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Abstract

We prove that Polynomial Calculus and Polynomial Calculith \Resolution are not autom-
atizable, unles$V[P]-hard problems are fixed parameter tractable by one-side Erndomized
algorithms. This extends to Polynomial Calculus the analsgesult obtained for Resolution by
Alekhnovich and Razborov [2].

1 Introduction

Automated theorem proving is one of the most important fieleéstigated both from a theoretical
and an applied point of view. It is widely conjectured (bl §r to be proved) that for any proof
system we have families of tautologies requiring exporadigtiong proofs. For several concrete
examples (e.g. Resolution) we know such a result (see fayl&®#mn among many others [13, 6, 5]).
Then investigating automated theorem proving from a theaigpoint of view, we should consider
proof searching algorithms for a systefras “efficient” if on any formulaF', they produce a proof
of F efficiently in the size of the best proof gf in S.

Automatizabilityis a property for proof systems introduced by Bonet et al.8ip \vhich cap-
tures the discussion above: a proof systgis automatizabléf there exists an algorithnilg such
that on any tautology, .As produces a proof of’ in S in time polynomially bounded in the size
of the shortest proof of in S. This definition is interesting since it makes the existeotef-
ficient proof searching algorithms for a specific proof sysiedependent from the existence of
hard formulas. Recently the notion of automatizabilty waprioved and tightened for applications.
Atserias and Bonet in [4] introduced the notionweéak automatizabilitpf a proof system.S' is
weakly automatizable if there exists a proof systghthat efficiently simulates' and that moreover
is automatizable.

In general it appears that the stronger the proof systeneitetiser is the chance that the proof
system is automatizable. Krajicek and Pudlak [17], pdabat under widely accepted cryptographic
conjectures Extended Frege systems are not automatizdigg.did it by exploiting the connection
found by Bonet et al in [8] that automatizability implies Béde Interpolation Property [16, 8].
Later [8, 7], extended this result down to bounded-deptlyé&taut weakening the cryptographic
assumption considered.

This line of proving non automatizabilty was not suitableggstems, like Resolution, knowa
havethe Feasible Interpolation Property. In a major breaktgro@lekhnovich and Razborov [2],
proved that even Resolution is not automatizable unlesg parameterized complexity assumption,
believed to be false, does hold.

Polynomial Calculus is an algebraic refutational prootegsintroduced in [9] based on deriving
polynomials. In the analysis of the complexity of proofs ia @ee [18] for a survey on algebraic
systems) we deal with two parameters: the maximal degregpofysmomial used in the proof, and
the number of monomials in the proof (usually referred tgias.

Itis known (see [9, 18]) thatonstant degrePc is automatizable. In [9] it is shown an algorithm
based on the Grobner Basis which finds@proof of a set of polynomial® overn variables in
time n?(@, whered is the degree required for anycRroof of P.
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The previous result does not give automatization ofwith respect to the size, i.e. the number
of monomials. This question is also interesting becausg:thdre are examples of families of
polynomials (e.g. pigeonhole formulas) requiring an exgial number of monomials to be refuted
in Pc (see [14]); (2) our recent result ([12]), that there are fasiof polynomials overn variables
requiring,/n degree but refutable with only a polynomial number of moradmiThis means that the
algorithm of [9] cannot be used to recover efficiently proofgvery set of polynomials efficiently
provable in F.

In this paper we study the question of the automatizabiltiPaf Since R is one of the refuta-
tional system proved to have the Feasible Interpolatiopé&hty (see [20]), to prove non automatiz-
ability for Pc we follow the approach of Alekhnovich and Razborov in [2].

Following their strategy we prove thatcHs not automatizable w.r.t. size unleBs[P]-hard
problems are fixed parameter tractable by one-side erraloraized algorithms. This extends to
Polynomial Calculus their analogous result for Resolufin

The original part of the proof in our result is a new degreedotwund for a formula, invented
in [2], encoding the optimization problem knownm@éimum monotone circuit value probleie
refer the reader to Section 2 for more details on the formuodbthe proof strategy.

We prove the degree lower bound following a technique ilhtiavented by Razborov in [21]
and used also in the papers [1, 12]. As for the degree lowendbou[12], our degree lower bound
extends the technique of Razborov to new examples of forgnula

The paper is organized as follows. In Section 2 we give thenrdefinitions and we discuss in
details the proof strategy. Section 3 is devoted to the ftatian and the polynomial encoding of
the principle used. We put efforts in trying to simplify therfnulation of the principle. Section 4
contains the proof of the degree lower bound. Finally in #et Section we combine together the
degree lower bound with previous results of [2] to get the aotomatizability of . We conclude
with a final Section on Open Problems.

