Ifc € Vars(C;) N By_1, keepx in B;. Otherwise, ifz € Lit(C,) appears as a
positive literal, add: to B;. Otherwise, ift € Lit(C,), addz to W;. This is our translation of; into black
pebblesB; and white pebbledl;. To see that this translation yields a legal pebbling, aerdihe derivation
rule applied to get front;_; to C,.

Axiom download Suppose that we download the pebbling axiom or source axiora Yertexv with im-
mediate predecessots, ..., uy (Where we have’ = 0 for a sourcev). All predecessors:; not
having pebbles on them at time- 1 get white pebbles. Themngets a black pebble, if it is not already
pebbled. Note that this is a legal pebble placement sinémaikdiate predecessorsofif any) have
pebbles at this point. We remark that to black-pehhleve might have to remove a white pebble
from v first, but since all immediate predecessors have pebbldseom this poses no problems. Also,
downloading the sink axiom places a white pebble on the siiikhis vertex is empty, which is a
legal pebbling move. By the bound on the indegree, this staphies placing at most+ 1 pebbles.

Inference In this caseVars(C;_;) = Vars(C;), so nothing happens.

Erasure Suppose that the clause erased’'inJust apply the translation function. Suppose that thisltes
in a pebble o disappearing. Then we havec Vars(C) butz ¢ Vars(C,). Before being erased,
C has been resolved with some other clause (recalktlimfrugal). But as long as we did not resolve
over the variable:, we will still havex € Vars(C;), and henc& must have been resolved oveat
some time’ < ¢. At this timez appeared both positively and negativelyGp, and in view of how
we defined the translation from clauses to pebbles, this shan the vertex has contained a black
pebble in the interval’, t — 1]. Thus the pebble disappearing at titis black, and black pebbles
can always be removed freely.

To conclude the proof, note that during the course of thetadtin all axioms must have been down-
loaded at least once, siné&b; is easily seen to be minimally unsatisfiable. In particulais means that
the sinkz is black-pebbled at some time during the proof, and we caideeo keep the black pebble on
z from that moment onwards. (This potentially adds one pebkiea to the pebbling space, but this is fine
since the inequality in Theorem 3.5 is strict so there is inday this.)

Since every time an axiom is downloaded it must also be erasedme later time, we get the time
bound of(¢ 4 1) times the number of axiom downloads (and in fact it is easye#othat this bound can be
improved by taking into account the inference steps, whehimg happens in the pebbling). The lemma
follows. O

As was discussed above, Lemma 4.3 completes the proof ofdimed.2.

4.3 Obtaining Resolution Trade-offs from Pebbling

Combining Theorems 4.1 and 4.2, we can now prove that if wdindrDAGs G with appropriate pebbling
trade-off properties, such DAGs immediately yield tradfieresults in resolution. And as we will see in
Section 5, there are (explicitly constructible) DAGs witle heeded properties.

In order not to clutter the statement of the next theorem, ssai@me that the arity of the Boolean
function f and the indegreé of the DAG are fixed, so that any dependencei@nd/ can be hidden in the
asymptotical notation. (This is not much of a restrictiomcsi we will haved = ¢ = 2 in the applications
that we care about.)

25

UNDERSTANDING SPACE IN RESOLUTION

Theorem 4.4. Letd and ¢ be universal constants, and Igtbe some universally fixed non-authoritarian
Boolean function of arityl. Suppose that’ is a DAG withn vertices, unique sink, and bounded indegrek
and thatg, h : N* — N are functions satisfying the following properties:

e For everys > Peb(G) there is a complete black pebblifiof G with space(P) < s andtime(P) <
9(s).

e For everys > BW-Peb(G) and every complete black-white pebbliRgof G with space(P) < s it
holds thattime(P) > h(s).

Then the following holds foPeb ;| f]:
1. Pebs[f] is ak-CNF formula for some fixet = k(d, ¢, f) and has siz&®(n).

2. Peb[f] is refutable in lengthL(Peb[f] F 0) = O(n) and widthW(Peb[f] F 0) = O(1) simulta-
neously, and is also refutable in variable spakcerSp (Pebg[f] + 0) = O(Peb(G)).

3. For everys > Peb(G) there is a resolution refutation : Peb,[f] 0 in length L(7s) = O(g(s))
and variable spacé/arSp(ms) = O(s).

4. The clause space of any resolution refutation is lowerried bySp (Peb,[f] - 0) > BW-Peb(G),
and for everys > BW-Peb(G) and every refutationr : Pebs[f] 0 in clause spaceép(rs) < s, it
holds thatL(7s) = Q(h(s)).

All hidden constants in the asymptotical notation depenrigl ond, ¢, and f, and are independent ¢f.

Proof. Item 1 is an easy consequence of Definition 3.2. Items 2 andiBfbthow from Theorem 4.1 (to
get item 2, consider the trivial pebbling that black-pebldd vertices ofG in topological order). Finally,
Theorem 4.2 yields item 4. O

This theorem will be of particular interest when we can findpdr families{ G,, }°° ; with Peb(G,,) =
©(BW-Peb(G,,)) having trade-off functiong,,(s) = ©(hx,(s)). For such families of DAGs, Theorem 4.4
yields asymptotically tight trade-offs in resolution. Weess again thahese trade-offs hold for both clause
space and variable space simultaneousigh respect to length, since the upper bounds are in terms of
variable space and the lower bounds in terms of clause space.

5 Some Old and New Pebbling Results

Having come this far in the paper, we know that if we can fingpgsawith trade-off results for black-white
pebbling and matching upper bounds for black pebbling, wecoastruct CNF formulas from these graphs
with similar time-space trade-off properties in resolaticAnd indeed, as we show in this section, we can
find graphs satisfying these properties (or in one case gridgath come sulfficiently close for us to be able to
get the desired result via some extra work).

First, we present some auxiliary definitions, notation agmhinology in Section 5.1. Then, in Sec-
tion 5.2, we prove a strong trade-off result for a very simiplesurprisingly versatile family of graphs. Our
results build on [CS80, CS82] and extend the results there black-only to black-white pebbling. Finally,
in Section 5.3 we review a number of results from [LT82] thdt also enable us to get strong trade-offs in
resolution.

We remark that all the pebbling trade-off results preseirtahis section are for explicitly constructible
graphs.

26

5 SOME OLD AND NEW PEBBLING RESULTS

5.1 Pebbling Preliminaries

We will use the following notational conventions:

e n denotes the size (i.e., the number of vertices) of a DAG nospime cases where it is more conve-
nient, the size to within a (small) constant factor.

e (denotes the maximal indegree of a DAG.
¢ s denotes pebbling space (althoughs,, . . . will sometimes denote source vertices of DAGS).
e S(G) denotes the source vertices@fand Z (G) denotes the sink vertices 6f.

We say that the pebbling moa timeo is the move resulting in the pebble configuratibn

5.1.1 Technical Definitions and Some Observations

We need to generalize our definition of pebbling slightly igtidguish somewhat different variants of peb-
blings and also to allow pebblings of graphs with more thaa sink.

Definition 5.1 (Conditional, persistent and visiting pebbings). Suppose that: is a DAG with sources
and sinksZ (one or many). Let the pebble game rules be as in Definitiob, 2d4d define pebbling space in
the same way.

We say that a pebblin® = {Py,...,P,} is conditionalif Py # (0, %) andunconditionalotherwise.
Note that complete pebblings, or pebbling strategies, lar@ya unconditional.

A complete black-white pebblingsiting Z is a pebblingP = {Py, ..., P, } such thaly = P, = (0, 0)
and such that for every € Z, there exists a time, € [r] such that € B,, U W,_. The minimum space of
such a visiting pebbling is denot&W-Peb?(G), and for black pebbling we have the measBebd’(G).

A persistenfpebbling ofG is a pebblingP such that®, = (Z,). The minimum space of any complete
persistent black-white or black-only pebbling@fis denotedBW-Peb”*(G) andPeb?(G), respectively.

That is, a visiting pebbling touches all sinks but leavesgitagh empty at time, whereas a persistent
pebbling leaves black pebbles on all sinks at the end of thblimg. If G is a DAG withm sinks, then it
clearly holds thaBW-Peb*(G) < BW-Peb?(G) + m andPeb*(G) < Peb?(G) + m.

Intuitively, the pebblings that seem most natural and @gting are persistent pebblings of DAGs with
a single sink. In our proofs, however, we will mostly be faogson visiting pebblings. The reason that
visiting pebblings will show up over and over again is tha gnaphs of interest will often be constructed
in terms of smaller subgraph components with useful pephpioperties, and that for such subgraphs we
have the following fact.

Observation 5.2. Suppose thats is a DAG and thatP is any complete pebbling ¢f. LetU C V(G) be
any subset of vertices 6f and letH = H(G,U) denote the induced subgraph with vertidééH) = U
and edgest(H) = {(u,v) € E(G)|u,v € U}. Then the pebbling restricted to the vertices itV is a
complete visiting pebbling strategy féf.

Proof. It is easy to verify that if we only perform those pebbling mexunP that pertain to vertices it/
then these moves constitute a legal pebblingfornMoreover, any complete pebbling 6f must pebble all
vertices inGG, soP restricted ta will pebble all vertices inH including the sinks ofd. O

To get trade-offs in resolution for minimally unsatisfialbdCNF formulas, we want DAGs with unique
sinks. Most pebbling results in Section 5 are more naturatdte and prove for DAGs with multiple sinks,
however, but this small technicality is easily taken care/@ do this next.

27

UNDERSTANDING SPACE IN RESOLUTION

Figure 1: Schematic illustration of single-sink version G of graph G.

Definition 5.3 (Single-sink version). Let G be a DAG with sinksZ(G) = {z1,...,2n} for m > 1. The
single-sink versior&z of G consists of all vertices and edgesGhplus the extra vertices, ...,z _, and

Y Ym—

the edgeszi, 27), (22, 27), (21, 25), (23, 23), (23, 25), (24, 23), et cetera up t@z, 5, 2% 1), (Zm, 25 _1)-

That is,G consists oz with a binary tree of minimal size added on top of the sinke Eigure 1 for a
small example. The following observation is immediate.

Observation 5.4. Let G be a DAG with sinksZ(G) = {z1,...,2n,} for m > 1. Then for any flavour of
pebbling (visiting or persistent) it holds thBW-Peb(G) < BW-Peb(G) + 1 andPeb(G) < Peb(G)+1.
Moreover, for any ordering of the sinks, . .., z,, there is a pebbling strateg (visiting or persistent) for
G in spaces that pebbles the sink in this order, then there is a pebbllm}tegyﬁ of the same type fo&
with time (P) < time(P) + 2m andspace(P) < space(P) + 1.

To simplify the proofs of our lower bounds, we want the petpti under consideration not to perform
any obviously redundant moves. The following definition gemeralization of [GLT80] from black-only to
black-white pebbling. (We are not aware of this generatirahaving appeared in the literature before.)

Definition 5.5 (Frugal pebbling). Let P be a complete pebbling of a DAG. To every pebble placement
on a vertexv at timeo we associate thpebbling interval[o, 7), wherer is the first time aftee when the
pebble is removed from again (orr = oo, say, if this never happens).

If a sinkz; € Z(G) is pebbled for the first time at time, then the pebble op; is essentiaduring the
pebbling intervalo, 7). A pebble on a non-sink vertexis essential duriny, 7) if either an essential black
pebble is placed on an immediate successerayring (o, 7) or an essential white pebble is removed from
an immediate successor ofluring (o, 7). Any other pebble placements on any vertices are non-éalsent

The pebbling strateg is frugal if all pebbles inP are essential at all times.

Without loss of generality, we can assume that all pebblmngsieal with are frugal.

Lemma 5.6. For any complete pebbling (black or black-white, visiting or persistent) there is adal
pebblingP’ of the same type such thane(P’) < time(P) andspace(P’) < space(P).

Proof. Just delete any non-essential pebbles ff@rand verify that what remains is a legal pebbling. O

One minor technical snag is that we will need to assume not thiat complete pebblings are frugal,
but that this also holds faronditional pebblinggDefinition 5.1). This is no real problem, however, since
we can always assume that the conditional pebblings we atengavith are subpebblings of some larger,

28

5 SOME OLD AND NEW PEBBLING RESULTS

unconditional pebbling. More formally, we can define a ctindal pebbling to be frugal if it satisfies the
condition in Definition 5.5 that any pebble placed on a notksiertexv stays until either a black pebble is
placed on an immediate successow @i a white pebble is removed from an immediate successor of

5.1.2 Some Upper and Lower Bounds

If we do not care about space, the easiest way to pebble a D&iace black pebbles on the vertices in
topological order (and then remove all pebbles from noRk-sirtices). Since we will have reason to use
this pebbling strategy on occasion in what follows, we gheemame for reference.

Observation 5.7 (Trivial pebbling). Any DAGG can be completely, persistently black-pebbled in space at
most|V(G)| and time at mos? - |V (G)| simultaneously.

