
Understanding Space in Resolution:
Optimal Lower Bounds and Exponential Trade-offs

Eli Ben-Sasson∗

Computer Science Department
Technion — Israel Institute of Technology

Haifa, 32000, Israel
eli@cs.technion.ac.il

Jakob Nordström†

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology‡

Cambridge, MA 02139, USA
jakobn@mit.edu

March 25, 2009

Abstract

For current state-of-the-art satisfiability algorithms based on the DPLL procedure and clause learn-
ing, the two main bottlenecks are the amounts of time and memory used. Understanding time and
memory consumption, and how they are related to one another,is therefore a question of considerable
practical importance. In the field of proof complexity, these resources correspond to the length and space
of resolution proofs for formulas in conjunctive normal form (CNF). There has been a long line of re-
search investigating these proof complexity measures, butwhile strong results have been established for
length, our understanding of space and how it relates to length has remained quite poor. In particular,
the question whether resolution proofs can be optimized forlength and space simultaneously, or whether
there are trade-offs between these two measures, has remained essentially open apart from a few results
in very limited settings suffering from various technical restrictions.

In this paper, we remedy this situation by proving a host of length-space trade-off results for reso-
lution in a completely general setting. Our collection of trade-offs cover space ranging over the whole
interval from constant toO(n/ log log n), and most of them are superpolynomial or even exponential.

Our key technical contribution is the following, somewhat surprising, theorem: Any CNF formulaF
can be transformed by simple substitution into a new formulaF ′ such that ifF has the right properties,
F ′ can be proven in essentially the same length asF while the minimal space needed forF ′ is lower-
bounded by the number of variables mentioned simultaneously in any proof forF . Applying this theorem
to so-called pebbling formulas defined in terms of pebble games on directed acyclic graphs, and then
using known results from the pebbling literature as well as aproving a couple of new ones, we obtain
our resolution trade-off theorems.

∗Research supported by the Israeli Science Foundation and bythe US-Israel Binational Science Foundation.
†Research supported by the Ericsson Research Foundation, the Foundation Olle Engkvist Byggmästare, and the Foundation

Blanceflor Boncompagni-Ludovisi, née Bildt.
‡Part of this work performed while at the Royal Institute of Technology (KTH) and while visiting the Technion.

Electronic Colloquium on Computational Complexity, Report No. 34 (2009)

ISSN 1433-8092

UNDERSTANDING SPACE IN RESOLUTION

1 Introduction

1.1 Previous Work

Resolution length and space The resolutionproof system, introduced by Blake [Bla37] in 1937 is
the single-most studied proof system in propositional proof complexity. The interest in resolution is due
to its lying at the very base of the important bounded-depth Frege hierarchy of propositional proof systems
and because theproof complexity of resolution is tightly connected to thecomputationalcomplexity of the
prominent family ofSAT solversbased on the DPLL algorithm of [DLL62, DP60, Rob65].

The interest in resolution has lead to an extensive study of the complexity of proofs in this system,
which operates by refuting unsatisfiable formulas in conjunctive normal form (henceforth CNF formulas).
The most important proof complexity measure is thelengthof refutations and the most important question
regarding this measure has been (and still is) to establish techniques for proving lower bounds on length.
Over the past half century, starting with the seminal superpolynomial lower bound forregular resolution by
Tseitin in 1968 [Tse68], several techniques for proving superpolynomial lower bounds on this complexity
measure have been discovered. Notable examples include [Hak85, Urq87, CS88, Pud97, BKPS02, BSW01,
Raz03, Raz04]. We refer to the survey [Seg07] for more information on this topic.

The study of resolutionspacecomplexity was initiated more recently—about ten years ago—by Esteban
and Torán [ET01, Tor99]. Intuitively, the space of a refutation is the maximal amount of memory needed
while verifying it, and the space of refuting the CNF formulaF is defined as the minimal space of any
resolution refutation ofF . Over the past decade, a number of upper and lower bounds for refutation space
in resolution have been presented in, for example, [ABSRW02, BSG03, EGM04, ET03].

There are two main ways to measure the amount of memory neededto verify a refutation and these
measures are known asclause spaceandvariable space. The former measure is defined as the number of
different clauses in the memory, regardless of the amount ofmemory each clause requires. The latter is
the number of literals kept in memory, i.e., it is the sum of the sizes of the clauses kept in memory. While
variable space is more clearly related to the actual amount of memory required to verify a proof—the actual
memory is at mostlog n times the variable space—clause space has attracted most ofthe attention. The
reason for this seems to be that clause space has interestingconnections to refutation length andwidth,
which is the size of a largest clause in the refutation. Esteban and Torán [ET01] proved that clause space is
at most logarithmic in the minimal length of a tree-like refutation of a formula, which implies that clause
space is bounded by the number of variables appearing in the formula, and Atserias and Dalmau [AD03]
proved that space is lower bounded by width.

The question of the relation between clause space and lengthof general resolution proofs was raised
by the first author in [BS02] and has also been discussed in, for instance, [ET03, Seg07, Tor04]. A pair of
works of the second author and Håstad [Nor06, NH08] have shown that, in contrast to the case of tree-like
resolution, length and clause space of general resolution proofs are not strongly related. By this we mean
that the existence of a short proof does not necessarily imply the existence of a proof that can be carried out
in small clause space. In our recent joint work [BSN08] we showed that the separation of clause space and
length can be “maximally” large. More precisely, the main result in our paper is an explicit construction of
k-CNF formulas of sizen (for arbitrarily largen) that have refutations of sizeO(n) but require clause space
Ω(n/ log n). We say this separation is “maximal” because these bounds are tight up to constant factors.

Length-space trade-offs The focus of this paper is the fundamental question of thetrade-off between
length and space in resolution. Informally, this question asks how much time one can save when verifying
a refutation by allowing more working memory during the verification process. Notice that the above-
mentioned lower bounds on length and on space do not deal withthis question, but rather state absolute
lower bounds on each individual complexity measure. Consider for instance the maximal separation of

2

1 INTRODUCTION

length and space described in the previous paragraph. This separation is maximal since by combining
results from [ET01, HPV77] we know that any formula refutable in timeO(n) can also be refuted in space
O(n/ log n). But can this linear-length refutation be carried out in space, say,100 · n/ log n? As we show
later in this paper, the answer is no in general. Sometimes short refutations require large space, and small
space implies long proofs. Analogous time-space trade-offs are well-known in computational complexity
(see, e.g., [CS80, CS82, LT82, Bor93, BSSV03, FLvMV05] and the survey [vM06]) and one of the main
results of this work is to show how such classical time-spaceresults can be “lifted” to give length-space
trade-offs for resolution.

The question of length-space trade-offs in resolution was first studied by the first author in [BS02] and
more recently by Hertel and Pitassi in [HP07] and by the second author in [Nor07]. These works have a
number of limitations that are overcome in the current paper. The results of [BS02] are limited to the very
restricted case of tree-like resolution. The paper [HP07] deals with variable space only and in addition re-
quire formulas with rapidly growing width, and [Nor07] usesa somewhat artificial construction of formulas
“glued together” from two different unsatisfiable subformulas over disjoint variable sets. Moreover, both
trade-off results for general resolution apply only for a very carefully selected ratio of space-to-formula-
size and display a sharp and abrupt decay of proof length whenspace is increased even by small amounts.
For instance, the refutation length of the formulas of [HP07] drops exponentially once the variable space is
increased to3 literals above the bare minimal variable space required.

1.2 Our contribution

This paper contains two main results regarding resolution length and space, and one auxiliary result about
“classical” time-space trade-offs. Our first result is a newmethod to obtain clause space lower bounds from
lower bounds on a space measure related to variable space. The second result, which builds upon the first,
is a technique to convert time-space trade-offs from the “classical” computational setting to resolution.

The Substitution Space Theorem To describe our first result we define thevariable support size
of a refutation as the maximal number of distinct variables appearing simultaneously in memory during
the refutation. Thus, in particular, variable support sizeis a lower bound on variable space. We present a
general method to transform lower bounds on the variable support size forF to clause space lower bounds
on a formulaF ′ obtained fromF as follows. SupposeF mentions variablesx1, . . . , xn. To produceF ′

all we do is substitute each variablexi with the exclusive-or1 (xor) of two copies ofxi, denotedx(1)
i , x

(2)
i

and expand the resulting “clauses” (which became disjunctions of xors after substitution) to obtain a CNF
formula in the standard way. Our first main theorem can now be stated (informally) as follows.

Theorem 1.1 (Substitution Space Theorem (Informal)).For any CNF formulaF over the set of variables
{x1, . . . , xn}, let F ′ denote the formula with the exclusive-orx

(1)
i ⊕ x

(2)
i substituted forxi, written in CNF

in the canonical way.
Then any refutationπ of F in bounded width can be transformed into a refutationπ′ of F ′ such that the

length and variable space ofπ′ is at most a constant times the length and variable space ofπ′, respectively.
In the other direction, any refutationπ′ of the substitution formulaF ′ can be translated back into a

refutationπ of F such that the length ofπ is upper-bounded by the length ofπ′ and thevariable support size
of π is at most theclause spaceof π′.

The most surprising aspect of this theorem, which is also thehardest to prove, is that one can convert
support size lower bounds forF to clause space lower bounds forF ′. This reduces tha problem of proving
lower bounds on clause space to the easier task of proving lower bounds on variable support size.

1There is nothing magical about the exclusive-or of two variables. Substituting each variable with any function whose value is
never dictated by only one variable will lead to essentiallythe same Substitution Space Theorem.

3

UNDERSTANDING SPACE IN RESOLUTION

The proof of the Substitution Space Theorem is presented in Section 3. We believe it is of independent
interest; to wit, in a subsequent work [BSN09] we generalizeit to understand the connection between length
and space of the stronger proof system known ask-DNF resolution (although the results there are weaker and
apparently not tight, and in particular do not imply the results in this paper). Let us briefly describe the main
ideas in the proof of the clause space–variable support sizeconnection. A refutationπ′ of F ′ is a sequence of
clause configurationswhere thetth configuration is a set of clauses over variablesx

(1)
1 , x

(2)
1 , . . . , x

(1)
n , x

(2)
n

corresponding to the content of the memory at timet in the proof. We start by “projecting” each memory
configuration down on a set of clauses over the original variables x1, . . . , xn. Next, we argue that the
sequence of projected sets is (almost) a resolution refutation of F , which we callπ. Finally, we show that
the variable support of each projected set inπ is a lower bound on the clause space of its projecting clause
configuration inπ′.

The Substitution Space Theorem is inspired by our recent work [BSN08] and indeed our main theorem
there is a special case of this new theorem. Let us highlight the important novel aspects of this more general
theorem. First and foremost, our previous statement applied only to a very special kind of formulas known
aspebbling contradictionswhereas the Substitution Space Theorem can be applied convert any CNF for-
mula requiring large variable support size into a new and closely related CNF formula requiring large clause
space. Second, the proof of the Substitution Space Theorem is much cleaner and simpler than the previous
one. There is no longer any need to assume the existence of any“underlying directed acyclic graphs” and
construct intricate intermediate resolution-like pebblegames on these DAGs. Third, the Substitution Space
Theorem gives length-preserving reductions fromπ to π′ and vice versa, whereas it was unclear how to
derive similar reductions from our previous work. And length-preserving reductions are crucial for our
length-space trade-offs described below.

We end the discussion of the Substitution Space Theorem by pointing out that the space bounds obtained
from the Substitution Space Theorem apply to both clause andvariable space. This is because the lower
bound on space ofπ′ is in terms of clause space. Thus, it implies a similar lower bound on the variable
space ofπ′ because variable space is always at least as large as clause space. In the other direction, the
upper bound on the space ofπ′ is in terms of the larger of the two space measures,variable space, and hence
applies also to clause space. The “tightness of bounds” of the Substitution Space Theorem plays a pivotal
role in our second main result, namely, the length-space trade-offs described next.

Trade-offs in resolution Our second main result is a new method to “lift” classical time-space trade-off
results to the proof complexity world and obtain a host of “robust” length-space trade-offs for resolution.
By “robust” we mean that the trade-off is not significantly affected by small changes to either space or time
and displays a rather slow and gradual decrease in one parameter (say, length) as the other (say, space) is
increased. Prior to this work such “robust” trade-offs wereknown only for tree-like resolution [BS02].

All trade-off results reported here follow the same proof strategy, which is described in loose terms next
(the full details appear in Section 4). We start with a computational time-space trade-off which is typically
stated as a result about thepebbling priceof a directed acyclic graph. The use of pebbling in the context of
space lower bounds is by now standard and we refer the reader to [Pip80] for a survey of pebbling results and
to [Nor08] for a discussion of pebbling and resolution. (Relevant formal definitions appear in Section 2).
The pebbling trade-off results we need are of the following nature.

“There exists (arbitrarily large) directed acyclic graphsG overn vertices and bounded indegree
that (i) can be pebbled withp pebbles in timet, but (ii) any pebbling strategy ofG usings < p
pebbles requires timef(s), wheref monotonically decreases ins.”

One should think oft as linear inn and off(s) as being much larger thant for small values ofs (We will
discuss later how “large”f(s) can be.)

4

1 INTRODUCTION

With such a pebbling trade-off in hand, we construct fromG a CNF formulaF , known as apebbling
contradiction(see Definition 2.11) and promptly substitute each variableby (say) the exclusive-or of two
copies of the variable, as described above. Our hope is that the resulting formula, denotedF ′, will display a
length-space trade-off similar in spirit to the pebbling trade-off of the underlying graph. More to the point,
the upper bound oft on the time required to pebbleG usingp pebbles should imply thatF ′ can be refuted
in length≈ t andvariablespace≈ p (consequently, the upper bound on clause space is also≈ p). And the
Substitution Space Theorem says that a refutationπ′ of F ′ in time t′ and clause spaces implies a refutation
π of F in time≈ t′ and variable space≈ s. Finally, by a close reading of the construction in [BS02], we
deduce that any refutation of lengtht′ and variable support sizes yields a pebbling strategy forG of time t′

and spaces, which impliest′ > f(s).
Unfortunately, things are not that simple. We know how to convert a pebbling strategy into a short

and space-efficient refutation only if the pebbling strategy is a so-calledblack pebbling(which corresponds
to deterministic space). On the other hand, the result of [BS02] converts the proofπ into a black-white
pebblingstrategy (which corresponds to nondeterministic space). To complicate matters further, it is known
that black white pebbling can be asymptotically more efficient than black pebbling [KS88, Wil85].

Thus, to obtain our trade-off results we need a strong form of“dual” pebbling trade-offs, where the upper
bound(i) is stated in terms ofblack pebbling while the matching lower bound(ii) applies to the stronger
model ofblack-whitepebbling. Appealing to the Substitution Space Theorem, we can show that any such
strong pebbling trade-off translates into a length-space trade-off for resolution.

Using this method of proof we present a number of robust size-space trade-offs for resolution. Before
giving a few examples we explain why the need arises for different trade-offs (as opposed to just one global
statement). In a nutshell, this is a mirror-picture of the state of size-space trade-offs for pebbling graphs
upon which we rely. For instance, supposeG can be pebbled in constant space. Then a straightforward
counting argument shows thatG can be pebbled in polynomial time and constant space simultaneously.
Thus, if we want to present a nontrivial size-space trade-off for a formula that can be refuted in constant
space we cannot hope to get this trade-off to be superpolynomial. Similarly, if G can be pebbled in, say,
polylogarithmic space, we cannot obtain exponential time-space trade-offs. We are interested in deriving
robust trade-offs for a large range of space complexity parameters and thus we must rely on diverse size-
space trade-off results which each come from a different family of graphs. We end this section by describing
a couple of trade-off results (many more appear in Section 6). We remark that all of our results are for
explicitly constructible formulas.

Our strong pebbling trade-offs come from three sources. First, we prove a new strong trade-off result
for a family of graphs introduced by Carlson and Savage in [CS80, CS82]. Carlson and Savage prove time-
space trade-offs for these graphs in the black pebbling model, but to get a strong dual trade-off we need to
modify their construction and apply different ideas to prove lower bounds in the more challenging black-
white pebbling setting. (Details appear in Section 5.2.) One of the results derived from this is the rather
striking statement that superpolynomial length-space trade-offs can occur forarbitrarily slowly growing
non-constant space. (The formal statement appears as Theorem 6.2.)

Theorem 1.2 (Superpolynomial trade-offs for super-constant space (Informal)). For any arbitrarily
slowly growing functions(n) = ω(1) and anyε > 0, there exists a family ofk-CNF formulas

{
Fn

}∞

n=1
of sizeO(n) refutable in lengthO(n) and also in spaces(n), but not simultaneously so. On the contrary,

there are refutations ofFn in simultaneous lengthO(n) and variable spaceO
((

n/s2(n)
)1/3

)
, but any

refutation in clause spaceO
((

n/s2(n)
)1/3−ε

)
must have superpolynomial length.

Three remarks should be made. First, notice that the trade-off applies to both clause and variable space.
This is because the upper bounds are stated in terms of the larger of these two measures (variable space)
while the lower bounds are in terms of the smaller one (clausespace). This optimality of bound–type is

5

UNDERSTANDING SPACE IN RESOLUTION

inherited from the Substitution Space Theorem. Second, observe the “robust” nature of the trade-off, which
is displayed by the long range of space complexity (fromω(1) up to≈ n1/3) which requires superpolynomial
length. Finally, we point out that the lower bound on length reaches up till very close to where our upper
bound kicks in.

A second source of trade-off results for resolution comes from studying the graphs appearing in the study
of “classical” time-space trade-offs but derivingstrictly better upper bounds on their refutation complexity
than what can provably be obtained for black pebbling.To do this, we cannot use the machinery developed
in this paper as a black box, but need to prove upper bounds in resolution directly. The next theorem, a
quadratic length-space trade-off for constant space, is ofthis type.

Theorem 1.3 (Quadratic trade-offs for constant space (Informal)). There exists a family ofk-CNF for-
mulas

{
Fn

}∞

n=1
of sizeO(n) refutable in lengthO(n) and also in variable spaceO(1), but not simulta-

neously so. On the contrary, for any refutationπ of Fn in lengthL and clause spaces it must hold that
L = Ω

(
(n/s)2

)
.

Our third and final source of trade-off results comes from theseminal work of Lengauer and Tar-
jan [LT82], in which they showed strong pebbling trade-offsfor variety of graphs. For instance, we can
obtain the following very strong trade-off in this way.

Theorem 1.4 (Exponential trade-offs for nearly-linear space (Informal)). There exists constantsK <
K ′ andε > 0 and a family ofk-CNF formulas

{
Fn

}∞

n=1
of sizeO(n) that are refutable in lengthO(n) and

also in variable spaceK · n/ log n, but not simultaneously so. On the contrary, any refutationπ of Fn in
clause space≤ K ′ · n/ log n must be of lengthexp(nε).

1.3 Organization of the Rest of This Paper

After a few basic definitions in Section 2, we present our firstmain result, the Substitution Space Theorem,
in Section 3. Our second main result, namely, the method for converting strong pebbling trade-offs into
length-space trade-offs for resolution, is described in Section 4. In Section 5, we derive our new pebbling
trade-off and survey some previously known ones. These results are needed for the robust length-space
trade-offs that are reported in in Section 6. We conclude in Section 7 with a brief discussion of some open
questions.

2 Preliminaries

In this section we present definitions of and some basic factsabout resolution and pebble games.

2.1 The Resolution Proof System

A literal is either a propositional logic variable or its negation, denotedx andx, respectively, or sometimes
or x1 andx0. We definex = x. Two literalsa andb arestrictly distinct if a 6= b anda 6= b, i.e., if they refer
to distinct variables.

A clauseC = a1 ∨ · · · ∨ ak is a set of literals. Without loss of generality, all clausesC are assumed to
be nontrivial in the sense that all literals inC are pairwise strictly distinct (otherwiseC is trivially true). We
say thatC is asubclauseof D if C ⊆ D. A clause containing at mostk literals is called ak-clause.

A CNF formulaF = C1 ∧ · · · ∧ Cm is a set of clauses. Ak-CNF formulais a CNF formula consisting
of k-clauses. We define thesizeS (F) of the formulaF to be the total number of literals inF counted with
repetitions. More often, we will be interested in the numberof clauses|F | of F .

6

2 PRELIMINARIES

In this paper, when nothing else is stated it is assumed thatA,B,C,D denote clauses,C, D sets of
clauses,x, y propositional variables,a, b, c literals,α, β truth value assignments andν a truth value0 or 1.
We write

αx=ν(y) =

{
α(y) if y 6= x,

ν if y = x,
(1)

to denote the truth value assignment that agrees withα everywhere except possibly atx, to which it assigns
the valueν. We letVars(C) denote the set of variables andLit(C) the set of literals in a clauseC.2 This
notation is extended to sets of clauses by taking unions. Also, we employ the standard notation[n] =
{1, 2, . . . , n}.

In its simplest form, aresolution derivationπ : F `A of a clauseA from a CNF formulaF can be
viewed as a sequence of clausesπ = {D1, . . . ,Dτ} such thatDτ = A and each lineDi, i ∈ [τ], either is
one of the clauses inF (anaxiom) or is derived from clausesDj ,Dk in π with j, k < i by theresolution
rule

B ∨ x C ∨ x

B ∨ C
. (2)

We refer to (2) asresolution on the variablex and toB ∨ C as theresolventof B ∨ x andC ∨ x onx.
When we want to study length and space simultaneously in resolution, we have to be slightly careful

with the definitions so that we will be able to capture length-space trade-offs. Just listing the clauses used in
a resolution refutation does not tell ushowthe refutation was performed, and essentially the same refutation
can be carried out in vastly different time depending on the space constraints (as is shown in this paper).
Following the exposition in [ET01], therefore, we can view aresolution refutation as a Turing machine
computation, with a special read-only input tape from whichthe axioms can be downloaded and a working
memory where all derivation steps are made. Then the length of a proof is essentially the time of the
computation and space measures memory consumption. The formal definitions follow.

Definition 2.1 (Resolution ([ABSRW02])). A clause configurationC is a set of clauses. A sequence of
clause configurations{C0, . . . , Cτ} is aresolution derivationfrom a CNF formulaF if C0 = ∅ and for all
t ∈ [τ], Ct is obtained fromCt−1 by one of the following rules:

Axiom Download Ct = Ct−1 ∪ {C} for someC ∈ F (anaxiom).

Erasure Ct = Ct−1 \ {C} for someC ∈ Ct−1.

Inference Ct = Ct−1 ∪ {D} for someD inferred by resolution fromC1, C2 ∈ Ct−1.

A resolution derivationπ : F `A of a clauseA from a formulaF is a derivation{C0, . . . , Cτ} such that
Cτ = {A}. A resolution refutation3 of F is a derivation of the empty clause0, i.e., the clause with no
literals, fromF . If every clause in a derivation is used at most once before being erased, we say that the
derivation istree-like.

For a formulaF and a set of formulasG = {G1, . . . , Gn}, we say thatG impliesF , denotedG � F ,
if every truth value assignment satisfying all formulasG ∈ G satisfiesF as well. It is well known that
resolution is sound and implicationally complete. That is,if there is a resolution derivationπ : F `A, then
F � A, and if F � A, then there is a (tree-like) resolution derivationπ : F `A′ for someA′ ⊆ A. In
particular,F is unsatisfiable if and only if there is a resolution refutation ofF .

We will be interested in studying length and space in resolution, which are formalized as proof com-
plexity measures in the next definition. Also, it will be convenient to define what width in resolution is.

2Although the notationLit(C) is slightly redundant given the definition of a clause as a setof literals, we include it for clarity.
3Perhaps somewhat confusingly, a resolution refutation ofF is sometimes also referred to as aresolution proofof F in the

literature. We will mostly stick to the term “refutation” inthis paper, but will sometimes use the words “proof” and “refutation”
interchangeably.

7

UNDERSTANDING SPACE IN RESOLUTION

Definition 2.2 (Length, width and space).ThelengthL(π) of a resolution derivationπ is the total number
of axiom downloads and inferences made inπ, i.e., the total number of clauses counted with repetitions.

ThewidthW(C) of a clauseC is the number of literals in it, the widthW(F) of a formulaF is the size
of a widest clause inF , and the widthW(π) of a derivationπ is defined in the same way.

