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Abstract

We prove that Polynomial Calculus and Polynomial Calculus with Resolution are not autom-
atizable, unlessW [P ]-hard problems are fixed parameter tractable by one-side error randomized
algorithms. This extends to Polynomial Calculus the analogous result obtained for Resolution by
Alekhnovich and Razborov [2].

1 Introduction

Automated theorem proving is one of the most important field investigated both from a theoretical
and an applied point of view. It is widely conjectured (but still far to be proved) that for any proof
system we have families of tautologies requiring exponentially long proofs. For several concrete
examples (e.g. Resolution) we know such a result (see for Resolution among many others [13, 6, 5]).
Then investigating automated theorem proving from a theoretical point of view, we should consider
proof searching algorithms for a systemS as “efficient” if on any formulaF , they produce a proof
of F efficiently in the size of the best proof ofA in S.

Automatizabilityis a property for proof systems introduced by Bonet et al. in [8], which cap-
tures the discussion above: a proof systemS is automatizableif there exists an algorithmAS such
that on any tautologyF , AS produces a proof ofF in S in time polynomially bounded in the size
of the shortest proof ofF in S. This definition is interesting since it makes the existenceof ef-
ficient proof searching algorithms for a specific proof system independent from the existence of
hard formulas. Recently the notion of automatizabilty was improved and tightened for applications.
Atserias and Bonet in [4] introduced the notion ofweak automatizabilityof a proof system.S is
weakly automatizable if there exists a proof systemS′ that efficiently simulatesS and that moreover
is automatizable.

In general it appears that the stronger the proof system is the lesser is the chance that the proof
system is automatizable. Krajı́cek and Pudlák [17], proved that under widely accepted cryptographic
conjectures Extended Frege systems are not automatizable.They did it by exploiting the connection
found by Bonet et al in [8] that automatizability implies Feasible Interpolation Property [16, 8].
Later [8, 7], extended this result down to bounded-depth Frege but weakening the cryptographic
assumption considered.

This line of proving non automatizabilty was not suitable for systems, like Resolution, knownto
havethe Feasible Interpolation Property. In a major breakthrough Alekhnovich and Razborov [2],
proved that even Resolution is not automatizable unless some parameterized complexity assumption,
believed to be false, does hold.

Polynomial Calculus is an algebraic refutational proof system introduced in [9] based on deriving
polynomials. In the analysis of the complexity of proofs in PC (see [18] for a survey on algebraic
systems) we deal with two parameters: the maximal degree of apolynomial used in the proof, and
the number of monomials in the proof (usually referred to assize).

It is known (see [9, 18]) thatconstant degreePC is automatizable. In [9] it is shown an algorithm
based on the Gröbner Basis which finds a PC proof of a set of polynomialsP overn variables in
timenO(d), whered is the degree required for any PC proof ofP .
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The previous result does not give automatization of PC with respect to the size, i.e. the number
of monomials. This question is also interesting because: (1) there are examples of families of
polynomials (e.g. pigeonhole formulas) requiring an exponential number of monomials to be refuted
in PC (see [14]); (2) our recent result ([12]), that there are families of polynomials overn variables
requiring

√
n degree but refutable with only a polynomial number of monomials. This means that the

algorithm of [9] cannot be used to recover efficiently proofsof every set of polynomials efficiently
provable in PC.

In this paper we study the question of the automatizabilty ofPC. Since PC is one of the refuta-
tional system proved to have the Feasible Interpolation Property (see [20]), to prove non automatiz-
ability for PC we follow the approach of Alekhnovich and Razborov in [2].

Following their strategy we prove that PC is not automatizable w.r.t. size unlessW [P ]-hard
problems are fixed parameter tractable by one-side error randomized algorithms. This extends to
Polynomial Calculus their analogous result for Resolution[2].

The original part of the proof in our result is a new degree lower bound for a formula, invented
in [2], encoding the optimization problem known asminimum monotone circuit value problem. We
refer the reader to Section 2 for more details on the formula and the proof strategy.

We prove the degree lower bound following a technique initially invented by Razborov in [21]
and used also in the papers [1, 12]. As for the degree lower bound in [12], our degree lower bound
extends the technique of Razborov to new examples of formulas.

The paper is organized as follows. In Section 2 we give the main definitions and we discuss in
details the proof strategy. Section 3 is devoted to the formulation and the polynomial encoding of
the principle used. We put efforts in trying to simplify the formulation of the principle. Section 4
contains the proof of the degree lower bound. Finally in the last Section we combine together the
degree lower bound with previous results of [2] to get the nonautomatizability of PC. We conclude
with a final Section on Open Problems.