Another easy upper bound on pebbling price can be giveningterf the fan-in and depth of a DAG.
Definition 5.8 (Depth). Thedepthof a DAG G is the length of a longest path from a source to a sin.in

Observation 5.9. Any DAGG with maximal indegreé and depthd has a black pebbling strategy in space
at mostd/ + 1.

Proof. By induction over the depth. The base case is immediate. gi@pd of depthi+ 1, pebble the sinks
one by one. For each sink we can pebble its immediate prestesasithd/ + 1 pebbles each by induction.
Placing black pebbles on the immediate predecessors oneebgmal leaving them there, we never use more
than(dl¢ 4+ 1) + (¢ — 1) pebbles simultaneously. Finally, keeping the at niqstbbles on the predecessors,
pebble the sink. O

Next follows a simple but important lemma that is central wstrblack-white pebbling lower bounds.

Lemma 5.10 ([GT78]). Suppose thaf) : u ~~ v is a path inG and thatP = {P,,P,41,...,P;} isa
pebbling such that the whole pa is completely free of pebbles at timesand 7 but the endpoint is
pebbled at some point in the time interyal 7). Then the starting point is pebbled duringo, 7) as well.

Proof. By induction over the length of the pafp. The base case = v is trivial. For the induction step, let
w be the immediate successorwbn (). By the induction hypothesisy is pebbled and unpebbled again
sometime durindgo, 7). Thenu must be covered by a pebble either when the pebble mplaced there (if
this pebble is black) or when it is removed (if it is white). ellemma follows. O

A common graph in many pebbling constructions is fiyeamid (see Figure 2 for an example), the
pebbling price of which is well understood.

Definition 5.11 (Pyramid graph). The pyramid graphll; of heighth > 1 is a layered DAG withh + 1
levels, where there is one vertex on the highest level (thle 5, two vertices on the next level et cetera
down toh + 1 vertices at the lowest levél Theith vertex at levell. has incoming edges from thith and

(i + 1)st vertices at level, — 1.

Theorem 5.12. The black pebbling price of a pyramid of heighis Peb(I1;,) = h+2 and there is a linear-
time pebbling achieving this bound. The black-white pelgbjirice isBW—Peb@(Hh) = h/2+4 0O(1), and
for even height there is the exact bOUﬂW—PEb@(HQh) =h+2.

Proof sketch.The lower bound for black pebbling is from Cook [Coo074], arid easy to construct a linear-
time pebbling matching this bound by pebbling the pyramitidmo-up, layer by layer.

The black-white pebbling strategy for pyramids in spage + O(1) can be obtained from the strategy
for trees in Lengauer and Tarjan [LT80], and Klawe [Kla85¢wsked thath /2 + O(1) is also a lower bound.
The exact bound for pyramids of even height can be found iextpesition of Klawe’s proof in [Nor09]. O

29

UNDERSTANDING SPACE IN RESOLUTION

@)
ofofioolo
ofciciiofoio
R R

Figure 2: Pyramid Il of height 6.

Another important building block in many pebbling resulte ao-calledsuperconcentrators

Definition 5.13 (Superconcentrator). A directed acyclic grapltx is an N-superconcentratoif it has N
sourcesS = {s1,...,sn}, N sinksZ = {z1,..., 2y}, and for any subsetS’ andZ’ of sources and sinks
of size|S’| = | Z’| = k it holds that there ar& vertex-disjoint paths betweesf andZ’ in G.

For our pebbling purposes, we will be interested in supareontmators with number of vertices and edges
linear in NV (in addition, we will want them to have bounded indegree,thist extra requirement is easy to
take care of). Valiant [Val76] proved the existence of sudpys, and Gabber and Galil [GG81] provided
the first explicit construction based on an earlier nondieitpbne by Pippenger [Pip77]. We remark that
the superconcentrators in [GG81] have logarithmic deplie durrently best known construction (i.e., with
lowest edges-to-vertices ratio) that we are aware of is déddn and Capalbo [ACO03].

Here is an important lemma that explains why supercondensrare good building blocks if we want
to construct graphs that are hard to pebble.

Lemma 5.14 ([LT82]). Suppose thafr is an N-superconcentrator and th&® = {P,,Pyy1,...,P }is
a conditional black-white pebbling such thspace(P,) < s,, space(P,) < s,, andP pebbles at least
s + s; + 1 sinks during the closed time intervial, 7]. ThenP pebbles and unpebbles at ledét— s, — s,
different sources during the open time interyal 7).

Proof. Suppose not. TheR pebbles some set 6f + s + 1 sinks without pebbling some setef + s+ 1
sources. Fix such sets of sources and sink vertices anddeoribie vertex-disjoint paths from sources to
sinks. Then at least one path is empty both at timand at timer and the end point of the path is pebbled
during the intervalo, 7) but not the starting point. This contradicts Lemma 5.10. O

We immediately get the following corollary.

Corollary 5.15 ([LT82]). Any complete black-white pebbling of Afrsuperconcentrator in space at most
s has to pebble at Ieast(N2/s) sources (so, in particular, this is a lower bound on the peigptime).

5.2 A New Pebbling Trade-off Result

In this section we present the third main contribution o$ thaper, which is a graph family that provides
us with a number of interesting time-space trade-offs féfiedint parameter settings. These trade-offs
have the property that the lower bounds are in terms of blauke pebbling while the upper bounds are in
terms of black-only pebbling, and thanks to this we can apiptymachinery of Theorem 3.5 on page 14
and Theorem 4.4 on page 26 on these graphs to derive cordisgadnade-offs in proof complexity for
resolution.

30

5 SOME OLD AND NEW PEBBLING RESULTS

@"@
Figure 3: Base case I'(3,1) for Carlson-Savage graph with 3 spines and sinks.

5.2.1 Definition of Graph Family and Statement of Trade-off

Our graph family is built on a construction by Carlson andegg/[CS80, CS82]. Carlson and Savage only
prove their trade-off for black pebbling, however, and iderto get results for black-white pebbling we
have to modify the construction somewhat and also apply seweideas in the proofs. The next definition
will hopefully be easier to parse if the reader first studiesillustrations in Figures 3 and 4.

Definition 5.16 (Carlson-Savage graph) We define a two-parameter graph familyc, r), for ¢,r € N,

by induction overr. The base casg(c, 1) is a DAG consisting of two sources, s2 andc sinks~y, ..., 7.
with directed edgess;,v;), fori = 1,2 andj = 1,...,¢, i.e., edges from both sources to all sinks. The
graphI'(c,r + 1) is a DAG with¢ sinks which is built from the following components:

e c disjoint copiesIl} , ..., II. of a pyramid (Definition 5.11) of heightr, where we letzy, .. ., z.
denote the pyramid sinks.

e one copy ofl'(¢, r), for which we denote the sinks by, .. ., v..

¢ cdisjoint and identicaspines where each spine is composedokectionsand every section contains
2c vertices. We let the vertices in thith section of a spine be denotefl],, . .., v[i],,.

The edges ifi'(c, 7 + 1) are as follows:

e All“internal edges” inIlL},, ..., IIS, andl'(c, r) are present also ifi(c,r + 1).
e For each spine, there are edg(@x@]j,v[z']jﬂ) forall j = 1,...,2¢ — 1 within each section and
edges(v[i],,, v[i + 1],) from the end of a section to the beginning of nextfet 1,...,cr — 1, i.e.,

for all sections but the final one, whesg:r],,. is a sink.

» For each sectionin each spine, there are eddes, v[i] ;) from the;jth pyramid sink to thgth vertex
in the section forj = 1,...,¢, as well as edge$y;, v[il, ;) from the jth sink in'(c,r) to the
(c + j)th vertex in the section fof = 1,...,c.

We now make the formal statements of the trade-off proettiat these DAGs possess. The proofs of
all the statements are postponed to Section 5.2.2. Firstpliect some basic properties.

Lemma5.17. The graphd’(c, r) are of sizd V (I'(c, 7)) | = ©(cr® + ¢*r?), and have black-white pebbling
price BW-Peb” (I(c,7)) = r + 2 and black pebbling pric@eb’ (D(c, 7)) =2r + 1.

This tells us that the minimum pebbling space required glovesrly with the recursion depthbut is
independent of the number of spinesf the DAG.

Next, we show that there is a linear-time completely bladbpiag of I'(c,) in space linear in the sum
of the parameters. This is in fact a strict improvement (toaasily obtained) of the corresponding result
in [CS80, CS82].

Lemma 5.18. The graphl'(c,) has a persistent black pebbling strateByin time linear in the size of the
DAG and with spac®(c + r).

31

5 SOME OLD AND NEW PEBBLING RESULTS

The proof is by induction, and the idea in the induction steplf(c,r + 1) is to make a persistent
pebbling ofl'(c, r) in spaceO(c +), then pebble the pyramids} ... IS, one by one in linear time and
spaceO(r), and finally, using the&c black pebbles ony, ...,z 7,...,7. that we have left in place, to
pebble allc spines in parallel witlD(c) extra pebbles.

The main result of this section is the following theorem, ethallows us to get a variety of pebbling
trade-off results if we choose the parameteandr appropriately.

Theorem 5.19. Suppose thaP is a complete visiting black-white pebblinglofe,) with
space(P) < BW-Peb’ (D(e,r)) +s=(r+2)+s

for 0 < s < ¢/8 — 1. Then the time required to perforf is lower-bounded by

c—2s\"
i > -rl
time(P) > (43 +4> r

As has already been noted, we defer the proof of Theorem 8.%@dtion 5.2.2, but let us nevertheless
try to provide some intuition as to why the theorem shouldrbe.t

For simplicity, let us focus on black-only pebbling straésy Inductively, suppose that the trade-off in
Theorem 5.19 has been proven o, r) and considel’(¢,r + 1). Any pebbling strategy for this DAG
will have to pebble through all sections in all spines. Cdeasithe first section anywhere, let us say on
spinej, that has been completely pebbled, i.e., there have bedeseplaced on and removed from all
vertices in the section. Let us say that this happens attimBut this means thdt(c,) and all pyramids
3,,...,TIS, must have been completely pebbled during this part of thelpgpas well. Fix any pyramid
and consider some point in timg < 7, when the number of pebbles in this pyramid reaches the space
r+ O(1) required by the known lower bound on pyramid pebbling prithis point, the rest of the graph
must contain very few pebbles. In particular, there are ¥®mypebbles on the subgraphic,) at timeo,
so we can think of (¢, r) as being completely empty of pebbles for all practical pegso

Let us now shift the focus to the next section in the spitieat is completed, say, at time > 7. Again,
we can argue that some pyramid is completely pebbled in the imterval|r, 2], and thus has + O(1)
pebbles on it at some time, > 7, > o;. This means that we can think dfc,) as being completely
empty at times as well.

But note that all sinks in the subgraflc,) must have been pebbled in the time interjal, o],
and since we know thdt(c, r) is (almost) empty at times; andos, this allows us to apply the induction
hypothesis. Sinc@ has to pebble through a lot of sections in different spinesywil be able to repeat the
above argument many times and apply the induction hypatleedi'(c, r) in each round. Adding up all the
lower bounds obtained in this way, we see that the inductiep goes through.

This is essentially the proof in [CS80, CS82] for black patmpl modulo a number of technical details
that we glossed over. For black-white pebbling, these teahmomplications grow more serious. The
main problem is that in contrast to a black pebbling that bgzroceed through the DAG in some kind of
bottom-up fashion, a black-white pebbling can place andkenpebbles anywhere in the DAG at any time.
Therefore, it is more difficult to control the progress of adik-white pebbling, and we have to work harder
in the proof of our theorem.

Also, it should be noted that the added complications whenggsom black to black-white pebbling
result in our bounds for black-white pebbling being sligiiorse than the ones in [CS80, CS82] for black
pebbling only. More specifically, Carlson and Savage are thprove their results for DAGs having only
©(r) sections per spine, whereas we nédr) sections. This blows up the number of vertices, which in
turn weakens the trade-offs measured in terms of graph size.

It would be interesting to find out whether our proof, presdrtelow, could in fact be made to work for
graphs with onlyO(r) sections per spine. If so, this would immediately improvehad trade-off results for
resolution in Section 6 that we obtain based on the graphsfimifion 5.16.

33

UNDERSTANDING SPACE IN RESOLUTION

5.2.2 Proofs of Lemma 5.17, Lemma 5.18, and Theorem 5.19

Before proving the results claimed in Section 5.2.1, weldista a couple of useful auxiliary lemmas. The
first lemma below gives us information about how the spine§'(inr) are pebbled. We will use this
information repeatedly in what follows.

Lemma 5.20. Suppose thatr is a DAG and thaw is a vertex inG with a path@ to some sink; € Z(G)
such that all vertices i) \ {z;} have outdegree. Then any frugal black-white pebbling strategy pebbles
v exactly once, and the path contains pebbles during one contiguous time interval.

Proof. By induction from the sink backwards. The induction basarimiediate. For the inductive step,
suppose has immediate successerand thatw is pebbled exactly once.

If w is black-pebbled at time, thenv has been pebbled before this and the first pebble placed on
stays until timer. No second placement of a pebblewafter timeos can be essential sinaehas no other
immediate successor than If w is white-pebbled and the pebble is removed at tim#nhen the first pebble
placed orw stays until timer and no second placement of a pebblevatfter timeos can be essential.