The clause spaceSp(C) of a clause configurationC is |C|, i.e., the number of clauses inC, and the
variable spaceVarSp(C) is

∑
C∈C

|C|, i.e., the total number of literals inC counted with repetitions.4

The clause space of a refutationπ is Sp(π) = maxC∈π{Sp(C)} and analogously the variable space is
VarSp(π) = maxC∈π{VarSp(C)}.

Taking the minimum over all refutations of a formulaF , we defineL(F ` 0) = minπ:F ` 0{L(π)} as
the length of refutingF , W(F ` 0) = minπ:F ` 0{W(π)} as the width of refutingF , andSp(F ` 0) =
minπ:F ` 0{Sp(π)} andVarSp(F ` 0) = minπ:F ` 0{VarSp(π)} as the clause space and variable space,
respectively, of refutingF in resolution.

Note that this definition of length exactly captures the minimum length as the number of lines in a listing
of the refutation (just construct a refutation that only does downloads and inferences until it gets to0, and
only then erase all the other clauses). For tree-like resolution, we obtain the standard length measure by
insisting that every clause be used at most once before beingerased. Restricting the resolution derivations
to tree-like resolution, we can define the measuresLT(F ` 0), SpT(F ` 0), andVarSpT(F ` 0) (note that
width in general and tree-like resolution in the same, so defining tree-like width separately does not make
much sense). In general, Definition 2.2 unifies previous definitions for various subsystems of resolution
and gives us the possibility to measure length and space simultaneously in a meaningful way. This paper,
however, will focus exclusively on general, unrestricted resolution.

Finally, we also need to define a proof complexity measure which is related to, but weaker than, variable
space.5

Definition 2.3 (Variable support size). Let us say that thevariable support size, or just support size, of
a clause setC is SuppSize(C) = |Vars(C)|, i.e., the number of variables mentioned inC. We define the
support size of a resolution derivationπ = {C0, . . . , Cτ} to beSuppSize(π) = maxt∈[τ]{SuppSize(C)}
and the minimal support size of refutingF is thenSuppSize (F ` 0) = minπ:F ` 0{SuppSize(π)}.

The difference between variable space and variable supportsize is that the variable space counts the
number of variable occurrences inC with repetitions, but for variable support size we only count each
variable once no matter how often it occurs. It follows that the support size of refuting a formula is always
at most linear in the formula size, while the refutation variable space could potentially be quadratic in the
formula size in the worst case. (It should be noted, though, that no such formulas are known to exist, and to
the best of our knowledge it is even an open problem to prove superlinear lower bounds on variable space.)

2.2 Some Auxiliary Technical Results for Resolution

For technical reasons, it is sometimes convenient to add a derivation rule forweakeningin resolution, saying
that we can always derive a weaker clauseC ′ ⊇ C from C. It is easy to show that any weakening steps can
always be eliminated from a refutation without changing anything essential. Let us state this more formally
since we will need the precise formulation later on in this paper. The proof is a straightforward induction
over the refutation and we omit the details.

4Note that if one wanted to be really precise, space (as well asformula size) should probably measure the number ofbits
rather than the number of literals. However, counting literals makes matters substantially cleaner, and the difference is at most a
logarithmic factor. Therefore, counting literals seems tobe the established way of measuring formula size and variable space.

5We remark that this measure has previously been studied by Hertel and Urquhart (see [Her08]), but their terminology is different
in that they name this measure “variable space” and refer to variable space as “total space.” While the argument can certainly be
made in favour of this naming convention, we have chosen to stick with the definition of variable space used in previous papers.

8

2 PRELIMINARIES

Proposition 2.4. Any resolution refutationπ : F ` 0 using the weakening rule can be transformed into a
refutationπ′ : F ` 0 without weakening in at most the same length, width, clause space, variable space, and
support size, and performing at most the same number of axiomdownloads, inferences and erasures asπ.

Another tool that we will use to to simplify some of the proofsis the concept ofrestrictions.

Definition 2.5 (Restriction). A partial assignmentor restriction ρ is a partial functionρ : X 7→ {0, 1},
whereX is a set of Boolean variables. We identifyρ with the set of literals{a1, . . . , am} set to true byρ.
Theρ-restrictionof a clauseC is defined to be

C�ρ =

{
1 (i.e., the trivially true clause) ifLit

(
C

)
∩ ρ 6= ∅,

C \ {a | a ∈ ρ} otherwise.

This definition is extended to set of clauses by taking unions.
We writeρ(¬C) to denote the minimal restriction fixingC to false, i.e.,ρ(¬C) = {a | a ∈ C}.

Proposition 2.6. If π is a resolution refutation ofF and ρ is a restriction onVars(F), thenπ�ρ can be
transformed into a resolution refutation ofF�ρ in at most the same length, width, clause space, variable
space, and support size asπ.

In fact, π�ρ is a refutation ofF�ρ (removing all trivially true clauses), but possibly using weakening.
The proof of this is again an easy induction over the resolution refutationπ.

We next state an observation that will come in handy in the proofs.

Observation 2.7. Any unsatisfiable CNF formulaF over n variables can be refuted in length at most
2n+1 − 1, clause space at mostO(n), and variable space at mostO

(
n2

)
simultaneously.

Proof sketch.Build a search tree where all vertices on leveli query theith variable and where we go to
the left, say, if the variable is false under a given truth value assignmentα and to the right if the variable is
true. As soon as some axiom inF is falsified by the partial assignment defined by the path to a vertex, we
make that vertex into a leaf labelled by that clause. This tree has size at most2n+1 − 1, and if we turn it
upside down we can obtain a legal tree-like refutation ofF , possibly using weakening. This refutation can
be carried out in clause space linear in the tree depth and variable space upper-bounded by the clause space
times the number of distinct variables. We refer to, for instance, [BS02, ET01] for more details.

In a resolution refutation of a formulaF , there is nothing in Definition 2.1 that rules out that completely
unnecessary derivation steps are made on the way, such as axioms being downloaded and them immediately
erased again, or entire subderivations being made to no use.In our constructions it will be important that we
can rule out some redundancies and enforce the following requirements for any resolution refutation:

• Every clause in memory is used in an inference step before being erased.

• Every clause is erased from memory immediately after havingbeen used for the last time.

We say that a resolution refutation that meets these requirements isfrugal. The formal definition, which is a
mildly modified version of that in [BS02], follows.

Definition 2.8 (Frugal refutation). Let π = {C0 = ∅, C1, . . . , Cτ = {0}} be a resolution refutation of
some CNF formulaF . Theessential clausesin π are defined by backward induction:

• If Ct is the first configuration containing0, then0 is essential at timet.

9

UNDERSTANDING SPACE IN RESOLUTION

• If D ∈ Ct is essential and is inferred at timet from C1, C2 ∈ Ct−1 by resolution, thenC1 andC2 are
essential at timet − 1.

• If D is essential at timet andD ∈ Ct−1, thenD is essential at timet − 1.

Essential clause configurationsare defined by forward induction overπ. The configurationCt ∈ π is
essential if all clausesD ∈ Ct are essential at timet, if Ct is obtained by inference from a configuration
Ct−1 containing only essential clauses at timet − 1, or if Ct is obtained from an essential configuration
Ct−1 by an erasure step.

Finally, π = {C0, . . . , Cr} is afrugal refutationif all configurationsCt ∈ π are essential.

Without loss of generality, we can always assume that resolution refutations are frugal.

Lemma 2.9. Any resolution refutationπ : F ` 0 can be converted into a frugal refutationπ′ : F ` 0 with-
out increasing the length, width, clause space, variable space, or support size. Furthermore, the axiom
downloads, inferences and erasures performed inπ′ are a subset of those inπ.

Proof. The construction ofπ′ is by backward induction overπ. Sets = min{t : 0 ∈ Ct} andC′
s = {0}.

Assume thatC′
s, C

′
s−1, . . . C′

t+2, C
′
t+1 have been constructed and considerCt and the transitionCt Ct+1.

Axiom Download Ct+1 = Ct ∪ {C}: SetC′
t = C′

t+1 \ {C}. (If C is not essential we getC′
t = C′

t+1.)

Erasure Ct+1 = Ct \ {D}: Ignore, i.e., setC′
t = C′

t+1.

Inference Ct+1 = Ct ∪ {D} inferred fromC1, C2 ∈ Ct: If D 6∈ C′
t+1, ignore the step and setC′

t =
C′

t+1. Otherwise (using fractional time steps for notational convenience) insert the configurations
C′

t = C′
t+1 ∪ {C1, C2} \ {D}, C′

t+ 1

3

= C′
t+1 ∪ {C1, C2}, C′

t+ 2

3

= C′
t+1 ∪ {C2}.

Finally go throughπ′ and eliminate any consecutive duplicate clause configurations.
It is straightforward to check thatπ′ is a legal resolution refutation. Let us verify thatπ′ is frugal. By

backward induction, eachC′
t for integral time stepst contains only essential clauses. By forward induction,

if C′
t+1 = C′

t ∪ {C} is obtained by axiom download, all clauses inC′
t+1 are essential. Erasures inπ are

ignored. For inference steps,C′
t contains only essential clauses by induction,C′

t+ 1

3

is essential by inference,

andC′
t+ 2

3

andC′
t+1 are essential since they are derived by erasure from essential configurations. Finally, it

is clear thatπ′ performs a subset of the derivation steps inπ and that the length, width, and space does not
increase.

2.3 Pebble Games

Pebble games were devised for studying programming languages and compiler construction, but have found
a variety of applications in computational complexity theory. In connection with resolution, pebble games
have been employed both to analyze resolution derivations with respect to how much memory they consume
(using the original definition of space in [ET01]) and to construct CNF formulas which are hard for different
variants of resolution in various respects (see for example[AJPU02, BSIW04, BEGJ00, BOP03] and the
sequence of papers [Nor06, NH08, BSN08] leading up to this work). An excellent survey of pebbling up
to ca. 1980 is [Pip80]. We also refer the interested reader tothe upcoming survey [Nor09], which contains
some later results and also describes connections between pebbling and proof complexity.

The black pebbling price of a DAGG captures the memory space, i.e., the number of registers, required
to perform the deterministic computation described byG. The space of a non-deterministic computation is
measured by the black-white pebbling price ofG. We say that vertices ofG with indegree0 aresourcesand

10

2 PRELIMINARIES

that vertices with outdegree0 aresinks(or targets). In the following, unless otherwise stated we will assume
that all DAGs under discussion have a unique sink and this sink will always be denotedz. The next definition
is adapted from [CS76], though we use the established pebbling terminology introduced by [HPV77].

Definition 2.10 (Black-white pebble game).Suppose thatG is a DAG with sourcesS and a unique sinkz.
Theblack-white pebble gameon G is the following one-player game. At any point in the game, there are
black and white pebbles placed on some vertices ofG, at most one pebble per vertex. Apebble configuration
is a pair of subsetsP = (B,W) of V (G), comprising the black-pebbled verticesB and white-pebbled
verticesW . The rules of the game are as follows:

1. If all immediate predecessors of an empty vertexv have pebbles on them, a black pebble may be
placed onv. In particular, a black pebble can always be placed on any vertex inS.

2. A black pebble may be removed from any vertex at any time.

3. A white pebble may be placed on any empty vertex at any time.

4. If all immediate predecessors of a white-pebbled vertexv have pebbles on them, the white pebble on
v may be removed. In particular, a white pebble can always be removed from a source vertex.

A black-white pebblingfrom (B0,W0) to (Bτ ,Wτ) in G is a sequence of pebble configurationsP =
{P0, . . . , Pτ} such thatP0 = (B0,W0), Pτ = (Bτ ,Wτ), and for allt ∈ [τ], Pt follows fromPt−1 by one of
the rules above. A(complete) pebbling ofG, also called apebbling strategy forG, is a pebbling such that
(B0,W0) = (∅, ∅) and(Bτ ,Wτ) = ({z}, ∅).

The time of a pebblingP = {P0, . . . , Pτ} is simply time(P) = τ and thespaceis space(P) =
max0≤t≤τ{|Bt ∪ Wt|}. Theblack-white pebbling price(also known as thepebbling measureor pebbling
number) of G, denotedBW-Peb(G), is the minimum space of any complete pebbling ofG.

A black pebblingis a pebbling using black pebbles only, i.e., havingWt = ∅ for all t. The (black)
pebbling priceof G, denotedPeb(G), is the minimum space of any complete black pebbling ofG.

For any DAGG over n vertices with bounded indegree, the black pebbling price (and thus also the
black-white pebbling price) is at mostO(n/ log n) [HPV77], where the hidden constant depends on the
indegree. A number of exact or asymptotically tight bounds on different graph families have been proven
in the whole range from constant toΘ(n/ log n), for instance in [GT78, Kla85, LT80, PTC77]. As to time,
obviously any DAGG over n vertices can be pebbled in time2n − 1, and for all graphs we will study
this is also a lower bound, so studying the time measure in isolation is not that exciting. A very interesting
question, however, is how time and space are related in a single pebbling ofG if one wants to optimize both
measures simultaneously. We will return to this question inSection 5.

2.4 Pebbling Contradictions

A pebbling contradictiondefined on a DAGG is a CNF formula that encodes the pebble game onG by
postulating the sources to be true and the target to be false,and specifying that truth propagates through
the graph according to the pebbling rules. These formulas have previously been studied in, for instance,
[RM99, BEGJ00, BSW01].

Definition 2.11 (Pebbling contradiction). Suppose thatG is a DAG with sourcesS and a unique sinkz.
Identify every vertexv ∈ V (G) with a propositional logic variablev. Thepebbling contradictionoverG,
denotedPebG, is the conjunction of the following clauses:

• for all s ∈ S, a unit clauses (source axioms),

11

UNDERSTANDING SPACE IN RESOLUTION

• For all non-source verticesv with immediate predecessorsu1, . . . , u`, the clauseu1 ∨ · · · ∨ u` ∨ v
(pebbling axioms),

• for the sinkz, the unit clausez (targetor sink axiom).

If G hasn vertices and maximal indegree`, the formulaPebG is an unsatisfiable (1+`)-CNF formula
with n clauses overn variables.

3 The Substitution Space Theorem

In this section we present the main technical contribution of this paper, the so-called Substitution Space
Theorem. In order to state this theorem, we need to introducesome new definitions and notation.

3.1 Substitution Formulas

Throughout this paper, we will letfd denote any (non-constant) Boolean functionfd : {0, 1}d 7→ {0, 1}
of arity d. We use the shorthand~x = (x1, . . . , xd), so thatfd(~x) is just an equivalent way of writing
fd(x1, . . . , xd). For every functionfd, we fix some canonical representation of it as a CNF formula. We let
Cl [fd(~x)] denote the set of clauses in the canonical representation offd andCl [¬fd(~x)] denote the clauses
in the canonical representation of its negation. For instance, we choose to define

Cl [∨2(~x)] = {x1 ∨ x2} and Cl [¬∨2(~x)] = {x1, x2} (3)

for logical or of two variables and

Cl [⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} and Cl [¬⊕2(~x)] = {x1 ∨ x2, x1 ∨ x2} (4)

for logical exclusive or of two variables. The general definitions for exclusive or are

Cl [⊕d(~x)] =
{∨d

i=1x
νi
i

∣∣∑d
i=1νi ≡ d (mod 2)

}
(5)

and

Cl [¬⊕d(~x)] =
{∨d

i=1x
νi
i

∣∣∑d
i=1νi 6≡ d (mod 2)

}
(6)

from which we can see thatCl [⊕d(~x)] andCl [¬⊕d(~x)] both ared-CNFs. We will also be interested in the
function saying thatk out of d variables are true, which we will denotek-trued. To give an example, for
2-true4 we have

Cl [2-true4(~x)] =

x1 ∨ x2 ∨ x3,

x1 ∨ x2 ∨ x4,

x1 ∨ x3 ∨ x4,

x2 ∨ x3 ∨ x4

(7)

and

Cl [¬2-true4(~x)] =

x1 ∨ x2,

x1 ∨ x3,

x1 ∨ x4,

x2 ∨ x3,

x2 ∨ x4,

x3 ∨ x4

(8)

12

3 THE SUBSTITUTION SPACE THEOREM

and in general we have

Cl [k-trued(~x)] =
{∨

i∈Sxi

∣∣S ⊆ [d], |S| = d − k + 1
}

(9)

and

Cl [¬k-trued(~x)] =
{∨

i∈Sxi

∣∣S ⊆ [d], |S| = k
}

. (10)

Clearly,1-trued(x1, . . . , xd) is just another way of writing the function
∨d

i=1 xi, andd-trued(x1, . . . , xd) =∧d
i=1 xi.

In general, we could construct a canonical representationCl [fd(~x)] for fd as follows. For a truth value

assignmentα : {x1, . . . , xd} 7→ {0, 1} we define the clauseCα = x
1−α(x1)
1 ∨ · · · ∨ x

1−α(xd)
d that is true for

all assignments tox1, . . . , xd exceptα. Then we could define

Cl [fd(~x)] =
∧

α :α(fd(~x))=0

Cα . (11)

But this way of representing the Boolean function can turn out to be unnecessarily involved. For instance,
for binary logical and (11) yieldsCl [∧2(~x)] = {x1 ∨ x2, x1 ∨ x2, x1 ∨ x2} instead of the arguably more
natural representationCl [∧2(~x)] = {x1, x2}. Therefore, we want the freedom to choose our own canonical
representation when appropriate. Note, however, that (11)constitutes a proof of the fact that without loss of
generality we can always assume that ∣∣Cl [fd(~x)]

∣∣ < 2d (12)

since there are only2d truth value assignments andfd is assumed to be non-constant.
The following observation is rather immediate, but nevertheless it might be helpful to state it explicitly.

Observation 3.1. Suppose for any non-constant Boolean functionfd that C ∈ Cl [fd(~x)] and thatρ is any
partial truth value assignment such thatρ(C) = 0. Then for allD ∈ Cl [¬fd(~x)] it holds thatρ(D) = 1.

Proof. If ρ(C) = 0 this means thatρ(fd) = 0. Then clearlyρ(¬fd) = 1, so, in particular,ρ must fix all
clausesD ∈ Cl [¬fd(~x)] to true.

We want to define formally what it means to substitutefd for the variablesVars(F) in a CNF formu-
la F . For notational convenience, we assume thatF only has variablesx, y, z, et cetera, without subscripts,
so thatx1, . . . , xd, y1, . . . , yd, z1, . . . , zd, . . . are new variables not occurring inF .

Definition 3.2 (Substitution formula). For a positive literalx and a non-constant Boolean functionfd, we
define thefd-substitutionof x to bex[fd] = Cl [fd(~x)], i.e., the canonical representation offd(x1, . . . , xd)
as a CNF formula. For a negative literaly, thefd-substitution isy[fd] = Cl [¬fd(~y)]. Thefd-substitution of
a clauseC = a1 ∨ · · · ∨ ak is the CNF formula

C[fd] =
∧

C1∈a1[fd]

. . .
∧

Ck∈ak [fd]

(
C1 ∨ . . . ∨ Ck

)
(13)

and thefd-substitution of a CNF formulaF is F [fd] =
∧

C∈F C[fd].

For example, forC = x ∨ y andf2 = x1 ⊕ x2 we get that

C[f2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)

∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) .
(14)

We note thatF [fd] is a CNF formula overd · |Vars(F)| variables containing strictly less than|F | · 2d·W(F)

clauses. (Recall that we defined a CNF formula as a set of clauses, which means that|F | is the number of
clauses inF .)

We have the following easy observation, the proof of which ispresented for completeness.

13

UNDERSTANDING SPACE IN RESOLUTION

Observation 3.3. For any non-constant Boolean functionfd : {0, 1}d 7→ {0, 1}, it holds thatF [fd] is un-
satisfiable if and only ifF is unsatisfiable.

Proof. Suppose thatF is satisfiable and letα be a truth value assignment such thatα(F) = 1. Then we can
satisfyF [fd] by choosing an assignmentα′ for Vars

(
F [fd]

)
in such a way thatfd

(
α′(x1), . . . , α

′(xd)
)

=
α(x). For if C ∈ F is satisfied by some literalai set to true byα, thenα′ will satisfy all clausesCi ∈ ai[fd]
and thus also the whole CNF formulaC[fd] in (13).

Conversely, supposeF is unsatisfiable and consider any truth value assignmentα′ for F [fd]. Thenα′

defines a truth value assignmentα for F in the natural way by settingα(x) = fd

(
α′(x1), . . . , α

′(xd)
)
, and

we know that there is some clauseC ∈ F that is not satisfied byα. That is, for every literalai ∈ C =
a1 ∨ · · · ∨ ak it holds thatα(ai) = 0. But thenα′ does not satisfyai[fd], so there is some clauseC ′

i ∈ ai[fd]
such thatα′(C ′

i) = 0. This shows thatα′ falsifies the disjunctionC ′
1 ∨ · · · ∨ C ′

k ∈ C[fd], and consequently
F [fd] must also be unsatisfiable.

For our present purposes, a particularly interesting kind of Boolean functionsf(x1, . . . , xd) are those
having the property that no single variablexi determines the value off(x1, . . . , xd).

Definition 3.4 (Non-authoritarian function). We will call a Boolean functionf overd variablesx1, . . . , xd

non-authoritarianif for any variablexi and any truth valueα(xi) = νi assigned toxi, α can be extended
to a truth value assignmentα′ satisfyingf(x1, . . . , xd) and another truth value assignmentα′′ falsifying
f(x1, . . . , xd). If f does not satisfy this requirement, then we will call the function authoritarian.

Examples of non-authoritarian functions include exclusive-or and threshold functions overd variables
for which the threshold lies above1 and belowd, as discussed above.

3.2 Formal Statement of the Theorem and Two Corollaries

Loosely put, the Substitution Space Theorem says that if a formulaF can be refuted in resolution in small
length and width simultaneously, then so can the substitution formulaF [fd]. There is an analogous result
in the other direction as well in the sense that we can translate any refutationπf of F [fd] into a refutation
π of the original formulaF where the length ofπ is almost upper-bounded by the length ofπf (this will
be made precise below). So far this is nothing very unexpected, but what is more interesting is that iffd

is non-authoritarian, then the clause space ofπf is an upper bound on the number of variables mentioned
simultaneously inπ. Thus, the theorem says that we can convert lower bounds on variable support size into
lower bounds on clause space by making substitutions using non-authoritarian functions.

Theorem 3.5 (Substitution Space Theorem).LetF be any unsatisfiable CNF formula andfd be any non-
constant Boolean function of arityd. Then it holds that the substitution formulaF [fd] can be refuted in
width

W
(
F [fd] ` 0

)
= O

(
d · W(F ` 0)

)

and length
L

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d · W(π))

)}
.

In the other direction, any refutationπf : F [fd]` 0 of the substitution formula can be transformed into a
refutationπ : F ` 0 of the original formula such that the number of axiom downloads inπ is at most the num-
ber of axiom downloads inπf . If in addition fd is non-authoritarian, it holds thatSp(πf) > SuppSize(π),
i.e., the clause space of refuting the substitution formulaF [fd] is lower-bounded by the variable support
size of refuting the original formulaF .

14

3 THE SUBSTITUTION SPACE THEOREM

Note that ifF is refutable simultaneously in linear length and constant width, then the bound in Theo-
rem 3.5 onL

(
F [fd] ` 0

)
becomes linear inL(F ` 0). It would be interesting to know if the bound in terms

of number of axiom downloads could in fact be strengthened toa bound in terms of length, but we do not
know if this is the case or not. Luckily enough, however, the bound in terms of axiom downloads turns out
to be exactly what we need for our applications.

Although this might not be immediately obvious, Theorem 3.5is remarkably powerful as a tool for
understanding space in resolution. It will take some more work before we can present our main applications
of this theorem, which are the strong time-space trade-off results discussed in Section 6. Let us note for
starters, however, that without any extra work we immediately get lower bounds on space.

Esteban and Torán [ET01] proved that the clause space of refuting F is upper-bounded by the formula
size. In the papers [ABSRW02, BSG03, ET01] it was shown, using quite elaborate arguments, that there
are polynomial-sizek-CNF formulas with lower bounds on clause space matching this upper bound up to
constant factors. Using Theorem 3.5 we can get a different proof of this fact.

Corollary 3.6 ([ABSRW02, BSG03, ET01]). There are families ofk-CNF formulas{F}∞n=1 with Θ(n)
clauses overΘ(n) variables such thatSp(Fn ` 0) = Θ(n).