2 Preliminaries

2.1 Algebraic proof systems and automatizabilty

We consider multivariate polynomials on variablesx1, . . . xn over a fieldF. We denote thedegree
of a polynomialp asdeg(p), and the number of monomials inp asS(p). Let p1 . . . pl be some
polynomials with no common zero among 0-1 assignments. We define ways to prove such claim.

Nullstellensatz (HN): A proof in Nullstellensatz is a set of polynomialsg1 . . . gl, h1 . . . hn such
that

∑

i

gipi +
∑

i

hi(x
2
i − xi) = 1

Thedegreeof a HN proof ismaxi{deg(gipi)}.
Polynomial Calculus (PC): A proof in Polynomial Calculus is a set of polynomialsg1 . . . gm

such thatgm = 1 and anygi is either an axiomx2
j − xj for somej ∈ [n], or apj for j ∈ [l], or a

polynomial derived according one of the following inference rules:
ga gb

αga + βgb

ga

xj · ga

where1 ≤ a, b < i, α, β ∈ F andj ∈ [n].
Thedegreeof a PC proof ismaxi{deg(gi)}, and thesizeof a PC proof is

∑

i S(gi).
Polynomial Calculus with Resolution (PCR): it is an extension of PC. Polynomials are allowed

to use additional variables̄x1 . . . x̄n. A proof is similar to a PC proof with the addition that a line
can be also be an axiom of the form1− xj − x̄j .

As in PC, thedegreeof a PCR proof ismaxi{deg(gi)}, and thesizeof a PCR proof is
∑

i S(gi).
Given a set of polynomialsP = {p1 . . . pl} we define asdegX(P ) andSX(P ) the minimum

degree and size achievable in a proof ofP by the proof systemX . It easy to see that the following
relations hold for anyP .

degHN(P ) ≤ degPC(P ) = degPCR(P )

SHN(P ) ≤ SPC(P ) ≤ SPCR(P )
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We say a that proof systemX is automatizable(quasi-automatizable) if there is an algorithm
which givenP outputs a validX proof of P in time polynomial (resp. quasi-polynomial) with
respect toSX(P ).

2.2 Notions from commutative algebra

Given a fieldF, we consider polynomials overF[x1, . . . , xn]. Given a setE = {f1, . . . , fn} of
polynomials, bySpan(E) we denote the ideal generated byE, that is the set{

∑

i(fi · hi) | hi ∈
F[x1, . . . , xn]}. We say that a set of polynomialsf1, . . . , fn semantically impliesa polynomialg if
any assignment that satisfiesfi = 0 for all i ∈ [n], also satisfiesg = 0. We writef1, . . . , fn |= g or
E |= g.

We define a notion of residue of polynomials with respect to anideal. We consider thegrlex
order<P on monomials as given in [10]. In particulargrlex is defined as follows:1 <P x1 <P

x2 <P · · · <P xn. For any two products of variablesm, m′ and a variablex hold the following
two properties: (a) ifm <P m′ thenxm <P xm′; (b) m <P xm. This order is lexicographically
extended to polynomials, and0 is the smallest of them.

Notice thatgrlex is not a total order, thus there could be incomparablesq, q′ ∈ Span(E). This
can happen if and only if the underline sets of monomials are equals but have different coefficients.
In that case there exists a linear combination ofq andq′ which is strictly smaller than both, and
which is inSpan(E). Thus a minimum element inSpan(E) always exists.

Given a polynomialq, we defineRE(q) as the minimal, with respect to<P, polynomialp such
thatq − p ∈ Span(E).

RE(q) = min{p ∈ F[x1, . . . , xn] : q − p ∈ Span(E)}

In the following sections we use some properties of the operator RE which can be easily derived
from the definition:

Lemma 1. LetE be a set of polynomials and letp andq be two polynomials. Then:

• RE(p) ≤P p;

• if p− q ∈ Span(E), thenRE(p) = RE(q);

• RE is a linear operator;

• RE(pq) = RE(p · RE(q)).

We shall consider polynomials on the fieldF defined on the domain{0, 1}n. More explicitly we
consider elements of the ringF[x1, . . . , xn]/{x2

i − xi}i∈[n]. Such polynomials are the base for all
algebraic proof systems we consider.

2.3 Proof Strategy

The optimization problem ofMinimum Monotone Circuit Satisfying Assignment(MMCSA) is de-
fined as follows:
Instance: A monotone circuit over∧,∨ in n variables.
Solution: An inputa such thatC(a) = 1
Objective function: w(a), the Hamming weight ofa.