Thus each vertex on the path is pebbled exactly once, andntieeirttervals when a vertex and its
successotv have pebbles on them overlap. The lemma follows. O

The second lemma speaks about subgraphsf a DAG G whose only connection to the rest of the
DAG G\ H are via the sink off. Note that the pyramids ifi(c, r) satisfy this condition.

Lemmab5.21. LetG be a DAG andH a subgraph in7 such thatH has a unique sink;, and the only edges
betweenV (H) andV (G) \ V(H) emanate from;,. Suppose thaP is any frugal complete pebbling ¢f
having the property thafl is completely empty of pebbles at some given tifiit at least one vertex df
has been pebbled during the time inter{@lr’]. ThenP pebblesH completely during the intervdl, 7'].

Proof. Suppose that € V(H) is pebbled at time’ < 7'. As in the proof of Lemma 5.10, we can argue by
induction over the length of the longest path frorto the sinkz;, of H thatz;, must also be pebbled before
time 7. Note that such a path exists since the siphs unique, and that any path startingrimust hitz;,
sooner or later, since this vertex is the only way oufbfnto the rest ofG. SinceH is empty at time$)
and7’, we conclude thaP makes a complete visiting pebbling Bf during [0, 7']. O

Let us now establish that the size and pebbling pricE(of) are as claimed.

Proof of Lemma 5.17The base casg(c, 1) for the Carlson-Savage graph in Definition 5.16 has size.
A pyramid of heighth has(h+1)(h+2)/2 vertices, so the pyramids of heigh2(r—1) in I'(c, r) contribute
cr(2r — 1) vertices. The: spines wither sections oRc vertices each contribute a total 2f*r vertices. And
then there are the verticesliic, » — 1). Summing up, the total number of verticedi(r, r) is

(c+2)+ i(cz’(% -1+ 2032') = @(cr3 + 037‘2) (33)
=2

as is stated in the lemma.

Clearly, BW-Peb?(I'(¢, 1)) = Peb@(l“(c, 1)) = 3, since pebbling a vertex with fan-ix requires3
pebbles and’(c, 1) can be completely pebbled in this way by placing pebbles eriio sources and then
pebble and unpebble the sinks one by one.

Suppose inductively th@W-Peb?(T'(¢,r)) = r + 2 and considerl’(c,r + 1). Itis straightforward to
see thaBW—Peb@(l“(c, r+ 1)) <r+ 3. Every pyramidI}, can be completely pebbled with+ 2 pebbles
(Theorem 5.12). We can pebble each spine bottom-up in thenfiolg way, section by section. Suppose by
induction that we have a black pebble on the last verfex- 1], in the (i —1)st section. Keeping the pebble

34

5 SOME OLD AND NEW PEBBLING RESULTS

onwli — 1],,., perform a complete visiting pebbling bf,. At some point during this pebbling we must have
a pebble on the pyramid sink and at most other pebbles on the pyramid (simply because without loss of
generality some pebble placementgmmust be followed by a removal or placement of a pebble on some
other vertex). At this time, place a black pebblewgi}, and remove the pebble fronyi —]2c Complete
the pebbling ofl1} , leaving the pyramid empty. Performing complete visitirgbplings ofl13_, ..., IIS,
in the same way aIIows us to move the black pebble aldig, . . ., v[:]., never exceeding total pebbling
spacer + 3. Itis easy to see that in the same way, for every visiting petlP of I'(c, r) there must exist
timeso; foralli = 1,..., ¢, whenspace(P,,) < space(P) and the sinky; contains a pebble. Performing
a minimum-space pebbling df(c,r), possiblyc times if necessary, this allows us to advance the black
pebble along[i] . ,, ..., v[i,., never exceeding total pebbling space 3. This show thal’(c,r + 1) can
be completely pebbled with+ 3 pebbles. A simple pattern-matching of this argument foclblaebbling
(appealing to Theorem 5.12 for the black pebbling price o&pyds) also yieId@eb@(F(c, r)) < 2r+3.

To prove that there are matching lower bounds for the pedloiimstructed above, it is sufficient to show
that some pyrami(HI' must be completely pebbled while there is at least one petligc, » + 1) outside
of HJ To see why, note that if we can prove this, then simply bygitie the fact thaBW—Peb@(Hzr) =
r+2 andBW—Peb (IIy,) = 2r + 2 and adding an additive constantor the pebble outside di’,. we have
the matching lower bounds that we need. We present the arguoreblack-white pebbling, which is the
harder case. The black-only pebbling case is handled coehpknalogously.

Suppose to get a contradiction that there is a completéngsitebbling strategyP for I'(c,r + 1) in
spacer + 2. By Observation 5.2P performs a complete visiting pebbling of every pyrarfiig.. Consider
the first timer; when some pyramid has been completely pebbled and let trasy bel'[%;. Then at some
timeo; < 71 there are- + 2 pebbles o2 and the rest of the gragh(c, r + 1) must be empty of pebbles
at this point.

We claim that this implies that no vertex If(c, r + 1) outside of the pyramidI%i has been pebbled
before times;. Let us prove this crucial fact by a case analysis.

1. No vertexv in any other pyramidIg; can have been pebbled before time For if so, Lemma 5.21
says thaﬂg; has been completely pebbled before time contradicting thafl?!. is the first pyramid
completely pebbled bfp.

2. No vertex on a spine has been pebbled before timeThis is so since Lemma 5.20 tells us that if
some vertex on a spine has been pebbled, then the whole spsidave been pebbled in view of the
fact that it is empty at time;. But then Lemma 5.10 implies that all pyramid sinks must Haaen
pebbled. This case has already been excluded.

3. Finally, no vertexv in T'(¢,) can have been pebbled before time Otherwise the frugality of
implies (by pattern matching on the arguments in the probfisemmmas 5.10 and 5.20) that some
successor of must have been pebbled as well, and some successor of thassac et cetera, all the
way up to wherd'(c, r) connects with the spines. But we have ruled out the podgiliiilat a spine
vertex has been pebbled.

This establishes the claim, and we are now almost done. 8eforching the argument, we need to
make a couple of observations. Note first that by frugalitg,o&n conclude that at some time in the interval
(01, 71) Some vertex in some spine must be pebbled. This is so singg/tamid sinkz;, has been pebbled
before timer; and all ofl‘[%} is empty at timer; but all spines are empty at timg < 7;. But then
Lemma 5.20 tells us that there will remain a pebble on thisespintil all of the spine has been completely
pebbled.

Consider now the second pyram‘l@f2 completely pebbled b, say, at timer,. At some point in time
oy < T2 we haver + 2 pebbles oril}2, and moreovets > 7 sinceﬂgi is empty at timer;. But now it

35

UNDERSTANDING SPACE IN RESOLUTION

must hold that either there is a pebble on a spine at this pointf all spines are completely empty, that
some spine has been completely pebbled. If some spine hasbewpletely pebbled, however, this in turn
|mpI|es (appealing to Lemma 5.10 again) that there must begmebble somewhere in some other pyramid
HJ at timeoy. Thus the pebbling space exceeds 2 and we have obtained our contradiction. The lemma
follows O

Studying the pebbling strategies in the proof of Lemma 5tlig,not hard to see that they are terribly
inefficient. The subgraphs in(c, ») will be pebbled over and over again, and for every step in¢kansion
the time required multiples. We next show that if we are julsitanore generous with the pebbling space,
then we can get down to linear time.

Proof of Lemma 5.18We want to prove thal'(c,r) has a persistent black pebbling straté@yin linear
time and in spacé(c + r). Suppose that there is such a pebbling straf@gfor I'(c,). We show how to
construct a pebbling,, for I'(¢, r + 1) inductively. Note that the base case Tt 1) is trivial.

The construction o, is very straightforward. First use,. to make a persistent pebbling Bfc, r)
in spaceO(c + r). At the end ofP,, we havec pebbles on the sinksg,, . ..,~.. Keeping these pebbles in

place, pebble the pyramids} , ..., TIS, persistently one by one in linear time and spéxe). We leave
pebbles on all pyramid sinks, ..., z.. This stage of the pebbling only requires spéxe +) and at the
end we havec black pebbles on all pyramid sinks, . .., z. and all sinksyi, ... ,~. of I'(¢,r). Keeping

all these pebbles in place, we can pebble albines in parallel in linear time with+ 1 extra pebbles. [

It remains to prove the trade-off result in Theorem 5.19s klear that this theorem follows if we can
prove the next, slightly stronger, statement.

Lemma 5.22. Suppose thapP = {P,, ...,P,} is a conditional black-white pebbling dni(c,) and thats
is a constant satisfying the following properties:

1L.0<s<¢/8—-1
2. P pebbles all sinks ifi'(c, r) during the time intervalo, 7].
3. max{space(P,),space(P;)} < s.

4. space(P) < BW-Peb’ (T(e,7)) +s=(r+2)+s.

Then it holds thatime(P) =7 — o > (£2)" - rl.

We will have to spend some time working on this lemma befoeepfoof is complete. We start by
establishing two additional auxiliary lemmas that uppewfd how many pyramids and spine sections can
contain pebbles simultaneously at any one given time in dlpgbsubjected to space constraints as in
Lemma 5.22. The claims in the two lemmas are very similar iritsps are the proofs, so we state the
lemmas together and then present the proofs together.

Lemma 5.23. Suppose thapP = {P,, ...,P,} is a conditional black-white pebbling dni(c,) and thats
is a constant such th@® and s satisfy the conditions in Lemma 5.22. Then at all times dytine pebbling
P strictly less thant(s + 1) pyramidslI_ contain pebbles simultaneously.

Lemma 5.24. Suppose thapP = {P,, ...,P,} is a conditional black-white pebbling dni(c,) and thats
is a constant such thd? and s satisfy the conditions in Lemma 5.22. Then at all times dyutire pebbling
P strictly less thani(s + 1) spine sections contain pebbles simultaneously.

36

5 SOME OLD AND NEW PEBBLING RESULTS

Note that Lemma 5.24 provides a total bound on the numberlflpd sections in alk spines. There
might be spines containing several sections being pebliedtaneously (in fact, this is exactly what one
would expect a black-white pebbling to do in order to optienike time given the space constraints), but
what Lemma 5.24 says is that if we fix an arbitrary titne [0, 7], add up the number of sections containing
pebbles at time in each spine, and sum over all spines, we never ex¢ged 1) sections in total at any
point in timet € [, 7].

Proof of Lemma 5.23Suppose that on the contrary, there is some tiilne (o, 7) when at leastls + 4
pyramidsIl’ in T'(c,r) contain pebbles. Of these pyramids, at least- 4 are empty both at time and
at timer sincespace(P,) < s andspace(P;) < s. By Lemma 5.21, these pyramids, which we denote
', ... 1125%4, are completely pebbled. We conclude that for evidfy j = 1,...,2s + 4, there is an
interval [0}, 7;] such that* € (o}, 7;) andIl’ is empty at times; andr; but contains pebbles throughout
the interval(c;, 7;) during which it is completely pebbled.

For eachll’ there must exist some tim¢ € (oy, 7;) when there are at least+ 1 = BW—Peb@(Hj)
pebbles. Fix such a timg for every pyramidll/ and assume that af,j =1,...,2s + 4, are sorted in
increasing order. We have two possible cases:

1. At least half of aIIt; occur before (or at) time*, i.e., they satisfy; < t*. If so, look at the largest
¢z < t*. Atthis time there are at least+ 1 pebbles orfl’ and at Ieasi“Qi‘1 — 1= s+ 1pebbles on

other pyramids, which means trgtace (]P’t;s) > (r 4+ 2) + s. In other words;P exceeds the space
restrictions contradicting our assumptions.

2. Atleast half of al; occur after time™, i.e., they satisfy’ > ¢*. If we consider the smalles} larger
thant* we can again conclude thspace (]P’t;) > (r+1)+ (s + 1), which is a contradiction.

Hence, ifP is a pebbling that complies with the restrictions in Lemm25it can never be the case that
45 + 4 pyramidsIl’ in T'(c,) contain pebbles simultaneously durify O

Proof of Lemma 5.24Suppose in order to get a contradiction that at some tifme (o, 7) at leastds + 4
sections contain pebbles. At least + 4 of these sections are empty at timesand r. Let us denote
these section®!, ..., R***4. Appealing to Lemma 5.20, we conclude that there are inkeifwa, 7;] for
j=1,...,2s+4, such that* € (c;,7;) andR’ is empty at times; andr; but contains pebbles throughout
the interval(c;, 7;) during which it is completely pebbled.

By Lemma 5.23 we know that less thds + 4 pyramids contain pebbles at tinsg and similarly at
time 7;. Since allc pyramids inl’(c,) must have their sinks pebbled durifg;, 7;) but we have2 - (4s +
4) < ¢ by the assumptions in Lemma 5.22, we conclude from Lemmathatifor every intervalc;, 7;)
we can find some pyramifl’ that is completely pebbled during this interval. This, inntuimplies that
there is some time; < (0j,7j) when the pyramidl/ contains at IeasBW—Peb@(Hj) = r 4+ 1 pebbles.
(We note that many; can be equal and even refer to the same pyramid which hasgppehed to receive
a lot of different labels, but this is not a problem as we sbadl.)