Proof. Just pick any formula family for which it is shown that any refutation ofFn must at some point in the
refutation mentionΩ(n) variables at the same time (e.g., from [BSW01]), and then apply Theorem 3.5.

It should be noted, though, that when we apply Theorem 3.5 theformulas in [ABSRW02, BSG03,
ET01] are changed. We remark that there is another, and even more elegant way to derive Corollary 3.6
from [BSW01] without changing the formulas, namely by usingthe lower bound on clause space in terms
of width in [AD03].

For our next corollary, however, there is no other, simpler way known to prove the same result. Instead,
our proof in this paper actually improves the constants in the result.

Corollary 3.7 ([BSN08]). There are families{Fn}∞n=1 of k-CNF formulas of sizeO(n) refutable in linear
lengthL(Fn ` 0) = O(n) and constant widthW(Fn ` 0) = O(1) such that the minimum clause space
required isSp(Fn ` 0) = Ω(n/ log n).

Proof. In [BS02], the first author showed that there are formulas refutable simultaneously in linear length
and constant width, but for which any refutation must at somepoint mentionΩ(n/ log n) distinct variables at
the same time (although the result was stated in slightly different terms). Corollary 3.7 follows immediately
from this by applying Theorem 3.5.

In fact, the ideas in [BS02], which provide a way of translating back and forth between resolution and
pebbling, are also what allows us to prove strong trade-off results for resolution. We will return to this in
Section 4 where we formalize this resolution-pebbling correspondence.

3.3 Proof of the Substitution Space Theorem—Main Component s

We divide the proof of Theorem 3.5 into three parts in Theorems 3.8, 3.11, and 3.12 below. In this subsec-
tion, we state these three theorems and show how they combineto yield Theorem 3.5. The rest of Section 3
is then spent proving these three auxiliary theorems.

Theorem 3.8. For any CNF formulaF and any non-constant Boolean functionfd, it holds that

W
(
F [fd] ` 0

)
= O

(
d · W(F ` 0)

)

and
L

(
F [fd] ` 0

)
≤ min

π:F ` 0

{
L(π) · exp

(
O(d · W(π))

)}
.

15

UNDERSTANDING SPACE IN RESOLUTION

These upper bounds on refutation width and length forF [fd] are not hard to show. The proof proceeds
along the following lines. Given a resolution refutationπ of F , we construct a refutationπf : F [fd]` 0
mimicking the derivation steps inπ. Whenπ downloads an axiomC, we download theexp

(
O(d · W(C))

)

axiom clauses inC[fd]. Whenπ resolvesC1 ∨ x and C2 ∨ x to deriveC1 ∨ C2, we use the fact that
resolution is implicationally complete to derive(C1 ∨ C2)[fd] from (C1 ∨ x)[fd] and (C2 ∨ x)[fd] in at
mostexp

(
O(d · W(C1 ∨ C2))

)
steps. We return to the details of the proof in Section 3.4.

It is more challenging, however, to prove that we can get lower bounds on clause space forF [fd] from
lower bounds on support size forF . The idea is to look at refutations ofF [fd] and “project” them down on
refutations ofF . To do this, we first define a special kind of “precise implication.”

Definition 3.9 (Precise implication). Let F be a CNF formula andfd a non-constant Boolean function,
and suppose thatD is a set of clauses derived fromF [fd] and thatP andN are (disjoint) subset of variables
of F . If

D �
∨

x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) (15a)

but for all strict subsetsD′ $ D, P ′ $ P , andN ′ $ N it holds that

D′ 2
∨

x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) , (15b)

D 2
∨

x∈P ′

fd(~x) ∨
∨

y∈N

¬fd(~y) , and (15c)

D 2
∨

x∈P

fd(~x) ∨
∨

y∈N ′

¬fd(~y) , (15d)

we say that the clause setD implies
∨

x∈P fd(~x) ∨ ∨
y∈N ¬fd(~y) preciselyand write

D B
∨

x∈P

fd(~x) ∨
∨

y∈N

¬fd(~y) . (16)

Note thatP = N = ∅ in Definition 3.9 corresponds toD being unsatisfiable.
Let us also use the convention that any clauseC can be writtenC = C+∨C−, whereC+ =

∨
x∈Lit(C) x

is the disjunction of the positive literals inC andC− =
∨

y∈Lit(C) y is the disjunction of the negative literals.

Definition 3.10 (Projected clauses).Let F be a CNF formula andfd a non-constant Boolean function, and
suppose thatD is a set of clauses derived fromF [fd]. Then we say thatD projectsthe clauseC = C+∨C−

onF—or, perhaps more correctly, onVars(F)—if there is a subsetDC ⊆ D such that

DC B
∨

x∈C+

fd(~x) ∨
∨

y∈C−

¬fd(~y) (17)

and we writeproj F (D) =
{
C

∣∣∃DC ⊆ D s.t. DC B
∨

x∈C+fd(~x) ∨ ∨
y∈C−¬fd(~y)

}
to denote the set of

all clauses thatD projects onF .

Given that we now know how to translate clauses derived fromF [fd] into clauses overVars(F), the
next step is to show that this translation preserves resolution refutations.

Theorem 3.11. Suppose thatπf =
{
D0, . . . , Dτ

}
is a resolution refutation ofF [fd] for some arbitrary

unsatisfiable CNF formulaF and some arbitrary non-constant functionfd. Then the sets of projected
clauses

{
proj F (D0), . . . , proj F (Dτ)

}
form the “backbone” of a resolution refutationπ of F in the sense

that:

16

3 THE SUBSTITUTION SPACE THEOREM

• proj F (D0) = ∅.

• proj F (Dτ) = {0}.

• All transitions fromproj F (Dt−1) to proj F (Dt) for t ∈ [τ] can be accomplished by axiom downloads
from F , inferences, erasures, and possibly weakening steps in such a way that the variable support
size inπ during these intermediate derivation steps never exceedsmaxD∈πf

{
SuppSize(proj F (D))

}
.

• The only timeπ performs a download of some axiomC in F is whenπf downloads some axiom
D ∈ C[fd] in F [fd].

Note that by Proposition 2.4, we can get rid of the weakening moves in a postprocessing step, but
allowing them in the statement of Theorem 3.11 makes the proof much cleaner. Accepting Theorem 3.11 on
faith for the moment (deferring the proof to Section 3.5), the final missing link in the proof of the Substitution
Space Theorem is the following lower bound.

Theorem 3.12.Suppose thatD 6= ∅ is a set of clauses derived fromF [fd] for some arbitrary unsatisfiable
CNF formulaF and some non-authoritarian functionfd. ThenSp(D) = |D| > SuppSize(proj F (D)).

Combining Theorems 3.8, 3.11, and 3.12, which will be provenshortly, the Substitution Space Theorem
follows. This is immediate, but for the convenience of the reader we write out the details.

Proof of Theorem 3.5.The first part of Theorem 3.5, i.e., that any refutationπ of F can be converted to a
refutationπf of the substitution formulaF [fd], is Theorem 3.8 verbatim. For the second part of Theorem 3.5,
Theorem 3.11 describes how any refutationπf of the substitution formulaF [fd] can be translated back into
a refutationπ of the original formulaF . This is true regardless of what kind of functionfd is used for the
substitution. If in additionfd is non-authoritarian, Theorem 3.12 says that the clause space ofπf provides
an upper bound for the variable support size ofπ. The theorem follows.

It remains to prove Theorems 3.8, 3.11, and 3.12. For convenience of notation in the proofs, let us define
the disjunctionC ∨ D of two clause setsC andD to be the clause set

C ∨ D = {C ∨ D | C ∈ C, D ∈ D} . (18)

This notation extends to more than two clause sets in the natural way. Rewriting (13) in Definition 3.2 using
this notation, we have that

(D ∨ a)[fd] = D[fd] ∨ a[fd] =
∧

C1∈D[fd]

∧

C2∈a[fd]

(
C1 ∨ C2

)
. (19)

3.4 Proof of Theorem 3.8

Givenπ : F ` 0, we constructπf : D[fd]` 0 by maintaining the invariant that if we haveC in memory forπ,
then we haveC[fd] in memory forπf . We get the following case analysis.

Axiom download If π downloadsC, we download all ofC[fd], i.e., less than2d·W(C) clauses which all
have width at mostd · W(C).

Erasure If π erasesC, we erase all ofC[fd] in less than2d·W(C) erasure steps.

17

UNDERSTANDING SPACE IN RESOLUTION

Inference This is the only interesting case. Suppose thatπ infersC1∨C2 from C1∨x andC2∨x. Then by
induction we have(C1 ∨ x)[fd] and(C2 ∨ x)[fd] in memory inπf . It is a straightforward extension
of Observation 3.3 that ifC � D, thenC[fd] � D[fd], so in particular it holds that(C1 ∨ x)[fd] and
(C2 ∨ x)[fd] imply (C1 ∨ C2)[fd]. By the implicational completeness of resolution, these clauses can
all be derived.

An upper bound (not necessarily tight) for the width of this derivation inπf is d · (W(C1 ∨ x) +
W(C2 ∨ x) + W(C1 ∨ C2)) = O

(
d · W(π)

)
, as claimed.

To bound the length, note that(C1 ∨ C2)[fd]. contains less than2d·W(C1∨C2) clauses. For every clause
D ∈ (C1 ∨ C2)[fd], consider the minimal restrictionρ(¬D) falsifying D. Since

(C1 ∨ x)[fd] ∧ (C2 ∨ x)[fd] � D (20)

we have that
(C1 ∨ x)[fd]�ρ(¬D) ∧ (C2 ∨ x)[fd]�ρ(¬D) � 0 . (21)

The number of variables is at mostd · (W(C1 ∨ C2) + 1) = N , and by Observation 2.7 there is a
refutation of(C1 ∨ x)[fd]�ρ(¬D) ∧ (C2 ∨ x)[fd]�ρ(¬D) in length at most2N+1 − 1. Looking at this
refutation and removing the restrictionρ(¬D), it is straightforward to verify that we get a derivation
of D from (C1 ∨ x)[fd] ∧ (C2 ∨ x)[fd] in the same length (see, for instance, the inductive proof in
[BSW01]). We can repeat this for every clauseD ∈ (C1 ∨ C2)[fd] to derive all of the less than
2d·(W(C1∨C2)) clauses in this set in total length at most

2d·(W(C1∨C2)) · 2d·(W(C1∨C2)+2) ≤ 23d·W(π) = 2O(d·W(π)) . (22)

Taken together, we see that we get a refutationπf in length at mostL(π) · 2O(d·W(π)) and width at most
O

(
d · W(π)

)
. Theorem 3.8 follows.

3.5 Proof of Theorem 3.11

Let us use the convention thatD andD denote clause sets and clauses derived fromF [fd] while C andC
denote clause sets and clauses derived fromF .

Let us also overload the notation and writeD � C, D 2 C, andD B C for C = C+ ∨ C− when
the corresponding implications hold or do not hold forD with respect to

∨
x∈C+fd(~x) ∨ ∨

y∈C−¬fd(~y)
(with precise implicationB defined as in Definition 3.9). Note that it will always be clearwhen we use
the notation in this overloaded sense sinceD andC are defined over different sets of variables, and so the
non-overloaded interpretation would not be very meaningful.

Recall from Definition 3.10 thatproj F (D) =
{
C

∣∣∃DC ⊆ D s.t. DC B
∨

x∈C+fd(~x)∨∨
y∈C−¬fd(~y)

}

is the set of clauses projected byD. In the spirit of the notational convention just introduced, we will let Ct

be a shorthand forproj F (Dt).
Suppose now thatπf =

{
D0, . . . , Dτ

}
is a resolution refutation ofF [fd] for some arbitrary unsatisfiable

CNF formulaF and some arbitrary non-constant functionfd.
The first two bullets in Theorem 3.11 are immediate. ForD0 = ∅ we haveC0 = proj F (D0) = ∅, and

it is easy to verify thatDτ = {0} yieldsCτ = proj F (Dτ) = {0}. We note, however, that the empty clause
will have appeared inCt = proj F (Dt) earlier, namely for the firstt such thatDt is contradictory.

The tricky part is to show that all transitions fromCt−1 = proj F (Dt−1) to Ct = proj F (Dt) can be
performed in such a way that the variable support size in our refutation under constructionπ : F ` 0 never
exceedsmax

{
SuppSize(Ct−1), SuppSize(Ct)

}
during the intermediate derivation steps needed inπ. The

proof is by a case analysis of the derivation steps. Before plunging into the proof, let us make a simple but
useful observation.

18

3 THE SUBSTITUTION SPACE THEOREM

Observation 3.13.Using the overloaded notation just introduced, ifDt � C thenC = C+∨C− is derivable
from Ct = proj F (Dt) by weakening.

Proof. Pick D′ ⊆ Dt, C+
1 ⊆ C+, andC−

2 ⊆ C− minimal so thatD′ � C+
1 ∨ C−

2 still holds. Then by
definitionD′ B C+

1 ∨ C−
2 soC+

1 ∨ C−
2 ∈ Ct andC ⊇ C+

1 ∨ C−
2 can be derived fromCt by weakening as

claimed.

Consider now the rule applied inπf at timet to get fromDt−1 to Dt. We analyze the three possible
cases—inference, erasure and axiom download—in this order.

3.5.1 Inference

SinceDt ⊇ Dt−1, it is immediate from Definition 3.10 that no clauses inCt−1 can disappear at timet, i.e.,
Ct−1 \ Ct = ∅. There can appear new clauses inCt, but by Observation 3.13 all such clauses are derivable
by weakening fromCt−1. During such weakening moves the variable support size increases monotonically
and is bounded from above bySuppSize(Ct).

3.5.2 Erasure

SinceDt−1 ⊆ Dt, it is immediate from Definition 3.10 that no new clauses can appear at timet. Any clauses
in Ct−1 \ Ct can simply be erased, which decreases the variable support size monotonically.

3.5.3 Axiom download

This is the only place in the case analysis where we need to do some work. Suppose thatDt = Dt−1 ∪ {D}
for some axiom clauseD ∈ A[fd], whereA in turn is an axiom ofF . If C ∈ Ct \ Ct−1 is a new projected
clause,D must be involved in projecting it so there is some subsetD ⊆ Dt−1 such that

D ∪ {D} B C . (23)

Also note that ifDt−1 � C we are done sinceC can be derived fromCt−1 by weakening, so we can assume
that

Dt−1 2 C . (24)

We want to show that all clausesC satisfying (23) and (24) can be derived fromCt−1 = proj F (Dt−1) by
downloadingA ∈ F , making inferences, and then possibly erasingA, and that this can be done without the
variable support size exceedingmax

{
SuppSize(Ct−1), SuppSize(Ct)

}
. The key to our proof is the next

lemma.

Lemma 3.14. Suppose thatD derived fromF [fd], D ∈ A[fd], andC a clause overVars(F) are such that
D ∪ {D} B C butD 2 C. Then ifA = a1 ∨ · · · ∨ ak, for everyai ∈ A \C there is a clause subsetDi ⊆ D
and a subclauseCi ⊆ C such thatDi B Ci ∨ ai. That is, all clausesC ∨ ai for ai ∈ A \ C can be derived
from C = proj F (D) by weakening.

Proof. Consider any truth value assignmentα such thatα(D) = 1 butα(
∨

x∈C+fd(~x) ∨ ∨
y∈C−¬fd(~y)) =

0. Such an assignment exists sinceD 2 C by assumption. Also, since by assumptionD ∪ {D} B C we
must haveα(D) = 0. If A = a1 ∨ · · · ∨ ak, we can writeD ∈ A[fd] on the formD = D1 ∨ · · · ∨ Dk for
Di ∈ ai[fd] (compare with (19)). Fix anya ∈ A and suppose for the moment thata = x is a positive literal.
Thenα(Di) = 0 implies thatα(fd(~x)) = 0. By Observation 3.1, this means thatα(¬fd(~x)) = 1. Since
exactly the same argument holds ifa = y is a negative literal, we conclude that

D �
∨

x∈(C∨ai)+
fd(~x) ∨ ∨

y∈(C∨ai)−
¬fd(~y) (25)

19

UNDERSTANDING SPACE IN RESOLUTION

or, rewriting (25) using our overloaded notation, that

D � C ∨ ai . (26)

If ai ∈ C, the clauseC ∨ ai is trivially true and thus uninteresting, but otherwise we pick Di ⊆ D and
Ci ⊆ C minimal such that (26) still holds (and notice that sinceD 2 C, the literalai cannot be dropped
from the implication). Then by Definition 3.10 we haveDi B Ci ∨ ai as claimed.

We remark that Lemma 3.14 can be seen to imply thatVars(A) ⊆ Vars(Ct) = Vars(proj F (Dt)). For
x ∈ Vars(A) ∩ Vars(C) this is of course trivially true, but forx ∈ Vars(A) \ Vars(C) Lemma 3.14
tells us that already at timet − 1, there is a clause inCt−1 = proj F (Dt−1) containingx, namely the clause
Ci∨ai found in the proof above. SinceDt ⊇ Dt−1, this clause does not disappear at timet. This means that
if we downloadA ∈ F in our refutationπ : F ` 0 under construction, we haveSuppSize(Ct−1 ∪ {A}) ≤
SuppSize(Ct). Thus, we can downloadA ∈ F , and then possibly erase this clause again at the end of our
intermediate resolution derivation to get fromCt−1 to Ct, without the variable support size ever exceeding
max

{
SuppSize(Ct−1), SuppSize(Ct)

}
.

Let us now argue that all new clausesC ∈ Ct \ Ct−1 can be derived fromCt−1 ∪ {A}. If A \ C = ∅,
then the weakening rule applied onA is enough. Suppose therefore that this is not the case and letA′ =
A \ C =

∨
a∈Lit(A)\Lit(C) a. Appealing to Lemma 3.14 we know that for everya ∈ A there is aCa ⊆ C

such thatCa ∨ a ∈ Ct−1. Note that by assumption (24) this means that ifx ∈ Vars(A) ∩ Vars(C), then
x occurs with the same sign inA andC, since otherwise we would get the contradictionD � C ∨ a = C.
Summing up,Ct−1 containsCa ∨ a for someCa ⊆ C for all a ∈ Lit(A) \Lit(C) and in addition we know
thatLit(A) ∩ {a | a ∈ Lit(C)} = ∅. Let us writeA′ = a1 ∨ · · · ∨ am and do the following weakening
derivation steps fromCt−1 ∪ {A}:

A C ∨ A′

Ca1
∨ a1 C ∨ a1

Ca2
∨ a2 C ∨ a2

...

Cam ∨ am C ∨ am

(27)

Then resolveC ∨ A′ in turn with all clausesC ∨ a1, C ∨ a2, . . . , Cam ∨ am, finally yielding the clauseC.
In this way all clausesC ∈ Ct \ Ct−1 can be derived one by one, and we note that we never mention

any variables outside ofVars(Ct−1 ∪ {A}) ⊆ Vars(Ct) in these derivations.

3.5.4 Wrapping up the Proof of Theorem 3.11

We have proven that no matter what derivation step is made in the transitionDt−1 Dt, we can perform
the corresponding transitionCt−1 Ct for our projected clause sets without the variable support size going
abovemax

{
SuppSize(Ct−1), SuppSize(Ct)

}
. Also, the only time we need to download an axiomA ∈ F

in our projected refutationπ of F is whenπf downloads some axiomD ∈ A[fd]. This completes the proof
of Theorem 3.11.

3.6 Proof of Theorem 3.12

Recall the convention thatx, y, z refer to variables inF while x1, . . . , xd, y1, . . . , yd, z1, . . . , zd refer to
variables inF [fd]. Also recall that we use overloaded notationD � C, D 2 C, andD B C for C = C+∨C−

(whereC+ =
∨

x∈C x andC− =
∨

y∈C y) when the corresponding implications hold or do not hold forD
with respect to

∨
x∈C+fd(~x) ∨ ∨

y∈C−¬fd(~y).

20

3 THE SUBSTITUTION SPACE THEOREM

We start with an intuitively plausible lemma saying that forall variablesx appearing in some clause
projected byD, the clause setD itself must contain at least one of the variablesx1, . . . , xd.

Lemma 3.15. Suppose thatD is a set of clauses derived fromF [fd] and thatC ∈ proj F (D). Then for all
variablesx ∈ Vars(C) it holds that{x1, . . . , xd} ∩ Vars(D) 6= ∅.

Proof. Fix anyD′ ⊆ D such thatD impliesC precisely in the sense of Definition 3.9. By this definition,
for all z ∈ Vars(C) we haveD′ 2 C \ {z, z}. Suppose thatz appears as a positive literal inC (the
case of a negative literal is completely analogous). This means that there is an assignmentα such that
α(D′) = 1 but α

(∨
x∈C+\{z}fd(~x) ∨ ∨

y∈C−¬fd(~y)
)

= 0. SinceD′ B C, it must hold thatα(fd(~z)) = 1.
Modify α into α′ by changing the assignments toz1, . . . , zd in such a way thatα′(fd(~z)) = 0. Then
α′

(∨
x∈C+fd(~x) ∨ ∨

y∈C−¬fd(~y)
)

= 0, so we must haveα′(D′) = 0. Since we only changed the assign-
ments to (a subset of) the variablesz1, . . . , zd, the clause setD′ ⊆ D must mention at least one of these
variables.

With Lemma 3.15 in hand, we are ready to prove Theorem 3.12. Note that everything said so far
in Section 3 (in particular, all of the proofs) applies to anynon-constant Boolean function. In the proof
of Theorem 3.12, however, it will be essential that we are dealing with non-authoritarian functions, i.e.,
functionsfd having the property that no single variablexi can fix the the value offd(x1, . . . , xd).

Suppose thatD is a set of clauses derived fromF [fd] and writeV ∗ = Vars(proj F (D)) to denote the set
of all variables inVars(F) appearing in any clause projected byD. We want to prove thatSp(D) = |D| >∣∣V ∗

∣∣ provided thatfd is non-authoritarian.
To this end, consider the bipartite graph with the clauses inD labelling the vertices on the left-hand side

and variables inV ∗ labelling the vertices on the right-hand side. We draw an edge betweenD ∈ D and
x ∈ V ∗ if Vars(D) ∩ {x1, . . . , xd} 6= ∅. By Lemma 3.15 it holds thatVars(D) ∩ {x1, . . . , xd} 6= ∅ for all
variablesx ∈ V ∗, so in particular every variablex ∈ V ∗ is the neighbour of at least one clauseD ∈ D. Let
us writeN(D) to denote the neighbours of a left-hand vertexD and extend this notation to sets of vertices
by taking unions.

We claim that ifV ∗ = Vars(proj F (D)) 6= ∅, then there must exist some clause setD′ ⊆ D satisfying
|D′| > N(D′). Suppose on the contrary that|D′| ≤ N(D′) for all D′ ⊆ D. Then by Hall’s marriage theorem
there is a matching of the clauses inD into the variable setV ∗. Assume thatC = C+ ∨ C− is any clause
projected byD (such a clause exists sinceV ∗ 6= ∅). Then surely

D �
∨

x∈C+fd(~x) ∨ ∨
y∈C−¬fd(~y) (28)

(there is even a subset ofD such that this implication is precise). But using the matching betweenD andV ∗,
we can satisfyD without assigning values to more than one variablexi ∈ Vars(D) corresponding to any
x ∈ Vars(F). Sincefd is non-authoritarian, we can then extend this assignment toanother assignment
falsifying fd(~x) for all x ∈ C+ and satisfyingfd(~y) for all y ∈ C−. This means that our assignment
satisfies the left-hand side of the implication (28) but falsifies the right-hand side, which is a contradiction.
The claim follows.

Hence, fix any largest subsetD1 ⊆ D such that|D1| > N(D1). Clearly, if D1 = D we are done
(remember thatN(D) = V ∗), so supposeD1 6= D. In much the same way as above, we show that this
assumption leads to a contradiction.