In [2] Alekhnovich and Razborov use the automatization of Resolution as a primitive to effi-
ciently solve MMCSA. The idea can be summarized in three independent steps.

1. Given a monotone circuitC, build an unsatisfiable CNFF (C, w, r) and prove that the size
of the shortest proof is strongly related to the size of minimum satisfying assignment of the
circuit.

2. Assuming automatizability of the proof systems, use the automatization algorithm to find a
proof of approximately small size. This gives an approximation of the minimum assignment
size.

3. Apply (randomized) gap amplification procedures to improve the approximation factor up to
an error smaller than one, thus obtaining an exact value.
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The first step depends on the proof system. Using a slight modification of the formula built in
[2] we will prove the first step for algebraic proof systems. We will see that the other two steps are
essentially independent from the proof system.

Formally we prove the following two theorems.

Theorem 1. If any of HN, PC and PCR is automatizable, then for a fixedε > 0 there exists an
algorithmΦ working on monotone circuitsC which runs in timeexp

(

w(C)O(1)
)

|C|O(1) and ap-
proximates the value ofw(C) to within a factor(1 + ε).

Theorem 2. If HN, PC or PCR are automatizable thenMMCSA ∈ co− FPR.

HereW [P ] is the well-known class of all problems reducible via parametrized reduction to the
problem of WEIGHTED CIRCUIT SATISFIABLITY, and it is known that the decision version of
MMCSA is complete for this class (for details about parameterized complexity the reader is referred
to [11]).

FPR is an hybrid class ofRP andFPT introduced by [2], defined as follows:

Definition 1. The classFPR of parameterized problems, consists, of all languagesL ⊆ Σ∗ × N,
for which there exists a probabilistic algorithmΦ, a constantc and a recursive functionf : N→ N

such that:

1. the running time ofΦ(〈x, k〉) is at mostf(k) · |x|c;

2. If 〈x, k〉 ∈ L, thenPr[Φ(〈x, k〉) = 1] ≥ 1/2;

3. If 〈x, k〉 6∈ L, thenPr[Φ(〈x, k〉) = 1] = 0;

To get Theorem 1, we prove the following reduction as in [2].

Lemma 2. LetC be a monotone circuit, andw an integer parameter. Assume thatr = Θ(w):

1. AnyPCR refutation ofF (C, w, r) has size at least

2Ω(w·min{w(C),w})

2. If w(C) ≤ w then there is aHN proof ofF (C, w, r) of size

|C| · 2O(w·w(C))

In turn the Lemma is proved using our main and new result in thepaper, which is a degree lower
bound forF (C, w, r).

Theorem 3. AnyPCR refutation ofF (C, w, r) requires degree at leastr ·min{w(C) − 1, w}.

3 The principle

Let C be a monotone circuit onn inputs of size polynomial inn. Let w(C) the minimum hamming
weight of an assignment satisfyingC and letw be a parameter whose intended meaning is to guess a
value for the size ofw(C). Letr be a parameter used to amplify the degree hardness of the principle,
r is intended to beΘ(w).

A combinatorial object calledPaley matrixis used for the construction. Such matrix has the
property that any projection on a small set of columns consists of all possible binary strings with an
almost fair frequency. For our purpose it is sufficient that any set ofw columns has a full 1 row and
any set ofw rows has a full 0 column. We will show a construction for a matrix A of size2Θ(w).

Let q > 24w be an arbitrary prime, and consider aq × q matrix where cell(i, j) contains1 iff
i − j is a quadratic residue moduloq, or 0 otherwise1. It is well known [15, 3] that any projection
onw rows or columns contains every string in{0, 1}w

FromC, w, r andA, we are going to define a set of equationF (C, w, r). The principle encodes
the property that there exists a set ofn columns of the matrixA that contains no satisfying assignment

1Note that in literature the original Paley Matrix is defined in a different fashion with 0 values on diagonal, 1 for quadratic
residues and -1 for non residues. But this is not an issue here
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for the circuitC. This claim is unsatisfiable ifw(C) < w. This is because whatever the selection of
n columns is, thew columns corresponding to the1 coordinates of such assignment will contains a
full 1s string which satisfies the circuitC.

The n columns are selected byn partial functions calledgenerators. These functions will be
defined in the following.

For technical reason, widely explained in [2], we add complexity to the principle: instead of
feeding one input to a single circuit, we feed it to several copies of the same circuit, and we select
one of those copies by apartial function calledactivator. In the principle we will express the fact
that only the gates of the active circuits have to perform thecomputation correctly.