2 Preliminaries

2.1 Algebraic proof systems and automatizabilty

We consider multivariate polynomials on variablgs. . . z,, over a fieldF. We denote thelegree

of a polynomialp asdeg(p), and the number of monomials nas.S(p). Letp;...p, be some

polynomials with no common zero among 0-1 assignments. Wked&ays to prove such claim.
Nullstellensatz HN): A proof in Nullstellensatz is a set of polynomials. .. g;, hy ... h,, such

that
D g+ Y hi(a} —w) =1

Thedegreeof a HN proof ismax; {deg(g:p;)}.

Polynomial Calculus (Pc): A proof in Polynomial Calculus is a set of polynomias. . . g,
such thaty,, = 1 and anyg; is either an axionx? — x; for some;j € [n], or ap; for j € [I], ora
polynomial derived according one of the following inferenales:

Ja  Gb Ja
aga + Bgp Tj ga
wherel < a,b < i,«,3 € Fandj € [n].

Thedegreeof a Rc proof ismax;{deg(g;) }, and thesizeof a PC proofis) ", S(g;).

Polynomial Calculus with Resolution (PCR): it is an extension of €. Polynomials are allowed
to use additional variables, . .. z,. A proof is similar to a & proof with the addition that a line
can be also be an axiom of the foim- «; — z;.

As in Pc, thedegreeof a PCR proof ismax;{deg(g;)}, and thesizeof a Fcr proofis) . S(g;).

Given a set of polynomial® = {p; ...p;} we define aslegy (P) andSx (P) the minimum
degree and size achievable in a proofbby the proof systenX. It easy to see that the following
relations hold for anyP.

degyy (P) < degpc(P) = degper(P)
Sun (P) < Spc(P) < Sper(P)



We say a that proof systetli is automatizablgquasi-automatizab)ef there is an algorithm
which given P outputs a validX proof of P in time polynomial (resp. quasi-polynomial) with
respect taSx (P).

2.2 Notions from commutative algebra

Given a fieldF, we consider polynomials ovétz1,...,z,]. Given asetF = {fi,..., fn} Of
polynomials, bySpan(E) we denote the ideal generated By that is the se{ >, (fi - ki) | hi €
Flxy,...,2,]}. We say that a set of polynomiafs, . . ., f,, semantically impliesa polynomialg if
any assignment that satisfigs= 0 for all ¢ € [n], also satisfieg = 0. We write f1,..., f, E gor
ElEg.

We define a notion of residue of polynomials with respect todeal. We consider thgrlex
order<p on monomials as given in [10]. In particulgrlex is defined as followsl <p z1 <p
T9 <p --- <p T,. FOr any two products of variables, m’ and a variabler hold the following
two properties: (a) ifin. <p m’ thenzm <p zm'; (b) m <p xm. This order is lexicographically
extended to polynomials, artids the smallest of them.

Notice thatgrlex is not a total order, thus there could be incomparakles € Span(FE). This
can happen if and only if the underline sets of monomials qualks but have different coefficients.
In that case there exists a linear combinatiory @nd ¢’ which is strictly smaller than both, and
which is inSpan(E). Thus a minimum element ifipan(E) always exists.

Given a polynomial, we defineRg(q) as the minimal, with respect tap, polynomialp such
thatg — p € Span(E).

Rg(¢) = min{p € Flz1,...,z,] : ¢—p € Span(E)}

In the following sections we use some properties of the dpefdz which can be easily derived
from the definition:

Lemma 1. Let E be a set of polynomials and Igtandq be two polynomials. Then:
e Re(p) <rp
e if p—q € Span(E), thenRg(p) = Re(q);
e Rpis alinear operator;
e Rp(pq) = Re(p- Re(q)).

We shall consider polynomials on the fididlefined on the domaif, 1}™. More explicitly we
consider elements of the rifgfx1, ..., z,]/{z} — xi};c}n). Such polynomials are the base for all
algebraic proof systems we consider.

2.3 Proof Strategy

The optimization problem oflinimum Monotone Circuit Satisfying Assignm@MCSA) is de-
fined as follows:
Instance A monotone circuit oven, V in n variables.
Solution Aninputa such thaC(a) =1
Objective functionw(a), the Hamming weight od.

In [2] Alekhnovich and Razborov use the automatization ofdétion as a primitive to effi-
ciently solve MMCSA. The idea can be summarized in threepedéent steps.

1. Given a monotone circui, build an unsatisfiable CNF'(C, w, r) and prove that the size
of the shortest proof is strongly related to the size of mimmsatisfying assignment of the
circuit.

2. Assuming automatizability of the proof systems, use th®raatization algorithm to find a
proof of approximately small size. This gives an approxiorabf the minimum assignment
size.

3. Apply (randomized) gap amplification procedures to invprthe approximation factor up to
an error smaller than one, thus obtaining an exact value.
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The first step depends on the proof system. Using a slightfination of the formula built in
[2] we will prove the first step for algebraic proof systemse Wil see that the other two steps are
essentially independent from the proof system.