Let D2 = D \ D1 6= ∅ and define the vertex setsV ∗
1 = N(D1) andV ∗

2 = V ∗ \ V ∗
1 . Note that we

must haveV ∗
2 ⊆ N(D2) sinceN(D) = N(D1) ∪ N(D2) = V ∗. By the maximality ofD1 it must hold

for all D′ ⊆ D2 that |D′| ≤
∣∣N(D′) \ V ∗

1

∣∣, because otherwiseD′′ = D1 ∪ D′ would be a larger set with
|D′′| > |N(D′′)|. But this implies that, again by Hall’s marriage theorem, there is a matchingM of D2 into

21

UNDERSTANDING SPACE IN RESOLUTION

N(D2) \ V ∗
1 = V ∗

2 . Consider any clauseC ∈ proj F (D) such thatVars(C) ∩ V ∗
2 6= ∅ and letD′ ⊆ D be

any clause set such that
D′ B

∨
x∈C+fd(~x) ∨ ∨

y∈C−¬fd(~y) (29)

(the existence of which is guaranteed by Definition 3.10). Weclaim that we can construct an assignment
α that makesD′ true but

∨
x∈C+fd(~x) ∨ ∨

y∈C−¬fd(~y) false. This is clearly a contradiction, so if we can
prove this claim it follows that our assumptionD1 6= D is false and that it instead must hold thatD1 = D
and thus

∣∣N(D)
∣∣ =

∣∣V ∗
∣∣ < |D|, which proves the theorem.

To establish the claim, letD′
i = D′ ∩ Di for i = 1, 2 and letCi = C+

i ∨ C−
i for

C+
i =

∨

x∈C
x∈V ∗

i

x and C−
i =

∨

y∈C
y∈V ∗

i

y (30)

andi = 1, 2. We construct the assignmentα satisfyingD′ but falsifying
∨

x∈C+fd(~x) ∨ ∨
y∈C−¬fd(~y) in

three steps:

1. SinceC+
1 ∨ C−

i = C1 $ C by construction (recall that we chose our clauseC in such a way that
Vars(C) ∩ V ∗

2 6= ∅), the minimality condition in Definition 3.10 yields that

D′
1 2

∨
x∈C+

1

fd(~x) ∨ ∨
y∈C−

1

¬fd(~y) (31)

and hence we can find a truth value assignmentα1 that setsD′
1 to true, all fd(x1, . . . , xd), x ∈

C+
1 , to false, and allfd(y1, . . . , yd), y ∈ C−

1 , to true. Note thatα1 need only assign values to
{z1, . . . , zd | z ∈ Vars(C1)}.

2. ForD′
2, we use the matchingM into V ∗

2 found above to pick a distinct variablex(D) ∈ Vars(F) for
everyD ∈ D′

2 and then a variablex(D)i ∈ Vars(F [fd]) appearing inD, the existence of which is
guaranteed by the edge betweenD andx(D). Let α2 be the assignment that sets all these variables
x(D)i to the values that fix allD ∈ D′

2 to true. We stress thatα2 assigns a value to at most one
variablex(D)i for everyx(D) ∈ Vars(F).

3. But sincefd is non-authoritarian, this means that we can extendα2 to an assignment to all vari-
ablesx(D)1, . . . , x(D)d that still satisfiesD′

2 but sets allfd(x1, . . . , xd), x ∈ C+
2 , to false and all

fd(y1, . . . , yd), y ∈ C−
2 , to true.

Hence,α = α1 ∪ α2 is an assignment such thatα(D′) = 1 but α(
∨

x∈C+fd(~x) ∨ ∨
y∈C−¬fd(~y)) = 0,

which proves the claim. This concludes the proof of Theorem 3.12.
Since Theorems 3.8, 3.11, and 3.12 have now all been established, the proof of Theorem 3.5 is finished.

4 Reductions Between Resolution and Pebbling

It is not hard to see how a black pebblingP of a DAG G can be used to construct a resolution refutation
of the pebbling contradictionPebG in Definition 2.11 in length and space upper-bounded bytime(P) and
space(P), respectively. It is straightforward to show that this translation from pebblings to refutations
works even if we do anfd-substitution in the pebbling contradiction. We present a proof of this fact in
Section 4.1.

Using our new results in Section 3, we can prove the more surprising fact that there is also a fairly tight
reduction in the other direction: provided that the function fd is non-authoritarian, any resolution refutation
of PebG[fd] translates into a black-white pebbling ofG with the same time-space properties (adjusting for

22

4 REDUCTIONS BETWEEN RESOLUTION AND PEBBLING

constant factors depending on the functionfd and the maximal indegree ofG). This new reduction is given
in Section 4.2.

Finally, in Section 4.3 we appeal to both of these reductionsto prove a meta-theorem saying that for
DAGsG having the right time-space trade-off properties, we can prove that pebbling contradictions defined
over such DAGs inherit the same trade-off properties. This will allow us, after having studied pebbling
time-space trade-offs in Section 5, to prove a wealth of strong trade-offs for both clause space and variable
space in resolution in Section 6.

4.1 From Black Pebblings to Resolution Refutations

Given any black-only pebblingP of a DAGG, we can mimic this pebbling in a resolution refutation ofPebG

by deriving that a literalv is true whenever the corresponding vertex inG is pebbled (this was perhaps first
observed in [BSIW04]). This construction carries over alsoto substitution formulasPebG[fd] and we have
the following theorem.

Theorem 4.1. Let fd be a non-constant Boolean function of arityd and letG be a DAG with indegree at
most` and unique sinkz. Then given any complete black pebblingP of G, we can construct a resolution
refutationπ : PebG[fd]` 0 such that

L(π) ≤ time(P) · exp
(
O(d(` + 1))

)
,

W(π) ≤ d(` + 1) , and

VarSp(π) ≤ space(P) · exp
(
O(d(` + 1))

)
.

Before presenting the proof, we note that in our applications we will have the function arityd and the
DAG indegreè fixed (we can for instance pickd = ` = 2), which means that the bounds on length and
space above turns intoL(π) = O

(
time(P)

)
andVarSp(π) = O

(
space(P)

)
. We also remark that for

concrete functionsfd, such as for instance XOR over two variables, we can easily compute explicit upper
bounds on the constants hidden in the asymptotic notation ifwe so wish, and these constants are small.

Proof of Theorem 4.1.The proof is by induction over the black pebblingP. We maintain the invariant
that if at timet we have black pebbles on the vertices inV , thenπ will contain exactly the clausesCt =
{x[fd] | x ∈ V }. To simplify the notation in the proof, we will again use fractional time steps inπ, making
sure that it never takes more thanexp

(
O(d(` + 1))

)
time steps to get fromCt−1 to Ct.

Consider the pebbling move made inP at timet :

1. If P places a pebble on a source vertexs, we download the less than2d axioms ins[fd].

2. If P places a pebble on a non-source vertexv with immediate predecessorsu1, . . . , u`′ , by induction
we have{ui[fd] | i = 1, . . . , `′} ⊆ Ct−1. The argument in this case is very similar to the one in
Section 3.4.

First download the less than2d(`′+1) pebbling axioms in(u1 ∨ · · · ∨ u`′ ∨ v)[fd]. Now

{ui[fd] | i = 1, . . . , `′} ∪ {(u1 ∨ · · · ∨ u`′ ∨ v)[fd]} (32)

implies all clausesD ∈ v[fd]. If we apply the restrictionρ(¬D) to the clause set (32) we can obtain
a refutation in length and variable space at mostexp

(
O(d(` + 1))

)
(and trivially in width at most

d(` + 1)) by Observation 2.7. Removing the restrictionρ(¬D), this refutation turns into a derivation
of D. Doing this for all of the less than2d clausesD ∈ v[fd] completes the induction step.

3. If P removes a pebble from any vertexv, we erase the less than2d clauses inv[fd] from memory.

23

UNDERSTANDING SPACE IN RESOLUTION

At the end of the pebblingP, we haveCτ = {z[fd]} for z the sink ofG. We conclude the refutation by
downloading all the sink axioms inz[fd] and deriving the empty clause0 in lengthexp(O(d)), width d and
variable spaceexp(O(d)).

4.2 From Resolution Refutations to Black-White Pebblings

Let us now see how we can go in the other direction from resolution refutations to pebbling strategies.

Theorem 4.2. Let f be any non-authoritarian Boolean function andG be any DAG with unique sink and
bounded indegreè. Then from any resolution refutationπ : PebG[f]` 0 we can extract a black-white
pebbling strategyPπ for G such thattime(Pπ) ≤ (` + 1) · L(π) andspace(Pπ) ≤ Sp(π).

Before proving this theorem, we want to stress that Theorems4.1 and 4.2 are not perfect converses.
This is so since the reduction in one direction uses black pebbling (Theorem 4.1) while the reduction in the
other direction is in terms of black-white pebbling (Theorem 4.2) and there can be a quadratic difference
in pebbling price depending on whether white pebbles may be used or not [KS88]. The problem here is
that we do not know of any way of translating black-white pebbling strategies into resolution refutations
that preserve the time and space properties. Indeed, we believe that this is not a mere technicality but that
it is in fact not possible in general to convert black-white pebblings to resolution refutations with the same
time-space trade-off properties. Formalizing and provingsuch a statement is another matter, however, and
we leave it as an open problem.

The proof of Theorem 4.2 is in three steps:

1. First, we convertπ : PebG[f]` 0 to a refutationπ′ of PebG such thatSuppSize(π′) ≤ Sp(π) and the
number of axiom downloads inπ′ is upper-bounded by the number of axiom downloads inπ. This is
Theorem 3.5, which is the key technical contribution of thispaper.

2. The refutationπ′ : PebG ` 0 can contain weakening moves, which we do not want, so we appeal
to Proposition 2.4 to get a refutationπ′′ : PebG ` 0 without any weakening steps. By Lemma 2.9,
without loss of generality we can assume thatπ′′ is frugal (Definition 2.8). This part of the proof just
uses standard techniques, and the number of axiom downloadsand the variable support size can only
decrease when going fromπ′ to π′′.

3. Finally, we show thatπ′′ corresponds to a black-white pebbling strategyP for G such thattime(P)
is upper-bounded by the number of axiom downloads andspace(P) by the maximal number of
variables occurring simultaneously inπ′′. This final part relies heavily on the work [BS02] by the
first author. Since we need a more detailed result than can be read off from that paper, however, we
present the full construction below.

Putting together these three steps, Theorem 4.2 clearly follows. What remains is thus to prove the
following lemma.

Lemma 4.3. Let G be any DAG with unique sink and bounded indegree`, and suppose thatπ is any
resolution refutation ofPebG without weakening that is also frugal. Then there is a black-white pebbling
strategyPπ for G such thatspace(Pπ) ≤ SuppSize(π) and time(Pπ) is at most(` + 1) times the number
of axiom downloads inπ.

Proof. Given a refutationπ =
{
C0 = ∅, C1, . . . , Cτ = {0}

}
of PebG, we translate every clause setCt into

a black-white pebble configurationPt = (Bt,Wt) using a slightly modified version of the ideas in [BS02],
and then show thatP = {P0, . . . , Pτ} is essentially a legal black-white pebbling ofG as in the statement
of the lemma. The translation will satisfy the invariant that Bt ∪ Wt = Vars(Ct) which yields the upper

24

4 REDUCTIONS BETWEEN RESOLUTION AND PEBBLING

bound on space in terms of variable support size. The first configuration C0 = 0 is thus translated into
P0 = (∅, ∅).

Suppose inductively that(Bt−1,Wt−1) has been constructed fromCt−1 and consider all the variables
x ∈ Vars(Ct) one by one. Ifx ∈ Vars(Ct) ∩ Bt−1, keepx in Bt. Otherwise, ifx ∈ Lit(Ct) appears as a
positive literal, addx to Bt. Otherwise, ifx ∈ Lit(Ct), addx to Wt. This is our translation ofCt into black
pebblesBt and white pebblesWt. To see that this translation yields a legal pebbling, consider the derivation
rule applied to get fromCt−1 to Ct.

Axiom download Suppose that we download the pebbling axiom or source axiom for a vertexv with im-
mediate predecessorsu1, . . . , u`′ (where we havè ′ = 0 for a sourcev). All predecessorsui not
having pebbles on them at timet− 1 get white pebbles. Thenv gets a black pebble, if it is not already
pebbled. Note that this is a legal pebble placement since allimmediate predecessors ofv (if any) have
pebbles at this point. We remark that to black-pebblev, we might have to remove a white pebble
from v first, but since all immediate predecessors have pebbles on them this poses no problems. Also,
downloading the sink axiom places a white pebble on the sinkz if this vertex is empty, which is a
legal pebbling move. By the bound on the indegree, this step involves placing at most̀+ 1 pebbles.

Inference In this caseVars(Ct−1) = Vars(Ct), so nothing happens.

Erasure Suppose that the clause erased inC. Just apply the translation function. Suppose that this results
in a pebble onx disappearing. Then we havex ∈ Vars(C) but x /∈ Vars(Ct). Before being erased,
C has been resolved with some other clause (recall thatπ is frugal). But as long as we did not resolve
over the variablex, we will still havex ∈ Vars(Ct), and henceC must have been resolved overx at
some timet′ < t. At this timex appeared both positively and negatively inCt′ , and in view of how
we defined the translation from clauses to pebbles, this means that the vertexx has contained a black
pebble in the interval[t′, t − 1]. Thus the pebble disappearing at timet is black, and black pebbles
can always be removed freely.

To conclude the proof, note that during the course of the refutation all axioms must have been down-
loaded at least once, sincePebG is easily seen to be minimally unsatisfiable. In particular,this means that
the sinkz is black-pebbled at some time during the proof, and we can decide to keep the black pebble on
z from that moment onwards. (This potentially adds one pebbleextra to the pebbling space, but this is fine
since the inequality in Theorem 3.5 is strict so there is margin for this.)

Since every time an axiom is downloaded it must also be erasedat some later time, we get the time
bound of(` + 1) times the number of axiom downloads (and in fact it is easy to see that this bound can be
improved by taking into account the inference steps, when nothing happens in the pebbling). The lemma
follows.

As was discussed above, Lemma 4.3 completes the proof of Theorem 4.2.

4.3 Obtaining Resolution Trade-offs from Pebbling

Combining Theorems 4.1 and 4.2, we can now prove that if we canfind DAGsG with appropriate pebbling
trade-off properties, such DAGs immediately yield trade-off results in resolution. And as we will see in
Section 5, there are (explicitly constructible) DAGs with the needed properties.

In order not to clutter the statement of the next theorem, we assume that the arityd of the Boolean
functionf and the indegreèof the DAG are fixed, so that any dependence ond and` can be hidden in the
asymptotical notation. (This is not much of a restriction since we will haved = ` = 2 in the applications
that we care about.)

25

UNDERSTANDING SPACE IN RESOLUTION

Theorem 4.4. Let d and ` be universal constants, and letf be some universally fixed non-authoritarian
Boolean function of arityd. Suppose thatG is a DAG withn vertices, unique sinkz, and bounded indegreè,
and thatg, h : N+ 7→ N+ are functions satisfying the following properties:

• For everys ≥ Peb(G) there is a complete black pebblingP of G with space(P) ≤ s andtime(P) ≤
g(s).

• For everys ≥ BW-Peb(G) and every complete black-white pebblingP of G with space(P) ≤ s it
holds thattime(P) ≥ h(s).

Then the following holds forPebG[f]:

1. PebG[f] is ak-CNF formula for some fixedk = k(d, `, f) and has sizeO(n).

2. PebG[f] is refutable in lengthL(PebG[f] ` 0) = O(n) and widthW(PebG[f] ` 0) = O(1) simulta-
neously, and is also refutable in variable spaceVarSp(PebG[f] ` 0) = O

(
Peb(G)

)
.

3. For everys ≥ Peb(G) there is a resolution refutationπs : PebG[f]` 0 in lengthL(πs) = O(g(s))
and variable spaceVarSp(πs) = O(s).

4. The clause space of any resolution refutation is lower-bounded bySp(PebG[f] ` 0) ≥ BW-Peb(G),
and for everys ≥ BW-Peb(G) and every refutationπs : PebG[f]` 0 in clause spaceSp(πs) ≤ s, it
holds thatL(πs) = Ω(h(s)).

All hidden constants in the asymptotical notation depend only ond, `, andf, and are independent ofG.

Proof. Item 1 is an easy consequence of Definition 3.2. Items 2 and 3 both follow from Theorem 4.1 (to
get item 2, consider the trivial pebbling that black-pebbles all vertices ofG in topological order). Finally,
Theorem 4.2 yields item 4.

This theorem will be of particular interest when we can find graph families{Gn}∞n=1 with Peb(Gn) =
Θ

(
BW-Peb(Gn)

)
having trade-off functionsgn(s) = Θ(hn(s)). For such families of DAGs, Theorem 4.4

yields asymptotically tight trade-offs in resolution. We stress again thatthese trade-offs hold for both clause
space and variable space simultaneouslywith respect to length, since the upper bounds are in terms of
variable space and the lower bounds in terms of clause space.

5 Some Old and New Pebbling Results

Having come this far in the paper, we know that if we can find graphs with trade-off results for black-white
pebbling and matching upper bounds for black pebbling, we can construct CNF formulas from these graphs
with similar time-space trade-off properties in resolution. And indeed, as we show in this section, we can
find graphs satisfying these properties (or in one case graphs that come sufficiently close for us to be able to
get the desired result via some extra work).

First, we present some auxiliary definitions, notation and terminology in Section 5.1. Then, in Sec-
tion 5.2, we prove a strong trade-off result for a very simplebut surprisingly versatile family of graphs. Our
results build on [CS80, CS82] and extend the results there from black-only to black-white pebbling. Finally,
in Section 5.3 we review a number of results from [LT82] that will also enable us to get strong trade-offs in
resolution.

We remark that all the pebbling trade-off results presentedin this section are for explicitly constructible
graphs.

26

5 SOME OLD AND NEW PEBBLING RESULTS

5.1 Pebbling Preliminaries

We will use the following notational conventions:

• n denotes the size (i.e., the number of vertices) of a DAG, or, in some cases where it is more conve-
nient, the size to within a (small) constant factor.

• ` denotes the maximal indegree of a DAG.

• s denotes pebbling space (althoughs1, s2, . . . will sometimes denote source vertices of DAGs).

• S(G) denotes the source vertices ofG andZ(G) denotes the sink vertices ofG.

We say that the pebbling moveat timeσ is the move resulting in the pebble configurationPσ.

5.1.1 Technical Definitions and Some Observations

We need to generalize our definition of pebbling slightly to distinguish somewhat different variants of peb-
blings and also to allow pebblings of graphs with more than one sink.

Definition 5.1 (Conditional, persistent and visiting pebblings). Suppose thatG is a DAG with sourcesS
and sinksZ (one or many). Let the pebble game rules be as in Definition 2.10, and define pebbling space in
the same way.

We say that a pebblingP = {P0, . . . , Pτ} is conditional if P0 6= (∅, ∅) andunconditionalotherwise.
Note that complete pebblings, or pebbling strategies, are always unconditional.

A complete black-white pebblingvisitingZ is a pebblingP = {P0, . . . , Pτ} such thatP0 = Pτ = (∅, ∅)
and such that for everyz ∈ Z, there exists a timetz ∈ [τ] such thatz ∈ Btz ∪ Wtz . The minimum space of
such a visiting pebbling is denotedBW-Peb∅(G), and for black pebbling we have the measurePeb∅(G).

A persistentpebbling ofG is a pebblingP such thatPτ = (Z, ∅). The minimum space of any complete
persistent black-white or black-only pebbling ofG is denotedBW-Pebz(G) andPebz(G), respectively.

That is, a visiting pebbling touches all sinks but leaves thegraph empty at timeτ , whereas a persistent
pebbling leaves black pebbles on all sinks at the end of the pebbling. If G is a DAG withm sinks, then it
clearly holds thatBW-Pebz(G) ≤ BW-Peb∅(G) + m andPebz(G) ≤ Peb∅(G) + m.

Intuitively, the pebblings that seem most natural and interesting are persistent pebblings of DAGs with
a single sink. In our proofs, however, we will mostly be focusing on visiting pebblings. The reason that
visiting pebblings will show up over and over again is that the graphs of interest will often be constructed
in terms of smaller subgraph components with useful pebbling properties, and that for such subgraphs we
have the following fact.

Observation 5.2. Suppose thatG is a DAG and thatP is any complete pebbling ofG. LetU ⊆ V (G) be
any subset of vertices ofG and letH = H(G,U) denote the induced subgraph with verticesV (H) = U
and edgesE(H) =

{
(u, v) ∈ E(G)

∣∣u, v ∈ U
}

. Then the pebblingP restricted to the vertices inU is a
complete visiting pebbling strategy forH.

Proof. It is easy to verify that if we only perform those pebbling moves inP that pertain to vertices inU ,
then these moves constitute a legal pebbling onH. Moreover, any complete pebbling ofG must pebble all
vertices inG, soP restricted toU will pebble all vertices inH including the sinks ofH.

To get trade-offs in resolution for minimally unsatisfiablek-CNF formulas, we want DAGs with unique
sinks. Most pebbling results in Section 5 are more natural tostate and prove for DAGs with multiple sinks,
however, but this small technicality is easily taken care of. We do this next.

27

UNDERSTANDING SPACE IN RESOLUTION

z1 z2 z3 z4 z5 z6

z∗1

z∗2

z∗3

z∗4

z∗5

G

Figure 1: Schematic illustration of single-sink version Ĝ of graph G.

Definition 5.3 (Single-sink version).Let G be a DAG with sinksZ(G) = {z1, . . . , zm} for m > 1. The
single-sink version̂G of G consists of all vertices and edges inG plus the extra verticesz∗1 , . . . , z∗m−1 and
the edges(z1, z

∗
1), (z2, z

∗
1), (z∗1 , z∗2), (z3, z

∗
2), (z∗2 , z∗3), (z4, z

∗
3), et cetera up to(z∗m−2, z

∗
m−1), (zm, z∗m−1).

That is,Ĝ consists ofG with a binary tree of minimal size added on top of the sinks. See Figure 1 for a
small example. The following observation is immediate.

Observation 5.4. Let G be a DAG with sinksZ(G) = {z1, . . . , zm} for m > 1. Then for any flavour of
pebbling (visiting or persistent) it holds thatBW-Peb

(
Ĝ

)
≤ BW-Peb(G)+1 andPeb

(
Ĝ

)
≤ Peb(G)+1.

Moreover, for any ordering of the sinksz1, . . . , zm there is a pebbling strategyP (visiting or persistent) for
G in spaces that pebbles the sink in this order, then there is a pebbling strategyP̂ of the same type for̂G
with time

(
P̂

)
≤ time(P) + 2m andspace(P̂) ≤ space(P) + 1.

To simplify the proofs of our lower bounds, we want the pebblings under consideration not to perform
any obviously redundant moves. The following definition is ageneralization of [GLT80] from black-only to
black-white pebbling. (We are not aware of this generalization having appeared in the literature before.)

Definition 5.5 (Frugal pebbling). Let P be a complete pebbling of a DAGG. To every pebble placement
on a vertexv at timeσ we associate thepebbling interval[σ, τ), whereτ is the first time afterσ when the
pebble is removed fromv again (orτ = ∞, say, if this never happens).

If a sink zi ∈ Z(G) is pebbled for the first time at timeσ, then the pebble onzi is essentialduring the
pebbling interval[σ, τ). A pebble on a non-sink vertexv is essential during[σ, τ) if either an essential black
pebble is placed on an immediate successor ofv during(σ, τ) or an essential white pebble is removed from
an immediate successor ofv during(σ, τ). Any other pebble placements on any vertices are non-essential.

The pebbling strategyP is frugal if all pebbles inP are essential at all times.

Without loss of generality, we can assume that all pebblingswe deal with are frugal.

Lemma 5.6. For any complete pebblingP (black or black-white, visiting or persistent) there is a frugal
pebblingP ′ of the same type such thattime(P ′) ≤ time(P) andspace(P ′) ≤ space(P).

Proof. Just delete any non-essential pebbles fromP and verify that what remains is a legal pebbling.

One minor technical snag is that we will need to assume not only that complete pebblings are frugal,
but that this also holds forconditional pebblings(Definition 5.1). This is no real problem, however, since
we can always assume that the conditional pebblings we are dealing with are subpebblings of some larger,

28

5 SOME OLD AND NEW PEBBLING RESULTS

unconditional pebbling. More formally, we can define a conditional pebbling to be frugal if it satisfies the
condition in Definition 5.5 that any pebble placed on a non-sink vertexv stays until either a black pebble is
placed on an immediate successor ofv or a white pebble is removed from an immediate successor ofv.