The principle claims that exists a choice for the ’generators and activators’ inputs such that: (a)
values for such inputs are defined and (b) no circuit output 1.

It is clear that even in this version of the principlew(C) < w implies that for any input anyw
generators produce a full 1 row. This row is fed to a set ofr copies of the circuitC. One of them
is active and has to propagate the computation through the gates. Thus that circuit copy outputs 1,
which is in contradiction with the claim no active circuit output 1.

Circuit family Let q = 2Θ(w) the size of the matrix. We consider an array ofq × r copies ofC,
indexed asCik.

Let s be a parameter we specify later and which should be intended to beΘ(w + log q) which
will be Θ(w + r).

Activators For all i ∈ [q] we consider a possibly partial functionAi : {0, 1}s 7→ [r] which
selects one of the circuit amongCi1 · · ·Cir . Only for gates in the selected circuit we ensure to
propagate correctly through the circuit. The other ones arerelieved from the computation.

Generators For j ∈ [n] Gj : {0, 1}s → {0, 1}q generates a column vector ofA. Thus
{G1 · · ·Gn} define aq × n matrix. For alli ∈ [q] theith row of such matrix is fed toCi1 · · ·Cir as
input.

Generator and Activators with r-surjectivity and parameter s. As in [2] (see there for an ex-
tensive discussion about this requirement) we need both activators and generators to ber-surjective
functions on domain{0, 1}s, for a suitables. Here is a construction (see also [2], proof Lemma
3.1 (ii)), that allows us to define surjective functions. Consider a general binary surjective function
g : {0, 1}l 7→ S and a decoding functionD : {0, 1}αl 7→ {0, 1}l of a code with distance≥ 2l (con-
structions exist [22] such thatα is a universal constant). Theng · D : {0, 1}αl 7→ S is l-surjective
on S. To see this consider the restricted bits as “error” bits. Any message can be decoded from the
proper codeword with thosel bits changed.

The output of a generator functionGj is completely specified by the choice of a column in the
Paley matrix (henceΘ(w) bit), the output of the activatorAi is specified by the choice of a number
in [r]. ThusΘ(w + r) input bits are enough to define both surjective generators and selectors. Then
by composition with a2r distance code we obtain the desiredr-surjective functions on{0, 1}s with
s = Θ(w + r).

Because of the properties of Paley matrix, generators and activators the following fact holds.

Fact 1. For any monotone circuitC, and anyw > w(C), at least one of{Cik}ik outputs 1 whatever
the assignment for activators and generators is.

3.1 Propositional Encoding

We now describe the polynomials which encode the negation ofthe principle discussed so far. De-
scribing the elements of the principle we will be consistentwith the following notation.
Notation reference

C the monotone circuit.

n input variables in the circuitC.

v index refers to a the gates ofC. It goes from1 to |C|. We assume first1..n indexes correspond
to input gates. And|C| corresponds to output gates.

w(C) is the minimum hamming weight of an assignment satisfyingC.

q = 2Θ(w) a prime number, size of the Paley matrix.
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r is a parameter.

i index used to denote a row in the Paley matrix, a selector function and one of the inputs fed to
the circuits. It goes from1 to q.

j index used to denote one input variable ofC and one of the generator functions. It goes from
1 to n.

k index used to denote one of the possible outcomes of the selector functions. It goes from1 to
r.

Cik kth copy ofC, fed with theith row generated by generator functions.

Ai ith activator function which selects among circuitsCi1, . . . , Cir .

Gj jth generator function which chooses thejth columns to feed asjth input of the circuits.

s length of the binary input of activators and generators, it isΘ(w + r).

xj(α), yi(β) For a vectorα, β ∈ {0, 1}s we denote asxj(α) andyi(β) the characteristic polynomials of
α andβ respectively on variablesxj1, . . . , xjs andyi1, . . . , yis. For examplexj(001 . . .) is
x̄j1x̄j2xj3 · · · .

Polynomials which encode the principle are expressed in thefollowing set of variables.
Variables For all i, j, k, and gatev as above:

• xj1 . . . xjs are the variables representing the input of generatorGj .

• yi1 . . . yis are the variables representing the input of activatorAi.

• zv
ik represents the value of gatev in circuit Cik.