As in the proof of Lemma 5.23, we now sort thie j = 1,...,2s + 4, in increasing order and consider
the two possible cases. If at least half ofglisatisfy¢; < ¢*, we look at the largest; < ¢*. At this time
there are at least+ 1 pebbles ofdl’ and at Ieasi“%‘1 = s + 2 pebbles on different sections, which means
thatspace (Pt;) > rs + 3 exceeds the space restrictions. If, on the other hand, sitheif of all¢} satisfy

t* > t*, then for the smallest; larger than* we can again conclude thspace (Pt;) > r + s+ 3, which
is a contradiction. The lemma follows. O

Putting together everything that has been proven so farignsiction, we are able to establish the
pebbling trade-off result.

37

UNDERSTANDING SPACE IN RESOLUTION

Proof of Lemma 5.22Suppose thaP = {P,,...,P;} is a conditional black-white pebbling dn(c, r)
pebbling all sinks and thahax { space(P,), space(P-)} < s andspace(P) < (r +2) + sfor0 < s <

¢/8 — 1. Let us define
c—2s\"
= Ll
T(c,r,s) <4S+4> rl . (34)

We show thatime(P) > T'(c, r, s) by induction over-.

Forr = 1, the assumptions in the lemma imply that more than2s sinks are empty at timesandr.
These sinks must be pebbled, which trivially requires #yrimore than: — 2s > (52) = T'(c, 1, s) time
steps.

Assume that the lemma holds fbfc,» — 1) and consider any pebbling df ¢, r). Less tharks spines
contain pebbles at time or time 7. All the other strictly more than— 2s spines are empty at timesandr
but must be completely pebbled durifig 7] by Lemma 5.10.

Consider the first time’ when any spine gets a pebble for the first time. Let us den@epine byQ)’.

By Lemma 5.20 we know thap’ contains pebbles during a contiguous time interval unt# tompletely
pebbled and emptied at, say, time During this whole intervalo’, 7'] less thants + 4 sections contain
pebbles at any one given time, so in particular less #isent spines contain pebbles. Moreover, Lemma5.20
says that every spine containing pebbles will remain pebbigil completed. What this means is that if we
order the spines with respect to the time when they first vecgipebble in groups of siz& + 4, no spine

in the second group can be pebbled until the at least one spihe first group has been completed.

We remark that this divides the spines that are empty at thmbieg and end ofP into strictly more
than

c—2s

35
4s+4 (35)

groups. Furthermore, we claim that completely pebblinggue empty spine requires at least
r-T(e,r—1,5) (36)

time steps. Given this claim we are done, since combining &6l (36) we can deduce that the total
pebbling time is lower-bounded by

c—2s
r-
4s + 4

T(c,r —1,s) =T(c,r,5) (37)

since at least one spine from each group is pebbled in a titeesal totally disjoint from the time intervals
for all spines in the next group.

It remains to establish the claim. To this end, fix any sgjfeempty at times* andr* but completely
pebbled injc*, 7*]. Consider the first time; € [o*, 7*] when any section iQ*, let us denote it by?;, has
been completely pebbled (i.e., , all vertices has been tlibly pebbles but are now empty again). During
[c*,] all pyramid sinks:q, . . ., z. are pebbled (Lemma 5.10), and since less thdds +4) < ¢ pyramids
contain pebbles at times® or 7; (Lemma 5.23), at least one pyramid is pebbled completelynfbha 5.21),
which requires + 1 pebbles. Moreover, there is at least one pebbl&pduring this whole interval. Hence,
there is a timer; € [o*, 1] when there are strictly less th@an+ 2) + s — (r + 1) — 1 = s pebbles on
I'(c,r —1). Also, at this timer; less thants + 4 sections contain pebbles (Lemma 5.24), and in particular
this means that there are pebbles on less #sam 3 other section of our spin@*. This puts an upper
bound on the number of sections @f pebbled this far, since every section is completely pebblaihg
a contiguous time interval before being emptied again, aadhose to focus on the first sectiéq in Q*
that was finished.

Look now at the first sectio®, in Q* other than the less thatis + 4 sections containing pebbles at
time o that is completely pebbled, and let the time whenis finished be denoted, (clearly, o > 7).

38

5 SOME OLD AND NEW PEBBLING RESULTS

During [o1, 2] all sinks ofT'(¢, » — 1) must have been pebbled, and at time- 1 less thans + 3 other
section inQ* contain pebbles.

Wrapping up, consider the first new sectiflg in our spineQ* to be completely pebbled among those
that has not yet been touched at time— 1. Suppose thaRjs is finished at timers. Then during|rs, 73]
some pyramid is completely pebbled, and thus there mudt@Xiseos € (72, 73) when there are at least
r + 1 pebbles on this pyramid and at least one pebble on the €pindeaving less thas pebbles for
['(c,r — 1). But this means that we can apply the induction hypothesitherinterval[o;, 03] and deduce
thatos — o1 > T'(c,r — 1,s). Note also that at time; less thar8s + 8 < ¢ sections inQ* have been
finished.

Continuing in this way, for every group 8k + 8 < ¢ finished sections i)* we get one pebbling of
I'(c,r — 1) in space less thaBW-Peb’ (T'(¢c, 7 — 1)) + s and with less thar pebbles in the start and end
configurations, which allows us to apply the induction hyjesis a total number of at leagt—< > r times.
(Just to argue that we get the constants right, note&hat 8 < ¢ implies that after the final pebbling of
the sinks ofl'(¢,» — 1) has been done, there is still some empty section lef2'inWhen this final section
is taken care of, we will again get at least- 1 pebbles on some pyramid while at least one pebble resides
on @*, so we get the space di{c,r — 1) down belows as is needed for the induction hypothesis.)

This proves our claim that pebbling one spine takes timeaatteT (¢, r—1, s). The lemma follows. O

As we already noted, this completes the proof of Theorem, SifiBe this theorem follows immediately
from Lemma 5.22 for the special case when= P, = (0, 0).

5.3 Recapitulation of Some Known Pebbling Trade-off Result S

All the material in Section 5.3 is from [LT82]. The statemzinff the results below differ slightly in the
constants in that paper, though, since there are some (iednical differences in the definitions as
compared to the present paper.

5.3.1 Pebbling Trade-offs for Constant Space

Even for graphs pebblable in minimal constant space, therenantrivial time-space trade-offs. More
precisely, Lengauer and Tarjan [LT82] prove the followingadratic trade-offs for constant pebbling space.

Theorem 5.25 ([LT82]). There are explicitly constructible DAGS,, of size©(n) with a single sink and
maximal indegre& having the following pebbling properties:

e The black pebbling price aF,, is Peb(G,,) = 3.

e Any black pebbling strategp,, for G,, that optimizes time given space constraintyn) exhibits a
trade-offtime(P,) = ©(n?/space(P,)).

e Any black-white pebbling stratedy,, for GG,, that optimizes time given space constraiﬁléﬁ)
exhibits a trade-offime(7P,,) = ©((n/space(P,))?).

We will present (most of) the proof of Theorem 5.25, since weehto use this theorem in a “non-black-
box” way to derive the results that we need. The trade-offeértheorem are obtained for graphs built from
permutations in the following way.

®The reason for including the upper bounds on space in thenseatt of the theorem is that no matter how much space is
available, it is of course never possible to do better thaadli time. Thus the trade-offs cannot hold when length ditmblinear.

39

UNDERSTANDING SPACE IN RESOLUTION

Figure 5: Permutation graph over 11 vertices defined by permutation sending = to 2z mod 11.

Definition 5.26 (Permutation graph ([LT82])). Letr denote some permutation ¢9,1,...,n — 1}. The
permutation grapiA(n, 7) overn elements with respect tois defined as followsA (n,) has2n vertices
divided into alower row with verticesug, u1, . .., u,_1 and anupper rowwith verticeswg, w1, ..., wn_1.
Foralli =0,1,...,n—2, there are directed edgés;, u;+1) and(w;, w;1+1), and foralli = 0,1,...,n—1,
there are edge@i, wﬂ(i)) from the lower row to the upper row.

Thus, the only source vertex ih(n, 7) is uy and the only sink vertex i&,, ;. All vertices in the lower
row except the leftmost one have indegieand all vertices in the upper row except the leftmost one have
indegree2. Figure 5 shows an example of a permutation graph.

Any DAG of fan-in2 must have pebbling price at leastlt is not too hard to see that permutation graphs
A(n,m) have pebbling strategies in this minimal space: keepingpetdle on vertexv; of the upper row,
move two pebbles consecutively on the lower row uatil. ;) is reached, and then pebhle. ;. This
strategy is not too efficient timewise, however. It will tatk@e Q(n?) in the worst case (for instance, for
the permutation sendington — ¢ — 1).

Generalizing the pebbling strategy just sketched, we getdtlowing upper bound on the time-space
trade-off for any permutation graph.

Lemma 5.27 ([LT82]). Let A(n, w) be the permutation graph overelements for any permutation Then
the black pebbling price al(n,) is Peb(A(n, 7)) = 3, and for any space, 3 < s < n, there is a black
pebbling strategyP for A(n,) with space(P) < s andtime(P) < 3%22 + 2n.

Clearly, the space interval of interestds< s < n since fors > n there is the trivial pebbling that
places pebbles on all vertices in the lower row and then ssvadyack pebble across the upper row.

To prove lower bounds for permutation graphs, Lengauer amgi focus on permutations defined in
terms of reversing the binary representation of the inef@r1, ... ,n — 1} whenn is an even power df.

Definition 5.28 (Bit reversal graph ([LT82])). The m-bit reversalof i, 0 < i < 2™ — 1, is the integer
rev,, (i) obtained by writing then-bit binary representation afin reverse order. Thbit reversal graph
A(2™, rev,,) is the permutation graph over= 2™ with respect taev,,.

For instance, we hauevs(1) = 4, revs(2) = 2, andrevs(3) = 6. We will denote the bit reversal graph
by A(n,rev) for simplicity, implicitly assuming that: = 2. An example of a bit reversal graph can be
found in Figure 6.

For bit reversal graphs, the trade-off in Lemma 5.27 for blaebbling is asymptotically tight.

Theorem 5.29 ([LT82]). Suppose thaP is any complete black pebbling of the bit reversal graptn, rev)
overn = 2™ elements such thapace(P) = s for s > 3. Thentime(P) > g—z

Note, in particular, that if we want to black-pebkien, rev) in linear time, then linear space is needed.
We again omit the proof in order to focus instead on the moedlefging black-white pebbling case. It

40

5 SOME OLD AND NEW PEBBLING RESULTS

000 001 010 011 100 101 110 111

000 001 010 011 100 101 110 111

Figure 6: Bit reversal graph A(8,rev) on 8 elements.

turns out that if we are also allowed to use white pebblesptbef of Theorem 5.29 breaks down due to
the fact that a central assumption in the proof is that anpliredp proceeds through the DAG in topological
order. This does not hold for a black-white pebbling sincétevhbebbles can be placed anywhere in the
graph. Modifying the argument to take this possibility iakount, we get the following lower bound.

Theorem 5.30 ([LT82]). LetP be any complete black-white pebbling®fn, rev) with space(P) = s for
s > 3. Thentime(P) > % + 2n.

Proof. Suppose that < n/6 since otherwise the statement is trivially true. Write= log n and fixr such
that3s < 2" < 6s. Divide the vertices in the upper row inB5~" > n /6s intervals

I] = {wj,2r7 wj.2r+1, “eey w(j+1),27-_1} (38)

of length2” for 0 < j < 2™~ ", Letry = 0 and M, = (), and inductively define; to be the first time after
7;—1 when the first interval; ¢ M;_; has been pebbled and unpebbled completely. At tima pebble is
removed from/; and at most — 1 other intervald/;; contain pebbles. Le¥; be the union of\/;_; and the

at mosts intervals just mentioned, including. Repeat this procedure foe= 1,2, 3, ... until M; covers all

intervals (which clearly must be the case at the end of thelpe)).

There are strictly more tham/6s intervals, and at mostnew intervals are added fd; in each iteration.
Hence, the above procedure is repeated at leg4ts?| times. We claim that in between_; andr;, there
are at least /6 pebble placements made on the lower row. To prove this claate, first that by construction
I; is empty at timer;_1, so all of I; is pebbled duringr;_1, 7;]. Now look at the set of vertices

rev, (I;) = {u;|i= rev, ! (G- 2’"),rev;11 (G-2"+1),... ,rev%l((j +1)-2" 1)} (39)

in the lower row. (Figure 7 illustrate = {wy, ws, we, w7} andrev,, (1) for »r = 2 in the bit reversal
DAG over 16 elements.) By the definition of bit reversal permutationgre /; divides the lower row into
2" — 1 intervals of length exactl™~". To see this, note thatv;,! fixes then —r lower bits to the bit pattern
j-2" reversed, while the upper bits run through all combinations@®éand1. Disregarding the leftmost and
rightmost intervals, we g&f’ — 1 intervals of length exactl@™~" in between the end intervals. Attime 1,
at mosts — 1 of these intervals in the lower row contain pebbles, andat i, at mosts — 1 other intervals
contain pebbles. By Lemma 5.10, all the other at I1@&st 2(s — 1) > s intervals in the lower row must be
completely pebbled and unpebbled durjng., 7;]. But this requires more than 2"~" > s-n/6s =n/6
pebble placements.