5.1.2 Some Upper and Lower Bounds

If we do not care about space, the easiest way to pebble a DAG isto place black pebbles on the vertices in
topological order (and then remove all pebbles from non-sink vertices). Since we will have reason to use
this pebbling strategy on occasion in what follows, we give it a name for reference.

Observation 5.7 (Trivial pebbling). Any DAGG can be completely, persistently black-pebbled in space at
most|V (G)| and time at most2 · |V (G)| simultaneously.

Another easy upper bound on pebbling price can be given in terms of the fan-in and depth of a DAG.

Definition 5.8 (Depth). Thedepthof a DAGG is the length of a longest path from a source to a sink inG.

Observation 5.9. Any DAGG with maximal indegreè and depthd has a black pebbling strategy in space
at mostd` + 1.

Proof. By induction over the depth. The base case is immediate. For agraph of depthd+1, pebble the sinks
one by one. For each sink we can pebble its immediate predecessors withd` + 1 pebbles each by induction.
Placing black pebbles on the immediate predecessors one by one and leaving them there, we never use more
than(d` + 1) + (` − 1) pebbles simultaneously. Finally, keeping the at most` pebbles on the predecessors,
pebble the sink.

Next follows a simple but important lemma that is central to most black-white pebbling lower bounds.

Lemma 5.10 ([GT78]). Suppose thatQ : u v is a path inG and thatP = {Pσ, Pσ+1, . . . , Pτ} is a
pebbling such that the whole pathQ is completely free of pebbles at timesσ and τ but the endpointv is
pebbled at some point in the time interval(σ, τ). Then the starting pointu is pebbled during(σ, τ) as well.

Proof. By induction over the length of the pathQ. The base caseu = v is trivial. For the induction step, let
w be the immediate successor ofu on Q. By the induction hypothesis,w is pebbled and unpebbled again
sometime during(σ, τ). Thenu must be covered by a pebble either when the pebble onw is placed there (if
this pebble is black) or when it is removed (if it is white). The lemma follows.

A common graph in many pebbling constructions is thepyramid (see Figure 2 for an example), the
pebbling price of which is well understood.

Definition 5.11 (Pyramid graph). Thepyramid graphΠh of heighth ≥ 1 is a layered DAG withh + 1
levels, where there is one vertex on the highest level (the sink z), two vertices on the next level et cetera
down toh + 1 vertices at the lowest level0. Theith vertex at levelL has incoming edges from theith and
(i + 1)st vertices at levelL − 1.

Theorem 5.12.The black pebbling price of a pyramid of heighth is Peb(Πh) = h+2 and there is a linear-
time pebbling achieving this bound. The black-white pebbling price isBW-Peb∅(Πh) = h/2 + O(1), and
for even height there is the exact boundBW-Peb∅(Π2h) = h + 2.

Proof sketch.The lower bound for black pebbling is from Cook [Coo74], and it is easy to construct a linear-
time pebbling matching this bound by pebbling the pyramid bottom-up, layer by layer.

The black-white pebbling strategy for pyramids in spaceh/2 + O(1) can be obtained from the strategy
for trees in Lengauer and Tarjan [LT80], and Klawe [Kla85] showed thath/2 + O(1) is also a lower bound.
The exact bound for pyramids of even height can be found in theexposition of Klawe’s proof in [Nor09].

29

UNDERSTANDING SPACE IN RESOLUTION

z

y1 y2

x1 x2 x3

w1 w2 w3 w4

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5 u6

s1 s2 s3 s4 s5 s6 s7

Figure 2: Pyramid Π6 of height 6.

Another important building block in many pebbling results are so-calledsuperconcentrators.

Definition 5.13 (Superconcentrator). A directed acyclic graphG is anN -superconcentratorif it has N
sourcesS = {s1, . . . , sN}, N sinksZ = {z1, . . . , zN}, and for any subsetsS′ andZ ′ of sources and sinks
of size

∣∣S′
∣∣ =

∣∣Z ′
∣∣ = k it holds that there arek vertex-disjoint paths betweenS′ andZ ′ in G.

For our pebbling purposes, we will be interested in superconcentrators with number of vertices and edges
linear inN (in addition, we will want them to have bounded indegree, butthis extra requirement is easy to
take care of). Valiant [Val76] proved the existence of such graphs, and Gabber and Galil [GG81] provided
the first explicit construction based on an earlier non-explicit one by Pippenger [Pip77]. We remark that
the superconcentrators in [GG81] have logarithmic depth. The currently best known construction (i.e., with
lowest edges-to-vertices ratio) that we are aware of is due to Alon and Capalbo [AC03].

Here is an important lemma that explains why superconcentrators are good building blocks if we want
to construct graphs that are hard to pebble.

Lemma 5.14 ([LT82]). Suppose thatG is an N -superconcentrator and thatP = {Pσ, Pσ+1, . . . , Pτ} is
a conditional black-white pebbling such thatspace(Pσ) ≤ sσ, space(Pτ) ≤ sτ , andP pebbles at least
sσ + sτ +1 sinks during the closed time interval[σ, τ]. ThenP pebbles and unpebbles at leastN − sσ − sτ

different sources during the open time interval(σ, τ).

Proof. Suppose not. ThenP pebbles some set ofsσ +sτ +1 sinks without pebbling some set ofsσ +sτ +1
sources. Fix such sets of sources and sink vertices and consider the vertex-disjoint paths from sources to
sinks. Then at least one path is empty both at timeσ and at timeτ and the end point of the path is pebbled
during the interval(σ, τ) but not the starting point. This contradicts Lemma 5.10.

We immediately get the following corollary.

Corollary 5.15 ([LT82]). Any complete black-white pebbling of anN -superconcentrator in space at most
s has to pebble at leastΩ

(
N2/s

)
sources (so, in particular, this is a lower bound on the pebbling time).

5.2 A New Pebbling Trade-off Result

In this section we present the third main contribution of this paper, which is a graph family that provides
us with a number of interesting time-space trade-offs for different parameter settings. These trade-offs
have the property that the lower bounds are in terms of black-white pebbling while the upper bounds are in
terms of black-only pebbling, and thanks to this we can applythe machinery of Theorem 3.5 on page 14
and Theorem 4.4 on page 26 on these graphs to derive corresponding trade-offs in proof complexity for
resolution.

30

5 SOME OLD AND NEW PEBBLING RESULTS

s1 s2

γ1 γ2 γ3

Figure 3: Base case Γ(3, 1) for Carlson-Savage graph with 3 spines and sinks.

5.2.1 Definition of Graph Family and Statement of Trade-off

Our graph family is built on a construction by Carlson and Savage [CS80, CS82]. Carlson and Savage only
prove their trade-off for black pebbling, however, and in order to get results for black-white pebbling we
have to modify the construction somewhat and also apply somenew ideas in the proofs. The next definition
will hopefully be easier to parse if the reader first studies the illustrations in Figures 3 and 4.

Definition 5.16 (Carlson-Savage graph).We define a two-parameter graph familyΓ(c, r), for c, r ∈ N+,
by induction overr. The base caseΓ(c, 1) is a DAG consisting of two sourcess1, s2 andc sinksγ1, . . . , γc

with directed edges(si, γj), for i = 1, 2 andj = 1, . . . , c, i.e., edges from both sources to all sinks. The
graphΓ(c, r + 1) is a DAG withc sinks which is built from the following components:

• c disjoint copiesΠ1
2r, . . . ,Π

c
2r of a pyramid (Definition 5.11) of height2r, where we letz1, . . . , zc

denote the pyramid sinks.

• one copy ofΓ(c, r), for which we denote the sinks byγ1, . . . , γc.

• c disjoint and identicalspines, where each spine is composed ofcr sections, and every section contains
2c vertices. We let the vertices in theith section of a spine be denotedv[i]1, . . . , v[i]2c.

The edges inΓ(c, r + 1) are as follows:

• All “internal edges” inΠ1
2r, . . . ,Π

c
2r andΓ(c, r) are present also inΓ(c, r + 1).

• For each spine, there are edges
(
v[i]j, v[i]j+1

)
for all j = 1, . . . , 2c − 1 within each sectioni and

edges
(
v[i]2c, v[i + 1]1

)
from the end of a section to the beginning of next fori = 1, . . . , cr − 1, i.e.,

for all sections but the final one, wherev[cr]2c is a sink.

• For each sectioni in each spine, there are edges
(
zj, v[i]j

)
from thejth pyramid sink to thejth vertex

in the section forj = 1, . . . , c, as well as edges
(
γj , v[i]c+j

)
from the jth sink in Γ(c, r) to the

(c + j)th vertex in the section forj = 1, . . . , c.

We now make the formal statements of the trade-off properties that these DAGs possess. The proofs of
all the statements are postponed to Section 5.2.2. First, wecollect some basic properties.

Lemma 5.17.The graphsΓ(c, r) are of size
∣∣V

(
Γ(c, r)

)∣∣ = Θ
(
cr3 + c3r2

)
, and have black-white pebbling

price BW-Peb∅
(
Γ(c, r)

)
= r + 2 and black pebbling pricePeb∅

(
Γ(c, r)

)
= 2r + 1.

This tells us that the minimum pebbling space required growslinearly with the recursion depthr but is
independent of the number of spinesc of the DAG.

Next, we show that there is a linear-time completely black pebbling ofΓ(c, r) in space linear in the sum
of the parameters. This is in fact a strict improvement (though easily obtained) of the corresponding result
in [CS80, CS82].

Lemma 5.18. The graphΓ(c, r) has a persistent black pebbling strategyP in time linear in the size of the
DAG and with spaceO(c + r).

31

UNDERSTANDING SPACE IN RESOLUTION

z1 γ1z2 γ2z3 γ3

Π1
2r Π2

2r Π3
2r

Γ(3, r)

Figure 4: Inductive definition of Carlson-Savage graph Γ(3, r + 1) with 3 spines and sinks.

32

5 SOME OLD AND NEW PEBBLING RESULTS

The proof is by induction, and the idea in the induction step for Γ(c, r + 1) is to make a persistent
pebbling ofΓ(c, r) in spaceO(c + r), then pebble the pyramidsΠ1

2r, . . . ,Π
c
2r one by one in linear time and

spaceO(r), and finally, using the2c black pebbles onz1, . . . , zc, γ1, . . . , γc that we have left in place, to
pebble allc spines in parallel withO(c) extra pebbles.

The main result of this section is the following theorem, which allows us to get a variety of pebbling
trade-off results if we choose the parametersc andr appropriately.

Theorem 5.19.Suppose thatP is a complete visiting black-white pebbling ofΓ(c, r) with

space(P) < BW-Peb∅
(
Γ(c, r)

)
+ s = (r + 2) + s

for 0 < s ≤ c/8 − 1. Then the time required to performP is lower-bounded by

time(P) ≥
(

c − 2s

4s + 4

)r

· r! .

As has already been noted, we defer the proof of Theorem 5.19 to Section 5.2.2, but let us nevertheless
try to provide some intuition as to why the theorem should be true.

For simplicity, let us focus on black-only pebbling strategies. Inductively, suppose that the trade-off in
Theorem 5.19 has been proven forΓ(c, r) and considerΓ(c, r + 1). Any pebbling strategy for this DAG
will have to pebble through all sections in all spines. Consider the first section anywhere, let us say on
spinej, that has been completely pebbled, i.e., there have been pebbles placed on and removed from all
vertices in the section. Let us say that this happens at timeτ1. But this means thatΓ(c, r) and all pyramids
Π1

2r, . . . ,Π
c
2r must have been completely pebbled during this part of the pebbling as well. Fix any pyramid

and consider some point in timeσ1 < τ1 when the number of pebbles in this pyramid reaches the space
r + O(1) required by the known lower bound on pyramid pebbling price.At this point, the rest of the graph
must contain very few pebbles. In particular, there are veryfew pebbles on the subgraphΓ(c, r) at timeσ1,
so we can think ofΓ(c, r) as being completely empty of pebbles for all practical purposes.

Let us now shift the focus to the next section in the spinej that is completed, say, at timeτ2 > τ1. Again,
we can argue that some pyramid is completely pebbled in the time interval[τ1, τ2], and thus hasr + O(1)
pebbles on it at some timeσ2 > τ1 > σ1. This means that we can think ofΓ(c, r) as being completely
empty at timeσ2 as well.

But note that all sinks in the subgraphΓ(c, r) must have been pebbled in the time interval[σ1, σ2],
and since we know thatΓ(c, r) is (almost) empty at timesσ1 andσ2, this allows us to apply the induction
hypothesis. SinceP has to pebble through a lot of sections in different spines, we will be able to repeat the
above argument many times and apply the induction hypothesis onΓ(c, r) in each round. Adding up all the
lower bounds obtained in this way, we see that the induction step goes through.

This is essentially the proof in [CS80, CS82] for black pebbling, modulo a number of technical details
that we glossed over. For black-white pebbling, these technical complications grow more serious. The
main problem is that in contrast to a black pebbling that has to proceed through the DAG in some kind of
bottom-up fashion, a black-white pebbling can place and remove pebbles anywhere in the DAG at any time.
Therefore, it is more difficult to control the progress of a black-white pebbling, and we have to work harder
in the proof of our theorem.

Also, it should be noted that the added complications when going from black to black-white pebbling
result in our bounds for black-white pebbling being slightly worse than the ones in [CS80, CS82] for black
pebbling only. More specifically, Carlson and Savage are able to prove their results for DAGs having only
Θ(r) sections per spine, whereas we needΘ(cr) sections. This blows up the number of vertices, which in
turn weakens the trade-offs measured in terms of graph size.

It would be interesting to find out whether our proof, presented below, could in fact be made to work for
graphs with onlyO(r) sections per spine. If so, this would immediately improve all the trade-off results for
resolution in Section 6 that we obtain based on the graphs in Definition 5.16.

33

UNDERSTANDING SPACE IN RESOLUTION

5.2.2 Proofs of Lemma 5.17, Lemma 5.18, and Theorem 5.19

Before proving the results claimed in Section 5.2.1, we establish a couple of useful auxiliary lemmas. The
first lemma below gives us information about how the spines inΓ(c, r) are pebbled. We will use this
information repeatedly in what follows.

Lemma 5.20. Suppose thatG is a DAG and thatv is a vertex inG with a pathQ to some sinkzi ∈ Z(G)
such that all vertices inQ \ {zi} have outdegree1. Then any frugal black-white pebbling strategy pebbles
v exactly once, and the pathQ contains pebbles during one contiguous time interval.

Proof. By induction from the sink backwards. The induction base is immediate. For the inductive step,
supposev has immediate successorw and thatw is pebbled exactly once.

If w is black-pebbled at timeσ, thenv has been pebbled before this and the first pebble placed onv
stays until timeσ. No second placement of a pebble onv after timeσ can be essential sincev has no other
immediate successor thanw. If w is white-pebbled and the pebble is removed at timeσ, then the first pebble
placed onv stays until timeσ and no second placement of a pebble onv after timeσ can be essential.

Thus each vertex on the path is pebbled exactly once, and the time intervals when a vertexv and its
successorw have pebbles on them overlap. The lemma follows.

The second lemma speaks about subgraphsH of a DAG G whose only connection to the rest of the
DAG G \ H are via the sink ofH. Note that the pyramids inΓ(c, r) satisfy this condition.

Lemma 5.21. LetG be a DAG andH a subgraph inG such thatH has a unique sinkzh and the only edges
betweenV (H) andV (G) \ V (H) emanate fromzh. Suppose thatP is any frugal complete pebbling ofG
having the property thatH is completely empty of pebbles at some given timeτ ′ but at least one vertex ofH
has been pebbled during the time interval[0, τ ′]. ThenP pebblesH completely during the interval[0, τ ′].

Proof. Suppose thatv ∈ V (H) is pebbled at timeσ′ < τ ′. As in the proof of Lemma 5.10, we can argue by
induction over the length of the longest path fromv to the sinkzh of H thatzh must also be pebbled before
time τ ′. Note that such a path exists since the sinkzh is unique, and that any path starting inv must hitzh

sooner or later, since this vertex is the only way out ofH into the rest ofG. SinceH is empty at times0
andτ ′, we conclude thatP makes a complete visiting pebbling ofH during [0, τ ′].

Let us now establish that the size and pebbling price ofΓ(c, r) are as claimed.

Proof of Lemma 5.17.The base caseΓ(c, 1) for the Carlson-Savage graph in Definition 5.16 has sizec + 2.
A pyramid of heighth has(h+1)(h+2)/2 vertices, so thec pyramids of height2(r−1) in Γ(c, r) contribute
cr(2r−1) vertices. Thec spines withcr sections of2c vertices each contribute a total of2c3r vertices. And
then there are the vertices inΓ(c, r − 1). Summing up, the total number of vertices inΓ(c, r) is

(c + 2) +
r∑

i=2

(
ci(2i − 1) + 2c3i

)
= Θ

(
cr3 + c3r2

)
(33)

as is stated in the lemma.
Clearly, BW-Peb∅(Γ(c, 1)) = Peb∅(Γ(c, 1)) = 3, since pebbling a vertex with fan-in2 requires3

pebbles andΓ(c, 1) can be completely pebbled in this way by placing pebbles on the two sources and then
pebble and unpebble the sinks one by one.

Suppose inductively thatBW-Peb∅(Γ(c, r)) = r + 2 and considerΓ(c, r + 1). It is straightforward to
see thatBW-Peb∅(Γ(c, r + 1)) ≤ r + 3. Every pyramidΠj

2r can be completely pebbled withr + 2 pebbles
(Theorem 5.12). We can pebble each spine bottom-up in the following way, section by section. Suppose by
induction that we have a black pebble on the last vertexv[i − 1]2c in the(i−1)st section. Keeping the pebble

34

5 SOME OLD AND NEW PEBBLING RESULTS

onv[i − 1]2c, perform a complete visiting pebbling ofΠ1
2r. At some point during this pebbling we must have

a pebble on the pyramid sinkz1 and at mostr other pebbles on the pyramid (simply because without loss of
generality some pebble placement onz1 must be followed by a removal or placement of a pebble on some
other vertex). At this time, place a black pebble onv[i]1 and remove the pebble fromv[i − 1]2c. Complete
the pebbling ofΠ1

2r, leaving the pyramid empty. Performing complete visiting pebblings ofΠ2
2r, . . . ,Π

c
2r

in the same way allows us to move the black pebble alongv[i]2, . . . , v[i]c, never exceeding total pebbling
spacer + 3. It is easy to see that in the same way, for every visiting pebbling P of Γ(c, r) there must exist
timesσi for all i = 1, . . . , c, whenspace(Pσi) < space(P) and the sinkγi contains a pebble. Performing
a minimum-space pebbling ofΓ(c, r), possiblyc times if necessary, this allows us to advance the black
pebble alongv[i]c+1, . . . , v[i]2c, never exceeding total pebbling spacer + 3. This show thatΓ(c, r + 1) can
be completely pebbled withr + 3 pebbles. A simple pattern-matching of this argument for black pebbling
(appealing to Theorem 5.12 for the black pebbling price of pyramids) also yieldsPeb∅(Γ(c, r)) ≤ 2r + 3.

To prove that there are matching lower bounds for the pebbling constructed above, it is sufficient to show
that some pyramidΠj

2r must be completely pebbled while there is at least one pebbleonΓ(c, r + 1) outside
of Πj

2r. To see why, note that if we can prove this, then simply by using the the fact thatBW-Peb∅(Π2r) =

r+2 andBW-Peb∅(Π2r) = 2r +2 and adding an additive constant1 for the pebble outside ofΠj
2r we have

the matching lower bounds that we need. We present the argument for black-white pebbling, which is the
harder case. The black-only pebbling case is handled completely analogously.

Suppose to get a contradiction that there is a complete visiting pebbling strategyP for Γ(c, r + 1) in
spacer + 2. By Observation 5.2,P performs a complete visiting pebbling of every pyramidΠj

2r. Consider
the first timeτ1 when some pyramid has been completely pebbled and let this pyramid beΠj1

2r. Then at some
timeσ1 < τ1 there arer + 2 pebbles onΠj1

2r and the rest of the graphΓ(c, r + 1) must be empty of pebbles
at this point.

We claim that this implies that no vertex inΓ(c, r + 1) outside of the pyramidΠj1
2r has been pebbled

before timeσ1. Let us prove this crucial fact by a case analysis.

1. No vertexv in any other pyramidΠj′

2r can have been pebbled before timeσ1. For if so, Lemma 5.21

says thatΠj′

2r has been completely pebbled before timeσ1, contradicting thatΠj1
2r is the first pyramid

completely pebbled byP.

2. No vertex on a spine has been pebbled before timeσ1. This is so since Lemma 5.20 tells us that if
some vertex on a spine has been pebbled, then the whole spine must have been pebbled in view of the
fact that it is empty at timeσ1. But then Lemma 5.10 implies that all pyramid sinks must havebeen
pebbled. This case has already been excluded.

3. Finally, no vertexv in Γ(c, r) can have been pebbled before timeσ1. Otherwise the frugality ofP
implies (by pattern matching on the arguments in the proofs of Lemmas 5.10 and 5.20) that some
successor ofv must have been pebbled as well, and some successor of that successor et cetera, all the
way up to whereΓ(c, r) connects with the spines. But we have ruled out the possibility that a spine
vertex has been pebbled.

This establishes the claim, and we are now almost done. Before clinching the argument, we need to
make a couple of observations. Note first that by frugality, we can conclude that at some time in the interval
(σ1, τ1) some vertex in some spine must be pebbled. This is so since thepyramid sinkzj1 has been pebbled
before timeτ1 and all of Πj1

2r is empty at timeτ1 but all spines are empty at timeσ1 < τ1. But then
Lemma 5.20 tells us that there will remain a pebble on this spine until all of the spine has been completely
pebbled.

Consider now the second pyramidΠj2
2r completely pebbled byP, say, at timeτ2. At some point in time

σ2 < τ2 we haver + 2 pebbles onΠj2
2r, and moreoverσ2 > τ1 sinceΠj2

2r is empty at timeτ1. But now it

35

UNDERSTANDING SPACE IN RESOLUTION

must hold that either there is a pebble on a spine at this point, or, if all spines are completely empty, that
some spine has been completely pebbled. If some spine has been completely pebbled, however, this in turn
implies (appealing to Lemma 5.10 again) that there must be some pebble somewhere in some other pyramid
Πj′

2r at timeσ2. Thus the pebbling space exceedsr + 2 and we have obtained our contradiction. The lemma
follows.

Studying the pebbling strategies in the proof of Lemma 5.17,it is not hard to see that they are terribly
inefficient. The subgraphs inΓ(c, r) will be pebbled over and over again, and for every step in the recursion
the time required multiples. We next show that if we are just abit more generous with the pebbling space,
then we can get down to linear time.

Proof of Lemma 5.18.We want to prove thatΓ(c, r) has a persistent black pebbling strategyP in linear
time and in spaceO(c + r). Suppose that there is such a pebbling strategyPr for Γ(c, r). We show how to
construct a pebblingPr+1 for Γ(c, r + 1) inductively. Note that the base case forΓ(c, 1) is trivial.

The construction ofPr+1 is very straightforward. First usePr to make a persistent pebbling ofΓ(c, r)
in spaceO(c + r). At the end ofPr, we havec pebbles on the sinksγ1, . . . , γc. Keeping these pebbles in
place, pebble the pyramidsΠ1

2r, . . . ,Π
c
2r persistently one by one in linear time and spaceO(r). We leave

pebbles on all pyramid sinksz1, . . . , zc. This stage of the pebbling only requires spaceO(c + r) and at the
end we have2c black pebbles on all pyramid sinksz1, . . . , zc and all sinksγ1, . . . , γc of Γ(c, r). Keeping
all these pebbles in place, we can pebble allc spines in parallel in linear time withc + 1 extra pebbles.

It remains to prove the trade-off result in Theorem 5.19. It is clear that this theorem follows if we can
prove the next, slightly stronger, statement.

Lemma 5.22. Suppose thatP = {Pσ, . . . , Pτ} is a conditional black-white pebbling onΓ(c, r) and thats
is a constant satisfying the following properties:

1. 0 < s ≤ c/8 − 1.

2. P pebbles all sinks inΓ(c, r) during the time interval[σ, τ].

3. max
{

space(Pσ), space(Pτ)
}

< s.

4. space(P) < BW-Peb∅
(
Γ(c, r)

)
+ s = (r + 2) + s.