Formally we prove the following two theorems.

Theorem 1. If any of HN, Pc and PcR is automatizable, then for a fixed> 0 there exists an
algorithm @ working on monotone circuit§' which runs in timeexp (w(C)°W) [C°M) and ap-
proximates the value af(C) to within a factor(1 + ¢).

Theorem 2. If HN, Pc or PCR are automatizable them/ M CSA € co — FPR.

HereW[P] is the well-known class of all problems reducible via paraimed reduction to the
problem of WEIGHTED CIRCUIT SATISFIABLITY, and it is knowrhiat the decision version of
MMCSA is complete for this class (for details about paramiesel complexity the reader is referred
to [11]).

FPRis an hybrid class oRP andF PT introduced by [2], defined as follows:

Definition 1. The classt'PR of parameterized problems, consists, of all languafes ~* x N,
for which there exists a probabilistic algorithdn, a constant and a recursive functiorfi : N — N
such that:

1. the running time o®((x, k)) is at mostf (k) - |z|;

2. If(z, k) € L, thenPr[®({x, k)) = 1] > 1/2;

3. If (z, k) & L, thenPr[®((z, k)) = 1] = 0;

To get Theorem 1, we prove the following reduction as in [2].

Lemma 2. LetC be a monotone circuit, ang an integer parameter. Assume that ©(w):

1. AnyPcR refutation of F'(C, w, r) has size at least

QQ(w»min{w(C),w})

2. Ifw(C) < w then there is &N proof of F(C, w, r) of size

|C| . QO(wvw(C))

In turn the Lemma is proved using our main and new result ipp#iper, which is a degree lower
bound forF(C, w, r).

Theorem 3. AnyPcR refutation of F(C, w, r) requires degree at least- min{w(C) — 1, w}.

3 The principle

Let C' be a monotone circuit on inputs of size polynomial im. Letw(C) the minimum hamming
weight of an assignment satisfyidgand letw be a parameter whose intended meaning is to guess a
value for the size ofv(C). Letr be a parameter used to amplify the degree hardness of traigbein

r is intended to b& (w).

A combinatorial object calledPaley matrixis used for the construction. Such matrix has the
property that any projection on a small set of columns céssikall possible binary strings with an
almost fair frequency. For our purpose it is sufficient that aet ofw columns has a full 1 row and
any set ofw rows has a full 0 column. We will show a construction for a rixatt of size2°(%),

Letq > 2% be an arbitrary prime, and consideq & ¢ matrix where celli, j) containsl iff
i — j is a quadratic residue modujo or 0 otherwiseé. It is well known [15, 3] that any projection
onw rows or columns contains every string{ie, 1}*

FromC, w, r and A, we are going to define a set of equat®(C, w, r). The principle encodes
the property that there exists a setafolumns of the matri¥ that contains no satisfying assignment

INote that in literature the original Paley Matrix is definedai different fashion with 0 values on diagonal, 1 for quadrat
residues and -1 for non residues. But this is not an issue here



for the circuitC'. This claim is unsatisfiable i:(C') < w. This is because whatever the selection of
n columns is, thev columns corresponding to tHecoordinates of such assignment will contains a
full 1s string which satisfies the circuit.

The n columns are selected by partial functions calledyenerators These functions will be
defined in the following.

For technical reason, widely explained in [2], we add comipfeto the principle: instead of
feeding one input to a single circuit, we feed it to severglies of the same circuit, and we select
one of those copies byzartial function calledactivator. In the principle we will express the fact
that only the gates of the active circuits have to perfornctiraputation correctly.

The principle claims that exists a choice for the 'genesatord activators’ inputs such that: (a)
values for such inputs are defined and (b) no circuit output 1.

It is clear that even in this version of the principléC) < w implies that for any input anw
generators produce a full 1 row. This row is fed to a set obpies of the circui’. One of them
is active and has to propagate the computation through ties.g&hus that circuit copy outputs 1,
which is in contradiction with the claim no active circuittput 1.

Circuit family Letq = 29(*) the size of the matrix. We consider an array;of r copies ofC,
indexed ag’;;..

Let s be a parameter we specify later and which should be interalbd ® (w + log ¢) which
will be O(w + 7).

Activators For all i € [¢] we consider a possibly partial functioty : {0,1}* — [r] which
selects one of the circuit amon; - - - C;,.. Only for gates in the selected circuit we ensure to
propagate correctly through the circuit. The other oneselieved from the computation.

GeneratorsFor j € [n] G; : {0,1}* — {0,1}? generates a column vector gf. Thus
{G:---G,} define ag x n matrix. For alli € [q] thei'® row of such matrix is fed t@;; - - - C;, as
input.