We now give the encoding, dividing polynomial equations in several sets. For any indexi ∈ [q]
we encode in an equation setFi all equations relevant to rowi. Indexesi, j, k, v andα, β apply
properly as described above.Fi are shown below:

xj(α)yi(β)z̄j
i,k = 0 iff the ith bit of Gj(α) is 1 andAi(β) = k (1)

yi(β) = 0 whenβ 6∈ dom(Ai) (2)

yi(β)zA
i,kzB

i,kz̄v
i,k = 0 gatev ← A ∧B andAi(β) = k (3)

yi(β)zA
i,k z̄v

i,k = 0, yi(β)zB
i,kz̄v

i,k = 0 gatev ← A ∨B, andAi(β) = k (4)

yi(β)z
|C|
i,k = 0 Ai(β) = k (5)

(1) says that if theith bit of the column generated byGj is 1 and the active circuit forith row is
k, then thejth input ofCik must be on. (2) forces theyi variables to encode a value in the domain
of the activator function. This is necessary because activators are partial functions. (3) and (4) force
the active circuit to compute the gates correctly. The equation (5) claims that the output of the active
circuit is zero.

Notice that this principle is slightly different from the one in [2]. They use additional variables
to indicate circuit activation. We choose not to use them because they would cause trouble in some
technical steps of the following proofs.

Fi specifies in a truth table fashion how gates of a circuit in a row i behave. When such circuit
is activated the input of generators causes some bits to be fed in it. The principle also claims such
circuit outputs 0. The principle consists in the conjunction of Fi for i ∈ [q].

Definition 2. We callF (C, w, r) the principle described above as
⋃

i Fi, whereC is a monotone
circuit, q = 2Θ(w) is a prime, andr is the surjectivity parameter of generators and activators.

Fact 2. The equations of principleF (C, w, r) can be produced in|C|2O(w+r) time and space. If
w(C) ≤ w thenF (C, w, r) is unsatisfiable.

Proof. Remembers = O(w + r). For anyα, β two strings ofs bits, anyi ∈ [q], anyj ∈ [n] there
is at most onek such thatxj(α)yi(β)z̄j

i,k = 0 is in the principle. Then for anyβ andi there is at
most onek for which there are gate propagation equations. Otherwise there is one single clauses
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yi(β) = 0 if β is not in the domain ofAi. In total we haven2O(s)+ |C|2O(s)) equations. Notice that
if we have dual variable for encoding negations then all equations result to be monomials. Otherwise
equations will be encoded as polynomials exponentially long in the degree of the equation. Biggest
degree appearing is2s thus the size of the formulaF (C, w, r) is againn2O(s) + |C|2O(s). The
obvious output strategy satisfies the resource bound. Unsatisfiability comes as a restatement of Fact
1.

4 Degree Lower bounds forF (C, w, r)

In this section we prove the formulaF (C, w, r) requires a high degree to be refuted. We need a
tailored degree measure for this purpose.

Definition 3. For a monomialt consider the three sets

Xt := {(j, l) : xjl ∈ t}
Yt := {(i, l) : yil ∈ t}
Zt := {(i, k) : there is av for whichzv

ik ∈ t}

And we define theindex-degree of t as

ideg(t) = |Xt|+ |Yt|+ |Zt|

The index-degree of a polynomial is the biggest index-degree among its monomials.

Theorem 4. Any PCR refutation ofF (C, w, r) contains a polynomial of index-degree at leastr ·
min{w(C)− 1, w}.

From now on we definem := min{w(C) − 1, w}. The index-degree lower bound relies on the
construction of an operatorK over multivariate polynomials such that

1. K is a linear operator.

2. K(p) = 0 for anyp in F (C, w, r).

3. If ideg(t) < rm thenK(xt) = K(xK(t)) holds for any variablex.

4. K(1) 6= 0

Proof. (of Theorem 4) Assume a proof of index-degree less thanrm exists: each line of such proof
is either an equation inF (C, w, r), or a sum of previous lines, or the product of a previous line with
a variable where index-degree stays belowrm. Then property (1), (2), (3) imply thatK maps to 0
every line in the proof. This contradicts property (4) whichclaimK can not map last line to 0.

We now show such operatorK. AssumeI is a set of row indexes contained in[q] and consider
the set of polynomialsI containingFi for i ∈ I and also containing all PCR axioms. We denote as
RI(p) the residue of polynomialp modulo the ideal generated byI. More concretely

RI(p) = argmin
q
{p− q =

∑

s∈I

hss}

for somehs multivariate polynomials. We writeI ` p if p is in the ideal generated byI.

Definition 4. Function I and operator K:
Fix a monomialt: we can writet = t1t2 · · · tqt′ where eachti contains only variables indexed

by i ∈ [q] andt′ contains onlyxjl variables.
I(t) is the set ofi ∈ [q] such thatideg(ti) ≥ r. K(t) is equal toRI(t)(t). On a formal

polynomialp =
∑

i citi we defineK(p) :=
∑

i ciK(ti).