Summing over all of the at leat /65| iterations, we get a total of more thari6- [n/6s%| > (n/6s)?
pebble placements on the lower row plus at leaglacements on the upper row, and multiplying byo
adjust for removals gives the bound stated in the theorem. O

41

UNDERSTANDING SPACE IN RESOLUTION

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Figure 7: Upper-row vertices wj.or, wj.2r 41, - - -, Wj11).2-—1 SPlit lower row into evenly sized intervals.

The reason for the discrepancy between Theorem 5.29 anddrhén30 turns out to be that in fact, it
is possible to do better using white pebbles in addition to thekoones. In particular, there is a linear-time
black-white pebbling strategy fak(n, rev) using only order of/n pebbles.

Theorem 5.31 ([LT82]). For any spaces > 3 there is a complete black-white pebblifgof A (n, rev) with
space(P) < s andtime(P) < 1442 + 12n.

g2

Since we will need to use the construction in Theorem 5.31mwdwyising resolution refutations of
the corresponding pebbling formulas in Section 6.1, wegmesa detailed proof. The main work is in
establishing the next lemma. We show the lemma first and tkiglaia how it implies Theorem 5.31.

Lemma 5.32 ([LT82]). For all s, 3 < s < 34/n, there is a complete pebbling df(n,rev) in space at
mosts and time at mosl44%§ + 2n.

Proof of Lemma 5.32Write m = log n and letr be the non-negative integer such that
3-2"<s<3.20H (40)

Divide the upper row ofA(n, rev) into 2" intervals

I ={wjom-ryp | k=0,1,...,2"7" -1} (41)
of size2™~" for j = 0,...,2" — 1 and then subdivide each interviglinto 22" chunks by defining

C = {wjgm-riiorig | k=0,1,...,2" — 1} (42)
fori = 0,...,2m 2" — 1. Note that we must hav&™—2" > 1 for this definition to make sense, but this

holds sinces < 3,/n by assumption. Figure 8 exemplifies these definitions or3#element bit reversal
DAG with 22 intervals and® chunks per interval.

The pebbling strategy will proceed #1*—2" phasesorresponding to th&”—2" chunks in each interval,
and in2" stageswithin each phase corresponding to the different intervalsthe phases in the pebbling
are completely analogous except for some minor tweaks ifirsteand final phases, which we refer to as
the Oth and(2™~2" — 1)st phases, respectively. To help the reader parse theargtate note that in what
follows superscripts will correspond to phases/chunks and subscrjdts stages/intervals. We reser¥e
pebbles for the lower rov@” pebbles for the “current chunks” in the upper row, &id- 1 pebbles for the
rightmost vertices idy, I1, . . ., Io>r _o. By the leftmost inequality in (40), this leaves one auxjlipebble to
help with advancing the other pebbles.

42

5 SOME OLD AND NEW PEBBLING RESULTS

Figure 8. Intervals [; for r = 2 in A(32,rev) and Oth chunks in Iy and I,.., (1) = I> with inverse images.

Start theOth stage in thé@th phase by doing a black-only pebbling of the lower row, ilegypebbles on
the2" vertices in
U = {thevry | k=0,1,...,2" — 1} (43)

and then, using the support of these pebbles, sweep a blablepeast théth chunkwg, wy, ..., war o
of Iy, leaving it on the rightmost vertex,- 1. This concludes theth stage.

In the next stage, move all black pebbleslifl on the lower row exactly one step to the right to the
verticesuy, for k = 1,rev,, (1) + 1,rev,,(2) + 1,...,rev,, (2" — 1) 4+ 1. Using the fact that we can write
1 = revy,(rev,(1) - 2™7") by shifting 1 first » bits to the left, thenn — r bits more and finally all the way
back again, we see that the set of lower-row vertices nowredvgy black pebbles is

U? = {urevm(revr(l)-Z’”*T—i—k) ‘ k=0,1,...,2" - 1} ’ (44)

which by (42) is the set of all predecessors in the lower rothefith chunkaOVT (1) of the intervall,,, (1
(see Figure 8 for a concrete example of this). If we place demébble on the rightmost vertex of the
interval I, (1)-1, this white pebble plus the lower-row black pebblesidghallow us to advance a black
pebble along all the vertices of tiiéh chunk ofl..,, 1), leaving it on the rightmost vertex. This concludes
stagel of phaseD.

Continuing in this way, in thgth stage of phas@éwe can move the lower-row pebbles frcmj‘il_l to U]Q
where this notation is generalized to mean

0 r
Uj = {urevm(revr(j),mer_Fk) ‘ k= 0, 1, e ,2 - 1} (45)
for all j < 2" — 1, and then place black pebbles on the rightmost vertex inyesiaunk C° ; with the

help of a white pebble on the rightmost vertexjg,, (;)—1- Atthe end of the final stage ofcgﬁ%,ame thus
have black pebbles on the rightmost vertices oD#il chunks and white pebbles on the rightmost vertices
of Iy, I1, ..., Ior_o. Later phases will move the black pebbles to the right, cHankhunk, while leaving
the white pebbles in place. We observe that during phase made at most pebble placements on the
lower row to get the pebbles into “starting positioliy, and then exactl@” placements more on the lower
row in each of the othe2” — 1 stages.

Inductively, suppose at the beginning of phadieat there are black pebbles on the rightmost vertices in

all (« — 1)st chunks. Let us extend the lower-row vertex set notati@mvalo full generality and define

Ul = {threv,, rovs (y2m—r4izram) | B = 0,1,...,27 =1} = rev;,} (;‘ew(j)) : (46)

43

UNDERSTANDING SPACE IN RESOLUTION

where the second equality is easily verified from (42). Imystaof phasei, we rearrange the lower-row
black pebbles so that they cover the vertice§jnSince the2” black pebbles are already present somewhere
on the lower row, this can be achieved with at mest 2" pebble placements (the details can be found in
the proof in [LT82] for our Lemma 5.27). This allows us to adea the pebble id, on the upper row from
the rightmost vertex in chunk— 1 to the rightmost vertex in chunk Moving the vertices it/§ one step to
the right in each following stage 1}, UZ, et cetera, we can sweep black pebbles acrositihehunks of

the other intervald; in the orderl,c,, (1), Liev,(2)s - - - » Lrev, (27 —2)» Lrev,(2r—1) = I2r—1. Allin all, we make

at most(n — 2") 4 (2" — 1) - 2" pebble placements on the lower row during phafe i > 1.

In the final(2™~2" — 1)st phase, we already have white pebbles on the rightmostxefthe chunk in
every interval except the rightmost ohg ;. Therefore, in every stage except the final one, insteadact pl
ing a black pebble on the rightmost vertex in the chunk we lisdlack pebbles on the two predecessors of
this vertex to remove the white pebble. In the very final stageplace a black pebble an,_;. Removing
all other pebbles from the DAG, which are all black, we haveawied a complete pebbling df(n, rev).

The space of this pebbling 8s 2" < s by construction. As to pebble placements, it is easy to ywénidt
each vertex in the upper row is pebbled exactly once. The auwitpebble placements in the lower row is
at mostn + (2" — 1) - 2" during phas® and at mostn — 2") + (2" — 1) - 2 for each of the othe2™ 2" — 1
phases, and summing up we get a total of at most

27 (n—2") + (20— 1)-2") + 2"+ 2n < 2" (n +2%") + 2n
n2 (47)
< 72— +2n
S

placements, where we used that 2" > 1, 2" < s/3 < 2"+, ands < 3y/n. Multiplying by 2 to take the
pebble removals into account gives the time bound statdukifemma. O

Proof of Theorem 5.31For s < 3,/n the statement was proven in Lemma 5.32 (and note that for70,
the black-only pebbling in Lemma 5.27 gives a better timento)u To get the statement fer> 3./n, use
the same pebbling strategy as in the proof of Lemma 5.32 mdgseh so that,/n/2 < 2" < \/n. Then the
number of chunk@™~2" is at most, and the time bound derived from (47) reduces$ia. O

On a high level, the reason that black-white pebblings camdoh better than black-only pebblings on
bit reversal DAGs is that these graphs have such a regulentiste. Lengauer and Tarjan raise the question
whether there are other permutations for which the lowendon Theorem 5.29 holds also for black-white
pebbling, and conjecture that the answer is yes. To the lhesircknowledge, this problem is still open.
We do not know of any candidate permutations for establgshie conjecture, but one could ask whether
anything informative could be said about what holds for,fgtance, a random permutation in this respect.
If the conjecture turns out to be true for a random permutagwith high probability, say), then such a
result, although non-constructive, would be interesting.

5.3.2 DAGs Yielding Robust Pebbling Trade-offs

To get robust pebbling trade-offs, i.e., trade-offs thdtlluwer a large space interval, we use a DAG family
studied in [LT82, Section 4].

Definition 5.33 (Stack of superconcentrators ([LT82])).Let SC,,, denote any (explicitly constructible)
linear-sizem-superconcentrator with bounded indegree and déibgm). Then®(m,r) denotes the

graph constructed by stackingcopies SCy,, ..., SC;, of SC,, on top of one another, with the sinks
2, 2,..., 2, of SCI, connected to the source§™, 537", ...)" of SCI+! by edgeg(z/, s ") for all
i=1,...,mandallj=1,...,r — 1.

44

5 SOME OLD AND NEW PEBBLING RESULTS

H @ @& @ ® @& @ &

scl

e

()
ool alolNo BEEE 0

:

G- 3

D

@
Q
e

alolNe NEES

U
Q
e

HE GE G O

Co6)

aE Ge @ O
O G
Q@ GE s G O

GIIOMOMOROIOINONG),

Figure 9: Schematic illustration of stack of superconcentrators ®(8, r).

Clearly, ®(m, r) has sized(rm). Figure 9 gives a schematic illustration of the construrctio

Lengauer and Tarjan establish fairly detailed trade-afults for stacks of superconcentrators using
different explicit and non-explicit constructions for tkeperconcentrator building blocks. All of these
results can be translated into corresponding trade-offitses resolution. For simplicity and conciseness,
however, we only state a special case of their results, amdde a brief proof sketch for the interested
reader.

Theorem 5.34 ([LT82]). For ®(m, r) a stack of (explicitly constructible) linear-size-superconcentrators
with bounded indegree and depti{log m), the following holds:

e Peb(®(m,r)) = O(rlogm).
e There is a linear-time black pebbling strate@yfor ®(m, r) with space(P) = O(m).

o If P is a black-white pebbling strategy fdr(m, r) in spaces < m/20, thentime(P) > m - (£2)".

Proof sketch.The upper bound on black pebbling price follows from Obsowma5.9, since the depth of
®(m,r) is O(rlogm). The linear-time black pebbling strategy is obtained bylypg the trivial pebbling
strategy in Observation 5.7 consecutively to each supeertrator, keeping pebbles on the sinksS6f/,
while pebblingSCJ+t,

45

UNDERSTANDING SPACE IN RESOLUTION

The reason that the final trade-off result holds is, verydboput, that the lower bounds in Lemma 5.14
and Corollary 5.15 propagate through the stack of supeestretors and get multiplied at each level. If the
pebbling strategy is restricted to keeping- pebbles on each copyC?, of the superconcentrator, this is
not hard to prove directly from Lemma 5.14. Establishing th& intuition holds also in the general case,
when pebbles may be unevenly distributed over the supeeotrator copies, is much more technically
challenging, however. O

5.3.3 Exponential Pebbling Trade-offs

To get exponential trade-offs, i.e., trade-offs with lovbaunds on the length on the forit" for some
constank > 0, the graphs in Section 5.3.2 are not sufficient. Instead, eeg o appeal to stronger results
from [LT82, Section 5].

Theorem 5.35 ([LT82]). For every/ € N there exist constants ¢’ > 1 such that the following holds
for all sufficiently largen. LetG be a DAG withn vertices and maximal indegree Then for any space
constraints satisfyingen/logn < s < n, there is a black pebbling stratedy for G with space(P) < s

andtime(P) < s - 92"/*

By stacking superconcentratorsd#fferent sizesn top of one another, Lengauer and Tarjan are able to
prove a matching lower bound. We refer to [LT82, Section bl details of the construction.

Theorem 5.36 ([LT82]). There exists a constaat> 0 such that the following holds for all sufficiently large
integersn, s satisfyingen/logn < s < n: There exists a DAGZ with maximal indegre@ and number
of vertices at most such that any black-white pebbling strateByfor G with space(P) < s must have

time(P) > s- 227"

Note that the grapldz in Theorem 5.36 depends on the pebbling space parameteengauer and
Tarjan conjecture that no single graph gives an exponetimi@-space tradeoff for the whole rangeso&
[n/log n,n], but to the best of our knowledge this problem is still open.