Generator and Activators with r-surjectivity and parameter s. As in [2] (see there for an ex-
tensive discussion about this requirement) we need boitratmts and generators to besurjective
functions on domair0, 1}, for a suitables. Here is a construction (see also [2], proof Lemma
3.1(4i)), that allows us to define surjective functions. Consideeraegal binary surjective function
g :{0,1}' — S and a decoding functiof : {0,1}*! — {0, 1}' of a code with distance 2! (con-
structions exist [22] such that is a universal constant). Then D : {0,1}*! — S is I-surjective
on.S. To see this consider the restricted bits as “error” bitsy Aressage can be decoded from the
proper codeword with thodebits changed.

The output of a generator functi@s; is completely specified by the choice of a column in the
Paley matrix (henc®(w) bit), the output of the activatod; is specified by the choice of a number
in [r]. Thus®(w + r) input bits are enough to define both surjective generatatsarectors. Then
by composition with 2r distance code we obtain the desiresurjective functions 0f0, 1}° with
s=0(w+r).

Because of the properties of Paley matrix, generators antars the following fact holds.

Fact 1. For any monotone circuif’, and anyw > w(C), at least one of C;, }. outputs 1 whatever
the assignment for activators and generators is.

3.1 Propositional Encoding

We now describe the polynomials which encode the negatidineoprinciple discussed so far. De-
scribing the elements of the principle we will be consisteith the following notation.
Notation reference

C the monotone circuit.

n input variables in the circutt.

v index refers to a the gates 6f It goes froml to |C|. We assume first..n indexes correspond
to input gates. AndC| corresponds to output gates.

w(C) is the minimum hamming weight of an assignment satisfyihg
q = 2°) a prime number, size of the Paley matrix.



r IS a parameter.

1 index used to denote a row in the Paley matrix, a selectottifumand one of the inputs fed to
the circuits. It goes fron to q.

j index used to denote one input variablelvind one of the generator functions. It goes from
1ton.

k index used to denote one of the possible outcomes of thetsefaactions. It goes fron to
r.

Cir. k' copy ofC, fed with thei*® row generated by generator functions.
A; i*" activator function which selects among circuits, . . ., Cj,.
G; j*™ generator function which chooses tji€ columns to feed ag'" input of the circuits.
s length of the binary input of activators and generators, @ {w + ).

zj(a),y;(8) For avector, 5 € {0,1}* we denote as;(a) andy;(3) the characteristic polynomials of

« and g respectively on variables;q, ..., z;s andy;i,...,y;s. For exampler;(001...) is
Tj1Tj2253 -
Polynomials which encode the principle are expressed ifofleving set of variables.
Variables For alli, j, k, and gate as above:
e 1,1 ...2;s are the variables representing the input of geneaior
e yi1 ...Y;s are the variables representing the input of activaitpr
o 23 represents the value of gaién circuit Cy.

We now give the encoding, dividing polynomial equationsemesal sets. For any indéxc [q]
we encode in an equation sgf all equations relevant to row Indexesi, j, k,v anda, 3 apply
properly as described abovE, are shown below:

2 ()yi(B)z, =0 iff the i*" bit of G (a) is 1 andA;(3) =k (1)
yi(B) =0 wheng & dom(A;)  (2)
yi(B) ez =0 gatev — AA BandA;(8) =k  (3)
vi(8)2{5% 20 = 0,5:(8)25,20), = 0 gatev — AV B,andA;(8) =k (4)
yi(B)=l5 =0 AiB) =k (5

(1) says that if the'" bit of the column generated lfy; is 1 and the active circuit fai'" row is
k, then thejt™" input of C;;, must be on. (2) forces thg variables to encode a value in the domain
of the activator function. This is necessary because dotiware partial functions. (3) and (4) force
the active circuit to compute the gates correctly. The équdb) claims that the output of the active
circuit is zero.

Notice that this principle is slightly different from the @in [2]. They use additional variables
to indicate circuit activation. We choose not to use thenabse they would cause trouble in some
technical steps of the following proofs.

F; specifies in a truth table fashion how gates of a circuit inva #@ehave. When such circuit
is activated the input of generators causes some bits todoia ie The principle also claims such
circuit outputs 0. The principle consists in the conjunetid F; for i € [q].

Definition 2. We call F(C, w, r) the principle described above &4, F;, whereC' is a monotone
circuit, ¢ = 2°(") js a prime, and- is the surjectivity parameter of generators and activators

Fact 2. The equations of principlé’(C,w, r) can be produced ifC|2°(+7) time and space. If
w(C) < wthenF(C,w,r) is unsatisfiable.