We now check thatK satisfies properties (1)-(4). (1) comes from the definition.(2) If a premise
p is an axiom then any of its term is reduced with respect to an ideal which containsp itself. Any
premisep in Fi is a monomialt which contains more thanr variables indexed byi. Thus suchp is in
the idealI(t). This impliesp is reduced to 0. (4) is true becauseI(1) contains a set of polynomials
with a common 0-1 solution.

To prove (3) we need the following results about ideals:
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Lemma 3. For any polynomialp and idealI generated byq1, q2, . . . , qm, all variables appearing
in RI(p) also occur inp, q1, q2, . . . , qm.

Proof. Let x be a variable occurring inRI(p) and not inp nor in any generatorqi. By definition
p − RI(p) =

∑

i hiqi for some polynomialshi thus by settingx to 0 we obtainp − RI(p) �x=0=
∑

i(hi �x=0)qi whereRI(p) �x=0 is strictly smaller thanRI(p). This contradicts the factRI(p) is
the minimum according to<P.

Corollary 1. Let m1, m2 two monomials, ift is a monomial inm1 · RI(m2)(m2) then I(t) ⊆
I(m1m2).

Proof. If i′ ∈ I(t)/I(m1m2) then variables indexed byi′ in t are more thanr. No such variable
is contained inFi for i′ 6= i. Thus by Lemma 3 any term inRI(m2)(m2) does not contain more of
such variables thanm2 itself contains. Suchi′-indexed variables are then contained in the union of
the variable ofm1 andm2. Thusi′ ∈ I(m1m2) but this contradicts the assumption.

Next lemma is the heart of the argument: it shows how a small index-degree derivation has local
behavior. The set of premises needed in the derivation is a subset of the one given by the operatorI.

Lemma 4. Let t be a monomial of index-degree less thanrm and I(t) ⊆ I with |I| ≤ m. Then
RI(t)(t) = RI(t).

Proof. We will show an assignmentρ such thatt �ρ= t andI �ρ⊆ I(t). This is sufficient since

I �ρ` t �ρ −RI(t) �ρ

By properties ofρ we getI(t) ` t − RI(t) �ρ. This meansRI(t) �ρ is bigger thanRI(t)(t) in the
order among polynomials. It is also smaller thanRI(t) because a partial assignment can’t increase
the order. Notice that we also haveRI(t) smaller thanRI(t)(t) becauseI(t) is a subset ofI and
residue is monotone decreasing with respect to the subscript set.

We now considerJ the set in indexesj ∈ [n] such thatt contains less thanr variables among
xj1, . . . , xjs. Thus|J | ≥ n−m.

Notice that because ofr-surjectivity of generators we have that for anyj ∈ J and any vector
v = v1 . . . vq in the image ofGj there is a boolean partial assignmentαj on “xj” variables such
that no variable int is assigned andGj(α) = v. We choose av such that for anyi in I we have
vi = 0. Such choice is possible because|I| ≤ m andv is a column in a Paley matrix of appropriate
size. We addαj for j ∈ J in ρ. Such partial assignment does not restrictt, and set to 0 all equations
xj(α)yi(β)zj

ik = 0 for anyj ∈ J , i ∈ I, k ∈ [q]. Other equations are left untouched.
We now consider a rowi0 in I/I(t) andt0 the monomial containing all variables int indexed

by i0. We extendρ to satisfy all remaining equations inFi0 . To achieve such result we notice there
is at least one circuit copyCi0k such that no variables int correspond to a gate of such a circuit,
otherwise it would beideg(t0) ≥ r andi0 would be inI(t). For the same reason we also know int
there are less thanr variables amongyi01 . . . yi0s. Both observation together imply there is a partial
assignment onyi0l variables not contained int such thatyi0(β) = 0 for all β with Ai0 (β) 6= k. Then
by now all equations inFi0 are satisfied with the exception of the ones corresponding tocircuit Ci0k.
We setzj

i0k to 0 whenj ∈ J and 1 otherwise. Then we propagate values among the circuit equations
accordingly. We remark that being|J | < m ≤ w(C) we have 0 at the output gate. This satisfies
all clauses inFi0k without touchingt. We continue to extendρ in this way for alli ∈ I/I(t). The
resulting assignment satisfies the requested properties. Thus the lemma is proved.

Lemma 5. If the index-degree of a monomialt is less thanrm thenK(xt) = K(xK(t))

Proof. Consider a monomialt of index-degree less thanrm. We will prove that bothK(xt) and
K(xK(t)) are equal toRI(xt)(xK(t)). Consider the following chain of equations.