Then it holds thattime(P) = τ − σ ≥
(

c−2s
4s+4

)r · r! .

We will have to spend some time working on this lemma before the proof is complete. We start by
establishing two additional auxiliary lemmas that upper-bound how many pyramids and spine sections can
contain pebbles simultaneously at any one given time in a pebbling subjected to space constraints as in
Lemma 5.22. The claims in the two lemmas are very similar in spirit, as are the proofs, so we state the
lemmas together and then present the proofs together.

Lemma 5.23. Suppose thatP = {Pσ, . . . , Pτ} is a conditional black-white pebbling onΓ(c, r) and thats
is a constant such thatP ands satisfy the conditions in Lemma 5.22. Then at all times during the pebbling
P strictly less than4(s + 1) pyramidsΠj

2r contain pebbles simultaneously.

Lemma 5.24. Suppose thatP = {Pσ, . . . , Pτ} is a conditional black-white pebbling onΓ(c, r) and thats
is a constant such thatP ands satisfy the conditions in Lemma 5.22. Then at all times during the pebbling
P strictly less than4(s + 1) spine sections contain pebbles simultaneously.

36

5 SOME OLD AND NEW PEBBLING RESULTS

Note that Lemma 5.24 provides a total bound on the number of pebbled sections in allc spines. There
might be spines containing several sections being pebbled simultaneously (in fact, this is exactly what one
would expect a black-white pebbling to do in order to optimize the time given the space constraints), but
what Lemma 5.24 says is that if we fix an arbitrary timet ∈ [σ, τ], add up the number of sections containing
pebbles at timet in each spine, and sum over all spines, we never exceed4(s + 1) sections in total at any
point in timet ∈ [σ, τ].

Proof of Lemma 5.23.Suppose that on the contrary, there is some timet∗ ∈ (σ, τ) when at least4s + 4
pyramidsΠj in Γ(c, r) contain pebbles. Of these pyramids, at least2s + 4 are empty both at timeσ and
at timeτ sincespace(Pσ) < s andspace(Pτ) < s. By Lemma 5.21, these pyramids, which we denote
Π1, . . . ,Π2s+4, are completely pebbled. We conclude that for everyΠj , j = 1, . . . , 2s + 4, there is an
interval [σj , τj] such thatt∗ ∈ (σj, τj) andΠj is empty at timesσj andτj but contains pebbles throughout
the interval(σj , τj) during which it is completely pebbled.

For eachΠj there must exist some timet∗j ∈ (σi, τi) when there are at leastr + 1 = BW-Peb∅
(
Πj

)

pebbles. Fix such a timet∗j for every pyramidΠj and assume that allt∗j , j = 1, . . . , 2s + 4, are sorted in
increasing order. We have two possible cases:

1. At least half of allt∗j occur before (or at) timet∗, i.e., they satisfyt∗j ≤ t∗. If so, look at the largest
t∗j ≤ t∗. At this time there are at leastr + 1 pebbles onΠj and at least2s+4

2 − 1 = s + 1 pebbles on
other pyramids, which means thatspace

(
Pt∗j

)
≥ (r + 2) + s. In other words,P exceeds the space

restrictions contradicting our assumptions.

2. At least half of allt∗j occur after timet∗, i.e., they satisfyt∗j > t∗. If we consider the smallestt∗j larger
thant∗ we can again conclude thatspace

(
Pt∗j

)
≥ (r + 1) + (s + 1), which is a contradiction.

Hence, ifP is a pebbling that complies with the restrictions in Lemma 5.22, it can never be the case that
4s + 4 pyramidsΠj in Γ(c, r) contain pebbles simultaneously duringP.

Proof of Lemma 5.24.Suppose in order to get a contradiction that at some timet∗ ∈ (σ, τ) at least4s + 4
sections contain pebbles. At least2s + 4 of these sections are empty at timesσ and τ . Let us denote
these sectionsR1, . . . , R2s+4. Appealing to Lemma 5.20, we conclude that there are intervals [σj , τj] for
j = 1, . . . , 2s+4, such thatt∗ ∈ (σj , τj) andRj is empty at timesσj andτj but contains pebbles throughout
the interval(σj , τj) during which it is completely pebbled.

By Lemma 5.23 we know that less than4s + 4 pyramids contain pebbles at timeσj and similarly at
time τj. Since allc pyramids inΓ(c, r) must have their sinks pebbled during(σj, τj) but we have2 · (4s +
4) < c by the assumptions in Lemma 5.22, we conclude from Lemma 5.21that for every interval(σj , τj)
we can find some pyramidΠj that is completely pebbled during this interval. This, in turn, implies that
there is some timet∗j ∈ (σj , τj) when the pyramidΠj contains at leastBW-Peb∅

(
Πj

)
= r + 1 pebbles.

(We note that manyt∗j can be equal and even refer to the same pyramid which has just happened to receive
a lot of different labels, but this is not a problem as we shallsee.)

As in the proof of Lemma 5.23, we now sort thet∗j , j = 1, . . . , 2s + 4, in increasing order and consider
the two possible cases. If at least half of allt∗j satisfyt∗j ≤ t∗, we look at the largestt∗j ≤ t∗. At this time
there are at leastr + 1 pebbles onΠj and at least2s+4

2 = s + 2 pebbles on different sections, which means
thatspace

(
Pt∗j

)
≥ rs + 3 exceeds the space restrictions. If, on the other hand, at least half of allt∗j satisfy

t∗j > t∗, then for the smallestt∗j larger thant∗ we can again conclude thatspace
(
Pt∗j

)
≥ r + s + 3, which

is a contradiction. The lemma follows.

Putting together everything that has been proven so far in this section, we are able to establish the
pebbling trade-off result.

37

UNDERSTANDING SPACE IN RESOLUTION

Proof of Lemma 5.22.Suppose thatP = {Pσ, . . . , Pτ} is a conditional black-white pebbling onΓ(c, r)
pebbling all sinks and thatmax

{
space(Pσ), space(Pτ)

}
< s andspace(P) < (r + 2) + s for 0 < s ≤

c/8 − 1. Let us define

T (c, r, s) =

(
c − 2s

4s + 4

)r

· r! . (34)

We show thattime(P) ≥ T (c, r, s) by induction overr.
For r = 1, the assumptions in the lemma imply that more thanc − 2s sinks are empty at timesσ andτ .

These sinks must be pebbled, which trivially requires strictly more thanc − 2s >
(

c−2s
4s+4

)
= T (c, 1, s) time

steps.
Assume that the lemma holds forΓ(c, r − 1) and consider any pebbling ofΓ(c, r). Less than2s spines

contain pebbles at timeσ or timeτ . All the other strictly more thanc−2s spines are empty at timesσ andτ
but must be completely pebbled during[σ, τ] by Lemma 5.10.

Consider the first timeσ′ when any spine gets a pebble for the first time. Let us denote this spine byQ′.
By Lemma 5.20 we know thatQ′ contains pebbles during a contiguous time interval until itis completely
pebbled and emptied at, say, timeτ ′. During this whole interval[σ′, τ ′] less than4s + 4 sections contain
pebbles at any one given time, so in particular less then4s+4 spines contain pebbles. Moreover, Lemma 5.20
says that every spine containing pebbles will remain pebbled until completed. What this means is that if we
order the spines with respect to the time when they first receive a pebble in groups of size4s + 4, no spine
in the second group can be pebbled until the at least one spinein the first group has been completed.

We remark that this divides the spines that are empty at the beginning and end ofP into strictly more
than

c − 2s

4s + 4
(35)

groups. Furthermore, we claim that completely pebbling just one empty spine requires at least

r · T (c, r − 1, s) (36)

time steps. Given this claim we are done, since combining (35) and (36) we can deduce that the total
pebbling time is lower-bounded by

c − 2s

4s + 4
r · T (c, r − 1, s) = T (c, r, s) (37)

since at least one spine from each group is pebbled in a time interval totally disjoint from the time intervals
for all spines in the next group.

It remains to establish the claim. To this end, fix any spineQ∗ empty at timesσ∗ andτ∗ but completely
pebbled in[σ∗, τ∗]. Consider the first timeτ1 ∈ [σ∗, τ∗] when any section inQ∗, let us denote it byR1, has
been completely pebbled (i.e., , all vertices has been touched by pebbles but are now empty again). During
[σ∗, τ1] all pyramid sinksz1, . . . , zc are pebbled (Lemma 5.10), and since less than2 ·(4s+4) < c pyramids
contain pebbles at timesσ∗ or τ1 (Lemma 5.23), at least one pyramid is pebbled completely (Lemma 5.21),
which requiresr+1 pebbles. Moreover, there is at least one pebble onR1 during this whole interval. Hence,
there is a timeσ1 ∈ [σ∗, τ1] when there are strictly less than(r + 2) + s − (r + 1) − 1 = s pebbles on
Γ(c, r − 1). Also, at this timeσ1 less than4s + 4 sections contain pebbles (Lemma 5.24), and in particular
this means that there are pebbles on less than4s + 3 other section of our spineQ∗. This puts an upper
bound on the number of sections ofQ∗ pebbled this far, since every section is completely pebbledduring
a contiguous time interval before being emptied again, and we chose to focus on the first sectionR1 in Q∗

that was finished.
Look now at the first sectionR2 in Q∗ other than the less than4s + 4 sections containing pebbles at

timeσ1 that is completely pebbled, and let the time whenR2 is finished be denotedτ2 (clearly, τ2 > τ1).

38

5 SOME OLD AND NEW PEBBLING RESULTS

During [σ1, τ2] all sinks ofΓ(c, r − 1) must have been pebbled, and at timeτ2 − 1 less than4s + 3 other
section inQ∗ contain pebbles.

Wrapping up, consider the first new sectionR3 in our spineQ∗ to be completely pebbled among those
that has not yet been touched at timeτ2 − 1. Suppose thatR3 is finished at timeτ3. Then during[τ2, τ3]
some pyramid is completely pebbled, and thus there must exist a timeσ3 ∈ (τ2, τ3) when there are at least
r + 1 pebbles on this pyramid and at least one pebble on the spineQ∗, leaving less thans pebbles for
Γ(c, r − 1). But this means that we can apply the induction hypothesis onthe interval[σ1, σ3] and deduce
that σ3 − σ1 ≥ T (c, r − 1, s). Note also that at timeσ3 less than8s + 8 < c sections inQ∗ have been
finished.

Continuing in this way, for every group of8s + 8 < c finished sections inQ∗ we get one pebbling of
Γ(c, r − 1) in space less thanBW-Peb∅

(
Γ(c, r − 1)

)
+ s and with less thans pebbles in the start and end

configurations, which allows us to apply the induction hypothesis a total number of at leastcr8s+8 > r times.
(Just to argue that we get the constants right, note that8s + 8 < c implies that after the final pebbling of
the sinks ofΓ(c, r − 1) has been done, there is still some empty section left inQ∗. When this final section
is taken care of, we will again get at leastr + 1 pebbles on some pyramid while at least one pebble resides
onQ∗, so we get the space onΓ(c, r − 1) down belows as is needed for the induction hypothesis.)

This proves our claim that pebbling one spine takes time at leastr·T (c, r−1, s). The lemma follows.

As we already noted, this completes the proof of Theorem 5.19, since this theorem follows immediately
from Lemma 5.22 for the special case whenPσ = Pτ = (∅, ∅).

5.3 Recapitulation of Some Known Pebbling Trade-off Result s

All the material in Section 5.3 is from [LT82]. The statements of the results below differ slightly in the
constants in that paper, though, since there are some (minor) technical differences in the definitions as
compared to the present paper.

5.3.1 Pebbling Trade-offs for Constant Space

Even for graphs pebblable in minimal constant space, there are nontrivial time-space trade-offs. More
precisely, Lengauer and Tarjan [LT82] prove the following quadratic trade-offs for constant pebbling space.

Theorem 5.25 ([LT82]). There are explicitly constructible DAGsGn of sizeΘ(n) with a single sink and
maximal indegree2 having the following pebbling properties:

• The black pebbling price ofGn is Peb(Gn) = 3.

• Any black pebbling strategyPn for Gn that optimizes time given space constraints6 O(n) exhibits a
trade-offtime(Pn) = Θ

(
n2/space(Pn)

)
.

• Any black-white pebbling strategyPn for Gn that optimizes time given space constraintsO
(√

n
)

exhibits a trade-offtime(Pn) = Θ
(
(n/space(Pn))2

)
.

We will present (most of) the proof of Theorem 5.25, since we have to use this theorem in a “non-black-
box” way to derive the results that we need. The trade-offs inthe theorem are obtained for graphs built from
permutations in the following way.

6The reason for including the upper bounds on space in the statement of the theorem is that no matter how much space is
available, it is of course never possible to do better than linear time. Thus the trade-offs cannot hold when length dips below linear.

39

UNDERSTANDING SPACE IN RESOLUTION

w0

u0

w1

u1

w2

u2

w3

u3

w4

u4

w5

u5

w6

u6

w7

u7

w8

u8

w9

u9

w10

u10

Figure 5: Permutation graph over 11 vertices defined by permutation sending x to 2x mod 11.

Definition 5.26 (Permutation graph ([LT82])). Let π denote some permutation of{0, 1, . . . , n − 1}. The
permutation graph∆(n, π) overn elements with respect toπ is defined as follows.∆(n, π) has2n vertices
divided into alower rowwith verticesu0, u1, . . . , un−1 and anupper rowwith verticesw0, w1, . . . , wn−1.
For all i = 0, 1, . . . , n−2, there are directed edges(ui, ui+1) and(wi, wi+1), and for alli = 0, 1, . . . , n−1,
there are edges

(
ui, wπ(i)

)
from the lower row to the upper row.

Thus, the only source vertex in∆(n, π) is u0 and the only sink vertex iswn−1. All vertices in the lower
row except the leftmost one have indegree1 and all vertices in the upper row except the leftmost one have
indegree2. Figure 5 shows an example of a permutation graph.

Any DAG of fan-in2 must have pebbling price at least3. It is not too hard to see that permutation graphs
∆(n, π) have pebbling strategies in this minimal space: keeping onepebble on vertexwi of the upper row,
move two pebbles consecutively on the lower row untiluπ−1(i+1) is reached, and then pebblewi+1. This
strategy is not too efficient timewise, however. It will taketime Ω(n2) in the worst case (for instance, for
the permutation sendingi to n − i − 1).

Generalizing the pebbling strategy just sketched, we get the following upper bound on the time-space
trade-off for any permutation graph.

Lemma 5.27 ([LT82]). Let∆(n, π) be the permutation graph overn elements for any permutationπ. Then
the black pebbling price of∆(n, π) is Peb(∆(n, π)) = 3, and for any spaces, 3 ≤ s ≤ n, there is a black
pebbling strategyP for ∆(n, π) with space(P) ≤ s and time(P) ≤ 2n2

s−2 + 2n.

Clearly, the space interval of interest is3 ≤ s ≤ n since fors > n there is the trivial pebbling that
places pebbles on all vertices in the lower row and then sweeps a black pebble across the upper row.

To prove lower bounds for permutation graphs, Lengauer and Tarjan focus on permutations defined in
terms of reversing the binary representation of the integers {0, 1, . . . , n − 1} whenn is an even power of2.

Definition 5.28 (Bit reversal graph ([LT82])). The m-bit reversalof i, 0 ≤ i ≤ 2m − 1, is the integer
revm(i) obtained by writing them-bit binary representation ofi in reverse order. Thebit reversal graph
∆(2m, revm) is the permutation graph overn = 2m with respect torevm.

For instance, we haverev3(1) = 4, rev3(2) = 2, andrev3(3) = 6. We will denote the bit reversal graph
by ∆(n, rev) for simplicity, implicitly assuming thatn = 2m. An example of a bit reversal graph can be
found in Figure 6.

For bit reversal graphs, the trade-off in Lemma 5.27 for black pebbling is asymptotically tight.

Theorem 5.29 ([LT82]). Suppose thatP is any complete black pebbling of the bit reversal graph∆(n, rev)

overn = 2m elements such thatspace(P) = s for s ≥ 3. Thentime(P) ≥ n2

8s .

Note, in particular, that if we want to black-pebble∆(n, rev) in linear time, then linear space is needed.
We again omit the proof in order to focus instead on the more challenging black-white pebbling case. It

40

5 SOME OLD AND NEW PEBBLING RESULTS

000

000

001

001

010

010

011

011

100

100

101

101

110

110

111

111

Figure 6: Bit reversal graph ∆(8, rev) on 8 elements.

turns out that if we are also allowed to use white pebbles, theproof of Theorem 5.29 breaks down due to
the fact that a central assumption in the proof is that any pebbling proceeds through the DAG in topological
order. This does not hold for a black-white pebbling since white pebbles can be placed anywhere in the
graph. Modifying the argument to take this possibility intoaccount, we get the following lower bound.

Theorem 5.30 ([LT82]). LetP be any complete black-white pebbling of∆(n, rev) with space(P) = s for
s ≥ 3. Thentime(P) ≥ n2

18s2 + 2n.

Proof. Suppose thats < n/6 since otherwise the statement is trivially true. Writem = log n and fixr such
that3s ≤ 2r < 6s. Divide the vertices in the upper row into2m−r > n/6s intervals

Ij =
{
wj·2r , wj·2r+1, . . . , w(j+1)·2r−1

}
(38)

of length2r for 0 ≤ j < 2m−r. Let τ0 = 0 andM0 = ∅, and inductively defineτi to be the first time after
τi−1 when the first intervalIj /∈ Mi−1 has been pebbled and unpebbled completely. At timeτi, a pebble is
removed fromIj and at mosts− 1 other intervalsIj′ contain pebbles. LetMi be the union ofMi−1 and the
at mosts intervals just mentioned, includingIj. Repeat this procedure fori = 1, 2, 3, . . . until Mi covers all
intervals (which clearly must be the case at the end of the pebbling).

There are strictly more thann/6s intervals, and at mosts new intervals are added toMi in each iteration.
Hence, the above procedure is repeated at least

⌈
n/6s2

⌉
times. We claim that in betweenτi−1 andτi, there

are at leastn/6 pebble placements made on the lower row. To prove this claim,note first that by construction
Ij is empty at timeτi−1, so all ofIj is pebbled during[τi−1, τi]. Now look at the set of vertices

rev−1
m (Ij) =

{
ui

∣∣ i = rev−1
m

(
j · 2r

)
, rev−1

m

(
j · 2r + 1

)
, . . . , rev−1

m

(
(j + 1) · 2r − 1

)}
(39)

in the lower row. (Figure 7 illustratesI1 = {w4, w5, w6, w7} andrev−1
m (I1) for r = 2 in the bit reversal

DAG over16 elements.) By the definition of bit reversal permutations, every Ij divides the lower row into
2r−1 intervals of length exactly2m−r. To see this, note thatrev−1

m fixes then−r lower bits to the bit pattern
j ·2r reversed, while ther upper bits run through all combinations of0 and1. Disregarding the leftmost and
rightmost intervals, we get2r−1 intervals of length exactly2m−r in between the end intervals. At timeτi−1,
at mosts− 1 of these intervals in the lower row contain pebbles, and at timeτi at mosts− 1 other intervals
contain pebbles. By Lemma 5.10, all the other at least2r − 2(s− 1) > s intervals in the lower row must be
completely pebbled and unpebbled during[τi−1, τi]. But this requires more thans · 2m−r > s ·n/6s = n/6
pebble placements.

Summing over all of the at least
⌈
n/6s2

⌉
iterations, we get a total of more thann/6·

⌈
n/6s2

⌉
≥ (n/6s)2

pebble placements on the lower row plus at leastn placements on the upper row, and multiplying by2 to
adjust for removals gives the bound stated in the theorem.

41

UNDERSTANDING SPACE IN RESOLUTION

0000

0000

0001

0001

0010

0010

0011

0011

0100

0100

0101

0101

0110

0110

0111

0111

1000

1000

1001

1001

1010

1010

1011

1011

1100

1100

1101

1101

1110

1110

1111

1111

Figure 7: Upper-row vertices wj·2r , wj·2r+1, . . . , w(j+1)·2r
−1 split lower row into evenly sized intervals.

The reason for the discrepancy between Theorem 5.29 and Theorem 5.30 turns out to be that in fact, it
is possible to do better using white pebbles in addition to the black ones. In particular, there is a linear-time
black-white pebbling strategy for∆(n, rev) using only order of

√
n pebbles.

Theorem 5.31 ([LT82]). For any spaces ≥ 3 there is a complete black-white pebblingP of ∆(n, rev) with
space(P) ≤ s and time(P) ≤ 144n2

s2 + 12n.

Since we will need to use the construction in Theorem 5.31 when devising resolution refutations of
the corresponding pebbling formulas in Section 6.1, we present a detailed proof. The main work is in
establishing the next lemma. We show the lemma first and then explain how it implies Theorem 5.31.

Lemma 5.32 ([LT82]). For all s, 3 ≤ s ≤ 3
√

n, there is a complete pebbling of∆(n, rev) in space at
mosts and time at most144n2

s2 + 2n.

Proof of Lemma 5.32.Write m = log n and letr be the non-negative integer such that

3 · 2r ≤ s < 3 · 2r+1 . (40)

Divide the upper row of∆(n, rev) into 2r intervals

Ij =
{
wj·2m−r+k

∣∣ k = 0, 1, . . . , 2m−r − 1
}

(41)

of size2m−r for j = 0, . . . , 2r − 1 and then subdivide each intervalIj into 2m−2r chunks by defining

Ci
j =

{
wj·2m−r+i·2r+k

∣∣ k = 0, 1, . . . , 2r − 1
}

(42)

for i = 0, . . . , 2m−2r − 1. Note that we must have2m−2r ≥ 1 for this definition to make sense, but this
holds sinces ≤ 3

√
n by assumption. Figure 8 exemplifies these definitions on the32-element bit reversal

DAG with 22 intervals and2 chunks per interval.
The pebbling strategy will proceed in2m−2r phasescorresponding to the2m−2r chunks in each interval,

and in2r stageswithin each phase corresponding to the different intervals. All the phases in the pebbling
are completely analogous except for some minor tweaks in thefirst and final phases, which we refer to as
the0th and(2m−2r − 1)st phases, respectively. To help the reader parse the notation, we note that in what
follows superscriptsi will correspond to phases/chunks and subscriptsj to stages/intervals. We reserve2r

pebbles for the lower row,2r pebbles for the “current chunks” in the upper row, and2r − 1 pebbles for the
rightmost vertices inI0, I1, . . . , I2r−2. By the leftmost inequality in (40), this leaves one auxiliary pebble to
help with advancing the other pebbles.

42

5 SOME OLD AND NEW PEBBLING RESULTS

I0 I1 I2 I3
00

00
0

00
00

0

00
00

1
00

00
1

00
01

0
00

01
0

00
01

1
00

01
1

00
10

0
00

10
0

00
10

1
00

10
1

00
11

0
00

11
0

00
11

1
00

11
1

01
00

0
01

00
0

01
00

1
01

00
1

01
01

0
01

01
0

01
01

1
01

01
1

01
10

0
01

10
0

01
10

1
01

10
1

01
11

0
01

11
0

01
11

1
01

11
1

10
00

0
10

00
0

10
00

1
10

00
1

10
01

0
10

01
0

10
01

1
10

01
1

10
10

0
10

10
0

10
10

1
10

10
1

10
11

0
10

11
0

10
11

1
10

11
1

11
00

0
11

00
0

11
00

1
11

00
1

11
01

0
11

01
0

11
01

1
11

01
1

11
10

0
11

10
0

11
10

1
11

10
1

11
11

0
11

11
0

11
11

1
11

11
1

Figure 8: Intervals Ij for r = 2 in ∆(32, rev) and 0th chunks in I0 and Irevr(1) = I2 with inverse images.