Proof. Remembes = O(w + r). For anya, 3 two strings ofs bits, any: € [¢], anyj € [n] there
is at most oné such thatr;(a)y;(8)z], = 0is in the principle. Then for ang andi there is at
most onek for which there are gate propagation equations. Otherkiseetis one single clauses
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yi(B) = 0if Bis notin the domain ofl;. In total we have:2°(%) 4 |C|29(%)) equations. Notice that
if we have dual variable for encoding negations then all #goaresult to be monomials. Otherwise
equations will be encoded as polynomials exponentiallg lorthe degree of the equation. Biggest
degree appearing s thus the size of the formul&(C, w,r) is againn2°®) + |C|2°¢). The
obvious output strategy satisfies the resource bound. Idfiahtlity comes as a restatement of Fact
1. O

4 Degree Lower bounds forF' (C, w, )

In this section we prove the formuld(C, w, r) requires a high degree to be refuted. We need a
tailored degree measure for this purpose.

Definition 3. For a monomiak consider the three sets

Xe ={0,1)rzj €t}
Y :={(,1) : yu € t}
Z, :={(i, k) : there is aw for whichz},, € ¢}
And we define thendex-degree of t as
ideg(t) = [ X¢| + |Yi| + | Z:]
The index-degree of a polynomial is the biggest index-aegneong its monomials.
Theorem 4. Any PcRr refutation of F'(C, w, ) contains a polynomial of index-degree at least
min{w(C) — 1, w}.
From now on we definer := min{w(C) — 1, w}. The index-degree lower bound relies on the
construction of an operatdf over multivariate polynomials such that
1. K is alinear operator.
2. K(p) =0foranypin F(C,w,r).
3. Ifideg(t) < rm thenK (xt) = K (zK (t)) holds for any variable:.
4. K(1)#0

Proof. (of Theorem 4) Assume a proof of index-degree less tharexists: each line of such proof
is either an equation if"(C, w, ), or a sum of previous lines, or the product of a previous liite w
a variable where index-degree stays betow. Then property (1), (2), (3) imply that’ maps to 0
every line in the proof. This contradicts property (4) whiadhim K can not map last line to 0. O

We now show such operatdf. Assumel is a set of row indexes contained[ifj and consider
the set of polynomialg containingF; for i € I and also containing all&r axioms. We denote as
R;(p) the residue of polynomial modulo the ideal generated By More concretely

R;(p) = argmin{p — ¢ = Z hss}
q seZ

for someh s multivariate polynomials. We writé F p if p is in the ideal generated %

Definition 4. Function | and operator K:

Fix a monomiak: we can writet = ¢, - - - t,¢' where each; contains only variables indexed
byi € [¢] andt’ contains onlyx;; variables.

I(t) is the set ofi € [qg] such thatideg(t;) > r. K(t) is equal toR;)(t). On a formal
polynomialp = ", c;t; we define (p) := >, ¢; K(t;).

We now check thal( satisfies properties (1)-(4). (1) comes from the definiti@).If a premise
p is an axiom then any of its term is reduced with respect to aalidthich containg itself. Any
premisep in F; is a monomiat which contains more thanvariables indexed by Thus suclp isin
the ideall(¢). This impliesp is reduced to 0. (4) is true becauKg ) contains a set of polynomials
with a common 0-1 solution.

To prove (3) we need the following results about ideals:
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Lemma 3. For any polynomiap and ideall generated by, g2, - . ., g, all variables appearing
in R;(p) also occurinp, q1,q2, - - . , Gm.

Proof. Let « be a variable occurring ifR;(p) and not inp nor in any generatog;. By definition
p — Ri(p) = >, hig; for some polynomialé; thus by setting: to 0 we obtairp — R;(p) [.—0=
> i (hi T2=0)q; whereR;(p) l.—o is strictly smaller tharR;(p). This contradicts the fad®;(p) is
the minimum according tecp. O

Corollary 1. Letm;, m two monomials, ift is @ monomial inm;y - Rj(y,)(m2) thenl(t) C
I(mlmg).

Proof. If ' € I(t)/I(m1m2) then variables indexed by in ¢ are more tham. No such variable

is contained inF; for i’ # 4. Thus by Lemma 3 any term iR;,,,)(m2) does not contain more of
such variables tham itself contains. Suclf-indexed variables are then contained in the union of
the variable ofn, andms. Thusi’ € I(mims2) but this contradicts the assumption. O

Next lemma is the heart of the argument: it shows how a smadirdegree derivation has local
behavior. The set of premises needed in the derivation ibseswf the one given by the operafor

Lemma 4. Lett be a monomial of index-degree less than and I(¢) C I with |I| < m. Then
R[(t) (t) = R[(ﬁ).

Proof. We will show an assignmentsuch that [,= ¢t and! [,C I(t). This is sufficient since
I'fFtl, —Ri(t) [,

By properties ofp we getl(t) -t — R(t) [,. This meansk(t) [, is bigger thanR;«(t) in the
order among polynomials. It is also smaller thap(t) because a partial assignment can't increase
the order. Notice that we also hav& (t) smaller thank; ) (t) becausd (t) is a subset of and
residue is monotone decreasing with respect to the subsetip

We now consider] the set in indexeg € [n] such that contains less than variables among
Tjly---,Ljs- ThUS|J| >n—m.