6 Time-Space Trade-offs for Resolution

We have finally reached the point where we can state and praveénee-space trade-off results for resolu-
tion. Given all the work done so far, the proofs are mostly@ewvariations of the following pattern: pick
some graph family in Section 5, make the appropriate chatgmrameters, consider the corresponding
pebbling contradiction CNF formulas, désubstitution for some non-authoritarian functignand apply
Theorem 4.4 (which we obtained with the help of Theorem 3.5).

Note that all the pebbling trade-off results are for explformulas (since they are pebbling formulas
over explicitly constructible graphs). We also repeat onal fime that all trade-offs hold for variable space
and clause space simultaneously, since the upper boundsrarariable space and the lower bounds for
clause space.

6.1 Trade-offs for Constant Space

Our first result is that time-space trade-offs in resoluttan occur even for formulas refuted in (very small)
constant space. What is more, there are such formulas fahwié can prove not only a trade-off threshold,
but even specify the whole trade-off curve.

Theorem 6.1. There are explicitly constructible familigd, }°° ; of minimally unsatisfiablé-CNF formu-
las of sized(n) such that:

46

6 TIME-SPACE TRADE-OFFS FOR RESOLUTION

1. Every formulaF;, is refutable in resolution in lengtik(F,, - 0) = O(n) and also in variable space
VarSp (F, F 0) = O(1) (but not simultaneously).

2. For anys > 0 there is a refutationr,, : F,, F 0 in simultaneous variable spacBurSp(m,) = O(s)
and lengthZ(m) = O((n/s)* + n).

3. Any resolution refutation,, : F;, 0 in clause space&p(w,) = s for s > Sp(F,, + 0) must have
length L(m) = Q((n/s)? + n).

The constants hidden in the asymptotic notation are indég@nofr. and .

Proof. Fix any non-authoritarian functioifi of arity d and consider the pebbling formuld%b A(mrev) [f]
defined over bit reversal DAGA(m, rev) in Definition 5.28 form = log n.

Appealing to Theorem 4.4 will get us a long way but not quiteto final destination. More precisely,
the upper bounds on length and space follow from Lemma 5.2fisnway, and the lower bound in the
trade-off follows from Theorem 5.30. We cannot get the udpmind in the same manner, though, since
Theorem 5.29 tells us that thecannotexist black pebblings with parameters matching the lowemis
for black-white pebblings. Obviously, if we could obtainesolution refutation mimicking the black-white
pebbling strategy in Theorem 5.31, we would get a tight t@ffleesult, but there is no known way of
transforming black-white pebblings in general into retiolu refutations with the same time and space
parameters (and indeed we believe that this is not possit@yever, in this particular case it turns out that
we can construct a resolution refutation that simulatebkhek-white pebbling strategy in Theorem 5.31 in
a space-preserving way. The rest of this proof is devotedwimg how this can be done.

Let us adopt all notation in the proofs of Theorem 5.31 and ien®.32. In particular, we choose
r in the same way and then divide the upper row/ff», rev) into 2" intervalsI; = {wj,2nH-+k \ k =
0,1,...,2m " — 1} of size2™ " for j = 0,...,2" — 1 as in (41) and further subdivide each interval into
2772 chunksCh = {wjom-r oy |k =0,1,...,2" =1} fori = 0,...,2""%" — 1 asin (42). Recall
that this notation was illustrated in Figure 8 on page 43. W& eemind the reader of the definition in (46)
of the vertex setd/] = {Usey,, (rev, (j)-2m—r+i2r4+k) | K = 0,1,...,2" — 1} in the lower row which can be
seen to be inverse images of the chuml{esw_ j in the upper row.

Our resolution refutation will following the pebbling stegy described in the proof of Lemma 5.32
closely and proceed 2" ~2" phases (numberdil 1, . .., 2™~ 2" — 1) corresponding to th&™ 2" chunks in
each interval, and i@" stages (numbere@ 1, ...,2" — 1) within each phase corresponding to the different
intervals. All the phases in the refutation follow the samaégrn except for some minor differences in the
first and final phases, which we refer to as tile and(2~2" — 1)st phases, respectively. We will reserve
d - 23% . 27 variable space for the lower row, 23¢ . 2" variable space for the “current chunks” in the upper
row, and additional variable spade 23¢ for each of the2” intervalsI ;j» which by the way we have chosen
rsums to a total 00 (d - 23¢ - s) = O(s) variable space whexis fixed.

Using the notation for substitution formulas in Definitior2 3a black pebble on a vertexn our trans-
lation of the black-white pebbling to resolution will be énpreted as having all clausesufy] in memory,
and a white pebble onwill be interpreted as all the clauseff]. We will use the notation

]D); = {U[f] ‘ (S U]Z} = {(urovm(rcvr(j)-2mfr+i-2r+k))[f] ‘ k= 07 1a cee 72T - 1} (48)

for the set of clauses intuitively corresponding to blacklges on all vertices iﬁ/';i. Also recall that for two
clause set& andD, the notationC v D is shorthand fo{C' vV D | C € C, D € D}.

We start stag® in phase0 by deriving all clauses i) = {trevnmlf] | k=0,1,...,2" — 1} by
imitating a black-only pebbling of the lower row leaving joéds on the vertices itV{. This can be done
essentially in variable spacé- 22¢ . 2. We refer to the the translation of black pebblings to retmiu
refutations in the proof of Theorem 4.1 for the details. Dmading all axioms in@, V wg)[f] and using

a7

UNDERSTANDING SPACE IN RESOLUTION

up[f] € DY, we can derivavy[f]. Then, for eactk = 1,2,...,2" — 1 in turn, we download all axioms in
(Trevpm (k) ¥ W1 V W) f] = Trev,,, (k) [F]V k-1 [f]Vwi[f] @and, using the clauses..,,) [f] € Df as well
as the clauses;, 1 [f] just derived, resolve over all variablesup.,,,,) f] andw_1[f] to get the clause set
wg[f], after which all clauses iw,_1[f] are erased. In this way, we finally arrive at the clausewset [f]
which is the parallel of a black pebble on the rightmost vette- _; in the Oth chunk ofl,. This concludes
the Oth stage of phase.

In the next stage of phasg we use the clauses in the $&f as well as all the axiom clauses in
(rev,, (revy (1)-2m+k)—1 V Urev,, (rev, (1)-2m—+k)) [, & = 0,1,...,2" — 1, to derive the clause sBf), after
which all clauses i) are erased. This correponds to shifting all black pebblethewertices inJJ one
step to the right td/{ = {uey,, (rev,(1)2m-r4k) | K = 0,1,...,2" — 1}. (We remind the reader that this
step is illustrated in Figure 8 on page 43.) When we are dotie thvis, we download all axiom clauses in
(ﬂrcvm(rovr(l)Qm*") v wrcv,-(l)-?"*"—l \% wrcv,-(l)-T””‘)[f] and resolve Witmrcvm(rcvr(1)-2’"*")[f] -]D(l] to
obtain (Wyey, (1).2m-r—1 V Wrev, (1y.2m-+) [f]. In pebbling terms, this corresponds to placing a white fgebb
on the rightmost vertex,,, (1).om--_1 of the intervall,, (1)-; and a black pebble on the leftmost vertex
Wrey, (1).2m— Of the intervall,.,, (1). This black pebble placement is legal in view of the blackipelon
Ugevy,, (revy (1)-2m—r), COrresponding to the clause 8¢, ev, (1)-2m—)[f]-

Pattern matching on what was done in stagéy induction overk = 1,2,...,2" — 1 we download
all axioms in (Tyey,, (rev, (1)-2m7+k) ¥ Wrey, (1)-2m—r+k—1 ¥ Wrev, (1).2m—r4)[f] @nd then use the clauses
Urev,y, (revy (1)-2m—"+k) [f] -]D)(l) as well as the Clause{@revr(l)Qm*T—l \ wrev7-(1)~2mfr+k—1)[f] derived by
induction to infer the clause S€W,c,, (1).2m—r—1 V Wiey, (1).2m—r1k)[f]. When this has been done, the
clauses(Wyey, (1y.2mr—1 V Wy, (1).2m—r+k—1) [f] are erased. This can be seen to resemble advancing a
black pebble along all the vertices of théh chunk of .., (1), leaving it on the rightmost vertex of the
chunk at the end of stage stapgef phase.

Continuing in this way, in thegth stage of phasé we use the clauses m;?_l to derive the clause
set]D);? and then erase all dﬁg_l, which corresponds to moving the lower-row black pebbler:‘nfUJQ_1 to
UJQ = {umm(rovr(j).zm—mrk) | k=0,1,...,2"— 1}. Then we mimic the placement of a black pebble on the
rightmost vertex in the chun@few_(j) with the help of a white pebble on the rightmost vertex,in, ;)—:
by downloading all all axioms if{@,cy,, rev, (j)-2m—) V Wrev, (j)-2m—7—1 V Wrey, (j).2m-r)[f]. Finally, we
simulate the sweeping of a black pebble across awigr(j) by performing derivation steps analogous to
those in stage8 and1 described above to infer the claug@S.., (jy.om—+—1 V Wrey, (j).2m—r42r—1)[f]-

At the end of the final stage of phase we thus have the clauses,-_[f] as well as all clauses
(Wj.om—r_1 V Wjgm-rigr_1)[f] fOr j =1,2,...,2" — 1. This is our way of matching the black pebbles on
the rightmost vertices of alith chunks and white pebbles on the rightmost vertices ohtdirvals except
the last one at the end of phase the pebbling of Lemma 5.32.

Inductively, suppose at the beginning of tile phase that the clause configuration contains the clauses
wior—1[f] as well as all clause&s;.om-—r_; V wj.om—ryior_1)[f] fOr j = 1,2,...,2" — 1. In terms of
pebbles, this means that the white pebbles on the rightnersteats of all intervals except the last are still
in place while the black pebble in each interval has movedalo the rightmost vertex of th@ — 1)st
chunk.

In stage0 of phasei, we derive the clausés), corresponding to a rearrangement of the lower-row black
pebbles so that they cover the verticeg/jn Mimicking the subpebbling advancing the black pebblé,ion
the upper row from the rightmost vertex in chuink 1 to the rightmost vertex in chunk we use the clauses
w;.or—1[f] @andD} to infer the clauses(;;1).o-—1[f]. Inthe following stages, the pebbling strategy moves the
pebbles iU} one step to the right in each stage'th U, et cetera, and sweeps black pebbles acrosilthe
chunks of the other interval§ in the orderl,q,, (1), Lrev,(2); - - - s Lrevn(27—2)s Lrev, (2r—1) = I2r—1. OUr res-
olution refutation under construction simulates this byivdeg D7, D5, ..., D5, _,, D%, _;, and using each
such clause 3@3 to infer (W;.om—r_1 V Wj.om—r 4 (i41y.2r—1)[f] frOM (@ 0m—r_1 V Wj0m—r i0r_1)[f] N

48

6 TIME-SPACE TRADE-OFFS FOR RESOLUTION

the orderj = rev,(1),rev,(2),...,rev, (2" —2),2" — 1.

Consider now the fingl2™~2" — 1)st phase. In the pebbling strategy, we had to take care ofciaspe
case here since there are already white pebbles on the oghtrartex of the chunk in every interval except
the rightmost ondsy-_. Therefore, in every stage except the final one, insteadagind a black pebble on
the rightmost vertex in the chunk, the pebbling strategys tise black pebbles on the two predecessors of
this vertex to remove the white pebble. We need to do songg#iinilar in spirit in our resolution refutation.
Rather than getting lost in even more indices than we alrbadg, let us describe somewhat informally how
the final phase of the refutation proceeds.

At the beginning of the phase, the clause configuration amthe clausesyn—_o-_1[f] as well as all
clausesw;.om—r_1 V w(jy1).gm-—r_or—1)[f] fOrj =1,2,...,2" — 1. Atthe end of stage, we have derived
the clause set,»—-_,[f]. We resolve all clauses in this clause set Wiliym—+_1 V wy.om—r_or_1)[f] tO
infer wy.om—r_or_1[f]. INtuitively, this resembles the way the white pebbleuwgn.--_; is eliminated in the
pebbling strategy.

In stagel, we move on to the interval,.,,). At the beginning of the stage we have the clauses
(Wrev, (1).2m-7—1 V Wirev, (1)41)-2m-—2-—1)[f] IN memory, and the stage ends with the derivation of the
clauses(Wey, (1).2m-r—1 V Wiev, (1)+1)-2n-—1)[f]. We can resolve these newly derived clauses with the
clauseSWyey, (1)+1)-2m——1 V Wirev, (1)42)-2m—r—2r—1)[f], available in memory by the induction hypothe-
sis, to obtain(W,cy, (1).2m—r—1 V Wiey, (1)+2)-2m-r—2r—1)[f]. This is the intuitive parallel of removing the
white pebble fromu ey, (1)41).2m—r—1-

Continuing in this way with the intervals; in the orderj = rev,(2),rev,(3),...,rev,(2" —2),2" —1,
we finally obtain the clause set,_[f]. Downloading all sink axiom&,,_1[f], we can infer the empty
clause. The resolution refutation is thus complete.