Start the0th stage in the0th phase by doing a black-only pebbling of the lower row, leaving pebbles on
the2r vertices in

U0
0 = {urevm(k) | k = 0, 1, . . . , 2r − 1} (43)

and then, using the support of these pebbles, sweep a black pebble past the0th chunkw0, w1, . . . , w2r−2

of I0, leaving it on the rightmost vertexw2r−1. This concludes the0th stage.
In the next stage, move all black pebbles inU0

0 on the lower row exactly one step to the right to the
verticesuk for k = 1, revm(1) + 1, revm(2) + 1, . . . , revm(2r − 1) + 1. Using the fact that we can write
1 = revm(revr(1) · 2m−r) by shifting1 first r bits to the left, thenm − r bits more and finally all the way
back again, we see that the set of lower-row vertices now covered by black pebbles is

U0
1 =

{
urevm(revr(1)·2m−r+k)

∣∣ k = 0, 1, . . . , 2r − 1
}

, (44)

which by (42) is the set of all predecessors in the lower row ofthe0th chunkC0
revr(1) of the intervalIrevr(1)

(see Figure 8 for a concrete example of this). If we place a white pebble on the rightmost vertex of the
interval Irevr(1)−1, this white pebble plus the lower-row black pebbles onU0

1 allow us to advance a black
pebble along all the vertices of the0th chunk ofIrevr(1), leaving it on the rightmost vertex. This concludes
stage1 of phase0.

Continuing in this way, in thejth stage of phase0 we can move the lower-row pebbles fromU0
j−1 to U0

j

where this notation is generalized to mean

U0
j =

{
urevm(revr(j)·2m−r+k)

∣∣ k = 0, 1, . . . , 2r − 1
}

(45)

for all j ≤ 2r − 1, and then place black pebbles on the rightmost vertex in every chunkC0
revr(j) with the

help of a white pebble on the rightmost vertex inIrevr(j)−1. At the end of the final stage of phase0, we thus
have black pebbles on the rightmost vertices of all0th chunks and white pebbles on the rightmost vertices
of I0, I1, . . . , I2r−2. Later phases will move the black pebbles to the right, chunkby chunk, while leaving
the white pebbles in place. We observe that during phase0, we made at mostn pebble placements on the
lower row to get the pebbles into “starting position”U0

0 , and then exactly2r placements more on the lower
row in each of the other2r − 1 stages.

Inductively, suppose at the beginning of phasei that there are black pebbles on the rightmost vertices in
all (i − 1)st chunks. Let us extend the lower-row vertex set notation above to full generality and define

U i
j =

{
urevm(revr(j)·2m−r+i·2r+k)

∣∣ k = 0, 1, . . . , 2r − 1
}

= rev−1
m

(
Ci

revr(j)

)
, (46)

43

UNDERSTANDING SPACE IN RESOLUTION

where the second equality is easily verified from (42). In stage 0 of phasei, we rearrange the lower-row
black pebbles so that they cover the vertices inU i

0. Since the2r black pebbles are already present somewhere
on the lower row, this can be achieved with at mostn − 2r pebble placements (the details can be found in
the proof in [LT82] for our Lemma 5.27). This allows us to advance the pebble inI0 on the upper row from
the rightmost vertex in chunki− 1 to the rightmost vertex in chunki. Moving the vertices inU i

0 one step to
the right in each following stage toU i

1, U
i
2, et cetera, we can sweep black pebbles across theith chunks of

the other intervalsIj in the orderIrevr(1), Irevr(2), . . . , Irevr(2r−2), Irevr(2r−1) = I2r−1. All in all, we make
at most(n − 2r) + (2r − 1) · 2r pebble placements on the lower row during phasei for i ≥ 1.

In the final(2m−2r − 1)st phase, we already have white pebbles on the rightmost vertex of the chunk in
every interval except the rightmost oneI2r−1. Therefore, in every stage except the final one, instead of plac-
ing a black pebble on the rightmost vertex in the chunk we use the black pebbles on the two predecessors of
this vertex to remove the white pebble. In the very final stage, we place a black pebble onwn−1. Removing
all other pebbles from the DAG, which are all black, we have obtained a complete pebbling of∆(n, rev).

The space of this pebbling is3 ·2r ≤ s by construction. As to pebble placements, it is easy to verify that
each vertex in the upper row is pebbled exactly once. The number of pebble placements in the lower row is
at mostn + (2r − 1) · 2r during phase0 and at most(n− 2r)+ (2r − 1) · 2r for each of the other2m−2r − 1
phases, and summing up we get a total of at most

2m−2r
(
(n − 2r) + (2r − 1) · 2r

)
+ 2r + 2n < 2m−2r

(
n + 22r

)
+ 2n

≤ 72
n2

s2
+ 2n

(47)

placements, where we used that2m−2r ≥ 1, 2r ≤ s/3 < 2r+1, ands ≤ 3
√

n. Multiplying by 2 to take the
pebble removals into account gives the time bound stated in the lemma.

Proof of Theorem 5.31.For s ≤ 3
√

n the statement was proven in Lemma 5.32 (and note that fors < 70,
the black-only pebbling in Lemma 5.27 gives a better time bound). To get the statement fors > 3

√
n, use

the same pebbling strategy as in the proof of Lemma 5.32 but chooser so that
√

n/2 < 2r ≤ √
n. Then the

number of chunks2m−2r is at most2, and the time bound derived from (47) reduces to12n.

On a high level, the reason that black-white pebblings can domuch better than black-only pebblings on
bit reversal DAGs is that these graphs have such a regular structure. Lengauer and Tarjan raise the question
whether there are other permutations for which the lower bound in Theorem 5.29 holds also for black-white
pebbling, and conjecture that the answer is yes. To the best of our knowledge, this problem is still open.
We do not know of any candidate permutations for establishing the conjecture, but one could ask whether
anything informative could be said about what holds for, forinstance, a random permutation in this respect.
If the conjecture turns out to be true for a random permutation (with high probability, say), then such a
result, although non-constructive, would be interesting.

5.3.2 DAGs Yielding Robust Pebbling Trade-offs

To get robust pebbling trade-offs, i.e., trade-offs that hold over a large space interval, we use a DAG family
studied in [LT82, Section 4].

Definition 5.33 (Stack of superconcentrators ([LT82])).Let SC m denote any (explicitly constructible)
linear-sizem-superconcentrator with bounded indegree and depthO(log m). ThenΦ(m, r) denotes the
graph constructed by stackingr copiesSC 1

m, . . . ,SC r
m of SC m on top of one another, with the sinks

zj
1, z

j
2, . . . , z

j
m of SC j

m connected to the sourcessj+1
1 , sj+1

2 , . . . , sj+1
m of SC j+1

m by edges
(
zj
i , s

j+1
i

)
for all

i = 1, . . . ,m and allj = 1, . . . , r − 1.

44

5 SOME OLD AND NEW PEBBLING RESULTS

z1
1

z2
1

z3
1

s1
1

s2
1

s3
1

sr
1

zr
1

z1
2

z2
2

z3
2

s1
2

s2
2

s3
2

sr
2

zr
2

z1
3

z2
3

z3
3

s1
3

s2
3

s3
3

sr
3

zr
3

z1
4

z2
4

z3
4

s1
4

s2
4

s3
4

sr
4

zr
4

z1
5

z2
5

z3
5

s1
5

s2
5

s3
5

sr
5

zr
5

z1
6

z2
6

z3
6

s1
6

s2
6

s3
6

sr
6

zr
6

z1
7

z2
7

z3
7

s1
7

s2
7

s3
7

sr
7

zr
7

z1
8

z2
8

z3
8

s1
8

s2
8

s3
8

sr
8

zr
8

SC
(1)
8

SC
(2)
8

SC
(3)
8

SC
(r)
8

Figure 9: Schematic illustration of stack of superconcentrators Φ(8, r).

Clearly,Φ(m, r) has sizeΘ(rm). Figure 9 gives a schematic illustration of the construction.
Lengauer and Tarjan establish fairly detailed trade-off results for stacks of superconcentrators using

different explicit and non-explicit constructions for thesuperconcentrator building blocks. All of these
results can be translated into corresponding trade-off results in resolution. For simplicity and conciseness,
however, we only state a special case of their results, and provide a brief proof sketch for the interested
reader.

Theorem 5.34 ([LT82]). For Φ(m, r) a stack of (explicitly constructible) linear-sizem-superconcentrators
with bounded indegree and depthO(log m), the following holds:

• Peb
(
Φ(m, r)

)
= O(r log m).

• There is a linear-time black pebbling strategyP for Φ(m, r) with space(P) = O(m).

• If P is a black-white pebbling strategy forΦ(m, r) in spaces ≤ m/20, thentime(P) ≥ m ·
(

rm
64s

)r
.

Proof sketch.The upper bound on black pebbling price follows from Observation 5.9, since the depth of
Φ(m, r) is O(r log m). The linear-time black pebbling strategy is obtained by applying the trivial pebbling
strategy in Observation 5.7 consecutively to each superconcentrator, keeping pebbles on the sinks ofSC j

m

while pebblingSC j+1
m .

45

UNDERSTANDING SPACE IN RESOLUTION

The reason that the final trade-off result holds is, very loosely put, that the lower bounds in Lemma 5.14
and Corollary 5.15 propagate through the stack of superconcentrators and get multiplied at each level. If the
pebbling strategy is restricted to keepings/r pebbles on each copySC j

m of the superconcentrator, this is
not hard to prove directly from Lemma 5.14. Establishing that this intuition holds also in the general case,
when pebbles may be unevenly distributed over the superconcentrator copies, is much more technically
challenging, however.

5.3.3 Exponential Pebbling Trade-offs

To get exponential trade-offs, i.e., trade-offs with lowerbounds on the length on the form2nε
for some

constantε > 0, the graphs in Section 5.3.2 are not sufficient. Instead, we need to appeal to stronger results
from [LT82, Section 5].

Theorem 5.35 ([LT82]). For every` ∈ N+ there exist constantsc, c′ > 1 such that the following holds
for all sufficiently largen. Let G be a DAG withn vertices and maximal indegreè. Then for any space
constraints satisfyingcn/ log n ≤ s ≤ n, there is a black pebbling strategyP for G with space(P) ≤ s

and time(P) ≤ s · 22c′n/s
.

By stacking superconcentrators ofdefferent sizeson top of one another, Lengauer and Tarjan are able to
prove a matching lower bound. We refer to [LT82, Section 5] for the details of the construction.

Theorem 5.36 ([LT82]). There exists a constantε > 0 such that the following holds for all sufficiently large
integersn, s satisfyingcn/ log n ≤ s ≤ n: There exists a DAGG with maximal indegree2 and number
of vertices at mostn such that any black-white pebbling strategyP for G with space(P) ≤ s must have
time(P) ≥ s · 22εn/s

.

Note that the graphG in Theorem 5.36 depends on the pebbling space parameters. Lengauer and
Tarjan conjecture that no single graph gives an exponentialtime-space tradeoff for the whole range ofs ∈
[n/ log n, n], but to the best of our knowledge this problem is still open.

6 Time-Space Trade-offs for Resolution

We have finally reached the point where we can state and prove our time-space trade-off results for resolu-
tion. Given all the work done so far, the proofs are mostly simple variations of the following pattern: pick
some graph family in Section 5, make the appropriate choicesof parameters, consider the corresponding
pebbling contradiction CNF formulas, dof-substitution for some non-authoritarian functionf, and apply
Theorem 4.4 (which we obtained with the help of Theorem 3.5).

Note that all the pebbling trade-off results are for explicit formulas (since they are pebbling formulas
over explicitly constructible graphs). We also repeat one final time that all trade-offs hold for variable space
and clause space simultaneously, since the upper bounds arefor variable space and the lower bounds for
clause space.

6.1 Trade-offs for Constant Space

Our first result is that time-space trade-offs in resolutioncan occur even for formulas refuted in (very small)
constant space. What is more, there are such formulas for which we can prove not only a trade-off threshold,
but even specify the whole trade-off curve.

Theorem 6.1. There are explicitly constructible families{Fn}∞n=1 of minimally unsatisfiablek-CNF formu-
las of sizeΘ(n) such that:

46

6 TIME-SPACE TRADE-OFFS FOR RESOLUTION

1. Every formulaFn is refutable in resolution in lengthL(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O(1) (but not simultaneously).

2. For anys > 0 there is a refutationπn : Fn ` 0 in simultaneous variable spaceVarSp(πn) = O(s)
and lengthL(π) = O

(
(n/s)2 + n

)
.

3. Any resolution refutationπn : Fn ` 0 in clause spaceSp(πn) = s for s ≥ Sp(Fn ` 0) must have
lengthL(π) = Ω

(
(n/s)2 + n

)
.

The constants hidden in the asymptotic notation are independent ofn ands.

Proof. Fix any non-authoritarian functionf of arity d and consider the pebbling formulasPeb∆(m,rev)[f]
defined over bit reversal DAGs∆(m, rev) in Definition 5.28 form = log n.

Appealing to Theorem 4.4 will get us a long way but not quite toour final destination. More precisely,
the upper bounds on length and space follow from Lemma 5.27 inthis way, and the lower bound in the
trade-off follows from Theorem 5.30. We cannot get the upperbound in the same manner, though, since
Theorem 5.29 tells us that therecannotexist black pebblings with parameters matching the lower bounds
for black-white pebblings. Obviously, if we could obtain a resolution refutation mimicking the black-white
pebbling strategy in Theorem 5.31, we would get a tight trade-off result, but there is no known way of
transforming black-white pebblings in general into resolution refutations with the same time and space
parameters (and indeed we believe that this is not possible). However, in this particular case it turns out that
we can construct a resolution refutation that simulates theblack-white pebbling strategy in Theorem 5.31 in
a space-preserving way. The rest of this proof is devoted to showing how this can be done.

Let us adopt all notation in the proofs of Theorem 5.31 and Lemma 5.32. In particular, we choose
r in the same way and then divide the upper row of∆(n, rev) into 2r intervalsIj =

{
wj·2m−r+k

∣∣ k =
0, 1, . . . , 2m−r − 1

}
of size2m−r for j = 0, . . . , 2r − 1 as in (41) and further subdivide each interval into

2m−2r chunksCi
j =

{
wj·2m−r+i·2r+k

∣∣ k = 0, 1, . . . , 2r − 1
}

for i = 0, . . . , 2m−2r − 1 as in (42). Recall
that this notation was illustrated in Figure 8 on page 43. We also remind the reader of the definition in (46)
of the vertex setsU i

j =
{
urevm(revr(j)·2m−r+i·2r+k)

∣∣ k = 0, 1, . . . , 2r − 1
}

in the lower row which can be
seen to be inverse images of the chunksCi

revr(j) in the upper row.
Our resolution refutation will following the pebbling strategy described in the proof of Lemma 5.32

closely and proceed in2m−2r phases (numbered0, 1, . . . , 2m−2r −1) corresponding to the2m−2r chunks in
each interval, and in2r stages (numbered0, 1, . . . , 2r − 1) within each phase corresponding to the different
intervals. All the phases in the refutation follow the same pattern except for some minor differences in the
first and final phases, which we refer to as the0th and(2m−2r − 1)st phases, respectively. We will reserve
d · 23d · 2r variable space for the lower row,d · 23d · 2r variable space for the “current chunks” in the upper
row, and additional variable spaced · 23d for each of the2r intervalsIj, which by the way we have chosen
r sums to a total ofO

(
d · 23d · s

)
= O(s) variable space whend is fixed.

Using the notation for substitution formulas in Definition 3.2, a black pebble on a vertexv in our trans-
lation of the black-white pebbling to resolution will be interpreted as having all clauses inv[f] in memory,
and a white pebble onv will be interpreted as all the clausesv[f]. We will use the notation

Di
j =

{
v[f]

∣∣ v ∈ U i
j

}
=

{(
urevm(revr(j)·2m−r+i·2r+k)

)
[f]

∣∣ k = 0, 1, . . . , 2r − 1
}

(48)

for the set of clauses intuitively corresponding to black pebbles on all vertices inU i
j . Also recall that for two

clause setsC andD, the notationC ∨ D is shorthand for{C ∨ D | C ∈ C, D ∈ D}.
We start stage0 in phase0 by deriving all clauses inD0

0 = {urevm(k)[f] | k = 0, 1, . . . , 2r − 1} by
imitating a black-only pebbling of the lower row leaving pebbles on the vertices inU0

0 . This can be done
essentially in variable spaced · 22d · 2r. We refer to the the translation of black pebblings to resolution
refutations in the proof of Theorem 4.1 for the details. Downloading all axioms in(u0 ∨ w0)[f] and using

47

UNDERSTANDING SPACE IN RESOLUTION

u0[f] ⊆ D0
0, we can derivew0[f]. Then, for eachk = 1, 2, . . . , 2r − 1 in turn, we download all axioms in

(urevm(k) ∨ wk−1 ∨ wk)[f] = urevm(k)[f]∨wk−1[f]∨wk[f] and, using the clausesurevm(k)[f] ⊆ D0
0 as well

as the clauseswk−1[f] just derived, resolve over all variables inurevm(k)[f] andwk−1[f] to get the clause set
wk[f], after which all clauses inwk−1[f] are erased. In this way, we finally arrive at the clause setw2r−1[f]
which is the parallel of a black pebble on the rightmost vertex w2r−1 in the0th chunk ofI0. This concludes
the0th stage of phase0.

In the next stage of phase0, we use the clauses in the setD0
0 as well as all the axiom clauses in

(urevm(revr(1)·2m−r+k)−1 ∨ urevm(revr(1)·2m−r+k))[f], k = 0, 1, . . . , 2r − 1, to derive the clause setD0
1, after

which all clauses inD0
0 are erased. This correponds to shifting all black pebbles onthe vertices inU0

0 one
step to the right toU0

1 =
{
urevm(revr(1)·2m−r+k)

∣∣ k = 0, 1, . . . , 2r − 1
}

. (We remind the reader that this
step is illustrated in Figure 8 on page 43.) When we are done with this, we download all axiom clauses in
(urevm(revr(1)·2m−r) ∨ wrevr(1)·2m−r−1 ∨ wrevr(1)·2m−r)[f] and resolve withurevm(revr(1)·2m−r)[f] ⊆ D0

1 to
obtain(wrevr(1)·2m−r−1 ∨ wrevr(1)·2m−r)[f]. In pebbling terms, this corresponds to placing a white pebble
on the rightmost vertexwrevr(1)·2m−r−1 of the intervalIrevr(1)−1 and a black pebble on the leftmost vertex
wrevr(1)·2m−r of the intervalIrevr(1). This black pebble placement is legal in view of the black pebble on
urevm(revr(1)·2m−r), corresponding to the clause seturevm(revr(1)·2m−r)[f].

Pattern matching on what was done in stage0, by induction overk = 1, 2, . . . , 2r − 1 we download
all axioms in (urevm(revr(1)·2m−r+k) ∨ wrevr(1)·2m−r+k−1 ∨ wrevr(1)·2m−r+k)[f] and then use the clauses
urevm(revr(1)·2m−r+k)[f] ⊆ D0

1 as well as the clauses(wrevr(1)·2m−r−1 ∨ wrevr(1)·2m−r+k−1)[f] derived by
induction to infer the clause set(wrevr(1)·2m−r−1 ∨ wrevr(1)·2m−r+k)[f]. When this has been done, the
clauses(wrevr(1)·2m−r−1 ∨ wrevr(1)·2m−r+k−1)[f] are erased. This can be seen to resemble advancing a
black pebble along all the vertices of the0th chunk ofIrevr(1), leaving it on the rightmost vertex of the
chunk at the end of stage stage1 of phase0.

Continuing in this way, in thejth stage of phase0 we use the clauses inD0
j−1 to derive the clause

setD0
j and then erase all ofD0

j−1, which corresponds to moving the lower-row black pebbles from U0
j−1 to

U0
j =

{
urevm(revr(j)·2m−r+k)

∣∣ k = 0, 1, . . . , 2r−1
}

. Then we mimic the placement of a black pebble on the
rightmost vertex in the chunkC0

revr(j) with the help of a white pebble on the rightmost vertex inIrevr(j)−1

by downloading all all axioms in(urevm(revr(j)·2m−r) ∨ wrevr(j)·2m−r−1 ∨ wrevr(j)·2m−r)[f]. Finally, we
simulate the sweeping of a black pebble across all ofC0

revr(j) by performing derivation steps analogous to
those in stages0 and1 described above to infer the clauses(wrevr(j)·2m−r−1 ∨ wrevr(j)·2m−r+2r−1)[f].

At the end of the final stage of phase0, we thus have the clausesw2r−1[f] as well as all clauses
(wj·2m−r−1 ∨ wj·2m−r+2r−1)[f] for j = 1, 2, . . . , 2r − 1. This is our way of matching the black pebbles on
the rightmost vertices of all0th chunks and white pebbles on the rightmost vertices of all intervals except
the last one at the end of phase0 in the pebbling of Lemma 5.32.

Inductively, suppose at the beginning of theith phase that the clause configuration contains the clauses
wi·2r−1[f] as well as all clauses(wj·2m−r−1 ∨ wj·2m−r+i·2r−1)[f] for j = 1, 2, . . . , 2r − 1. In terms of
pebbles, this means that the white pebbles on the rightmost elements of all intervals except the last are still
in place while the black pebble in each interval has moved along to the rightmost vertex of the(i − 1)st
chunk.

In stage0 of phasei, we derive the clausesDi
0, corresponding to a rearrangement of the lower-row black

pebbles so that they cover the vertices inU i
0. Mimicking the subpebbling advancing the black pebble inI0 on

the upper row from the rightmost vertex in chunki−1 to the rightmost vertex in chunki, we use the clauses
wi·2r−1[f] andDi

0 to infer the clausesw(i+1)·2r−1[f]. In the following stages, the pebbling strategy moves the
pebbles inU i

0 one step to the right in each stage toU i
1, U

i
2, et cetera, and sweeps black pebbles across theith

chunks of the other intervalsIj in the orderIrevr(1), Irevr(2), . . . , Irevr(2r−2), Irevr(2r−1) = I2r−1. Our res-
olution refutation under construction simulates this by deriving Di

1, D
i
2, . . . , D

i
2r−2, D

i
2r−1, and using each

such clause setDi
j to infer (wj·2m−r−1 ∨ wj·2m−r+(i+1)·2r−1)[f] from (wj·2m−r−1 ∨ wj·2m−r+i·2r−1)[f] in

48

6 TIME-SPACE TRADE-OFFS FOR RESOLUTION

the orderj = revr(1), revr(2), . . . , revr(2
r − 2), 2r − 1.

Consider now the final(2m−2r − 1)st phase. In the pebbling strategy, we had to take care of a special
case here since there are already white pebbles on the rightmost vertex of the chunk in every interval except
the rightmost oneI2r−1. Therefore, in every stage except the final one, instead of placing a black pebble on
the rightmost vertex in the chunk, the pebbling strategy uses the black pebbles on the two predecessors of
this vertex to remove the white pebble. We need to do something similar in spirit in our resolution refutation.
Rather than getting lost in even more indices than we alreadyhave, let us describe somewhat informally how
the final phase of the refutation proceeds.

At the beginning of the phase, the clause configuration contains the clausesw2m−r−2r−1[f] as well as all
clauses(wj·2m−r−1 ∨ w(j+1)·2m−r−2r−1)[f] for j = 1, 2, . . . , 2r − 1. At the end of stage0, we have derived
the clause setw2m−r−1[f]. We resolve all clauses in this clause set with(w2m−r−1 ∨ w2·2m−r−2r−1)[f] to
infer w2·2m−r−2r−1[f]. Intuitively, this resembles the way the white pebble onw2m−r−1 is eliminated in the
pebbling strategy.

In stage1, we move on to the intervalIrevr(1). At the beginning of the stage we have the clauses
(wrevr(1)·2m−r−1 ∨ w(revr(1)+1)·2m−r−2r−1)[f] in memory, and the stage ends with the derivation of the
clauses(wrevr(1)·2m−r−1 ∨ w(revr(1)+1)·2m−r−1)[f]. We can resolve these newly derived clauses with the
clauses(w(revr(1)+1)·2m−r−1 ∨ w(revr(1)+2)·2m−r−2r−1)[f], available in memory by the induction hypothe-
sis, to obtain(wrevr(1)·2m−r−1 ∨ w(revr(1)+2)·2m−r−2r−1)[f]. This is the intuitive parallel of removing the
white pebble fromw(revr(1)+1)·2m−r−1.

Continuing in this way with the intervalsIj in the orderj = revr(2), revr(3), . . . , revr(2
r − 2), 2r − 1,

we finally obtain the clause setwn−1[f]. Downloading all sink axiomswn−1[f], we can infer the empty
clause. The resolution refutation is thus complete.

It is straightforward, if tedious, to verify that the lengthand variable space of this resolution refutation
are as claimed in Theorem 6.1. Again we refer to (the proof of)Theorem 4.1 for the details.