Notice that because ofsurjectivity of generators we have that for apye J and any vector
v = v1...74 in the image ofG; there is a boolean partial assignmenton “z;” variables such
that no variable irt is assigned and+;(«) = v. We choose a such that for any in I we have
v; = 0. Such choice is possible becayse< m andv is a column in a Paley matrix of appropriate
size. We addy; for j € J in p. Such partial assignment does not restrjeind set to 0 all equations
zj(a)yi(ﬁ)zzjk =0foranyj € J,i € I, k € [g]. Other equations are left untouched.

We now consider a roviy in I/I(t) andt, the monomial containing all variables irindexed
by io. We extend to satisfy all remaining equations ifi,. To achieve such result we notice there
is at least one circuit copg;, such that no variables incorrespond to a gate of such a circuit,
otherwise it would bédeg(ty) > r andiy would be inI(t). For the same reason we also know in
there are less thanvariables among,,: . . . y;,s. Both observation together imply there is a partial
assignment op;,,; variables not contained insuch thay;, (8) = 0 for all 8 with A;,(3) # k. Then
by now all equations i, are satisfied with the exception of the ones correspondiogdait C;, ..

We setzfok to 0 whenj € J and 1 otherwise. Then we propagate values among the ciqutiens
accordingly. We remark that beind| < m < w(C) we have 0 at the output gate. This satisfies
all clauses in;, ;, without touching:. We continue to extengd in this way for alli € I/I(t). The
resulting assignment satisfies the requested properties fhie lemma is proved. O

Lemma 5. If the index-degree of a monomiais less tharrm thenK (zt) = K(zK(t))

Proof. Consider a monomial of index-degree less thamn. We will prove that bothX («t) and
K(zK(t)) are equal ta?; 4 (v K (t)). Consider the following chain of equations.



K(xt) = Ryur)(at) (6)
= Rl(mt) (xRI(zt) () )
= Rzt (xR (t)) (8)
— Ryn (zK(t)) 9)

The equation (6) is the definition; (7) becauggis an homomorphism on the ring of multivariate
polynomials; (8) holds because of Lemma 4; (9) holds becaite definition ofK. Let us denote
xK(t) as), a;t; in the next chain of equations.

K(zK(t)) = K(> ait;) (10)
= > o;-K(ti) (11)
= > o;Rm (t:) (12)
-~ Z iRy (t:) (13)
- R ;(zt) (Z ait;) (14)
= Riar) (Z:cK (£)) (15)

The first lines holds because the notation just introduckd By linearity of K; (12) by def-
inition of K'; (13) holds because any; is a monomial invR;()(t). We now use Corollary 1 to
claim I(xt;) is a subset of (xt), which has size less than. Lemma 4 finally implies the equation.
By using linearity we get (14) and by reverting the changeatition we conclude the proof with
equation (15). O

5 Main Result

In this section we prove a result similar to Lemma 3.1 in [2]tflte systems N and RCR. Result
obtained in Section 3 of [2] depends on Resolution systenigwihe self-improvement technique
developed in Section 4 of [2] refers to MMCSA amplificationdais independent from the proof
system adopted.

Lemma 6. LetC' be a monotone circuit, ang an integer parameter. Assume= O(w):
1. AnyPcRr refutation of F'(C, w, r) has size at least

QQ(w»min{w(C),w})

2. Ifw(C) < wthen there is &N proof of F(C, w, r) of size

|C| . QO(wvw(C))

Proof. (1) Lower bound. The strategy here follows [2]: we deduce a degree lower baumithe
Pcr refutation of F/(C, w, r) and then we use a random restriction / probabilistic metmgdraent
to deduce the size lower bound.

The restriction: for each input set of the generators andatots we restrict uniformly indepen-
dently at random a set of/2 of the s variables. For eache [¢] we also choose independently2
circuit copies of the available and we restrict randomly all the gates of suchepihis restriction
(up to index reordering) is essentially subsumedi§¢’, w, r/2). For any restricted variable we fix
the corresponding dual variable to the appropriate value.



Fix d := % - min{w(C) — 1,w}. We show that any monomial with index-degree bigger that

d is set to zero with probability at least— 2—(4), Fix a polynomialt of index degree at least
We knowt = t; - - - t4t’ wheret; is either a power of a generator variable, an activator bériar a
non empty product of variables corresponding to a partiatifauit C;;,. We can assume variables
in ;S to be disjoint. We want to estimate the probability thas set to 0 by the random restriction,
assuming; ...t;—; haven't been. Consider the cagds a generator or an activator variableis
the number of such variables for each generator and aativéfith at leastr/2s probability ¢; is
chosen among the restricted variables. Then with prolglailileastr/4s the monomial is set to
zero. Notice that/4s is a constant by construction. In the casés a product of variables af’;
for some: andk then such circuit is chosen to be restricted with probabditleastl /2 because
no previous one has been, and the product is restricted tovaéin at least probability /4. The
probability of the monomial not to be set to zero is then attmb$or somec > 1.