8



K(xt) = RI(xt)(xt) (6)

= RI(xt)(xRI(xt)(t)) (7)

= RI(xt)(xRI(t)(t)) (8)

= RI(xt)(xK(t)) (9)

The equation (6) is the definition; (7) becauseRI is an homomorphism on the ring of multivariate
polynomials; (8) holds because of Lemma 4; (9) holds becauseof the definition ofK. Let us denote
xK(t) as

∑

i αiti in the next chain of equations.

K(xK(t)) = K(
∑

i

αiti) (10)

=
∑

i

αiK(ti) (11)

=
∑

i

αiRI(ti)(ti) (12)

=
∑

i

αiRI(t)(ti) (13)

= RI(xt)(
∑

i

αiti) (14)

= RI(xt)(xK(t)) (15)

The first lines holds because the notation just introduced; (11) by linearity ofK; (12) by def-
inition of K; (13) holds because anyxti is a monomial inxRI(t)(t). We now use Corollary 1 to
claim I(xti) is a subset ofI(xt), which has size less thanm. Lemma 4 finally implies the equation.
By using linearity we get (14) and by reverting the change of notation we conclude the proof with
equation (15).

5 Main Result

In this section we prove a result similar to Lemma 3.1 in [2] for the systems HN and PCR. Result
obtained in Section 3 of [2] depends on Resolution system, while the self-improvement technique
developed in Section 4 of [2] refers to MMCSA amplification and is independent from the proof
system adopted.

Lemma 6. LetC be a monotone circuit, andw an integer parameter. Assumer = Θ(w):

1. AnyPCR refutation ofF (C, w, r) has size at least

2Ω(w·min{w(C),w})

2. If w(C) ≤ w then there is aHN proof ofF (C, w, r) of size

|C| · 2O(w·w(C))

Proof. (1) Lower bound. The strategy here follows [2]: we deduce a degree lower boundon the
PCR refutation ofF (C, w, r) and then we use a random restriction / probabilistic method argument
to deduce the size lower bound.

The restriction: for each input set of the generators and activators we restrict uniformly indepen-
dently at random a set ofr/2 of thes variables. For eachi ∈ [q] we also choose independentlyr/2
circuit copies of ther available and we restrict randomly all the gates of such copies. This restriction
(up to index reordering) is essentially subsumed byF (C, w, r/2). For any restricted variable we fix
the corresponding dual variable to the appropriate value.
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Fix d := r
4 · min{w(C) − 1, w}. We show that any monomial with index-degree bigger that

d is set to zero with probability at least1 − 2−Ω(d). Fix a polynomialt of index degree at leastd.
We knowt = t1 · · · tdt′ whereti is either a power of a generator variable, an activator variable or a
non empty product of variables corresponding to a particular circuit Cik. We can assume variables
in tis to be disjoint. We want to estimate the probability thatti is set to 0 by the random restriction,
assumingt1 . . . ti−1 haven’t been. Consider the caseti is a generator or an activator variable:s is
the number of such variables for each generator and activator. With at leastr/2s probability ti is
chosen among the restricted variables. Then with probability at leastr/4s the monomial is set to
zero. Notice thatr/4s is a constant by construction. In the caseti is a product of variables ofCik

for somei andk then such circuit is chosen to be restricted with probability at least1/2 because
no previous one has been, and the product is restricted to zero with at least probability1/4. The
probability of the monomial not to be set to zero is then at most cd for somec > 1.

For a partial assignmentρ distributed as describedΠ �ρ is a proof ofF (C, w, r) �ρ and of
F (C, w, r/2). Assuming thereΠ is of size smaller thancd then by union bound there is a restriction
ρ such thatΠ �ρ is a proof of degree less thand for F (C, w, r/2). This is in contradiction with the
index-degree lower bound proved in Section 4.
(2) Upper bound. In the hypothesis the principle is unsatisfiability becauseof Fact 2. In this case
a tree-like refutation of size|C|2O(w·w(C)) for F (C, w, r) exists as it is shown in [2]. Such proof
can be simulated in PC and PCR easily. For PC the absence of dual variables leads to manipulate
big representations of polynomials, but the asymptotic complexity of the proof stays the same. For
completeness we also show a proof in HN.

We now assume wlog the first1 . . . w(C) inputs correspond to the minimum satisfying assign-
ment.