It is straightforward, if tedious, to verify that the lengdhd variable space of this resolution refutation
are as claimed in Theorem 6.1. Again we refer to (the prooTbBorem 4.1 for the details. O

6.2 Superpolynomial Trade-offs for any Non-constant Space

It is clear that we can never get superpolynomial trade{foéisn DAGs pebblable in constant space, since
such graphs must have constant-space pebbling strategmdynomial time by a simple counting argu-
ment. However, perhaps somewhat surprisingly, as soon asudgarbitrarily slowly growing space, we
can obtain superpolynomial trade-offs for formulas whasieitation space grows this slowly. This is a
conseguence of our new pebbling trade-off result in Sed&ian

Theorem 6.2. Let g(n) be any arbitrarily slowly growing monotone functian(1) = g(n) = O(n'/7),
and lete > 0 be an arbitrarily small positive constant. Then there arpliitly constructible families of
minimally unsatisfiablé-CNF formulas{ F;, }52 , of size®(n) such that:

1. Every formulaF;, is refutable in resolution in lengti(F,, - 0) = O(n) and also in variable space
VarSp (F, F 0) = O(g(n)) (but not simultaneously).

2. There are refutations,, : I, - 0 in simultaneous variable spadéurSp(m,) = O (v n/gz(n)> and
length L(7,,) = O(n).

3. There is a constank” > 0 such that any resolution refutation, : F,, -0 in clause spacép(m,) <
K(n/gz(n))l/g_E must have lengtli(r,,) superpolynomial im.

The constanK as well as the constants hidden in the asymptotic notatieriretependent of (but depend
on g ande).

49

UNDERSTANDING SPACE IN RESOLUTION

We remark that the upper-bound conditigfn) = O(n1/7) is very mild and is there only for technical
reasons in this theorem. If we allow the minimal space to gaevfast as.© for somee > 0, then there are
other pebbling trade-off results that can give even stronggults for resolution than the one stated above
(see, for instance, Section 6.4). Thus the interestingipématg(n) is allowed to grow arbitrarily slowly.

Proof of Theorem 6.2Consider the graphB(c,) in Definition 5.16. We want to choose the parameters
andr in a suitable way so that get a family of graphs in size- @(cr3 + c3r2) (using the bound on the
size of['(¢,) from Lemma 5.17). If we set

r=r(n)=g(n) (49)
for g(n) = O(n!/7), this forces
c=c(n) 26(3 n/gz(n)> : (50)

Consider the graph familyG,,}°2 ; defined byG,, = I'(c(n),r(n)) as in (49) and (50), which is a family
of size®(n). Construct the single-sink versio/}‘\h of Gy, fix any any non-authoritarian functiof) consider
the pebbling formulad,, = Pebé\n[f], and appeal to the translation between pebbling and résolirt
Theorem 4.4.

Lemma 5.17 yields thaVarSp(F,, - 0) = O(g(n)). Also, the persistent black pebbling 6f, in
Lemma 5.18 yields a linear-time refutatian : F,, -0 with VarSp(r,) = O({/n/g%(n)).

Now set the parameterin Theorem 5.19 ta = ¢!~ for ¢ = 3e. Then for large enough we have
s < ¢/8 — 1 and Theorem 5.19 can be applied. Combining the pebblingtoéfcthere with Theorem 4.4,
we get that if the clause space is less tiayig?(n)) 1/37¢ then the required length of the refutation grows
as (Q(ce))” = (2(n/g*(n)))“"™ which is superpolynomial im for any g(n) = w(1). The theorem
follows. O

6.3 Robust Superpolynomial Trade-offs

We now know that there are polynomial trade-offs in resolutior constant space, and that going ever so
slightly above constant space we can get superpolynoraigétoffs. The next question we want to focus on
is how robust trade-offs we can get. That is, over how larggnge of space does the trade-off hold? Given
minimal refutation space, how much larger space is needed in order to obtain the lieegth refutation
that we know exists for any pebbling contradiction?

The answer is that we can get superpolynomial trade-offsgban almost the whole range between
constant and linear space. We present two different redukgrating this.

Theorem 6.3. There are explicitly constructible familigs, }°2 ; of minimally unsatisfiablé-CNF formu-
las of sized(n) such that:

1. Every formulaF, is refutable in lengthZ(F,, - 0) = O(n) and variable spac&/arSp(F, - 0) =
O(log n), but not simultaneously.

2. There is a resolution refutation,, : F,, -0 in variable spaceVarSp(m,) = O (?/ n/ log? n) and
length L(7,,) = O(n).

3. There is a constank” > 0 such that any resolution refutatiar, : F,, -0 in clause spacép(m,) <

KW must have lengtti(r,,) = nf*(oglosn),

The constanis as well as the constants hidden in the asymptotic notatienratependent of.

50

6 TIME-SPACE TRADE-OFFS FOR RESOLUTION

Proof. Consider the graphB(c,) in Definition 5.16 with parameters chosen so that 2". Then the
size of I'(c,r) is ©(r?2%") by Lemma 5.17. Let(n) = max{r : r?23" < n} and define the graph
family {G,,}22, by G,, = I'(2",r) for r = r(n). Finally, construct the single-sink versi@h, of G,,, fix
any any non-authoritarian functighand consider the pebbling formul@s = PebGA [f] with the help of
Theorem 4.4. "

Translating fromG,, back toI'(c,r) we have parameters = ©(logn) andc = ©((n/log?n)'/3),
so Lemma 5.17 yields thaVarSp(F, - 0) = O(logn). Also, the persistent black pebbling 6f, in
Lemma 5.18 yields a linear-time refutatien : £, -0 with VarSp(m,) = O((n/log?n)*/3).

Settings = ¢/8 — 1 in Theorem 5.19 shows that there is a consfdrguch that if the clause space of a
refutationr,, : F, -0 drops belowK - (n/log?n)'/3 < (r + 2) + s, then we must have

L(m,) > O1)" - rl = pSiloglosn) (51)
(where we used that= ©(log n) for the final equality). The theorem follows. 0

Sacrificing a square at the lower end of the interval, we cgrawe the upper end to/ log n.

Theorem 6.4. There are explicitly constructible familigs, }°2 ; of minimally unsatisfiablé-CNF formu-
las of sized(n) such that:

1. Every formulaF;, is refutable in resolution in lengti (F,, - 0) = O(n) and also in variable space
VarSp(F, - 0) = O(log? n).

2. There is a resolution refutation,, : £, -0 in variable spaceVarSp(m,) = O(n/logn) and length
L(m,) = O(n).

3. There is a constank” > 0 such that any resolution refutation, : F,, -0 in clause spacép(m,) <
Kn/logn must have lengtti(m,,) = nf2(cglogn)

The constanf and the constants hidden in the asymptotic notation aredaddent of..

Proof. Pick any non-authoritarian functiohand consider the pebbling formul&eb — [f] defined over

single-sink versions of stacks of superconcentrafors:,) as in Definition 5.33 withn = 207 andr =
|n/T | for T = ©(n/logn). The theorem now follows by combining Theorem 5.34 with Tleeo4.4. [

We remark that the results in Theorem 6.4 can perhaps bedavedito be slightly stronger than those
in Theorem 6.3, but they require a very much more involveglgi@nstruction with worse hidden constants
than the very simple and clean construction underlying Témd®b. 3.

6.4 Exponential Trade-offs

Superpolynomial trade-offs are all fine and well, but can wiegponentiatrade-offs? In this final subsec-
tion we answer this question in the affirmative.

The same counting argument that was mentioned in the begjrofi Section 6.2 tells us that we can
never expect to get exponential trade-offs from DAGs witlylogarithmic pebbling price. However, if we
move to graphs with pebbling prié&(n°) for some constant > 0, pebbling formulas over such graphs can
exhibit exponential trade-offs.

We obtain our first such exponential trade-off, which aldoilexs a certain robustness, by again studying
the DAGs in Definition 5.16.

Theorem 6.5. There are explicitly constructible familigd, }°° ; of minimally unsatisfiablé-CNF formu-
las of sized(n) such that:

51

UNDERSTANDING SPACE IN RESOLUTION

1. Every formulaF;, is refutable in resolution in lengtik(F,, - 0) = O(n) and also in variable space
VarSp(F, +0) = O(¥/n).

2. There is a resolution refutation, : £, 0 in variable spaceVarSp(m,) = O({/n) and length
L(my,) = O(n).

3. There is a constank” > 0 such that any resolution refutation, : F,, -0 in clause spacép(m,) <
K {/n must have lengtth(m,) = ({/n)!.

The constani(as well as the constants hidden in the asymptotic notatiernratependent of.

Proof. Combine Theorem 4.4 and Theorem 5.19 in the same way as irttibe groofs above foF'(c, r)
with ¢ = /n andr = /n. O

We remark that there is nothing magic in our particular cha@t parameters andr in Theorem 6.5.
Other parameters could be plugged in instead and yieldtkligiferent results.

Now that we know that there are robust exponential tradefoff resolution, we want to obtain expo-
nential trade-offs for formulas with their minimal refutat space being as large as possible.

The higher the lower bound on space is, the more interedim¢rade-off gets. It seems reasonable that
to look at and analyze a CNF formula, a SAT solver will at soromfpuse at least linear space. If so, it
is not immediate to argue why the SAT solver would later waakdhon optimizing lower order terms in
the memory consumption and thus get stuck in a trade-offdiatively small space. ldeally, therefore, we
would like to obtain trade-offs for superlinear space (driare such trade-offs, that is). For such formulas,
we would be more confident that the trade-off phenomena dradsib show up in practicé.

It is clear that pebbling contradictions can never yield tmage-off results in the superlinear regime,
since they are always refutable in linear length and linpace simultaneously. Also, all trade-offs ob-
tainable from the graphs in Definition 5.16 will be for spaaetielow linear. However, using results from
Section 5.3.3 we can get exponential trade-offs for spavestllinear, or more precisely for space as large
asO(n/logn).

Theorem 6.6. There are explicitly constructible famili€s, }°° ; of minimally unsatisfiablé-CNF formu-
las of sized(n) such that:

1. Every formulaF,, is refutable in lengthL(F},, - 0) = O(n) and variable spacé/arSp(F,, + 0) =
O(n/logn).

2. There is a resolution refutatiom, : £, - 0 in variable spaceVarSp(m,) = O(n) and lengthL(7) =
O(n).

3. There is a constank” > 0 such that any resolution refutatiar, : F,, -0 in clause spacép(m,) <
Kn/logn, whereKn/logn > Sp(F, - 0), must have lengtti(r) = exp(n¢).

All constants, including those hidden in the asymptotiation, are independent of.

Proof. Appeal to Theorem 5.36 in combination with Theorem 4.4 ingame way as in previous proofs in
this section. O

"Having said that, we also want to point out that the case cerinly be made that even sublinear space trade-offs might b
very relevant for real life applications. Intriguingly ergh, pebbling contradictions over pyramids might in facebeexample of
this. We know that these formulas have short, simple rafutaf but in [SBK04] it was shown that state-of-the-art skalearning
algorithms can have serious problems with even moderasefje Ipebbling contradictions. (Their “grid pebbling folas! are
exactly our pebbling contradictions using substitutiothvginary, non-exclusive or.) We wonder whether the highdolound on
clause space can be part of the explanation behind this preran.

52

7 DIRECTIONS FOR FURTHER RESEARCH

We remark again that Theorem 5.36 in combination with Th@obe35 can be used to obtain DAGs
(and thus CNF formulas) with other trade-offs as well fofatiént space parameters in the range between
n/logn andn. For simplicity and conciseness, however, we only statepleeial case above.

7 Directions for Further Research

We end by briefly mentioning a few open questions related toeported work that we find most interesting.
For the length, width, and clause space measures in rasglttiere are known upper and lower worst-
case bounds that essentially match modulo constant fadtbisisnot the case for variable space, however.

Open Question 1. Are there polynomial-siz&-CNF formulas which require variable refutation space
VarSp (F - 0) = Q((size ofF)?)?

The answer has been conjectured by [ABSRWO02] to be “yes”abudar as we are aware, there are no
stronger lower bounds on variable space known than thosddlt@w trivially from corresponding linear
lower bounds on clause space. Thus, a first step would be 0 shperlinear lower bounds on variable
space.

One way of interpreting the results of the current paper a time-space trade-offs in pebble games
carry over more or less directly to the resolution proof egys{modulo the technical restrictions discussed
in Section 4). The resolution trade-off results obtainabjethis method are inherently limited, however,
in the sense that pebblings in small space can be seen netakettoo much time by a simple counting
argument. For resolution there are no such limitationsatinot a priori, since the corresponding counting
argument does not apply. Thus, one can ask whether it ishpessi demonstrate even more dramatic
time-space trade-offs for resolution than those obtainagebbling.