For a partial assignment distributed as describell [, is a proof of F(C,w,r) [, and of
F(C,w,r/2). Assuming therdl is of size smaller tharf’ then by union bound there is a restriction
p such thaflI |, is a proof of degree less thaifor F/(C,w,r/2). This is in contradiction with the
index-degree lower bound proved in Section 4.

(2) Upper bound. In the hypothesis the principle is unsatisfiability becanfsEact 2. In this case

a tree-like refutation of sizg0|20(w(©)) for F(C,w,r) exists as it is shown in [2]. Such proof
can be simulated in ®and RCR easily. For R the absence of dual variables leads to manipulate
big representations of polynomials, but the asymptotic lewity of the proof stays the same. For
completeness we also show a proof in.H

We now assume wlog the first. . . w(C') inputs correspond to the minimum satisfying assign-
ment.

We have to prove there are multiples of premises which sunouh tNotice that by defini-
tion of characteristic functions we have = > ., ;. #;(e) foranyj € [n] and alsol =
256{071}5 yi(B) for anyi € [g]. Then we getl = Zalm%(c)ﬁzl(al) 2y Q) )i (B)
for anysi, in particular we fixi := i(a1, ..., () to be such that thé" row is the one containing
a satisfying assignment generatedday. . . v, (). This immediately implies there is a valéefor
which Cj outputsl. Fix po := z1(1) - - - 2y (c)(cw(c))yi(3) be one of the polynomials in the
sum, and let bé& the corresponding activated circuit.

We now show thap, can be written as sum of premises: consider the propagatitiresat-
isfying assignment through;x. (from now on we drop theék indexes for sake of notation). There
is a minimal sequence of gates. .. 2™ in the circuit such that™ is the output gate;* . .. z%(©)
are the input gates activated by generators, for any AND batee input gate are predecessor in
the sequence, for any OR gate at least one of its predecssalsoia predecessor in the sequence.
We denotep; := pgz!---2'. We prove by backward induction drthat p; is provable in Hilbert
Nullstellensatz.

Base casep,, is a multiple ofy; ()]} which is a premise.

Induction step: assuming is provable. By minimality the gaté is activated by some prede-
cessor(s) in the sequence. Then; = p;_;(1 — 2! — 2) + p_12' + p;_1 2. The first part comes
from boolean axioms, the second part is a multiple,0f)z;; 2., (respectivelyy;(3)z:252, ) if
the gate is an OR (respectively an AND), the third part coma®sfinductive hypothesis.

Thenp, can be proved inC|°() . The number of such polynomials to prove afg’(¢)+,

To prove that the sum of characteristic functions is 1 it ficgent an extensive use of boolean
axioms of dual variable. This leads to a proof of sigg?() . 25w(C)+s 4 20(sw(C)+s) By using
the fact thats = ©(r 4+ w) we get the final claim.

O

Lemma 3.1 of [2] can be now be rephrased farRand H\, as follows

Lemma 7. There exists a polynomial time computable functiowhich maps any paifC, 1™),
whereC' is a monotone circuit aneh is an integer into an unsatisfiable CNKC, m) such that:

e there is aHN proof of 7(C, m) of size|C|mO(min(w(C)logm))
e AnyPcR refutations ofr(C,m) has size at leasi(min(w(C),logm))
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Proof. Follow Lemma 3.1 of [2]. Setv = logm/4 andr = [logm]| ands = a[logm]| (see
discussion about-surjectivity), exactly as Lemma 3.1 of [2]. The formuléC, m) is F(C,w,r) A
7m Wherer,, is the pigeon hole principl@®H P! wheren = log® m and axioms are extended
with p; ; + p;; — 1 for (i,5) € [n + 1] x [n]. Thep;,; variables of pigeon hole principle are
disjoint from F(C,w,r) ones. The claim follows by Lemma 6 (notice that= ©(w) ands =
O(w + r)). Notice that onPH P! formula HN polynomially simulates treelike Resolution and
feasible Interpolation and the Weak Feasible Disjuncti@pprties hold for Polynomial Calculus as
well (see [19, 20]). O

Theorem 2.5 and Theorem 2.7 in [2] can be rephrased foahktl RER proof system as follows.

Theorem 5. If any of HN, Pc and PcR is automatizable then for a fixed > 0 there exists an
algorithm @ working on monotone circuit§' which runs in timeexp (w(C)°W) |C|°M) and ap-
proximates the value af(C') to within a factor(1 + epsilon).