6.2 Superpolynomial Trade-offs for any Non-constant Space

It is clear that we can never get superpolynomial trade-offsfrom DAGs pebblable in constant space, since
such graphs must have constant-space pebbling strategies in polynomial time by a simple counting argu-
ment. However, perhaps somewhat surprisingly, as soon as westudyarbitrarily slowly growing space, we
can obtain superpolynomial trade-offs for formulas whose refutation space grows this slowly. This is a
consequence of our new pebbling trade-off result in Section5.2.

Theorem 6.2. Let g(n) be any arbitrarily slowly growing monotone functionω(1) = g(n) = O
(
n1/7

)
,

and letε > 0 be an arbitrarily small positive constant. Then there are explicitly constructible families of
minimally unsatisfiablek-CNF formulas{Fn}∞n=1 of sizeΘ(n) such that:

1. Every formulaFn is refutable in resolution in lengthL(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O(g(n)) (but not simultaneously).

2. There are refutationsπn : Fn ` 0 in simultaneous variable spaceVarSp(πn) = O
(

3
√

n/g2(n)
)

and

lengthL(πn) = O(n).

3. There is a constantK > 0 such that any resolution refutationπn : Fn ` 0 in clause spaceSp(πn) ≤
K

(
n/g2(n)

)1/3−ε
must have lengthL(πn) superpolynomial inn.

The constantK as well as the constants hidden in the asymptotic notation are independent ofn (but depend
on g andε).

49

UNDERSTANDING SPACE IN RESOLUTION

We remark that the upper-bound conditiong(n) = O
(
n1/7

)
is very mild and is there only for technical

reasons in this theorem. If we allow the minimal space to growas fast asnε for someε > 0, then there are
other pebbling trade-off results that can give even stronger results for resolution than the one stated above
(see, for instance, Section 6.4). Thus the interesting partis thatg(n) is allowed to grow arbitrarily slowly.

Proof of Theorem 6.2.Consider the graphsΓ(c, r) in Definition 5.16. We want to choose the parametersc
andr in a suitable way so that get a family of graphs in sizen = Θ

(
cr3 + c3r2

)
(using the bound on the

size ofΓ(c, r) from Lemma 5.17). If we set

r = r(n) = g(n) (49)

for g(n) = O
(
n1/7

)
, this forces

c = c(n) = Θ
(

3
√

n/g2(n)
)

. (50)

Consider the graph family{Gn}∞n=1 defined byGn = Γ(c(n), r(n)) as in (49) and (50), which is a family
of sizeΘ(n). Construct the single-sink version̂Gn of Gn, fix any any non-authoritarian functionf, consider
the pebbling formulasFn = Peb

cGn
[f], and appeal to the translation between pebbling and resolution in

Theorem 4.4.
Lemma 5.17 yields thatVarSp(Fn ` 0) = O(g(n)). Also, the persistent black pebbling ofGn in

Lemma 5.18 yields a linear-time refutationπn : Fn ` 0 with VarSp(πn) = O
(

3
√

n/g2(n)
)
.

Now set the parameters in Theorem 5.19 tos = c1−ε′ for ε′ = 3ε. Then for large enoughn we have
s ≤ c/8 − 1 and Theorem 5.19 can be applied. Combining the pebbling trade-off there with Theorem 4.4,

we get that if the clause space is less than
(
n/g2(n)

)1/3−ε
, then the required length of the refutation grows

as
(
Ω

(
cε′

))r
=

(
Ω

(
n/g2(n)

))εg(n)
which is superpolynomial inn for any g(n) = ω(1). The theorem

follows.

6.3 Robust Superpolynomial Trade-offs

We now know that there are polynomial trade-offs in resolution for constant space, and that going ever so
slightly above constant space we can get superpolynomial trade-offs. The next question we want to focus on
is how robust trade-offs we can get. That is, over how large a range of space does the trade-off hold? Given
minimal refutation spaces, how much larger space is needed in order to obtain the linearlength refutation
that we know exists for any pebbling contradiction?

The answer is that we can get superpolynomial trade-offs that span almost the whole range between
constant and linear space. We present two different resultsillustrating this.

Theorem 6.3. There are explicitly constructible families{Fn}∞n=1 of minimally unsatisfiablek-CNF formu-
las of sizeΘ(n) such that:

1. Every formulaFn is refutable in lengthL(Fn ` 0) = O(n) and variable spaceVarSp(Fn ` 0) =
O(log n), but not simultaneously.

2. There is a resolution refutationπn : Fn ` 0 in variable spaceVarSp(πn) = O

(
3

√
n/ log2 n

)
and

lengthL(πn) = O(n).

3. There is a constantK > 0 such that any resolution refutationπn : Fn ` 0 in clause spaceSp(πn) ≤
K 3

√
n/ log2 n must have lengthL(πn) = nΩ(log log n).

The constantK as well as the constants hidden in the asymptotic notation are independent ofn.

50

6 TIME-SPACE TRADE-OFFS FOR RESOLUTION

Proof. Consider the graphsΓ(c, r) in Definition 5.16 with parameters chosen so thatc = 2r. Then the
size of Γ(c, r) is Θ

(
r223r

)
by Lemma 5.17. Letr(n) = max{r : r223r ≤ n} and define the graph

family {Gn}∞n=1 by Gn = Γ(2r, r) for r = r(n). Finally, construct the single-sink version̂Gn of Gn, fix
any any non-authoritarian functionf and consider the pebbling formulasFn = Peb

cGn
[f] with the help of

Theorem 4.4.
Translating fromGn back toΓ(c, r) we have parametersr = Θ(log n) and c = Θ

(
(n/ log2 n)1/3

)
,

so Lemma 5.17 yields thatVarSp(Fn ` 0) = O(log n). Also, the persistent black pebbling ofGn in
Lemma 5.18 yields a linear-time refutationπn : Fn ` 0 with VarSp(πn) = O

(
(n/ log2 n)1/3

)
.

Settings = c/8 − 1 in Theorem 5.19 shows that there is a constantK such that if the clause space of a
refutationπn : Fn ` 0 drops belowK · (n/ log2 n)1/3 ≤ (r + 2) + s, then we must have

L(πn) ≥ O(1)r · r! = nΩ(log log n) (51)

(where we used thatr = Θ(log n) for the final equality). The theorem follows.

Sacrificing a square at the lower end of the interval, we can improve the upper end ton/ log n.

Theorem 6.4. There are explicitly constructible families{Fn}∞n=1 of minimally unsatisfiablek-CNF formu-
las of sizeΘ(n) such that:

1. Every formulaFn is refutable in resolution in lengthL(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O(log2 n).

2. There is a resolution refutationπn : Fn ` 0 in variable spaceVarSp(πn) = O(n/ log n) and length
L(πn) = O(n).

3. There is a constantK > 0 such that any resolution refutationπn : Fn ` 0 in clause spaceSp(πn) ≤
Kn/ log n must have lengthL(πn) = nΩ(log log n).

The constantK and the constants hidden in the asymptotic notation are independent ofn.

Proof. Pick any non-authoritarian functionf and consider the pebbling formulasPeb
Φ̂(m,r)

[f] defined over

single-sink versions of stacks of superconcentratorsΦ(m, r) as in Definition 5.33 withm = 20T andr =
bn/T c for T = Θ(n/ log n). The theorem now follows by combining Theorem 5.34 with Theorem 4.4.

We remark that the results in Theorem 6.4 can perhaps be considered to be slightly stronger than those
in Theorem 6.3, but they require a very much more involved graph construction with worse hidden constants
than the very simple and clean construction underlying Theorem 6.3.

6.4 Exponential Trade-offs

Superpolynomial trade-offs are all fine and well, but can we getexponentialtrade-offs? In this final subsec-
tion we answer this question in the affirmative.

The same counting argument that was mentioned in the beginning of Section 6.2 tells us that we can
never expect to get exponential trade-offs from DAGs with polylogarithmic pebbling price. However, if we
move to graphs with pebbling priceΩ(nε) for some constantε > 0, pebbling formulas over such graphs can
exhibit exponential trade-offs.

We obtain our first such exponential trade-off, which also exhibits a certain robustness, by again studying
the DAGs in Definition 5.16.

Theorem 6.5. There are explicitly constructible families{Fn}∞n=1 of minimally unsatisfiablek-CNF formu-
las of sizeΘ(n) such that:

51

UNDERSTANDING SPACE IN RESOLUTION

1. Every formulaFn is refutable in resolution in lengthL(Fn ` 0) = O(n) and also in variable space
VarSp(Fn ` 0) = O

(
8
√

n
)
.

2. There is a resolution refutationπn : Fn ` 0 in variable spaceVarSp(πn) = O
(

4
√

n
)

and length
L(πn) = O(n).

3. There is a constantK > 0 such that any resolution refutationπn : Fn ` 0 in clause spaceSp(πn) ≤
K 4
√

n must have lengthL(πn) =
(

8
√

n
)
! .

The constantK as well as the constants hidden in the asymptotic notation are independent ofn.

Proof. Combine Theorem 4.4 and Theorem 5.19 in the same way as in the other proofs above forΓ(c, r)
with c = 4

√
n andr = 8

√
n.

We remark that there is nothing magic in our particular choice of parametersc andr in Theorem 6.5.
Other parameters could be plugged in instead and yield slightly different results.

Now that we know that there are robust exponential trade-offs for resolution, we want to obtain expo-
nential trade-offs for formulas with their minimal refutation space being as large as possible.

The higher the lower bound on space is, the more interesting the trade-off gets. It seems reasonable that
to look at and analyze a CNF formula, a SAT solver will at some point use at least linear space. If so, it
is not immediate to argue why the SAT solver would later work hard on optimizing lower order terms in
the memory consumption and thus get stuck in a trade-off for relatively small space. Ideally, therefore, we
would like to obtain trade-offs for superlinear space (if there are such trade-offs, that is). For such formulas,
we would be more confident that the trade-off phenomena should also show up in practice.7

It is clear that pebbling contradictions can never yield anytrade-off results in the superlinear regime,
since they are always refutable in linear length and linear space simultaneously. Also, all trade-offs ob-
tainable from the graphs in Definition 5.16 will be for space far below linear. However, using results from
Section 5.3.3 we can get exponential trade-offs for space almost linear, or more precisely for space as large
asΘ(n/ log n).

Theorem 6.6. There are explicitly constructible families{Fn}∞n=1 of minimally unsatisfiablek-CNF formu-
las of sizeΘ(n) such that:

1. Every formulaFn is refutable in lengthL(Fn ` 0) = O(n) and variable spaceVarSp(Fn ` 0) =
O(n/ log n).

2. There is a resolution refutationπn : Fn ` 0 in variable spaceVarSp(πn) = O(n) and lengthL(π) =
O(n).

3. There is a constantK > 0 such that any resolution refutationπn : Fn ` 0 in clause spaceSp(πn) ≤
Kn/ log n, whereKn/ log n ≥ Sp(Fn ` 0), must have lengthL(π) = exp

(
nε

)
.

All constants, including those hidden in the asymptotic notation, are independent ofn.

Proof. Appeal to Theorem 5.36 in combination with Theorem 4.4 in thesame way as in previous proofs in
this section.

7Having said that, we also want to point out that the case can certainly be made that even sublinear space trade-offs might be
very relevant for real life applications. Intriguingly enough, pebbling contradictions over pyramids might in fact bean example of
this. We know that these formulas have short, simple refutations, but in [SBK04] it was shown that state-of-the-art clause learning
algorithms can have serious problems with even moderately large pebbling contradictions. (Their “grid pebbling formulas” are
exactly our pebbling contradictions using substitution with binary, non-exclusive or.) We wonder whether the high lower bound on
clause space can be part of the explanation behind this phenomenon.

52

7 DIRECTIONS FOR FURTHER RESEARCH

We remark again that Theorem 5.36 in combination with Theorem 5.35 can be used to obtain DAGs
(and thus CNF formulas) with other trade-offs as well for different space parameters in the range between
n/ log n andn. For simplicity and conciseness, however, we only state thespecial case above.

7 Directions for Further Research

We end by briefly mentioning a few open questions related to our reported work that we find most interesting.
For the length, width, and clause space measures in resolution, there are known upper and lower worst-

case bounds that essentially match modulo constant factors. This isnot the case for variable space, however.

Open Question 1. Are there polynomial-sizek-CNF formulas which require variable refutation space
VarSp(F ` 0) = Ω

(
(size ofF)2

)
?

The answer has been conjectured by [ABSRW02] to be “yes”, butas far as we are aware, there are no
stronger lower bounds on variable space known than those that follow trivially from corresponding linear
lower bounds on clause space. Thus, a first step would be to show superlinear lower bounds on variable
space.

One way of interpreting the results of the current paper is that time-space trade-offs in pebble games
carry over more or less directly to the resolution proof system (modulo the technical restrictions discussed
in Section 4). The resolution trade-off results obtainableby this method are inherently limited, however,
in the sense that pebblings in small space can be seen never totake too much time by a simple counting
argument. For resolution there are no such limitations, at least not a priori, since the corresponding counting
argument does not apply. Thus, one can ask whether it is possible to demonstrate even more dramatic
time-space trade-offs for resolution than those obtained via pebbling.

To be more specific, we are particularly interested in what trade-offs are possible at the extremal points
of the space interval, where we can only get polynomial trade-offs for constant space and no trade-offs at all
for linear space.

Open Question 2.Are there superpolynomial trade-offs for formulas refutable in constant space?

Open Question 3. Are there formulas with trade-offs in the range space> formula size? Or can every
refutation be carried out in at most linear space?

We find Open Question 3 especially intriguing. Note that all bounds on clause space proven so far,
inlcuding the trade-offs in the current paper, are in the regime where the space is less than formula size
(which is quite natural, since by [ET01] we know the size of the formula is an upper bound on the minimal
clause space needed). It is unclear to what extent such lowerbounds on space are relevant to state-of-the-art
SAT solvers, however, since such algorithms will presumably use at least a linear amount of memory to
store the formula to begin with. For this reason, it seems to be a highly interesting problem to determine
what can be said if we allow extra clause space above linear. Are there formulas exhibiting trade-offs in
this superlinear regime, or is it always possible to carry out a minimal-length refutation in, say, at most a
constant factor times the linear upper bound on the space required for any formula?

As was noted above, pebbling formulas cannot help answer these two questions, since pebbling formulas
are always refutable in linear time and linear space simultaneously by construction, and since constant
pebbling space implies polynomial pebbling time.

Finally, it would be interesting to investigate the implications of our results for applied satisfiability
algorithms.

Open Question 4.Do the trade-off phenomena we have established in this papershow up “in real life” for
state-of-the-art DPLL based SAT-solvers, when run on the appropriate pebbling contradictions (or varia-
tions of such pebbling contradictions)?

53

UNDERSTANDING SPACE IN RESOLUTION

Acknowledgements

The authors want to thank David Carlson, John Gilbert, Nicholas Pippenger, and John Savage, for helpful
correspondence regarding their papers on pebbling.

References

[ABSRW02] Michael Alekhnovich, Eli Ben-Sasson, AlexanderA. Razborov, and Avi Wigderson. Space
complexity in propositional calculus.SIAM Journal on Computing, 31(4):1184–1211, 2002.

[AC03] Noga Alon and Michael Capalbo. Smaller explicit superconcentrators.Internet Mathematics,
1(2):151–163, 2003.

[AD03] Albert Atserias and Vı́ctor Dalmau. A combinatorical characterization of resolution width. In
Proceedings of the 18th IEEE Annual Conference on Computational Complexity (CCC ’03),
pages 239–247, July 2003.

[AJPU02] Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential
separation between regular and general resolution. InProceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 448–456, May 2002.

[BEGJ00] Maria Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. On the relative
complexity of resolution refinements and cutting planes proof systems. SIAM Journal on
Computing, 30(5):1462–1484, 2000.

[BKPS02] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution
and Davis-Putnam procedures.SIAM Journal on Computing, 31(4):1048–1075, 2002.

[Bla37] Archie Blake.Canonical Expressions in Boolean Algebra. PhD thesis, University of Chicago,
1937.

[BOP03] Josh Buresh-Oppenheim and Toniann Pitassi. The complexity of resolution refinements. In
Proceedings of the 18th IEEE Symposium on Logic in Computer Science (LICS ’03), pages
138–147, June 2003.

[Bor93] Allan Borodin. Time space tradeoffs (getting closer to the barrier?). InProceedings of the
4th International Symposium on Algorithms and Computation(ISAAC ’93), pages 209–220,
December 1993.

[BS02] Eli Ben-Sasson. Size space tradeoffs for resolution. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC ’02), pages 457–464, May 2002.

[BSG03] Eli Ben-Sasson and Nicola Galesi. Space complexityof random formulae in resolution.Ran-
dom Structures and Algorithms, 23(1):92–109, August 2003.

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of treelike
and general resolution.Combinatorica, 24(4):585–603, September 2004.

[BSN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal separation
of space and length in resolution. InProceedings of the 49th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’08), pages 709–718, October 2008.

54

REFERENCES

[BSN09] Eli Ben-Sasson and Jakob Nordström. A space hierarchy for k-DNF resolution. Manuscript
in preparation, 2009.

[BSSV03] Paul Beame, Michael Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower bounds
for randomized computation of decision problems.Journal of the ACM, 50(2):154–195,
March 2003.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.Jour-
nal of the ACM, 48(2):149–169, March 2001.

[Coo74] Stephen A. Cook. An observation on time-storage trade off. Journal of Computer and System
Sciences, 9:308–316, 1974.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirementsfor deterministic polynomial time
recognizable languages.Journal of Computer and System Sciences, 13(1):25–37, 1976.

[CS80] David A. Carlson and John E. Savage. Graph pebbling with many free pebbles can be difficult.
In Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC ’80),
pages 326–332, 1980.

[CS82] David A. Carlson and John E. Savage. Extreme time-space tradeoffs for graphs with small
space requirements.Information Processing Letters, 14(5):223–227, 1982.

[CS88] Vašek Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, October 1988.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem
proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.Journal
of the ACM, 7(3):201–215, 1960.

[EGM04] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with
bounded conjunctions.Theoretical Computer Science, 321(2-3):347–370, August 2004.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds forresolution. Information and Compu-
tation, 171(1):84–97, 2001.

[ET03] Juan Luis Esteban and Jacobo Torán. A combinatorialcharacterization of treelike resolution
space.Information Processing Letters, 87(6):295–300, 2003.

[FLvMV05] Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios Viglas. Time-space
lower bounds for satisfiability.Journal of the ACM, 52(6):835–865, November 2005.

[GG81] Ofer Gabber and Zvi Galil. Explicit constructions oflinear-sized superconcentrators.Journal
of Computer and System Sciences, 22(3):407–420, 1981.

[GLT80] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problem is com-
plete in polynomial space.SIAM Journal on Computing, 9(3):513–524, August 1980.

[GT78] John R. Gilbert and Robert Endre Tarjan. Variations of a pebble game on graphs. Tech-
nical Report STAN-CS-78-661, Stanford University, 1978. Available at the webpage
http://infolab.stanford.edu/TR/CS-TR-78-661.html .

55

UNDERSTANDING SPACE IN RESOLUTION

[Hak85] Armin Haken. The intractability of resolution.Theoretical Computer Science, 39(2-
3):297–308, August 1985.

[Her08] Alex Hertel.Applications of Games to Propositional Proof Complexity. PhD thesis, University
of Toronto, May 2008. Available athttp://www.cs.utoronto.ca/˜ahertel/ .

[HP07] Philipp Hertel and Toniann Pitassi. Exponential time/space speedups for resolution and the
PSPACE-completeness of black-white pebbling. InProceedings of the 48th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’07), pages 137–149, October 2007.

[HPV77] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space.Journal of the ACM,
24(2):332–337, April 1977.

[Kla85] Maria M. Klawe. A tight bound for black and white pebbles on the pyramid.Journal of the
ACM, 32(1):218–228, January 1985.

[KS88] Balasubramanian Kalyanasundaram and George Schnitger. On the power of white pebbles. In
Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC ’88), pages
258–266, 1988.

[LT80] Thomas Lengauer and Robert Endre Tarjan. The space complexity of pebble games on trees.
Information Processing Letters, 10(4/5):184–188, July 1980.

[LT82] Thomas Lengauer and Robert Endre Tarjan. Asymptotically tight bounds on time-space trade-
offs in a pebble game.Journal of the ACM, 29(4):1087–1130, October 1982.

[NH08] Jakob Nordström and Johan Håstad. Towards an optimal separation of space and length in
resolution (Extended abstract). InProceedings of the 40th Annual ACM Symposium on Theory
of Computing (STOC ’08), pages 701–710, May 2008.

[Nor06] Jakob Nordström. Narrow proofs may be spacious: Separating space and width in resolu-
tion (Extended abstract). InProceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC ’06), pages 507–516, May 2006.

[Nor07] Jakob Nordström. A simplified way of proving trade-off results for resolution. Technical
Report TR07-114, Electronic Colloquium on Computational Complexity (ECCC), September
2007.

[Nor08] Jakob Nordström.Short Proofs May Be Spacious: Understanding Space in Resolution. PhD
thesis, Royal Institute of Technology, Stockholm, Sweden,May 2008. Available at the web-
pagehttp://people.csail.mit.edu/jakobn/research/ .

[Nor09] Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics with sup-
plemental results. Manuscript in preparation. Current draft version available at the webpage
http://people.csail.mit.edu/jakobn/research/ , 2009.

[Pip77] Nicholas Pippenger. Superconcentrators.SIAM Journal on Computing, 6(2):298–304, June
1977.

[Pip80] Nicholas Pippenger. Pebbling. Technical Report RC8258, IBM Watson Research Center,
1980. Appeared in Proceedings of the 5th IBM Symposium on Mathematical Foundations of
Computer Science, Japan.

56

REFERENCES

[PTC77] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a game on
graphs.Mathematical Systems Theory, 10:239–251, 1977.

[Pud97] Pavel Pudlák. Lower bounds for resolution and cutting plane proofs and monotone computa-
tions. Journal of Symbolic Logic, 62(3):981–998, September 1997.

[Raz03] Alexander A. Razborov. Resolution lower bounds forthe weak functional pigeonhole princi-
ple. Theoretical Computer Science, 1(303):233–243, June 2003.

[Raz04] Ran Raz. Resolution lower bounds for the weak pigeonhole principle. Journal of the ACM,
51(2):115–138, 2004.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy.Combinatorica,
19(3):403–435, March 1999.

[Rob65] John Alan Robinson. A machine-oriented logic basedon the resolution principle.Journal of
the ACM, 12(1):23–41, January 1965.

[SBK04] Ashish Sabharwal, Paul Beame, and Henry Kautz. Using problem structure for efficient clause
learning. In6th International Conference on Theory and Applications ofSatisfiability Testing
(SAT ’03), Selected Revised Papers, volume 2919 ofLecture Notes in Computer Science,
pages 242–256. Springer, 2004.

[Seg07] Nathan Segerlind. The complexity of propositionalproofs. Bulletin of Symbolic Logic,
13(4):482–537, December 2007.

[Tor99] Jacobo Torán. Lower bounds for space in resolution. In Proceedings of the 13th International
Workshop on Computer Science Logic (CSL ’99), volume 1683 ofLecture Notes in Computer
Science, pages 362–373. Springer, 1999.

[Tor04] Jacobo Torán. Space and width in propositional resolution. Bulletin of the European Associ-
ation for Theoretical Computer Science, 83:86–104, June 2004.

[Tse68] Grigori Tseitin. On the complexity of derivation inpropositional calculus. In A. O.
Silenko, editor,Structures in Constructive Mathematics and Mathematical Logic, Part II,
pages 115–125. Consultants Bureau, New York-London, 1968.

[Urq87] Alasdair Urquhart. Hard examples for resolution.Journal of the ACM, 34(1):209–219, Jan-
uary 1987.

[Val76] Leslie G. Valiant. Graph-theoretic properties in computational complexity.Journal of Com-
puter and System Sciences, 13(3):278–285, 1976.

[vM06] Dieter van Melkebeek. A survey of lower bounds for satisfiability and related problems.
Foundations and Trends in Theoretical Computer Science, 2(3):197–303, January 2006.

[Wil85] Robert Wilber. White pebbles help. InProceedings of the 17th Annual ACM Symposium on
Theory of Computing (STOC ’85), pages 103–112, 1985.

57

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