To be more specific, we are particularly interested in wraatdroffs are possible at the extremal points
of the space interval, where we can only get polynomial t@ifiefor constant space and no trade-offs at all
for linear space.

Open Question 2. Are there superpolynomial trade-offs for formulas reflgailb constant space?

Open Question 3. Are there formulas with trade-offs in the range spacsdormula size? Or can every
refutation be carried out in at most linear space?

We find Open Question 3 especially intriguing. Note that allitds on clause space proven so far,
inlcuding the trade-offs in the current paper, are in thémegwhere the space is less than formula size
(which is quite natural, since by [ET01] we know the size @& tbrmula is an upper bound on the minimal
clause space needed). It is unclear to what extent such lmugrds on space are relevant to state-of-the-art
SAT solvers, however, since such algorithms will presumpalslie at least a linear amount of memory to
store the formula to begin with. For this reason, it seemseta Ihighly interesting problem to determine
what can be said if we allow extra clause space above linege.thfere formulas exhibiting trade-offs in
this superlinear regime, or is it always possible to carryaminimal-length refutation in, say, at most a
constant factor times the linear upper bound on the spacereelfor any formula?

As was noted above, pebbling formulas cannot help answse the questions, since pebbling formulas
are always refutable in linear time and linear space simatiasly by construction, and since constant
pebbling space implies polynomial pebbling time.

Finally, it would be interesting to investigate the imptioas of our results for applied satisfiability
algorithms.

Open Question 4.Do the trade-off phenomena we have established in this pstipmy up “in real life” for
state-of-the-art DPLL based SAT-solvers, when run on theecgiate pebbling contradictions (or varia-
tions of such pebbling contradictions)?

53

UNDERSTANDING SPACE IN RESOLUTION

Acknowledgements

The authors want to thank David Carlson, John Gilbert, Neh®ippenger, and John Savage, for helpful
correspondence regarding their papers on pebbling.

References

[ABSRWO02] Michael Alekhnovich, Eli Ben-Sasson, AlexanderRazborov, and Avi Wigderson. Space

[ACO3]

[ADO3]

[AJPUO2]

[BEGJOO]

[BKPS02]

[Bla37]

[BOPO3]

[Bor93]

[BS02]

[BSGO3]

[BSIWO04]

[BSNOS]

complexity in propositional calculussIAM Journal on Computing1(4):1184-1211, 2002.

Noga Alon and Michael Capalbo. Smaller explicit stgmncentratorsinternet Mathematics
1(2):151-163, 2003.

Albert Atserias and Victor Dalmau. A combinatoriciharacterization of resolution width. In
Proceedings of the 18th IEEE Annual Conference on CompuiatiComplexity (CCC '03)
pages 239-247, July 2003.

Michael Alekhnovich, Jan Johannsen, ToniannsBif@and Alasdair Urquhart. An exponential
separation between regular and general resolutiorRrdgeedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC, @2ages 448-456, May 2002.

Maria Luisa Bonet, Juan Luis Esteban, Nicola Gaksd Jan Johannsen. On the relative
complexity of resolution refinements and cutting planesopsystems. SIAM Journal on
Computing 30(5):1462-1484, 2000.

Paul Beame, Richard Karp, Toniann Pitassi, anchift Saks. The efficiency of resolution
and Davis-Putnam procedureSIAM Journal on Computing1(4):1048-1075, 2002.

Archie Blake.Canonical Expressions in Boolean AlgebRhD thesis, University of Chicago,
1937.

Josh Buresh-Oppenheim and Toniann Pitassi. Thelexity of resolution refinements. In
Proceedings of the 18th IEEE Symposium on Logic in Compuien&e (LICS '03)pages
138-147, June 2003.

Allan Borodin. Time space tradeoffs (getting close the barrier?). IrProceedings of the
4th International Symposium on Algorithms and ComputaflS®AC '93) pages 209-220,
December 1993.

Eli Ben-Sasson. Size space tradeoffs for resolutinProceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC, @2ges 457-464, May 2002.

Eli Ben-Sasson and Nicola Galesi. Space complefitgndom formulae in resolutiorRan-
dom Structures and Algorithm23(1):92-109, August 2003.

Eli Ben-Sasson, Russell Impagliazzo, and Avi Végbn. Near optimal separation of treelike
and general resolutiorCombinatorica 24(4):585-603, September 2004.

Eli Ben-Sasson and Jakob Nordstrom. Short proatg be spacious: An optimal separation
of space and length in resolution. Rroceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ;Q#ges 709-718, October 2008.

54

[BSNO9]

[BSSVO03]

[BSWO1]

[Coo74]

[CS76]

[CS80]

[CS82]

[CS88]

[DLL62]

[DP60]

[EGMO04]

[ETO1]

[ETO3]

[FLVMVO5]

[GG81]

[GLT80]

[GT78]

REFERENCES

Eli Ben-Sasson and Jakob Nordstrom. A space lukyaior k-DNF resolution. Manuscript
in preparation, 2009.

Paul Beame, Michael Saks, Xiaodong Sun, and Eré& \léme-space trade-off lower bounds
for randomized computation of decision problemdournal of the ACM 50(2):154-195,
March 2003.

Eli Ben-Sasson and Avi Wigderson. Short proofs amgow—resolution made simpldour-
nal of the ACM 48(2):149-169, March 2001.

Stephen A. Cook. An observation on time-storagaetiaff. Journal of Computer and System
Sciences9:308-316, 1974.

Stephen A. Cook and Ravi Sethi. Storage requiremfentdeterministic polynomial time
recognizable languagedournal of Computer and System Sciendex1):25-37, 1976.

David A. Carlson and John E. Savage. Graph pebblitigmany free pebbles can be difficult.
In Proceedings of the 12th Annual ACM Symposium on Theory ofpQiimg (STOC ’'80)
pages 326-332, 1980.

David A. Carlson and John E. Savage. Extreme timeespadeoffs for graphs with small
space requirement#nformation Processing Letterd4(5):223-227, 1982.

VaSek Chvatal and Endre Szemerédi. Many hard pesrfor resolution. Journal of the
ACM, 35(4):759-768, October 1988.

Martin Davis, George Logemann, and Donald Lovelan machine program for theorem
proving. Communications of the ACNB(7):394—-397, July 1962.

Martin Davis and Hilary Putham. A computing procegltor quantification theoryJournal
of the ACM 7(3):201-215, 1960.

Juan Luis Esteban, Nicola Galesi, and Jochen Mes€&rethe complexity of resolution with
bounded conjunctionsTheoretical Computer Sciencg21(2-3):347-370, August 2004.

Juan Luis Esteban and Jacobo Toran. Space boundssfaution. Information and Compu-
tation, 171(1):84-97, 2001.

Juan Luis Esteban and Jacobo Toran. A combinatohatacterization of treelike resolution
space.Information Processing Letter87(6):295-300, 2003.

Lance Fortnow, Richard Lipton, Dieter van Melledk, and Anastasios Viglas. Time-space
lower bounds for satisfiabilityJournal of the ACM52(6):835-865, November 2005.

Ofer Gabber and Zvi Galil. Explicit constructionslioiear-sized superconcentratodaurnal
of Computer and System Scienc2?(3):407-420, 1981.

John R. Gilbert, Thomas Lengauer, and Robert Endrgaii. The pebbling problem is com-
plete in polynomial spaceSIAM Journal on Computing(3):513-524, August 1980.

John R. Gilbert and Robert Endre Tarjan. Variatiohs @ebble game on graphs. Tech-
nical Report STAN-CS-78-661, Stanford University, 1978. vakable at the webpage
http://infolab.stanford.edu/TR/CS-TR-78-661.html

55

[Hakss]

[Her08]

[HPO7]

[HPVT7T7]

[Kla85]

[KS88]

[LT80]

[LT82]

[NHO8]

[Nor06]

[Nor07]

[Nor08]

[Nor09]

[Pip77]

[Pip80]

UNDERSTANDING SPACE IN RESOLUTION

Armin Haken. The intractability of resolution. Theoretical Computer Science&9(2-
3):297-308, August 1985.

Alex Hertel. Applications of Games to Propositional Proof Complex®irD thesis, University
of Toronto, May 2008. Available dtttp://www.cs.utoronto.ca/"ahertel/

Philipp Hertel and Toniann Pitassi. Exponentialéispace speedups for resolution and the
PSPACE-completeness of black-white pebbling. Phoceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCSpages 137-149, October 2007.

John Hopcroft, Wolfgang Paul, and Leslie Valianti tine versus spacdournal of the ACM
24(2):332-337, April 1977.

Maria M. Klawe. A tight bound for black and white pdbb on the pyramidJournal of the
ACM, 32(1):218-228, January 1985.

Balasubramanian Kalyanasundaram and George §einidn the power of white pebbles. In
Proceedings of the 20th Annual ACM Symposium on Theory opQimy (STOC '88)pages
258-266, 1988.

Thomas Lengauer and Robert Endre Tarjan. The spatglexity of pebble games on trees.
Information Processing Letterd0(4/5):184-188, July 1980.

Thomas Lengauer and Robert Endre Tarjan. Asymptyicight bounds on time-space trade-
offs in a pebble gamelournal of the ACM29(4):1087-1130, October 1982.

Jakob Nordstrom and Johan Hastad. Towards an apts@paration of space and length in
resolution (Extended abstract). Pnoceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC '08pages 701-710, May 2008.

Jakob Nordstrom. Narrow proofs may be spaciouga®sing space and width in resolu-
tion (Extended abstract). IRroceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC '06pages 507-516, May 2006.

Jakob Nordstrom. A simplified way of proving trad#-results for resolution. Technical
Report TRO7-114, Electronic Colloquium on Computationahlexity (ECCC), September
2007.

Jakob NordstromShort Proofs May Be Spacious: Understanding Space in Ri@allPhD
thesis, Royal Institute of Technology, Stockholm, Swedéay 2008. Available at the web-
pagehttp://people.csail.mit.edu/jakobn/research/

Jakob Nordstrom. New wine into old wineskins: Awey of some pebbling classics with sup-
plemental results. Manuscript in preparation. Currenttdmersion available at the webpage
http://people.csail.mit.edu/jakobn/research/ , 2009.

Nicholas Pippenger. Superconcentrat@$AM Journal on Computing(2):298-304, June
1977.

Nicholas Pippenger. Pebbling. Technical Repor8R%E3, IBM Watson Research Center,
1980. Appeared in Proceedings of the 5th IBM Symposium orhbfagtical Foundations of
Computer Science, Japan.

56

REFERENCES

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and JameseRnC Space bounds for a game on
graphs.Mathematical Systems Thepfy0:239-251, 1977.

[Pud97] Pavel Pudlak. Lower bounds for resolution andmgtplane proofs and monotone computa-
tions. Journal of Symbolic Logid2(3):981-998, September 1997.

[Raz03] Alexander A. Razborov. Resolution lower boundshierweak functional pigeonhole princi-
ple. Theoretical Computer Scienc#(303):233-243, June 2003.

[Raz04] Ran Raz. Resolution lower bounds for the weak pigelenprinciple. Journal of the ACM
51(2):115-138, 2004.

[RM99] Ran Raz and Pierre McKenzie. Separation of the mortdC hierarchy.Combinatorica
19(3):403-435, March 1999.

[Rob65] John Alan Robinson. A machine-oriented logic bamethe resolution principleJournal of
the ACM 12(1):23-41, January 1965.

[SBKO4] Ashish Sabharwal, Paul Beame, and Henry Kautz. dJsinblem structure for efficient clause
learning. In6th International Conference on Theory and ApplicationSatisfiability Testing
(SAT '03), Selected Revised Paperslume 2919 ofLecture Notes in Computer Science
pages 242-256. Springer, 2004.

[Seg07] Nathan Segerlind. The complexity of propositiopedofs. Bulletin of Symbolic Logic
13(4):482-537, December 2007.

[Tor99] Jacobo Toran. Lower bounds for space in resolutiniiProceedings of the 13th International
Workshop on Computer Science Logic (CSL,9®Jume 1683 of.ecture Notes in Computer
Sciencepages 362—-373. Springer, 1999.

[Tor04] Jacobo Toran. Space and width in propositionabltg®n. Bulletin of the European Associ-
ation for Theoretical Computer Scien&3:86—104, June 2004.

[Tse68] Grigori Tseitin. On the complexity of derivation propositional calculus. In A. O.
Silenko, editor,Structures in Constructive Mathematics and Mathematiaagit, Part II,
pages 115-125. Consultants Bureau, New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolutialournal of the ACM34(1):209-219, Jan-
uary 1987.

[Val76] Leslie G. Valiant. Graph-theoretic properties mngputational complexityJournal of Com-
puter and System Sciencd$(3):278-285, 1976.

[vMO6] Dieter van Melkebeek. A survey of lower bounds foriskébility and related problems.
Foundations and Trends in Theoretical Computer ScieB(®):197-303, January 2006.

[Wil85] Robert Wilber. White pebbles help. roceedings of the 17th Annual ACM Symposium on
Theory of Computing (STOC '83)ages 103-112, 1985.

ECCC ISSN 1433-809
57 http://eccc.hpi-web.de/