Theorem 6. If HN, Pc or PCR are automatizable them/ M CSA € co — FPR.

Proof. (Theorem 5 and 6) Refer to Lemma 4.1 in [2]. Because of our iame upper bounds we
can use the same proof foN;IPc or PCR instead of Resolution. Then the proof of both Theorem
follow in the same way as in [2]. O

6 Open Problems

The construction suffers of being very complex and randechizWould be nice to derandomize
and/or simplify it. A new proof would also help to solve théléwing open problem: this construc-
tion was used to prove non automatizability for tree-likealation, which is quasi-automatizable. It
is conjectured that ResolutioncPPCR and not even quasi-automatizable but any construction with
efficient tree-like refutation would not help.

References

[1] Michael Alekhnovich and Alexander A. Razborov. Lowerumals for polynomial calculus:
Non-binomial case. 1d2nd Annual Symposium on Foundations of Computer Sgipages
190-199, 2001.

[2] Michael Alekhnovich and Alexander A. Razborov. Resmatis not automatizable unless
WIP] is tractable SIAM J. Comput.38(4):1347-1363, 2008.

[3] Noga Alon. Tools from higher algebra. Handbook of combinatorics (vol. 2pages 1749—
1783. MIT Press, Cambridge, MA, USA, 1995.

[4] Albert Atserias and Maria Luisa Bonet. On the automdiility of resolution and related
propositional proof systeménf. Comput, 189(2):182—-201, 2004.

[5] Paul Beame and Toniann Pitassi. Simplified and improesglution lower bounds. 187th
Annual Symposium on Foundations of Computer Scigrages 274—-282. IEEE, 1996.

[6] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrgesolution made simple. In
Proceedings of the Thirty-First Annual ACM Symposium orofhef Computingpages 517—
526, 1999.

[7] Maria Luisa Bonet, Carlos Domingo, Ricard Gavalda, ¥eMaciel, and Toniann Pitassi.
Non-automatizability of bounded-depth frege prod@@®@mputational Complexityl 3(1-2):47—
68, 2004.

[8] Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On pdktion and automatization for
frege systemsSIAM J. Comput.29(6):1939-1967, 2000.

[9] Matthew Clegg, Jeff Edmonds, and Russell Impagliazzeing the groebner basis algorithm
to find proofs of unsatisfiability. IRroceedings of the Twenty-Eighth Annual ACM Symposium
on the Theory of Computingages 174-183, 1996.

11



(10]

(11]
(12]

(13]
(14]

(15]
(16]

(17]

(18]

(19]
(20]
(21]

[22]

David Cox, John Little, and Donal O’Shelaleals, Varieties, and Algorithms : An Introduction
to Computational Algebraic Geometry and Commutative Alge®rd edition.Springer, 2007.

R. Downey and M. FellowsParameterized Complexityspringer-Verlag, 1999.

Nicola Galesi and Massimo Lauria. Degree lower boudsfgraph ordering principle. Sub-
mitted. Seénttp://www.dsi.uniromal.it/"galesi/publications.htm l.

Armin Haken. The intractability of resolutiofheor. Comput. Sgi39:297-308, 1985.

Russell Impagliazzo, Pavel Pudlak, and Jiri Sgallwkeobounds for the polynomial calculus
and the grobner basis algorithi@omputational Complexify8(2):127-144, 1999.

Stasys JuknaExtremal Combinatorics: with Applications in Computer &uie Springer,
2001.

Jan Krajicek. Interpolation and approximate sentagrivations.Math. Log. Q, 48(4):602—
606, 2002.

Jan Krajicek and Pavel Pudlak. Some consequenceygputbgraphical conjectures foi} and
ef. In Daniel Leivant, editol CC, volume 960 of_ecture Notes in Computer Sciengages
210-220. Springer, 1994.

Toniann Pitassi. Algebraic propositional proof syste In Neil Immerman and Phokion G.
Kolaitis, editors,Descriptive Complexity and Finite Modelolume 31 ofDIMACS Series in
Discrete Mathematics and Theoretical Computer Sciepeges 215-244. American Mathe-
matical Society, 1996.

P. Pudlak. On reducibility and symmetry of disjoint-ppirs. Theoretical Computer Science
295:626—638, 2003.

P. Pudlak and J. Sgall. Algebraic models of computasiod interpolation for algebraic proof
systemsDIMACS series in Theoretical Computer Scierg@:279-296, 1998.

Alexander A. Razborov. Lower bounds for the polynonai@iculus.Computational Complex-
ity, 7(4):291-324, 1998.

J. H. van Lint. Introduction to Coding Theory (Graduate Texts in Mathersti Springer-
Verlag, 3rd edition, 1998.

12

ECCC

http://eccc.hpi-web.de/

ISSN 1433-809