We have to prove there are multiples of premises which sum up to 1. Notice that by defini-
tion of characteristic functions we have1 =

∑

α∈{0,1}s xj(α) for any j ∈ [n] and also1 =
∑

β∈{0,1}s yi(β) for any i ∈ [q]. Then we get1 =
∑

α1...αw(C)β
x1(α1) · · ·xw(C)(αw(C))yi(β)

for anyi, in particular we fixi := i(α1, . . . , αw(C)) to be such that theith row is the one containing
a satisfying assignment generated byα1 . . . αw(C). This immediately implies there is a valuek for
which Cik outputs1. Fix p0 := x1(α1) · · ·xw(C)(αw(C))yi(β) be one of the polynomials in the
sum, and let bek the corresponding activated circuit.

We now show thatp0 can be written as sum of premises: consider the propagation of the sat-
isfying assignment throughCik (from now on we drop theik indexes for sake of notation). There
is a minimal sequence of gatesz1 . . . zm in the circuit such thatzm is the output gate,z1 . . . zw(C)

are the input gates activated by generators, for any AND gateboth input gate are predecessor in
the sequence, for any OR gate at least one of its predecessor is also a predecessor in the sequence.
We denotepl := p0z

1 · · · zl. We prove by backward induction onl that pl is provable in Hilbert
Nullstellensatz.

Base case:pm is a multiple ofyi(β)zm
ik which is a premise.

Induction step: assumingpl is provable. By minimality the gatezl is activated by some prede-
cessor(s) in the sequence. Thenpl−1 = pl−1(1 − zl − z̄l) + pl−1z̄

l + pl−1z
l. The first part comes

from boolean axioms, the second part is a multiple ofyi(β)zA
ikzl

ik (respectivelyyi(β)zA
ikzB

ikzl
ik ) if

the gate is an OR (respectively an AND), the third part comes from inductive hypothesis.
Thenp0 can be proved in|C|O(1) . The number of such polynomials to prove are2s·w(C)+s.
To prove that the sum of characteristic functions is 1 it is sufficient an extensive use of boolean

axioms of dual variable. This leads to a proof of size|C|O(1) · 2s·w(C)+s + 2O(s·w(C)+s). By using
the fact thats = Θ(r + w) we get the final claim.

Lemma 3.1 of [2] can be now be rephrased for PCR and HN, as follows

Lemma 7. There exists a polynomial time computable functionτ which maps any pair〈C, 1m〉,
whereC is a monotone circuit andm is an integer into an unsatisfiable CNFτ(C, m) such that:

• there is aHN proof ofτ(C, m) of size|C|mO(min(w(C),log m))

• AnyPCR refutations ofτ(C, m) has size at leastmΩ(min(w(C),log m))
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Proof. Follow Lemma 3.1 of [2]. Setw = log m/4 andr = dlog me ands = αdlog me (see
discussion aboutr-surjectivity), exactly as Lemma 3.1 of [2]. The formulaτ(C, m) is F (C, w, r) ∧
τm whereτm is the pigeon hole principlePHPn+1

n wheren = log2 m and axioms are extended
with pi,j + p̄i,j − 1 for (i, j) ∈ [n + 1] × [n]. The pij variables of pigeon hole principle are
disjoint from F (C, w, r) ones. The claim follows by Lemma 6 (notice thatr = Θ(w) ands =
Θ(w + r)). Notice that onPHPn+1

n formula HN polynomially simulates treelike Resolution and
feasible Interpolation and the Weak Feasible Disjunction properties hold for Polynomial Calculus as
well (see [19, 20]).

Theorem 2.5 and Theorem 2.7 in [2] can be rephrased for HN and PCR proof system as follows.

Theorem 5. If any of HN, PC and PCR is automatizable then for a fixedε > 0 there exists an
algorithmΦ working on monotone circuitsC which runs in timeexp

(

w(C)O(1)
)

|C|O(1) and ap-
proximates the value ofw(C) to within a factor(1 + epsilon).

Theorem 6. If HN, PC or PCR are automatizable thenMMCSA ∈ co− FPR.

Proof. (Theorem 5 and 6) Refer to Lemma 4.1 in [2]. Because of our lower and upper bounds we
can use the same proof for HN, PC or PCR instead of Resolution. Then the proof of both Theorem
follow in the same way as in [2].

6 Open Problems

The construction suffers of being very complex and randomized. Would be nice to derandomize
and/or simplify it. A new proof would also help to solve the following open problem: this construc-
tion was used to prove non automatizability for tree-like resolution, which is quasi-automatizable. It
is conjectured that Resolution, PC, PCR and not even quasi-automatizable but any construction with
efficient tree-like refutation would not help.
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